
Vol.:(0123456789)

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537
https://doi.org/10.1007/s42330-023-00293-y

1 3

The Integration of Coding and Computer Science
Concepts in Canadian K‑8 Curriculum

Steven Floyd1 

Accepted: 24 October 2023 / Published online: 7 December 2023
© Ontario Institute for Studies in Education (OISE) 2023

Abstract  In this article, the relatively new phenomenon of integrating coding and computer science
(CS) related concepts and skills into the K-8 grades is analysed through a comparative analysis of
related provincial curriculum initiatives in Canada. First, provincial K-8 curricula that include coding
and CS related concepts and skills are identified, as well as the placement of these components within
the provincial policy documents. This is followed by a comparative analysis of stated aims and objec-
tives of the curriculum components, and an analysis of the selected concepts and skills themselves.
Throughout this analysis, context is provided by theory in the field, as well as the general approaches
from jurisdictions outside of Canada, which have been found in the literature. What results is a com-
parative analysis of this nascent curriculum topic as well as important insights for educators, policy
makers, and researchers alike.

Résumé  Dans cet article, par le biais d’un examen comparatif des initiatives provinciales connexes en
matière de programmes d’études en vigueur au Canada, on analyse le phénomène relativement récent de
l’intégration des compétences et des concepts liés à l’informatique dans les classes de la maternelle à la
8e année. On cerne tout d’abord les programmes provinciaux de la maternelle à la 8e année qui incluent
le codage et les compétences et concepts qui y sont associés, ainsi que l’endroit où se retrouvent ces
éléments dans les documents énonçant les politiques provinciales. Vient ensuite une analyse compara-
tive des buts et objectifs déclarés des éléments faisant partie du programme, ainsi qu’un examen des
compétences et des concepts choisis. Tout au long de cette analyse, le contexte provient de la théorie liée
au domaine ainsi que des approches générales relevant de compétences situées hors du Canada trouvées
dans la documentation. Il en résulte une analyse comparative de ce sujet particulier (à l’état naissant)
du programme d’étude ainsi que des connaissances précieuses, autant pour les éducateurs, les décideurs
politiques que pour les chercheurs.

Keywords  Computer science · Coding · Computational thinking · Curriculum

 *	 Steven Floyd
	 stevenpfloyd@gmail.com

1	 London, Canada

http://orcid.org/0000-0001-8793-3142
http://crossmark.crossref.org/dialog/?doi=10.1007/s42330-023-00293-y&domain=pdf

510	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

Introduction

Educational systems around the world have been undergoing reforms to ensure that their policies and
practices adequately prepare students to meet the changing needs of life and work as school experiences
do not align with the needs of a diverse, rapidly changing, and technologically sophisticated society
(Milton, 2015). The integration of coding and related concepts in the K-8 grades has become a com-
ponent of these reforms (Bocconi et al., 2016; Dagienė et al., 2019). Coding and associated computer
science (CS) concepts can form the basis of lucrative, high-status, and flexible careers (Information and
Communications Technology Council, 2017), but others argue that the integration of coding concepts
and skills in the K-8 grades should be motivated by more than simply economic goals (Tissenbaum
et al., 2021; Lee & Soep, 2023).

A number of studies analyzing curricula from a variety of educational jurisdictions have identified
different goals and rationale for the integration of coding in the younger grades (Webb et al., 2015;
Passey, 2017; Vogel et al., 2017; Hubweiser et al., 2015). In addition, the literature reveals a variety of
theoretical perspectives (Kafai, 2016; diSessa, 2018; Resnick, 2018; Tissenbaun et al., 2019). These
goals, rationale, and perspectives will be explored in the following two sections.

Arguments for Coding Curriculum in the Younger Grades

Before considering the placement of coding and related concepts and skills in K-8 provincial curricula,
it is important to develop an understanding of the various goals associated with younger students pro-
gramming a computer. Passey (2017) identifies six main reasons for the inclusion of CS curricula in
the younger grades that include the economic argument, the organizational argument, the community
argument, the educational argument, the learning argument, and the learner argument. Passey’s (2017)
economic argument is workforce centred, focusing on the idea that curriculum should support future
economies and should support students in developing the skills needed to meet the needs of future
careers. This argument is based on the idea that specific coding-related concepts and skills will be
valuable for future careers. In contrast, Passey’s organizational argument, while still connected to eco-
nomic and workforce motivators, is broader and recognizes the potential of coding curriculum leading
to collaboration and teamwork-related skills, which he states will also be in demand in future careers.
Moving beyond the workplace, the community argument recognizes the need for general computing
capabilities to support community groups and programmes, such as a supporting social bird watching
and music groups or allowing older individuals leveraging technology to maintain communication and
connections with others. The educational argument is focused on all individuals being provided with the
opportunity to learn important digital skills that all citizens should have, and about understanding the
coding and CS concepts that lay behind our ubiquitous technologies. Closely connected to the educa-
tional argument is the learning argument, which recognizes the associated problem solving, creativity,
and logical thinking skills sometimes associated with coding and CS work. When discussing the learn-
ing argument, Passey introduces Seymour Papert’s work on constructionism, which will be explored
later in this article. Finally, Passey’s learner argument puts the student at the centre of the curriculum,
recognizing that students are often motivated and engaged when programming a computer, and young
students should be provided with the opportunity to explore coding and CS concepts as a potential area
of interest and focus.

In addition to Passey’s six arguments, other works have identified differing goals and rationale for
coding curriculum in the younger grades. These goals and rationale sometimes not only overlap with
Passey’s arguments, but also add insights and direction that Passey left out. Vogel et al. (2017) identi-
fied seven areas of impact present in arguments for universal CS education, including (1) economic and

511Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

workforce development; (2) equity and social justice; (3) competencies and literacies; (4) citizenship
and civic life; (5) scientific, technological, and social innovation; (6) school improvement and reform;
and (7) fun, fulfillment, and personal agency. While many of these share ideas from Passey’s arguments,
the equity and social justice perspective and the motivation for scientific and technological innovation
perspective add new dimensions and considerations that Passey did not emphasize. Equity and social
justice perspectives often relate to the need for citizens to be active and critical users of technology,
and are associated with related concepts such as privacy or safety (Fluck et al., 2016), as well as equity
issues surrounding gender equality, and underrepresented groups in CS education, or the CS field in
general. Arguments surrounding scientific and technological innovation recognize coding and CS con-
cepts as a critical component of a cross-curricular, science, technology, engineering, and mathematics
(STEM) education.

Also left out of Passey’s arguments and identified by Webb et al. (2015) are the cultural reasons for
the inclusion of coding concepts and skills in curriculum. These cultural reasons are associated with
empowerment, and the recognition of coding and CS concepts and skills as “enabling people to be the
drivers of cultural change, rather than having change imposed by technological developments” (Webb
et al., 2017, p. 446).

Table 1 outlines a general organization of recent arguments for the inclusion of coding concepts and
skills in the curricula of the younger grades. Webb et al.’s (2015) broad categories are included first,
then Passey’s (2017) and Vogel et al.’s (2017) detailed areas of focus. Also included are the detailed
categories of goals identified by Hubweiser et al. (2015). In “A Global Snapshot of Computer Science
Education in K-12 Schools”, Hubweisser et al. analyzed and summarized 14 articles, published in two
special issues of Computer Science Education in K-12 Schools, that included information related to
K-12 CS education from 12 countries or states from around the world. Through the analysis of these
articles, the authors identified 19 categories of addressed goals, many of which fit into Webb et al.’s
(2015) general categories, but add specificity and detail.

Theoretical Perspectives on Coding in the K‑8 Grades

In addition to Seymour Papert’s (1993) foundational work related to the Logo programming language
and the learning theory of constructionism, a number of relatively recent theoretical approaches have
been developed that relate to coding concepts and skills in the younger grades. These include Com-
putational Thinking (Wing, 2006; Grover & Pea, 2013, 2018), Fluency (Resnick, 2018), Participation
(Kafai, 2016), Literacy (diSessa, 2000, 2018), and Action (Tissenbaum et al., 2019). In combination
with the arguments for coding in the K-12 grades (listed above in Table 1), an understanding of the
similarities and differences of these theoretical approaches is important in order to inform analysis of
coding curricula.

Constructionism

Constructionism arose from the work of Jean Piaget, with whom Papert had worked, and who articulated
the theory of cognitive development called constructivism. Harel and Papert (1991) explain that the
learning theory of constructionism can be over-simplified and thought of as “learning-by-making”; how-
ever, it is much more multifaceted than this, and has much deeper implications. Ames (2018) explains
that both constructivism and constructionism focus on learning being an active process of constructing
knowledge, and both support the idea that children learn new concepts by relating them to things that
they already know. An important distinction between the two, however, is that constructionism includes
the idea that this can happen felicitously when the learner is constructing something that others might
see (Harel & Papert, 1991). A key goal of constructionism is “to respect children as creators, enable

512

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

Ta
bl

e 
1  

R
ec

en
t a

rg
um

en
ts

 a
nd

 g
oa

ls
 fo

r c
od

in
g

in
 th

e
yo

un
ge

r g
ra

de
s

W
eb

b
et

 a
l.

(2
01

5)
Pa

ss
ey

 (2
01

7)
Vo

ge
l e

t a
l.

(2
01

7)
H

ub
w

ei
se

r e
t a

l.
(2

01
5)

•
Ec

on
om

ic
•

So
ci

al
•

C
ul

tu
ra

l

•
Ec

on
om

ic
 a

rg
um

en
t

•
O

rg
an

iz
at

io
na

l a
rg

um
en

t
•

C
om

m
un

ity
 a

rg
um

en
t

•
Ed

uc
at

io
na

l a
rg

um
en

t
•

Le
ar

ni
ng

 a
rg

um
en

t
•

Le
ar

ne
r a

rg
um

en
t

•
Ec

on
om

ic
 a

nd
 w

or
kf

or
ce

 d
ev

el
op

m
en

t
•

Eq
ui

ty
 a

nd
 so

ci
al

 ju
sti

ce
•

C
om

pe
te

nc
ie

s a
nd

 li
te

ra
ci

es
•

C
iti

ze
ns

hi
p

an
d

ci
vi

c
lif

e
•

Sc
ie

nt
ifi

c,
 te

ch
no

lo
gi

ca
l,

an
d

so
ci

al
 in

no
va

tio
n

•
Sc

ho
ol

 im
pr

ov
em

en
t a

nd
 re

fo
rm

•
Fu

n,
 fu

lfi
llm

en
t,

an
d

pe
rs

on
al

 a
ge

nc
y

•
D

ig
ita

l l
ite

ra
cy

•
C

om
pu

ta
tio

na
l t

hi
nk

in
g

•
Pr

ob
le

m
 so

lv
in

g
•

U
nd

er
st

an
di

ng
 b

as
ic

 c
on

ce
pt

s o
f C

S
an

d
it

•
C

ar
ee

r p
re

pa
ra

tio
n

an
d

ch
oi

ce
•

Su
pp

or
t a

w
ar

en
es

s o
f s

oc
ia

l,
et

hi
ca

l,
le

ga
l,

an
d

pr
iv

ac
y

is
su

es
 a

nd
 im

pa
ct

of

 C
S

•
G

en
er

al
 e

du
ca

tio
n

to
 p

ar
tic

ip
at

e
in

 so
ci

et
y

re
sp

on
si

bl
y

•
Pr

ep
ar

e
fo

r u
ni

ve
rs

ity
•

St
ud

en
t d

ev
el

op
m

en
t

•
A

ttr
ac

t a
nd

 m
ot

iv
at

e
m

or
e

fe
m

al
e

an
d

m
al

e
stu

de
nt

s
•

C
re

at
e

IT
•

H
ol

ist
ic

 v
ie

w
•

C
on

ne
ct

in
g

to
 re

al
-w

or
ld

 c
on

te
xt

s
•

C
re

at
iv

e
us

e
of

 IT
•

Li
m

its
 a

nd
 ri

sk
s o

f C
S

•
Su

pp
or

t c
om

m
un

ic
at

io
n

ab
ou

t I
T

•
Su

pp
or

t m
at

he
m

at
ic

s a
nd

 sc
ie

nc
e

•
A

pp
ly

 IT
 in

 o
th

er
 su

bj
ec

ts
•

D
ee

pe
r k

no
w

le
dg

e
of

 C
S

•
G

ro
w

th
 o

f k
no

w
le

dg
e

so
ci

et
y

•
M

od
er

n
an

d
re

le
va

nt
 c

ur
ric

ul
um

•
Pi

ct
ur

e
of

 C
S

an
d

pr
og

ra
m

m
in

g
in

 so
ci

et
y

•
Re

pr
es

en
tin

g
th

in
ki

ng
 p

ro
ce

ss
es

•
R

is
e

an
d

di
sc

ov
er

 ta
le

nt
 a

nd
 a

tti
tu

de
 to

w
ar

ds
 C

S

513

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

them to engage in making meaning for themselves through construction, and to do this by democratizing
access to the world’s most creative and powerful tools” (Holbert et al., 2020).

Speaking specifically about mathematics education, the Harel and Papert (1991) indicate that hav-
ing students work creative and powerful tool such as “cybernetic construction kits”, which essentially
combined Papert’s Logo coding software with physical, robotics-like LEGO kits, changes the context
of learning and holds the attention of students for much longer (Harel & Papert, 1991). While Papert
acknowledged the construction of a public entity might not require a computer, it could be a soap-
sculpture or even a knot-tying project, he does emphasize that the computer can serve as a Proteus of
machines, taking on a thousand forms and serving a thousand functions (Papert, 1993). In this way, the
computer can help relieve what he calls the potential poverty of a classroom culture, which might lack
the needed resources and materials to support a wide range of learning opportunities for students. As a
result, the computer played a central role in Papert’s work with children, and his focus was always on
the mind and the way in which technology could provide children with new possibilities for learning,
thinking, and growing, both cognitively and emotionally (Papert, 1993).

More recently, studies have incorporated a constructionist framework as they investigated educational
contexts in which a computer or physical robots were present. Khanlari (2013) concludes that student
learning is improved when participants engaged in the development of a robot, which was a personally
meaningful product, and Sullivan and Heffernan (2016) suggested that the constructionist learning
affordances of computational manipulatives (e.g. immediate feedback, multiple modes of representation)
may provide greater learning opportunities than alternative approaches. Additionally, Papavlasopoulou
et al. (2019) suggest a need for more studies that use constructionism as a theoretical grounding. While
these studies investigate broader STEM, twenty-first century learning, and specific coding skills, Papert
often remained focused on the learning within the realm of mathematics.

A thorough description of Papert’s views related to coding and mathematics can be found in his book
Mindstorms (1993), where he describes a mechanical thinking process that students undergo when
programming a computer (p. 27), and also describes a term called computational thinking (p. 182).
Thirteen years after the release of Mindstorms, Wing (2006) used the term computational thinking,
albeit in a different way, and captured the interest of educators and researchers in K-12 education from
around the world (Grover & Pea, 2013).

Computational Thinking

Wing (2006) defines computational thinking (CT) as a “universally applicable attitude and skill set
everyone, not just computer scientists, would be eager to learn and use” (p. 33). Wing identifies solving
problems, system design, and understanding human behavior as key components of her definition of
CT. She explains that CT is a fundamental skill that every human must know to function in society. In
addition to being for everyone, everywhere, Wing states that CT involves conceptualization, rather than
programming, and involves ideas, rather than artefacts. Her article was a call for the inclusion of CT
not only in post-secondary programmes outside of CS, but also in pre-college education where younger
students could be exposed to computational methods and models: “Computational thinking is a grand
vision to guide CS educators, researchers, and practitioners as we act to change society’s image of the
field” (p. 35).

While most researchers agree on the profound impact that Wing’s 2006 article had on the field of
K-12 education (as of May 2023, this article had been cited 10,845 times), not all agree on the appro-
priateness of her definition, or on her suggestion that thinking like a computer scientist is a suitable
goal for all students. Denning (2017) claims that recent attempts to make CT appealing to fields other
than CS have led to “vague and confusing definitions of CT” (p. 33), and that Wing’s definition lacks
any mention of computational models, and incorrectly suggests that any sequence of steps constitutes

514

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

an algorithm. In “Computational Thinking: A Competency Whose Time Has Come”, Grover and Pea
(2018) describe Wing’s definition as somewhat opaque. They attempt to rectify this concern by provid-
ing a specific, and much needed, list of CT concepts and practices that describe the type of thinking
that computer scientists activate when engaged in problem solving. Grover and Pea’s key CT concepts
include logic and logical thinking, algorithms and algorithmic thinking, patterns and pattern recogni-
tion, abstraction and generalization, evaluation, and automation. Their key CT concepts include problem
decomposition, creating computational artefacts, testing, and debugging, iterative refinement, and col-
laboration and creativity. Similarly, Brennan and Resnick (2012) gave more detail to CT by identifying
and describing specific concepts, practices, and perspectives, while Resnick (2018) also describes an
alternative theoretical approach that he terms computational fluency.

Computational Fluency

In “New Frameworks for Studying and Assessing the Development of Computational Thinking”, Brennan
and Resnick (2012) acknowledge the disagreements surrounding the components of CT, and the issues
surrounding strategies for CT assessment. Like Grover and Pea (2018), Resnick and Brennan provide the
specific detail that was lacking in Wing’s original definition of CT, and introduce their own CT concepts,
practices, and perspectives. These concepts, practices, and perspectives are listed in Table 2, along with
Grover and Pea’s concepts and practices.

In addition to the CT concepts, practices, and perspectives presented with Brennan, in 2018, Resnick
also introduced his concept of computational fluency, which expands upon computation concepts and
problem-solving strategies, in order to also include student’s creativity and expression of digital tools

Table 2   Brennan and Resnick’s (2012) CT concepts, practices, and perspectives and Grover and Pea’s (2018) concepts
and practices

Brennan and Resnick (2012) Grover and Pea (2018)

Concepts that students engage in when developing coding
projects:

 • Sequences;
 • Loops;
 • Parallelism;
 • Events;
 • Conditionals;
 • Operators; and
 • Data

Concepts:
 • Logic and logical thinking;
 • Algorithms and algorithmic thinking;
 • Patterns and pattern recognition;
 • Abstraction and generalization; and
 • Evaluation, and automation

Practices that describe the processes of construction that
student engage in while developing coding projects:

 • Being incremental and iterative;
 • Testing and debugging;
 • Reusing and remixing; and
 • Abstracting and modularizing

Practices that outline approaches that computer scientists
often use when they engage in computational problem
solving:

 • Problem decomposition;
 • Creating computational artefacts;
 • Testing and debugging;
 • Iterative refinement; and
 • Collaboration and creativity

Perspectives that describe the evolving understanding that
students exhibit about themselves, their relationship to
others, and the technological world when developing
coding projects:

 • Expressing;
 • Connecting;
 • And questioning

515

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

(Resnick, 2018). While Resnick acknowledges the value of self-contained “coding puzzles” and their
potential development of thinking skills, he argues that students should move towards developing a
voice and an identity within the area of coding, and can do so by incorporating coding into their daily
life, and by emphasizing the development of artefacts and projects (Resnick, 2018). This development
of artefacts and projects connects closely to aspects of design and engineering that sometimes appear in
curriculum, and computational fluency could serve as a valuable context for learning within these areas.

Computational Participation

Sharing Resnick’s belief in the importance of students moving beyond coding puzzles to creating their
own artefacts, Kafai (2016) goes one step further to highlight the importance of students being able
to share coding projects that they have designed themselves, with others, moving beyond the tools,
to focus on how the artefacts of coding can connect to community and context (Kafai, 2016). Kafai’s
computational participation recognizes the importance of digital technologies being used for functional,
political, and personal reasons, and acknowledges coding as a participatory process that has a personal
value, and value for sharing with others (Kafai 2016). “Computational thinking and programming are
social, creative practices. They offer a context for making applications of significance for others, com-
munities in which design, sharing, and collaboration with others are paramount” (Kafai, 2016, p. 26).
Kafai describes some of the do-it-yourself coding tools available to students today to design, create, and
share projects online, and identifies three new pathways that are afforded through these tools. The first
pathway includes moving from simply building code to developing shareable applications, which puts
the emphasis on putting newfound coding skills to use, rather than coding for the sake of coding. The
second pathway includes moving from solitary coding to the development of communities, where coding
languages and environments are enhanced by having online communities that connect users and provide
audiences for projects. The final pathway includes having students remix existing projects, rather than
beginning writing a program from scratch, which in the spirit of the open-source movement, allows for
students to understand how projects can evolve and lead to innovative new contexts.

Computational Action

Computational action was first described by Tissenbaum et al. (2019) and, like Resnick’s computational
fluency and Kafai’s computational participation, highlights the importance of the artefact being pro-
duced, and its potential influence outside of the individual student, or school context. Recognizing the
impact that computing can have on the lives of the students and their communities, the authors present
the two key dimensions of computational identity and computational empowerment as means to make
computing more inclusive, motivating, and empowering. Computational action attempts to provide
an alternative to the “fundamentals approach” that begins with a focus on coding or CT concepts and
processes, by ensuring that students can immediately begin to code projects that connect to their lives,
and that can help them develop a “critical consciousness of the role they can play in affecting their com-
munities through computing and empower them to move beyond simply learning to code” (Tissenbaum
et al., 2019, p. 34).

In order to support the student in developing a computational identity, the authors indicate that
students must feel responsible for designing their own solutions, rather than working towards a single,
predetermined correct answer. In terms of supporting students as they work towards digital empower-
ment, the authors encourage educators to find authentic and personally relevant contexts for the students
to code within, and to ensure that these contexts have the potential to impact their lives and the lives of
those in their communities.

516

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

Computational Literacy

Before Wing (2006), diSessa published “Changing Minds: Computers, Learning, and Literacy”
(2000) in which he describes his grand vision of computers and coding in schools as computational
literacy (CL). Unlike computer literacy, which may involve turning on a computer or using a key-
board or mouse for basic software operation, diSessa’s CL involves “infrastructural” changes in
schools and in society as it is used in diverse scientific, humanistic, and expressive forms: “a com-
putational literacy will allow civilization to think and do things that will be new to us in the same
way that the modern literate society would be almost incomprehensible to preliterate cultures.” (p. 5).

In 2018, diSessa continued to explain this big picture view of CL, specifically in the context of
science, technology, engineering, and mathematics (STEM) education: “I view computation as,
potentially, providing a new, deep, and profoundly influential literacy—computational literacy—
that will impact all STEM disciplines at their very core, but most especially in terms of learning”
(diSessa, 2018, p. 4).

An important dimension of diSessa’s CL, and specifically its connection to the subjects of math-
ematics and science, highlights the education argument for coding, and is sometimes communicated
as “coding to learn”, rather “than learning to code” (Popat & Starkey, 2019). When coding to learn,
students program a computer in order to learn concepts and skills associated with the context of the
program. Rather than a focus on the final artefact that results from the code (the running program),
the educator’s focus is on the concepts and skills developed as the students engage in the develop-
ment of the artefact. In “Computer Coding in the K–8 Mathematics Curriculum?”, Gadanidis et al.
(2017a, b) highlight how the integration of coding in mathematics creates pedagogical opportunities
such as (1) making abstraction tangible, (2) automating processes and making dynamic models, and
(3) creating educational contexts that allow for differentiated instruction and student agency. The
value of automating processes and making dynamic models is highlighted in work by Wilkerson
(Wilkerson-Jerde et al., 2015; Wilkerson et al., 2018) and Gadanidis (Gadanidis et al., 2017a, b;
Gadanidis et al., 2019), where students use or build computational models and simulations in order
to better understand mathematical, scientific, and engineered systems. Wilkerson and Fenwick (2017)
believe that CS shares language with mathematics that can be used to represent models using precise
language resulting in a description of patterns and processes.

More recently, Kafai and Proctor (2022) developed three framings for CT, and concluded that
in an effort to avoid “overloading the concepts of computational thinking with multiple meanings”
(p. 148), they now adopt a framework of CT in their work that helps clarifies three main questions
related to CS and K-12 education: (1) who should learn CS?, (2) what should be learned in CS?, and
(3) how should learning occur in CS?

A Foundation for Analysis

Coding and computational thinking concepts and skills are impacting educational policy in Canada
and around the world. In Canada, $110 million was allotted to the CanCode initiative which aims to
engage over 2 million young people from K-12 in coding and digital skills development (Department
of Finance Canada, 2019), while in the US the Computer Science for All initiative, which was first
announced in 2016 by then President Barack Obama, is intended to empower American students
from K-12 to learn CS (Smith, 2015). In 2016, the European Commission, Joint Research Centre
published their report “Developing Computational Thinking in Compulsory Education: Implications
for Policy and Practice” (Bocconi et al., 2016) that acknowledged the increased attention that CT
and related concepts were receiving in education, and provided a comprehensive overview of CT

517

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

and related skills for the younger grades. In addition, CT is now included in the Organisation for
Economic Co-operation and Development’s Program for International Assessment (PISA).

Within the context of these initiatives, there is a need to ensure that coding and CT-related concepts
and skills are integrated into various subjects using evidence-based approaches. In Zhang et al.’s “There
is an Evidence Crisis in Science Educational Policy” (2022), the authors focus on “exploration based
pedagogy” in science, a pedagogy that is similar to the “coding to learn” (Popat & Starkey, 2019)
approach introduced earlier. Zhang et al. (2022) explain that “exploration based pedagogy”, also referred
to as inquiry, discovery, or problem-based learning, is often reflected in science education practice and
policy, but not adequately supported by evidence.

We should never use program-based studies as the sole source of evidence for any particular
instructional procedure such as inquiry-based learning. All such recommendations should also
include randomized controlled trials and large-scale correlational studies. However, program-
based studies have been relied on almost exclusively in the standards to recommend inquiry-based
learning with almost no questions addressed about the less favorable results from correlational and
controlled studies. It is troubling to see sweeping curriculum reforms reinforced and overarching
claims accepted while a large number of critical data sets have been ignored. (Zhang et al., 2022)

This issue is raised here to make clear the intentions of this article. This article is meant to inform the
current understanding of curriculum development in Canada by considering the changes taking place
as a result of the integration of coding and computational thinking in the K-8 grades. This article uses
arguments and perspectives to analyse recent curriculum initiatives, and to further conversations sur-
rounding the integration of coding and computational thinking in schools. It does not set out to provide
empirical evidence related to the effective integration of coding and CT concepts and skills, instead it
seeks to provide a better understanding of this current phenomenon.

Problem Description

Considering the theoretical approaches to coding in K-8 education discussed by leading researchers
in the field, and considering the various goals and rationale for coding from jurisdictions outside of
Canada, it is important to identify, and develop an understanding of, the components of coding curricu-
lum in Canadian jurisdictions. Without an in-depth analysis of recent curriculum initiatives, educators,
researchers, and policy makers will lack clarity terms of:

•	 The placement of coding-related concepts and skills in existing curricula;
•	 The goals and rationale of coding curricula; and the
•	 The theoretical perspectives underpinning the various curricula.

Recently, two studies have been conducted that explore CT in K-12, Canadian education. Hennessey
et al. (2017) analysed Ontario elementary school curriculum, searching for CT-related terms described
by Brennan and Resnick (2012), and concluded that “while CT terms appeared mostly in mathematics,
and concepts and perspectives were more frequently cited than practices, related terms appeared across
almost all disciplines and grades” (p. 79). Additionally, Gannon and Buteau (2018) provide an effec-
tive, initial description of the integration of CT in Canadian provinces and conclude that there is a wide
variety of integration models being implemented in the various provinces. The authors also conclude
that there are a number of provinces that have begun curriculum revisions, or that have begun supporting
the development of programmes and resources related to CS.

518

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

Considering these findings, this paper provides further analysis of Canadian curriculum, with an
emphasis on not only CT concepts and skills, but with an emphasis on all coding-related contexts. It also
hopes to add to the works of Hennessey et al. (2017) and Gannon and Buteau (2018) by investigating the
goals and rationale, as well as the supported arguments or orientations, for learning coding represented
in the various curricula in Canada.

Purpose and Research Questions

The purpose of this research is to provide a comparative analysis of coding-related curricula in the K-8
grades from various provinces. In order to do so, the article will answer the following research questions:

1.	 Where are coding, CT, and computer science concepts and skills currently found in Canadian, K-8
provincial curricula?

2.	 What are the expressed goals and rationale for the inclusion of coding, CT and computer science
concepts and skills within Canadian, K-8 provincial curricula?

3.	 What are the learning arguments or orientations reflected in the coding, CT, and computer science
components in Canadian, K-8 provincial curricula?

By answering these questions, this research provides educators, policy makers, and researchers with
an analysis of current coding, CT, and CS curriculum initiatives in the K-8 grades and will add an
important Canadian perspective to existing international studies. It will also provide groundwork for
potential, future curriculum development as well as foundational knowledge to help research and policy
surrounding the implementation of this curricula.

Theoretical Frameworks and Methodology

This study will employ comparative document analysis implemented within the theoretical framework
of constructivism that views learning as an interpretive and iterative process of building, done by active
learners interacting with the world (Fosnot, 1996).

Constructivism

This research employs constructivism as its foundational theoretical framework, which involves epis-
temological beliefs whereby individuals develop subjective meanings of their experiences, resulting in
knowledge being built, rather than found (Creswell & Creswell, 2013; Merriam & Tisdell, 2015). A
constructivist approach considers knowledge as something that is constructed in the mind of the learner,
and that “fits” with reality (Bodner, 1986). Constructivism is a popular worldview or approach to quali-
tative research, and includes the following assumptions, identified by Crotty (1998):

1.	 Human beings construct meanings as they engage with the world they are interpreting;
2.	 Humans engage with their world and make sense of it based on their historical and social perspec-

tives, which has implications when one considers both those being researched (perhaps students, or
educators), as well as the individual conducting the research themselves;

3.	 The basic generation of meaning is always social, arising in and out of interaction with a
human community.

519

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

Constructivism is a popular framework for qualitative research, and one that is appropriate for this type
of study considering the subjective nature of the document analysis. An alternative approach and research
design might involve a more quantitative methodology employing a positivistic perspective. This might
include the counting of coding categories as they develop, or some type of numerical weighting. Consider-
ing the small number of documents involved in this study, and the relative size of each, it is believed that
the counting or weighting of categories, while providing objective and quantifiable data, would not provide
better understanding or improved insights related to the curriculum documents in question.

Methodology and Document Analysis

In order to effectively answer the research questions in this study, the methodology employed involved an
initial analysis of K-8 curriculum from all Canadian provinces, with the intention of identifying where cod-
ing concepts and skills have been included. Curriculum from all Canadian provinces was analysed, with a
focus on identifying where coding or related concepts were included. All documents were retrieved online,
from open-access government (e.g. Ministry of Education) websites. The curriculum documents outline
the learning objectives, or expectations, that are to be met in each respective province. Curricula from
Yukon, North West Territories, and Nunavut were not included in this analysis as they implement curricula
from various provinces including British Columbia, Alberta, Saskatchewan, and Manitoba (Government
of Yukon, 2022; Government of Northwest Territories, 2021; Nunavut Department of Education, 2019).

Once the initial list of documents was identified, a more in-depth analysis took place involving the
identification and analysis of all explicitly stated goals and rationale of the curricula. Following this
identification of curricula, and the analysis of stated goals and objectives, document analysis provided
insight into the teaching and learning orientations of the various curricula.

Document analysis involves systematic procedures for reviewing and evaluating documents in order to
elicit meaning, gain understanding, and develop empirical knowledge (Bowen, 2009; Corbin & Strauss,
2008). It is an iterative process that includes finding, selecting, appraising, and synthesizing data con-
tained in documents, and is often combined with content and thematic analyses (Bowen, 2009). The
content analysis aspect of the study involved preliminary coding, which is the organizing of information
from the documents into categories related to the central questions of the research (Bowen, 2009). This
included where explicit goals and rationale of the curriculum were identified, as well where learning
outcomes or expectations were expressed.

In this study, the curriculum policy documents from Canadian provinces were analyzed, which are all
organized in a similar fashion, with grade levels and specific subject areas identified. As stated, a preliminary
scan of these documents, related to the K-8 grades, was conducted, identifying documents that include coding,
CT, and CS concepts. These documents were then selected for content and thematic analyses, which involved
a thorough and repeated analysis of the documents, the coding of categories, the redefinition and organization
of these categories, and the development of emerging themes. The coding process and the development of
themes were influenced by the theoretical approaches and arguments for coding presented earlier. Key terms
from the literature served as guides for initial categories and specific wording from curricula was compared to
the theoretical perspectives and the arguments and goals for coding in the younger grades (Table 1).

Findings

The findings for each of the provinces have been organized according to the placement of coding, CT,
and CS concepts in the K-8 curricula, the explicitly stated goals and rationale, and the learning orienta-
tions. These findings are listed below, in Table 3, from West to East, as they would be presented on a
map, and are then expanded upon in the next section.

520

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

Ta
bl

e 
3  

L
oc

at
io

n,
 g

oa
ls

, g
ra

de
s,

im
pl

em
en

ta
tio

n
ty

pe
, a

nd
 le

ar
ni

ng
 o

rie
nt

at
io

ns
 o

f c
od

in
g

re
la

te
d

ex
pe

ct
at

io
ns

 in
 c

ur
ric

ul
a

Lo
ca

tio
n

G
oa

ls
G

ra
de

s
Im

pl
em

en
ta

tio
n

Le
ar

ni
ng

 o
ri

en
ta

tio
ns

Br
iti

sh
 C

ol
um

bi
a

A
pp

lie
d

de
si

gn
, s

ki
lls

,
an

d
te

ch
no

lo
gi

es

(A
D

ST
)

Pr
ac

tic
al

 a
nd

 a
pp

lie
d

fo
cu

s i
n

th
e

ar
ea

 o
f

te
ch

no
lo

gy
6–

8
O

pt
io

na
l c

om
po

ne
nt

C
om

pu
ta

tio
na

l t
hi

nk
in

g
an

d
ro

bo
tic

s

A
lb

er
ta

Sc
ie

nc
e

A
pp

ly
 c

om
pu

ta
tio

na
l t

hi
nk

in
g

in
 o

rd
er

 to
 so

lv
e

pr
ob

le
m

s a
nd

 p
er

fo
rm

 sc
ie

nt
ifi

c
in

qu
iri

es
K

-6
M

an
da

to
ry

 c
om

po
ne

nt
C

om
pu

te
r s

ci
en

ce
 a

nd
 c

om
pu

ta
tio

na
l t

hi
nk

in
g

O
nt

ar
io

M
at

he
m

at
ic

s
D

ev
el

op
 a

lg
eb

ra
ic

 re
as

on
in

g
an

d
pr

ov
id

e
op

po
rtu

ni
tie

s t
o

ap
pl

y
an

d
ex

te
nd

m

at
he

m
at

ic
al

 th
in

ki
ng

, r
ea

so
ni

ng
 a

nd

co
m

m
un

ic
at

in
g

1–
8

M
an

da
to

ry
 c

om
po

ne
nt

So
lv

e
pr

ob
le

m
s a

nd
 c

re
at

e
co

m
pu

ta
tio

na
l

re
pr

es
en

ta
tio

ns
 o

f m
at

he
m

at
ic

al
 si

tu
at

io
ns

Sc
ie

nc
e

an
d

te
ch

no
lo

gy
Ex

pl
or

e
sc

ie
nc

e
an

d
te

ch
no

lo
gy

 c
on

ce
pt

s a
nd

le

ar
n

sp
ec

ifi
c

sk
ill

s
1–

8
M

an
da

to
ry

 c
om

po
ne

nt
W

rit
e

an
d

ex
ec

ut
e

co
de

 in
 in

ve
sti

ga
tio

ns
 a

nd

w
he

n
m

od
el

in
g

co
nc

ep
ts

Q
ue

be
c

Sc
ie

nc
e

an
d

te
ch

no
lo

gy
D

ev
el

op
 c

om
pe

te
nc

ie
s a

nd
 h

an
ds

-o
n

le
ar

ni
ng

5–
6

M
an

da
to

ry
 c

om
po

ne
nt

Ro
bo

tic
s

N
ew

 B
ru

ns
w

ic
k

Te
ch

no
lo

gy
Pr

ac
tic

al
 sk

ill
s i

n
te

ch
no

lo
gy

 in
 o

rd
er

 to

pr
ep

ar
e

fo
r l

ife
 a

nd
 th

e
ca

re
er

 c
ho

ic
es

re

qu
ire

d
in

 a
 m

od
er

n
ec

on
om

y

6–
8

M
an

da
to

ry
 C

om
po

ne
nt

C
re

at
in

g
te

ch
no

lo
gi

es
 (a

pp
 d

ev
el

op
m

en
t,

ga
m

es
, p

ro
gr

am
s)

N
ov

a
Sc

ot
ia

In
fo

rm
at

io
n

an
d

co
m

m
un

ic
at

io
n

te
ch

no
lo

gy

Pr
ob

le
m

-s
ol

vi
ng

 a
nd

 in
no

va
tio

n
4–

6
M

an
da

to
ry

 c
om

po
ne

nt
C

om
pu

te
r s

ci
en

ce
 a

nd
 c

om
pu

ta
tio

na
l t

hi
nk

in
g

N
ew

fo
un

dl
an

d
an

d
La

br
ad

or
Te

ch
no

lo
gy

 e
du

ca
tio

n
Te

ch
no

lo
gi

ca
l l

ite
ra

cy
8

M
an

da
to

ry
 c

om
po

ne
nt

C
on

tro
l t

ec
hn

ol
og

y,
 ro

bo
tic

s a
nd

 a
ut

om
at

ed

sy
ste

m
s

521

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

British Columbia’s Applied Design, Skills, and Technologies Curriculum

In British Columbia, coding-related concepts and skills are found in the applied design, skills, and
technologies (ADST) grades 6–8 curriculum (British Columbia Ministry of Education, 2016a). While
the ADST curriculum begins in grade 1, specific content for the 1–5 grades is not listed and instead,
teachers are meant to draw content from other areas of learning, in a cross-curricular fashion. In grades
6–8, specific content is listed in the form of 12 different modules (some of which include coding-related
concepts and skills). In grades 6–7, teachers select a minimum of three content modules from the list
of 12. In grade 8, schools can select one, or several modules, to make up the equivalent of a full-year
course in ADST.

The coding-related modules that may be selected include Computational Thinking and Robotics.
Other modules, such as Computers and Communications Devices and Digital Literacy, while related to
computers and technology, do not include concepts and skills specific to coding, CT, or CS. In grade
8, schools are meant to provide students with a full-year course in ADST that can be made up of one
or more of the 12 modules. Schools also have the choice of developing their own modules that include
locally developed content, and that can be used instead of, or in addition to, the modules provided.

The stated goals and rationale for British Columbia’s Applied Design, Skills, and Technologies cur-
riculum highlight a very practical and applied focus. The curriculum is meant to “foster the development
of skills and knowledge to support students in developing practical, creative, and innovative responses
to everyday needs and challenges” (British Columbia Ministry of Education, 2016b). The learning
opportunities are designed to allow students to discover their interests in practical and purposeful experi-
ences and are built upon the assumption that students have a desire to create and work in practical ways.

The CT modules indicate that students will be provided with the opportunity to learn visual program-
ming in grades 6 and 7 (such as a block-based language like Scratch), as well as text-based programming
in grade 8. In terms of the specific subject matter, the CT module includes learning and teaching related
to algorithms, sequential instructions, programming, debugging, and the visual representations of prob-
lems and data, which all connect to the literature in terms of associated CT concepts or skills. Grades
6–7 subject matter also includes students using visual programming, which could be taught using the
Scratch programming language, as it has been identified as an effective way to help students engage in
CT activities (Zhang & Nouri, 2019).

Alberta’s Science Curriculum

In the spring of 2021, the Alberta government released draft curriculum that included K-6 science expec-
tations related to coding (Alberta, 2021). Two years later, the final curriculum was released that main-
tained the coding components from the draft (albeit slightly altered), with mandatory implementation of
grades K-3, and optional implementation of grades 4–6, in September 2023 (Alberta Education, 2023).

Computational thinking is listed as one of the major changes to Alberta’s K-6 Science curricula
(Alberta Education, 2021). The draft curriculum website acknowledges that the old curricula did not
have any references to problem solving with coding, whereas the new curricula include “clear expecta-
tions for students to learn problem solving that includes coding and algorithms” (Alberta Education,
2021). Computer science plays a prominent role in the curricula, as the document’s overview includes
the discipline alongside physics, chemistry, biology, Earth science, and astronomy. The overview reflects
a desire for students to develop critical thinking and problem solving skills and encourages students to
use their curiosity, creativity, and perseverance. The overview also acknowledges that studying science
can enable students to evaluate information they encounter every day and can lead to careers in research,
medicine, CS, geology, engineering, astronomy, agriculture, and more.

522

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

Computer science has a large footprint in the K-6 Science curricula. The content in the document is
grouped into the following five main categories, with CS appearing alongside more traditional scientific
areas of study.

•	 Matter
•	 Energy
•	 Earth systems
•	 Living systems; and
•	 Computer science

This makes it clear that the learning of CS concepts and skills is an important goal of this curriculum.
As previously stated, critical thinking and problem solving skills appear to be important goals of the
curriculum, and the learning surrounding CS in the document is focussed on these areas.

Each grade in the K-6 Alberta Science curricula includes a single guiding question and learning
outcome for the category of CS. These are listed in Table 4. It is clear that the themes of instructions,
creativity, design, and abstraction are key components of the learning outcomes. In Kindergarten and
grade 1, students learn about following, creating, and the influence of instructions. In grade 2, students
consider the use of creativity in instructions and in grade 3 they investigate the relationship between
creativity and CT. In grades 4 and 5, the focus shifts to design in order to resolve problems and achieve
specific outcomes or purposes. Finally, in grade 6, students consider the CT concept of abstraction.

Ontario’s Mathematics and Science and Technology Curricula

Ontario is the only jurisdiction with studies that include CS-related concepts in both its Mathematics and
Science and Technology curricula. In 2020, Ontario released new grades 1–8 Mathematics curriculum
that is the first, and only, Ontario elementary curriculum document to include explicit coding-related
concepts and skills (Ontario Ministry of Education, 2020). The curriculum document is divided into
six distinct but related strands including Social-Emotional Learning (SEL) Skills in Mathematics and
the Mathematical Processes, Number, Algebra, Data, Spatial Sense, and Financial Literacy. The cur-
riculum includes both overall and specific curriculum expectations. The 13 overall expectations, which
are common for each grade, “describe in general terms the knowledge, concepts, and skills that students
are expected to demonstrate by the end of each grade”. The specific expectations, which are different in
each grade, “describe the expected knowledge, concepts, and skills in greater detail” (Ontario Ministry
of Education, 2020, p. 18). The coding expectations are found in Strand C – Algebra, but it is important
to note that the accompanying curriculum context document indicates that the coding expectations can
be applied across all strands, and is meant to provide students with opportunities to apply and extend
their math thinking, reasoning, and communicating (Ontario Ministry of Education, 2020).

The vision of the Ontario Mathematics 1–8 curriculum is to help students develop a positive identity as
skilled mathematics learners, to support them as they use mathematics to make sense of the world, and to
enable them to use mathematics to make sound decisions (Ontario Ministry of Education, 2020). Coding
is mentioned as a means for students to develop algebraic reasoning, and also to provide students with
opportunities to “apply and extend their math thinking, reasoning and communicating” (Ontario Ministry
of Education, 2020, p. 34). This reflects Papert, diSessa, Wilkerson, and Gadanidis’s view of coding or
CT as being an important component in mathematics education, and as a tool that can allow students to
not only solve mathematical problems, but also to experience and engage with mathematical concepts.

The coding expectations in Ontario’s grades 1–8 Mathematics curriculum emphasize that students
will be writing, executing, reading, and altering code, which hints at a very action-oriented type of

523

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

Ta
bl

e 
4  

C
om

pu
te

r s
ci

en
ce

 g
ui

di
ng

 q
ue

sti
on

s a
nd

 le
ar

ni
ng

 o
ut

co
m

es
 in

 A
lb

er
ta

’s
 K

-6
 S

ci
en

ce
 c

ur
ric

ul
um

G
ui

di
ng

 q
ue

st
io

n
Le

ar
ni

ng
 o

ut
co

m
e

K
in

de
rg

ar
te

n
H

ow
 c

an
 in

str
uc

tio
ns

 b
e

us
ed

?
St

ud
en

ts
 in

te
rp

re
t i

ns
tru

ct
io

ns
 in

 v
ar

io
us

 e
nv

iro
nm

en
ts

G
ra

de
 1

H
ow

 c
an

 in
str

uc
tio

ns
 a

ffe
ct

 o
ut

co
m

es
?

St
ud

en
ts

 fo
llo

w
 in

str
uc

tio
ns

 a
nd

 re
la

te
 th

em
 to

 o
ut

co
m

es
G

ra
de

 2
H

ow
 c

an
 c

re
at

iv
ity

 su
pp

or
t d

es
ig

n?
St

ud
en

ts
 a

pp
ly

 c
re

at
iv

ity
 w

he
n

de
si

gn
in

g
in

str
uc

tio
ns

 to
 a

ch
ie

ve
 a

 d
es

ire
d

ou
tc

om
e

G
ra

de
 3

H
ow

 d
oe

s c
re

at
iv

ity
 c

on
tri

bu
te

 to
 c

om
pu

ta
tio

na
l t

hi
nk

in
g?

St
ud

en
ts

 in
ve

sti
ga

te
 c

re
at

iv
ity

 a
nd

 it
s r

el
at

io
ns

hi
p

to
 c

om
pu

ta
tio

na
l t

hi
nk

in
g

G
ra

de
 4

H
ow

 c
an

 d
es

ig
n

m
ee

t n
ee

ds
?

St
ud

en
ts

 e
xa

m
in

e
an

d
ap

pl
y

de
si

gn
 p

ro
ce

ss
es

 to
 m

ee
t n

ee
ds

G
ra

de
 5

In
 w

ha
t w

ay
s c

an
 d

es
ig

n
be

 u
se

d
to

 h
el

p
ac

hi
ev

e
de

si
re

d
ou

tc
om

es
 o

r p
ur

po
se

s?
St

ud
en

ts
 c

re
at

e
an

d
ju

sti
fy

 a
 d

es
ig

n
th

at
 c

ou
ld

 b
e

us
ed

 b
y

a
hu

m
an

 o
r m

ac
hi

ne
 to

 a
dd

re
ss

 a
 c

ha
lle

ng
e

G
ra

de
 6

In
 w

ha
t w

ay
s a

re
 a

bs
tra

ct
io

n,
 d

es
ig

n,
 a

nd
 c

od
in

g
re

la
te

d?
St

ud
en

ts
 c

re
at

e
an

d
re

fin
e

co
m

pu
ta

tio
na

l a
rte

fa
ct

s t
hr

ou
gh

 th
e

us
e

of
 d

es
ig

n
an

d
ab

str
ac

tio
n

524

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

learning, where students can potentially learn mathematics by coding. The overall curriculum expecta-
tion, which spans grades 1–8, involves using coding concepts and skills to solve problems and create
computational representations of mathematical situations. This expectation is interesting as it does
not indicate what types of mathematical situations are meant to be solved or created. Considering that
coding is meant to be applied across various strands, as indicated in the curriculum context, one is to
assume that the mathematical context for these problems and representations can be drawn from the
rest of the curriculum.

In addition to the overall expectations, each grade from 1 to 8 includes two specific expectations
related to coding that involve students writing code, as well as reading and altering code. This empha-
sis on reading, altering, writing, and executing code is similar to the pattern of engagement for novice
computer programmers called Use-Modify-Create, which was first described by Lee et al. (2011) in
“Computational Thinking for Youth in Practice”.

Within Ontario’s new Science and Technology curriculum (2022), coding concepts appear in all
grades, from 1 to 8, within a broad Strand A (STEM Skills and Connections) that sits atop the remain-
ing four strands (Life Systems, Matter and Energy, Structures and Mechanisms, and Earth and Space
Systems). The Strand A components are described as “foundational STEM skills and connections that
will enable students to investigate concepts and integrate knowledge from each of the other strands and to
make practical connections between science and technology and other subject areas” (Ontario Ministry
of Education, 2022, p. 66). As educators integrate the coding concepts across the various strands, they
are encouraged to support students in using coding in investigations and to model science and technol-
ogy concepts. The curriculum document explains that this integration provides students with a hands-
on, experiential way to (1) learn about concepts, (2) do science, (3) develop solutions to problems, (4)
demonstrate their learning, (5) learn about the digital world around them, (6) take pride in their work,
(7) provide an opportunity for agency in their learning, and (8) realize that they can shape the future
in positive ways (Ontario Ministry of Education, 2022). Interestingly, these are all affordances that are
discussed in the literature related to coding, CT, and CS.

The specifics of the learning outcomes in Ontario’s grades 1–8 Science and Technology curriculum
include students writing and executing code in investigations and when modeling concepts, as well as
identifying and describing the impacts of coding and of emerging technologies. Like in Ontario’s Math-
ematics curriculum, each grade provides a specific coding or CS-related concept to be explored. These
include, from grades 1 to 8, (1) creating clear and precise instructions; (2) decomposing problems into
smaller steps; (3) testing, debugging, and refining programs; (4) producing different types of output;
(5) using different methods to store and process data; (6) obtaining input in different ways; (7) planning
and designing programs; and (8) automating large systems in action.

Quebec’s Science and Technology Curriculum

In Quebec, the only coding-related curriculum in the K-8 grades appears in the elementary Science
and Technology curriculum where there is essential knowledge related to students recognizing robotic
structures that use servomechanisms (grades 5 and 6), as well as recognizing the impact of electric
appliances, where microprocessors and computers are listed in brackets as examples (grades 3, 4, 5, and
6) (Québec Ministère de l’Éducation, 2009).

With very little coding-related curriculum concepts in the K-8 grades, the Quebec curriculum does
not explicitly state any aims or goals related to the use of coding. The main Quebec Education Pro-
gram document does state, however, that two characteristics of the Quebec Education Program are the
development of competencies and recognizing that learning is an active process (Québec Ministère de
l’Éducation, 2001).

525

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

The curriculum components related to students recognizing robotic structures that use servo-
mechanisms (grades 5 and 6) and impact of electric appliances, where microprocessors and com-
puters are listed in brackets as examples could allow for teachers to include coding concepts and
skills in their instruction; however, it is also possible for this not to occur and still have students
meet the requirements of the curricula. This is surprising considering the stated characteristic of
the Quebec Education Program being the development of competencies and recognizing that learn-
ing is an active process.

New Brunswick’s Technology Curriculum

The New Brunswick elementary curriculum includes a 2016 pilot document where coding plays a
predominant role. In Middle School Technology Education, coding is listed as one of three main sub-
ject areas for grades 6–8 technology instruction, alongside Computer operations and Projects work
(New Brunswick Department of Education and Early Childhood Development, 2016). The Conceptual
Framework Divisions section of the document lists a number of digital technology skills for students
to learn (including file management, coding/programming, computer aided drafting, video and audio
production, and digital citizenship), and indicates that coding should take up a minimum of 10% of each
of the grades 6, 7, and 8 years.

The General Curriculum Outcomes (GCOs) and Specific Curriculum Outcomes (SCOs) span
across the three grades (6, 7, and 8) and include three main areas: (1) technological operations and
concepts; (2) critical thinking and problem-solving skills; and (3) responsible citizenship. The second
main area, critical thinking and problem-solving skills, is where coding and related concepts and
content are found. This section, which again, is meant to span across grades 6, 7, and 8, includes
the following two specific outcomes: “2.2 Students will examine data to draw conclusions and rec-
ommend solutions to improve performance” (New Brunswick Department of Education and Early
Childhood Development, 2016, p. 15); and “2.5 Students will understand and demonstrate computer
coding/programming concepts and terminology” (New Brunswick Department of Education and
Early Childhood Development, 2016, p. 15). Coding is listed in the concepts and content section of
SCO 2.2, while app development, robotics, game development, and electronics are all listed in the
concept and content section for SCO 2.5.

The Middle School Technology Education document reflects the economic argument for coding as
it indicates that grade 6 to 8 students require a wide variety of practical skills in technology in order to
prepare for life and the career choices required in a modern economy. The document indicates that the
coding area of study, often seen as “the mysterious side of technology usage” (New Brunswick Depart-
ment of Education and Early Childhood Development, 2016, p. 4), is recognized as strengthening logi-
cal thinking and problem solving skills, which connect to CT concepts, even though CT concepts and
practices are not mentioned further in the document.

New Brunswick’s specific outcomes related to coding include using code to examine data and
draw conclusions, and having students “understand and demonstrate computer coding/programming
concepts and terminology” (New Brunswick Department of Education and Early Childhood Develop-
ment, 2016, p. 15). The terminology used in the outcomes indicates that students will be both actively
programming a computer or physical digital device, as well as demonstrating knowledge surround-
ing related terminology. In addition, app development, robotics, game development, and electronics
are all mentioned as concepts and content, which ensures that students will be focused on actively
creating projects or artefacts with code. The connection of coding to data would potentially require
a cross-curricular approach, in which mathematics concepts appropriate to the grade may be used, in
order to draw relevant conclusions.

526

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

Nova Scotia’s Information and Communication Technology Curriculum

In Nova Scotia, the province currently has two Information and Communication Technology curriculum
documents, one for primary to grade 3 (P-3) and one for grades 4 to 6. The P-3 document lists essential
learning outcomes and performance indicators related to digital citizenship and productivity, but coding-
related concepts and skills are never explicitly mentioned. In the grade 4–6 document coding is listed
as an explicit outcome, where students will understand and apply the basic concepts of CS, including
algorithms, abstraction, and computational thinking (Nova Scotia Department of Education and Early
Childhood Development, 2016a).

In Nova Scotia’s 2016 Action Plan for Education Annual Report, coding was acknowledged as pro-
moting skills such as problem-solving and innovation, which were both linked to growth industries like
“computer programming, marine industries, and manufacturing” (Nova Scotia Department of Education
and Early Childhood Development, 2016b, p. 4). In the 4–6 grades, the coding outcomes better reflect
the economic and educational goals, as robotics controls, gaming, problem solving, communication, and
specific computer programming concepts are all listed as grade-specific strategies and skills.

Students in grades P-3 may code a computer in class; however, the curriculum does not explicitly
make this a mandatory proposition. The curriculum documents make reference to the safe operation of
computer and digital devices; however, this could just as easily include digital presentation or spread-
sheet software, or even effectively carrying out internet searches. In the 4–6 grades, the learning orienta-
tions related to coding are clear, as in each grade, students will “understand and apply the basic concepts
of CS, including algorithms, abstraction, and computational thinking” (Nova Scotia Department of
Education and Early Childhood Development, 2016a). This outcome highlights the need for students to
understand specific CS and programming concepts (such as conditional statements, loops, variables, and
programming languages), as well as CT concepts (such as pattern recognition, sequencing, debugging,
efficiency, and abstraction). In addition, the control of robotics, gaming, and real-world situations are
also highlighted, allowing for a variety of contexts where students can learn and apply the CS and CT
concepts (Nova Scotia Department of Education and Early Childhood Development, 2016a).

Newfoundland and Labrador Technology Curriculum

Within the area of technology education, Newfoundland and Labrador K-8 curriculum includes a grade
7 Communications Technology Module that makes reference to students identifying examples of tech-
nologies encoding and decoding information (Newfoundland and Labrador Department of Education,
2002); however, coding in terms of programming a computer is not explicitly mentioned. In grade 8,
a Control Technology Module exists that includes coding-related concepts and skills (Newfoundland
and Labrador Department of Education, 2006). Students must complete the grade 7 Communications
Technology Module and a Grade 8 Production Module before progressing to the grade 8 Control Tech-
nology Modules.

As indicated in the front matter of the curriculum Control Technology Document, the focus of the
curriculum is the development of student’s technological literacy, capability, and responsibility: “Stu-
dents will be exposed to many facets of technology and will gain literacy through active participation
in knowledge acquiring and skill developing activities presented throughout the implementation of the
Grade 8 Control Technology Module” (Newfoundland and Labrador Department of Education, 2006).
The active process of learning is emphasized throughout the document, as is a focus on coding being
used as a practical skill to control systems and devices.

The curriculum outcomes themselves are written in a way that may lead to students discussing
programming rather than actually programming a computer (ex: 1.17 define programming in terms

527

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

of communications within control technology systems, 1.18 describe the function of specific simple
programs). The document, however, provided added information for teachers, in terms of organization
and presentation, which includes the following explanation:

[p]rogramming in the Grade 8 Control Technology Module is of an introductory nature and is
meant to provide students with a basic communications system that can enable them to construct
functional control technology systems. Students need to understand that programming is a means
of developing a set of operations that specify what a particular mechanism or system should
accomplish. (Newfoundland and Labrador Department of Education, 2006)

This description confirms that students will be programming a computer within the context of a
controls or robotics system; however, it is one of the only references whereby it is clearly stated that
students will code, rather than simply discuss or identify code components and applications.

Comparative Analysis and Discussion

Coding or Coding‑Related? For Some or For All?

After analyzing the location and type of implementation of coding expectations in K-8 curricula from the
various provinces in Canada, it is apparent that four main categories are represented. These are expressed
in Table 5. A fifth category, number 2, has been added in Table 5, and while there are no provinces that
make up this category, it has been added as a possible category that fits within this framework. This
category emerged during the analysis process, as it was realized that a jurisdiction could develop expec-
tations that combine components from both category 3 and category 4. In category 3, provinces such
as Quebec and Newfoundland and Labrador include expectations that could lead to students potentially
programming a computer, but do not explicitly state this as an outcome. In category 4, British Colum-
bia includes optional coding expectations that may or may not be experienced by students, depending
on which “modules” are selected to be taught. Category 2 emerged by considering a jurisdiction that
developed expectations that hint at, but do not explicitly state that students will program a computer
(similar to Quebec and Newfoundland and Labrador in category 3), and that include these expectations
in an optional module (similar British Columbia in category 4).

Category 2, therefore, includes jurisdictions where curriculum expectations might be found in an
optional component or module, and where the expectations are written in such a way that could allow for

Table 5   Categories of implementation of coding expectations in Canadian K-8 curricula

1. Jurisdictions that do not include any coding-related expectations • Saskatchewan
• Manitoba
• Prince Edward Island

2. Jurisdictions that include coding-related expectations that could potentially lead to
coding experiences for some students

None identified

3. Jurisdictions that include coding-related expectations that could potentially lead to
coding experiences for all students

• Quebec
• Newfoundland and Labrador

4. Jurisdictions that include coding-related expectations that guarantee coding
experiences for some students

• British Columbia

5. Jurisdictions that include coding-related expectations that guarantee coding
experiences for all students

• Alberta
• Ontario
• New Brunswick
• Nova Scotia

528

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

a teacher or student to program a computer, but this may not be explicitly stated. An example might be a
jurisdiction that includes expectations surrounding an awareness of how computer algorithms work, and
then includes this expectation in a module that is not mandatory across the jurisdiction. Some students
may be offered this module, but not all, and some students who are offered this module might program
a computer to learn about this concept, but it is possible that they do not.

Category 3 is similar to category 2, in that the curriculum expectations could allow for a teacher or
student to program a computer, but this may not be explicitly stated. The difference between category
2 and category 3 is that in category 3 all students will experience the curriculum expectations, as they
are part of mandatory learning for all students.

Category 4 includes jurisdictions where the expectations or outcomes are written in a way that
guarantees that students will be programming a computer, but the expectation appears in an optional
component of the curriculum. An example of this might be British Columbia’s Computational Think-
ing module that appears in the ADST curriculum. This module is one of 13 optional modules, so not
all schools or teachers will select the module, but once selected, the module includes students learning
visual programming, which explicitly states that students will program a computer.

Finally, category 5 involves curriculum expectations that are written in a way that ensure that students
will program a computer in order to meet the expectations, and they are found in part of the curriculum
that is taught to all students. An example of this would be the expectations found in Ontario’s Mathemat-
ics and Science and Technology curricula and the expectations in Alberta’s Science curriculum. These
curricula are mandatory for all students to learn, and the wording clearly indicates that students will be
required to program a computer in order to meet the expectations (Table 5).

The reason for the importance of these categories is for policy makers to understand the impact of
potential coding curriculum, and to consider implementation. This paper began by presenting Webb et al.
(2017), Passey (2017), Vogel et al. (2017), and Hubweiser et al.’s (2015) arguments for coding in the
younger grades, but if one is to believe that these arguments are valid and important for all, then imple-
mentation should represent category 5 of Table 6, where coding-related expectations guarantee coding
experiences for all students. Developing coding expectations that may or may not be experienced by all
students or developing coding-related expectations that may or may not lead to students experiencing the
power of programming a computer would not suffice. Likewise, the theoretical approaches presented at
the beginning of the paper make it clear that the coding concepts and skills have value for all students,
whether from a computational thinking, fluency, participation, literacy, or action perspective, which is
why the classification of category 5 is so important, as it ensures that all students in a jurisdiction will
experience programming a computer.

If a goal for a policy maker is for students to program a computer, then the expectations and outcomes
should be written in clear language that signals to educators the students will program a computer, rather
than discuss programming a computer. Likewise, if the goal is for all students to be provided with the
opportunity to program a computer, then policymakers need to ensure that expectations and outcomes
are placed in curriculum documents that include mandatory learning, rather than optional modules or
courses. If modules or courses are optional, then it is possible that a number of students miss out on the
opportunity to be exposed to coding concepts and skills.

Another way to consider categories 2, 3, 4, and 5 is presented in Fig. 1.

Coding on Its Own or Integrated… Somewhere?

Document analysis reveals that coding expectations in the K-8 curriculum from Canadian provinces
appear to be integrated in four different ways:

529

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

Table 6   Theoretical perspectives reflected in provincial coding-related curricula

Theoretical perspectives Curriculum

Constructionism (Harel & Papert, 1991; Papert, 1993)
• Building knowledge structures, like constructivism, but

doing so through the “construction” of a public entity
• Using objects to think with
• Recognizing the computer as the “Proteus of machines”

to support the culture of the classroom that may be
missing

BC:
• Applied design is at the heart of the BC curriculum,

with CT being implemented within the context of an
experiential, hands-on program of learning through design
and creation

• Curriculum rationale states that the ADST curriculum
harnesses the power of learning by doing

• Introduction states that applied learning is part of all of
the ADST curricula, through the Curricular Competencies
that make up the “doing” part of the curricula

Alberta:
• A central, organizing idea of curriculum is that problem

solving and scientific inquiry are developed through
the knowledgeable application of creativity, design, and
computational thinking

Ontario:
• Technology is recognized as having changed how students

can interact with mathematics and science and technology
concepts

• Coding provides students with the opportunity to apply
and extend math thinking, reasoning and communicating,
and to investigate and model science and technology
concepts

Computational Thinking (Wing, 2006; Grover & Pea,
2018)

• Solving problems using concepts and strategies related
to CS

• Includes CT concepts such as logical thinking,
algorithms, patterns, abstraction, evaluation, and
automation

• Includes practices such as decomposing a problem,
creating computational artefacts, testing and debugging,
iteration, collaboration, and creativity

BC:
• Module title is Computational Thinking
• Simple algorithms that reflect CT (grades 6–7)
• Visual representations of problems and data (grades 6–7)
• Debugging algorithms and programs by breaking

problems down into a series of sub-problems (grade 8)
Alberta:
• The components and importance of instructions are

analyzed in early grades (K-3)
• Computational thinking components and the term itself

are included in grade 3
• Concept of abstraction is included in grade 6 and applied

within the design context
Ontario:
• Concepts such as sequencing, concurrent events,

repetition, testing and debugging, conditional statements
and efficiency reflect components of the CT concepts

• Students read and alter code and predict potential
outcomes which reflect testing, debugging, and iteration
included in the CT practices

New Brunswick:
• Coding recognized as strengthening logical thinking and

problem solving skills
Nova Scotia:
• The learning outcome for grades 4–6 includes

understanding and applying the basic concepts of CS,
including algorithms, abstraction, and computational
thinking

• Performance and assessment indicators related to the
outcome include organizing a sequence of events,
debugging, and predicting outcomes

530

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

1.	 A component in technology curriculum (British Columbia, Ontario, Quebec, New Brunswick, and
Newfoundland and Labrador)

2.	 A component in Information and Communications Technology curriculum (Nova Scotia)
3.	 A component in Science curriculum (Alberta, Ontario)
4.	 A component in Mathematics curriculum (Ontario)

Table 6   (continued)

Theoretical perspectives Curriculum

Computational Fluency (Resnick, 2018)
• Includes student creativity and expression with digital

tools
• Students develop a voice and an identity through coding
• Digital technologies are a symbol of possibility and

progress and as students design and code they see
themselves as part of the future

BC
• Curriculum goals include students developing a sense

of efficacy and personal agency about their ability to
participate as inventors and innovators, reflecting social
advantages of learning to code

Alberta
• Creativity serves as a major component of the curriculum;

however, this creativity is in the context of problem
solving rather than in the form of personal expression, or
the social advantages of developing personal voice and
identity

Computational Participation (Kafai, 2016)
• Includes a focus on coding as a social practice
• Includes collaboration, sharing of projects and the

development of communities
• Moves from building code to creating sharable

applications

Alberta
• In grade 5 students learn about and engage in

collaborative processes in CS and the value of sharing
ideas for effective design

Computational Action (Tissenbaum et al., 2019)
• An alternative to a fundamentals approach, that instead

focusses on project connecting to student’s lives
• Focussed on key dimensions of student identity and

empowerment
• Strives for the development of a critical consciousness

as students create projects for their communities

BC
• Curriculum goals include students becoming agents of

change able to address practical challenges in a rapidly
changing world

Computational Literacy (diSessa, 2018)
• A big picture view of a change in STEM education

(especially mathematics and science) with a new form
of literacy

• Literacy means that a representational form for
supporting intellectual activities is adopted by a broad
cultural group

Ontario
• Curriculum documents indicate that coding can be

incorporated across all strands and provides students with
opportunities to apply and extend their math thinking,
reasoning, and communicating, as well as investigating
and modeling science and technology concepts

• Curriculum documents indicate that as students progress
through the grades, their coding experiences also
progress, from representing movements on a grid, to
solving problems involving optimization, to manipulating
models to find which one best fits the data they are
working with in order to make predictions

• The overall expectations include solving problems and
creating computational representations of mathematical
situations using coding concepts and skills

• The specific expectations include a progression of coding
concepts such as repetition, conditional statements, and
subprograms

• The coding expectations take on the representational
form, the associated learning in the grade takes on the
intellectual activities, and the broad cultural group are the
Ontario students and educators themselves

531

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

While there perhaps is not a “correct” location to place coding-related concepts and skills in K-8
curriculum, what has become clear in this study is that the placement (and wording) of the expectations
and outcomes should honour the subject area in which they are placed, as well as the stated goals. This
point can be illustrated by comparing British Columbia’s Computational Thinking module from the
Applied Design, Skills, and Technologies (ADST) curriculum to Ontario’s coding expectations in the
Algebra Strand of mathematics.

A major goal of the ADST curriculum involves supporting students as they develop practical, creative,
and innovative responses to everyday needs and challenges (British Columbia Ministry of Education,
2016a), yet the computational thinking components of the curriculum include the evolution of pro-
gramming languages, as well as the study of binary number systems. While these may be appropriate
concepts for students to learn, they do not speak to the applied nature of the curriculum, and they may
prove difficult in providing context for the applied design stages of the curriculum competencies. In
contrast, the coding expectations within the Algebra strand of the Ontario Mathematics curriculum
demonstrate clearly that students are coding within the context of the specific subject, by solving
problems and creating computational representations of mathematical situations (Ontario Ministry of
Education, 2020). This wording, and the specific concepts involved in each grade, also connect to the
goals of the curriculum that include providing students with the skills to “think critically and creatively
and see connections to other disciplines beyond mathematics, such as other STEM disciplines” (Ontario
Ministry of Education, 2020).

Another example that speaks to the need to honour the subject area in which the coding expectations
are placed is Alberta’s science curriculum. Weintrop et al. (2016) have presented a framework for the
integration of CT that includes the science classroom, and Gravel and Wilkerson (2017) have presented
a specific example of grade 5 students using computational artefacts to explore physics concepts. Both
these approaches recognize the value of computational artefacts to learn about and explore science
concepts, yet interestingly the Alberta grade K-6 curriculum does not capture this affordance within its
CS components. A major organizing idea of the curriculum is “Problem solving and scientific inquiry
are developed through the knowledgeable application of creativity, design and computational thinking”
(Alberta Education, 2023, p. 14), yet the examples do not connect the development of computational
artefacts to science concepts and skills. While students learn about CS in terms of instructions, creativity,
design, and abstractions, the learning outcomes and examples do not connect to science concepts that
are included in other areas of the curriculum. This is a missed opportunity as the design and coding of
computational artefacts present a valuable opportunity to learn science concepts (Sengupta et al., 2013).

Fig. 1   K-8 coding curriculum
implementation examples
from Canadian provinces

532

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

In addition to honouring the subject area in which the coding expectations are placed, as well as the
stated goals of the curriculum, coding expectations and outcomes should clearly reflect well-defined
arguments for the inclusion of coding in the younger grades. If policy makers embody the economic
argument for coding, then it follows that coding expectations and outcomes be placed in the curriculum
in a manner that connects coding to potential careers, such as within technology curriculum documents.
If, on the other hand, policy makers embody the educational, “coding to learn” argument then expecta-
tions and outcomes should be written in a way that allow other components of the curriculum (whether
it be mathematics or science) to provide the context for students to be programming on a computer.
Interestingly, the manner in which the CT modules was placed in BC’s ADST curriculum introduces
the idea that coding expectations and outcomes might have a value in supporting the stages of a design
process. This connection of coding to the design processes has not been discussed extensively in litera-
ture, especially within the K-8 grades.

Connecting Theory and Curricula

This article began with a description of theory in the field of K-12 CS-related education exploring Papert’s
foundational learning theory of constructionism, as well as the various perspectives of computational think-
ing, fluency, participation, action, and literacy. While answering the indicated research questions laid out,
the document analysis process also provided insight into how these differing approaches were reflected
in the K-8 coding curriculum of Canadian provinces. Table 6 lists, and briefly describes, the theoretical
perspectives introduced in this article, as well as the components of the various coding curricula from
Canadian provinces that reflect these approaches. Grover and Pea’s (2018) CT was used in combination
with Wing’s (2006), as Grover and Pea provide additional depth that Wing’s CT was lacking. Components
of the Quebec and Newfoundland and Labrador curricula that relate to coding were not included in Table 6
as these components were very technical in nature, relating specifically to robotics and controls, and these
components were not explicit in having students program a computer.

Analysing these curricula through the theoretical lenses indicates that:

•	 The theoretical approach of CT is reflected in five major coding curricula in Canadian provinces,
with BC, Alberta, and Nova Scotia using this term explicitly;

•	 Computational fluency, participation, and action are not significantly reflected in the coding curricula
of Canadian provinces;

•	 Alberta curriculum is primarily CT focused, but there are small components in grades 5 and 6 that
reflect computational fluency, participation, and action; and

•	 While Ontario curriculum reflects some CT components, the coding expectations and description
in the curriculum context reflect a computational literacy perspective. It is evident that students are
learning to code within the context of mathematics and science and technology, and that the coding
concepts in the expectations of each grade serve the role of the representational form that diSessa
(2018) states is required for a literacy.

Computational thinking is reflected in BC, Alberta, and Nova Scotia, with all three jurisdictions using
the term and providing related expectations, outcomes, or references to specific concepts and skills. In
Ontario, the mathematic coding expectations refer to computational thinking–related concepts including
sequential, concurrent, repeating, conditional, and nested events, however; their use seems to reflect a
CS-focused approach, rather than one that embodies computational thinking specifically. In addition,
the term computational thinking is not used in the Ontario 1–8 mathematics curriculum document.
What is reflected in Ontario’s curriculum, however, is diSessa’s computational literacy whereby cod-
ing is integrated into school subjects in much the same way that algebra has become a tool in science,

533

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

mathematics, and other subjects. Alberta’s coding outcomes in the K-6 Science document emphasizes
a CS- and CT-focused approach, but does not explicitly leverage the development of computational
artefacts to learn related science concepts. The Alberta curriculum does, however, reflect computational
fluency, participation, and action, albeit with a small footprint and not as explicitly as CT.

In British Columbia ADST curriculum’s reflects an emphasis on “constructionism”, and the design
and creation of an artefact can provide educators with a valuable opportunity to promote computational
fluency, participation, and action in their pedagogy. Likewise, British Columbia’s inclusion of “uses of
robotics in local contexts” within the robotics module provides educators with valuable opportunities
to connect coding to the lives and communities of students.

Nova Scotia’s ICT curriculum clearly outlines the purpose of the coding outcome as connecting to
real-world situations which, like British Columbia, could provide educators with an opportunity to have
their pedagogy and selected projects reflect computational fluency, participation, and action. In New
Brunswick, the Middle School Technology Curriculum emphasizes project-based learning that includes
real-world connections and that is student driven. Like in British Columbia and Nova Scotia, this allows
educators to select pedagogy and projects that could embody the creativity, collaboration, sharing, and
social change that is reflected in computational fluency, participation, and action.

As previously mentioned, in Quebec and Newfoundland and Labrador, the coding curriculum expecta-
tions and outcomes are situated within a robotics context and are more technically focused. This is not
to say, however, that a creative and motivated educator could not have the robotics projects reflect the
computational fluency, participation, and action approaches.

Broadening Coding and Computational Thinking, Beyond Optional, Secondary Courses

This article provides evidence of how the implementation of coding and computational thinking being
broadened into the K-8 grades and into subject areas such as mathematics, science, and technology.
Considering this phenomenon, it is important to ask what the impact of this expansion will be on second-
ary (grades 9–12) courses. Traditionally, coding and computational thinking concepts and skills were
included in optional computer science (CS) courses at the secondary level (Floyd, 2022).

As more students are exposed to coding and computational thinking concepts and skills in the younger
grades, will they be motivated to enroll in CS-related courses at the secondary level, as their interests
have been piqued, or as they have gained confidence through early exposure to concepts and skills?
Is it possible that this increased interest and confidence leads to increased enrolment in secondary CS
courses? Or, having experienced CS concepts and skills in the K-8 grades, will students and parents feel
as though foundational CS concepts and skills have already been integrated enough into other subject
areas, and therefore there is no need to enroll in specialized CS courses? Extending these questions
further, if CS concepts and skills have such applicability in other subject areas, is it possible that the
integration of CS into other subjects leads to the demise of specialized, secondary CS courses? At the
very least, the changes taking place in K-8 curricula point towards a need to now carefully consider the
goals of, and rationale for, CS-specialized courses in secondary schools, as well as the concepts and
skills being taught in these courses. Beginning with the theoretical perspectives, some may consider
having the secondary CS courses reflect a more CS-centric approach, embodying Wing’s (2006) com-
putational thinking perspective or embodying an economic argument for CS education, that prepares
secondary students for post-secondary programmes related to CS, as well as related jobs in the field.
Unfortunately, this could possibly leave out important social, cultural, and personal connections that may
not be able to be adequately explored if students only learn CS concepts and skills in other subject areas.

In terms of specific concepts and skills, Ontario provides a good example of how secondary CS
courses will need to be altered to reflect changes in elementary curricula. The Ontario Mathematics
curriculum includes control structures in grades 1, 2, and 3 (such as the sequencing and repetition of

534

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

instructions), as well as conditional statements (decisions) in grade 4. These concepts were included
in all grade 10 courses in Ontario over the last 55 years (Floyd, 2022). As an example, the 1983 docu-
ment includes an expectation that students will “write simple routines that will illustrate the three basic
operations involved in the processing of information—sequencing, selection, and repetition” (Ontario
Ministry of Education, 1983, p. 16), while the current grade 10 Computer Studies course in Ontario
includes expectations where students “write programs that includes a decision structure for two or more
choices” and “write programs that use looping structures effectively” (Ontario Ministry of Education,
2008, p. 36). How will curriculum expectations such as these, in introductory, secondary CS courses,
need to be altered if, referring to the findings from this article, all students in Ontario are now writing,
executing, reading, and altering code that includes sequential, concurrent, and repeating events, and
conditional statements in grades 1, 2, 3, and 4 respectively (Ontario Ministry of Education, 2020)?

The broadening of CS concepts and skills into other K-8 subject areas and grades presents an excit-
ing opportunity for a greater number of students to be exposed to CS, but this will inevitably lead to
changes needed in the traditional delivery model of the secondary, optional CS courses. Researchers
and policy makers involved in secondary CS education are well-advised to play close attention to cur-
riculum changes in the K-8 grades and to carefully consider the potentially changing underlying goals
and rationale for optional, secondary CS courses, and the concept and skills taught within these courses
as students arrive to these courses with greater CS experience than in the past.

Conclusion

This article set out to determine the location of coding-related concepts and skills in Canadian, K-8
provincial curricula, as well as the goals and learning orientations of the expectations and outcomes. By
doing so, it provides insight into how a variety of jurisdictions reflect various theoretical perspectives
and approaches to coding and computer science education.

The document analysis reveals that coding expectations appear in Canadian, K-8 curriculum in four
ways: as a component in technology curriculum, as a component in ICT curriculum, as a component
in science curriculum, and as a component in mathematics curriculum. In terms of the specifics of the
implementation, five main categories appear that range from jurisdictions with no expectations and
outcomes, to those with expectations or outcomes that guarantee coding experiences for all students. In
between these two extremes are categories that include expectations and outcomes that could potentially
lead to students programming a computer, and expectations and outcomes that were optional and would
have to be selected by a board, school, or teacher. In terms of the goals of the coding curriculum, it is
clear that the economic and learning arguments for coding are most reflected in the curriculum from
the various provinces, with only some referring to the social advantages of learning to program a com-
puter. Learning orientations were focused primarily on computational thinking concepts as these are
explicitly mentioned in three provinces, while computational fluency, computational participation and
computational action are not explicitly mentioned, but can provide valuable context for pedagogy and
projects within several jurisdictions. Computational literacy is reflected in one jurisdiction, as coding
appears explicitly in K-8 mathematics curriculum not with the infrastructural change that diSessa said
was required, but perhaps signaling a trend in this direction.

In terms of theory within the field, this article provides evidence of how theoretical approaches related
to coding, CT, and CS education are being integrated into learning outcomes for students in various
ways. A good example is the front matter of Ontario’s Science and Technology curriculum that com-
municates to educators a number of affordances for coding in the science and technology contexts. The
inclusion of these affordances can be seen as theoretical perspectives influencing the development of
programmatic curriculum, and influencing the implementation of the coding expectations in classrooms.

535

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

In addition, the article provides a number of examples of how constructionism is, or is not, reflected
in learning outcomes developed by these jurisdictions. While some require students to be actively pro-
gramming a computer, others include expectations where students may analyze the impact of coding,
or could potentially explore coding and computational concepts in an unplugged fashion, that may not
embody constructionist ideals.

Together, these findings present a clear picture of the current landscape of coding-related concepts
and skills in K-8 curriculum of Canadian jurisdictions, providing a foundational understanding of the
organization, goals, and orientations of curricula, as well as reflected theories, upon which to further
study the novel and popular phenomenon of broadening exposure to CS-related concepts and skills.

Declarations 

Conflict of Interest  The authors declare no competing interests.

References

Alberta Education. (2021). Draft Science Kindergarten to Grade 6 Curriculum. https://​cdn.​learn​alber​ta.​ca/​Resou​rces/​
conte​nt/​cda/​draft​PDF/​media/​Scien​ce/​Scien​ce-​GrK-6-​EN.​pdf

Alberta Education. (2023). Alberta’s K-6 Curriculum: Science. https://​curri​culum.​learn​alber​ta.​ca/​curri​culum/​en/s/​sci
Ames, M.G. (2018). Hackers, computers, and cooperation: A critical history of logo and constructionist learning. Proceed-

ings of the ACM on Human-Computer Interaction 2(CSCW), 1–19. https://​doi.​org/​10.​1145/​32742​87
Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., & Punie, Y. (2016). Developing

computational thinking in compulsory education. European Commission, JRC Science for Policy Report, 68. https://​
komen​skypo​st.​nl/​wp-​conte​nt/​uploa​ds/​2017/​01/​jrc10​4188_​compu​think​report.​pdf

Bodner, G. M. (1986). Constructivism: A theory of knowledge. Journal of Chemical Education, 63(10), 873-878. https://​
doi.​org/​10.​1021/​ed063​p873

Bowen, G. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40. https://​
doi.​org/​10.​3316/​QRJ09​02027

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking.
In Proceedings of the 2012 Annual Meeting of the American Educational Research Association, Vancouver, Canada.

British Columbia Ministry of Education. (2016a). Applied Design, Skills and Technologies. https://​curri​culum.​gov.​bc.​ca/​sites/​
curri​culum.​gov.​bc.​ca/​files/​curri​culum/​adst/​en_​adst_k-​9_​elab.​pdf

British Columbia Ministry of Education. (2016b). Applied Design, Skills, and Technologies - Goals and Rationale. https://​
curri​culum.​gov.​bc.​ca/​curri​culum/​adst/​goals-​and-​ratio​nale

Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory
(3rd ed.). Sage.

Creswell, J. W., & Creswell, J. D. (2013). Research design: Qualitative, quantitative, and mixed methods approaches.
Sage publications.

Crotty, M. (1998). The foundations of social research: Meaning and perspective in the research process. Sage Publications
Dagienė, V., Jevsikova, T., & Stupurienė, G. (2019). Introducing informatics in primary education: curriculum and

teachers’ perspectives. In Informatics in Schools. New Ideas in School Informatics: 12th International Conference
on Informatics in Schools: Situation, Evolution, and Perspectives, ISSEP 2019, Larnaca, Cyprus, November 18–20,
2019, Proceedings 12 (pp. 83–94). Springer International Publishing. https://​doi.​org/​10.​1007/​978-3-​030-​33759-9_7

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60(6), 33-39.
https://​doi.​org/​10.​1145/​29984​38

Department of Finance Canada. (2019). Investing in the middle class: Budget 2019. https://​www.​budget.​gc.​ca/​2019/​docs/​
downl​oad-​telec​harger/​index-​en.​html

diSessa, A. (2000). Changing minds. MIT Press.
diSessa, A. (2018). Computational literacy and “The Big Picture” concerning computers. Mathematics Education, Math-

ematical Thinking and Learning, 20(1), 3-31. https://​doi.​org/​10.​1080/​10986​065.​2018.​14035​44
Floyd, S. (2022). The Past, Present, and Future Direction of Computer Science Curriculum in K-12 Education (Doctoral

dissertation, The University of Western Ontario (Canada)).
Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-Smith, J., Voogt, J., & Zagami, J. (2016). Arguing for computer science

in the school curriculum. Journal of Educational Technology & Society, 19(3), 38-46.
Fosnot, C. T. (1996). Constructivism: Theory, perspectives, and practice. Teachers College Press.

https://cdn.learnalberta.ca/Resources/content/cda/draftPDF/media/Science/Science-GrK-6-EN.pdf
https://cdn.learnalberta.ca/Resources/content/cda/draftPDF/media/Science/Science-GrK-6-EN.pdf
https://curriculum.learnalberta.ca/curriculum/en/s/sci
https://doi.org/10.1145/3274287
https://komenskypost.nl/wp-content/uploads/2017/01/jrc104188_computhinkreport.pdf
https://komenskypost.nl/wp-content/uploads/2017/01/jrc104188_computhinkreport.pdf
https://doi.org/10.1021/ed063p873
https://doi.org/10.1021/ed063p873
https://doi.org/10.3316/QRJ0902027
https://doi.org/10.3316/QRJ0902027
https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/adst/en_adst_k-9_elab.pdf
https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/adst/en_adst_k-9_elab.pdf
https://curriculum.gov.bc.ca/curriculum/adst/goals-and-rationale
https://curriculum.gov.bc.ca/curriculum/adst/goals-and-rationale
https://doi.org/10.1007/978-3-030-33759-9_7
https://doi.org/10.1145/2998438
https://www.budget.gc.ca/2019/docs/download-telecharger/index-en.html
https://www.budget.gc.ca/2019/docs/download-telecharger/index-en.html
https://doi.org/10.1080/10986065.2018.1403544

536

	 Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537

1 3

Gadanidis, G., Brodie, I., Minniti, L., & Silver, B. (2017a). Computer coding in the K-8 mathematics curriculum? What
works: Research into practice, 69, 1-4.

Gadanidis, G., Hughes, J. M., Namukasa, I., & Scucuglia, R. (2019). Computational modelling in elementary mathematics
teacher education. In S. Llinares & O. Chapman (Eds.), International Handbook of Mathematics Teacher Education:
Volume 2 (pp. 197-222). Brill Sense.

Gadanidis, G., Hughes, J. M., Minniti, L., & White, B. J. (2017). Computational thinking, grade 1 students and the binomial
theorem. Digital Experiences in Mathematics Education, 3(2), 77–96. https://​doi.​org/​10.​1007/​s40751-​016-​0019-3

Gannon, S., & Buteau, C. (2018). Integration of Computational thinking in Canadian provinces. In Online Proceedings
of the Computational Thinking in Mathematics Education Symposium.

Government of Northwest Territories. (2021). Frequently asked questions: NWT partnering with British Columbia for
JK-12 school curriculum. https://​www.​ece.​gov.​nt.​ca/​sites/​ece/​files/​resou​rces/​2021-​11_-_​faq_-_​nwt_​to_​adopt_​bcs_​
jk-​12_​curri​culum_-_​engli​sh_-_​final.​pdf

Government of Yukon. (2022). Learn about the Yukon’s school curriculum. https://​yukon.​ca/​en/​school-​curri​culum
Gravel, B. E., & Wilkerson, M. H. (2017). Integrating computational artifacts into the multi-representational toolkit of

physics education. In R. Duit, D. Treagust, & H. Fischer (Eds.), Multiple Representations in Physics Education (pp.
47–70). Springer. https://​doi.​org/​10.​1007/​978-3-​319-​58914-5_3

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. In S. Sentance, E. Barendsen,
& C. Schulte (Eds.), Computer science education: Perspectives on teaching and learning (pp. 19–38). Bloomsbury
Academic. https://​doi.​org/​10.​5040/​97813​50057​142.​ch-​003

Grover, S. & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher,
42(1), 38-43. https://​doi.​org/​10.​3102/​00131​89X12​463051

Harel, I. E., & Papert, S. E. (1991). Constructionism. Ablex Publishing.
Hennessey, E.J.V.,, Mueller, J., Beckett, D., & Fisher, P.A. (2017). Hiding in plain sight: Identifying computational thinking in the

Ontario elementary school curriculum. Journal of Curriculum and Teaching 6(1), 79-96. https://​doi.​org/​10.​5430/​jct.​v6n1p​79
Holbert, N., Berland, M., & Kafai, Y. B. (2020). Introduction: fifty years of constructionism. In N. Holbert, M. Berland, & Y.B.

Kafai (Eds), Designing constructionist futures: The art, theory, and practice of learning designs, (pp. 1-16). MIT Press.
Hubwieser, P., Giannakos, M. N., Berges, M., Brinda, T., Diethelm, I., Magenheim, J., ... & Jasute, E. (2015). A global

snapshot of computer science education in K-12 schools. In Proceedings of the 2015 ITiCSE on working group reports
(pp. 65–83). ACM. https://​doi.​org/​10.​1145/​28587​96.​28587​99

Information and Communications Council. (2017). The next talent wave: Navigating the digital shift. https://​www.​ictc-​
ctic.​ca/​wp-​conte​nt/​uploa​ds/​2017/​04/​ICTC_​Outlo​ok-​2021.​pdf

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12 education. Communications of
the ACM, 59(8), 26-27. https://​doi.​org/​10.​1145/​29551​14

Kafai, Y. B., & Proctor, C. (2022). A revaluation of computational thinking in K–12 education: Moving toward computa-
tional literacies. Educational Researcher, 51(2), 146-151. https://​doi.​org/​10.​3102/​00131​89X21​10579​04

Khanlari, A. (2013). Effects of educational robots on learning STEM and on students’ attitude toward STEM. In 2013
IEEE 5th Conference on Engineering Education (pp. 62–66). https://​doi.​org/​10.​1109/​ICEED.​2013.​69083​04.

Lee, C., & Soep, E. (2023). Code for What?: Computer Science for Storytelling and Social Justice. MIT Press.
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., ... & Werner, L. (2011). Computational thinking for

youth in practice. ACM Inroads, 2(1), 32–37. https://​doi.​org/​10.​1145/​19298​87.​19299​02
Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation. John Wiley & Sons.
Milton, P. (2015). Shifting Minds 3.0: Redefining the Learning Landscape in Canada. C21 Canada.
New Brunswick Department of Education and Early Childhood Development. (2016). Middle School Technology Edu-

cation. https://​www2.​gnb.​ca/​conte​nt/​dam/​gnb/​Depar​tments/​ed/​pdf/​K12/​curric/​Techn​ology​Vocat​ional/​Middle%​
20Sch​ool%​20Tec​hnolo​gy.​pdf

Newfoundland and Labrador Department of Education. (2002). Technology education: Communications technology module
grade 7. https://​www.​gov.​nl.​ca/​educa​tion/​files/​k12_​curri​culum_​guides_​teched_​gr7_​g7_​comm-​module_​june2​002.​pdf

Newfoundland and Labrador Department of Education. (2006). Technology education: Control technology module 8.
https://​www.​gov.​nl.​ca/​educa​tion/​files/​k12_​curri​culum_​guides_​teched_​gr8ct​rltech_​g8con​trol.​pdf

Nova Scotia Department of Education and Early Childhood Development. (2016a). Information and communication
technology/Coding 4–6 integration. https://​www.​ednet.​ns.​ca/​files/​curri​culum/​infot​ech_​coding_​4-6_​strea​mlined.​pdf

Nova Scotia Department of Education and Early Childhood Development. (2016b). Nova Scotia’s action plan for education: Annual
report 2016. https://​www.​ednet.​ns.​ca/​docs/​actio​nplan-​annua​lrepo​rt-​2016.​pdf

Nunavut Department of Education. (2019). 2019 – 2020 Nunavut Approved Curriculum and Teaching Resources. https://​
gov.​nu.​ca/​sites/​defau​lt/​files/​2019-​20_​nunav​ut_​appro​ved_​curri​culum_​and_​teach​ing_​resou​rces.​pdf

Ontario Ministry of Education. (1983). Computer studies: Intermediate and Senior Division.
Ontario Ministry of Education. (2008). The Ontario curriculum grade 10 to 12: Computer studies. http://​www.​edu.​

gov.​on.​ca/​eng/​curri​culum/​secon​dary/​compu​ter10​to12_​2008.​pdf
Ontario Ministry of Education. (2020). The Ontario curriculum grades 1–8: Mathematics. https://​www.​dcp.​edu.​gov.​

on.​ca/​en/​curri​culum/​eleme​ntary-​mathe​matics/​downl​oads

https://doi.org/10.1007/s40751-016-0019-3
https://www.ece.gov.nt.ca/sites/ece/files/resources/2021-11_-_faq_-_nwt_to_adopt_bcs_jk-12_curriculum_-_english_-_final.pdf
https://www.ece.gov.nt.ca/sites/ece/files/resources/2021-11_-_faq_-_nwt_to_adopt_bcs_jk-12_curriculum_-_english_-_final.pdf
https://yukon.ca/en/school-curriculum
https://doi.org/10.1007/978-3-319-58914-5_3
https://doi.org/10.5040/9781350057142.ch-003
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.5430/jct.v6n1p79
https://doi.org/10.1145/2858796.2858799
https://www.ictc-ctic.ca/wp-content/uploads/2017/04/ICTC_Outlook-2021.pdf
https://www.ictc-ctic.ca/wp-content/uploads/2017/04/ICTC_Outlook-2021.pdf
https://doi.org/10.1145/2955114
https://doi.org/10.3102/0013189X211057904
https://doi.org/10.1109/ICEED.2013.6908304
https://doi.org/10.1145/1929887.1929902
https://www2.gnb.ca/content/dam/gnb/Departments/ed/pdf/K12/curric/TechnologyVocational/Middle%20School%20Technology.pdf
https://www2.gnb.ca/content/dam/gnb/Departments/ed/pdf/K12/curric/TechnologyVocational/Middle%20School%20Technology.pdf
https://www.gov.nl.ca/education/files/k12_curriculum_guides_teched_gr7_g7_comm-module_june2002.pdf
https://www.gov.nl.ca/education/files/k12_curriculum_guides_teched_gr8ctrltech_g8control.pdf
https://www.ednet.ns.ca/files/curriculum/infotech_coding_4-6_streamlined.pdf
https://www.ednet.ns.ca/docs/actionplan-annualreport-2016.pdf
https://gov.nu.ca/sites/default/files/2019-20_nunavut_approved_curriculum_and_teaching_resources.pdf
https://gov.nu.ca/sites/default/files/2019-20_nunavut_approved_curriculum_and_teaching_resources.pdf
http://www.edu.gov.on.ca/eng/curriculum/secondary/computer10to12_2008.pdf
http://www.edu.gov.on.ca/eng/curriculum/secondary/computer10to12_2008.pdf
https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics/downloads
https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics/downloads

537

Can. J. Sci. Math. Techn. Educ. (2023) 23:509–537	

1 3

Ontario Ministry of Education. (2022). The Ontario curriculum grades 1–8: Science and Technology. https://​www.​
dcp.​edu.​gov.​on.​ca/​en/​curri​culum/​scien​ce-​techn​ology/​downl​oads

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2019). Exploring children’s learning experience in con-
structionism-based coding activities through design-based research. Computers in Human Behavior (99), 415-
427. https://​doi.​org/​10.​1016/j.​chb.​2019.​01.​008

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). Basic Books.
Passey, D. (2017). Computer science (CS) in the compulsory education curriculum: Implications for future research.

Education and Information Technologies, 22(2), 421-443. https://​doi.​org/​10.​1007/​s10639-​016-​9475-z
Popat, S., & Starkey, L. (2019). Learning to code or coding to learn? A systematic review. Computers & Education,

128, 365-376. https://​doi.​org/​10.​1016/j.​compe​du.​2018.​10.​005
Québec Ministère de l’Éducation. (2001). Québec education program: Preschool education, elementary education. http://​

www.​educa​tion.​gouv.​qc.​ca/​filea​dmin/​site_​web/​docum​ents/​educa​tion/​jeunes/​pfeq/​PFEQ_​prese​ntati​on-​prima​ire_​EN.​pdf
Québec Ministère de l’Éducation. (2009). Progression of learning: Science and technology. http://​www.​educa​tion.​gouv.​

qc.​ca/​filea​dmin/​site_​web/​docum​ents/​educa​tion/​jeunes/​pfeq/​PDA_​PFEQ_​scien​ce-​techn​ologie-​prima​ire_​2009_​EN.​pdf
Resnick, M. (2018, September 16). Computational Fluency. Medium. https://​mres.​medium.​com/​compu​tatio​nal-​fluen​cy-​

77614​3c8d7​25
Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12

science education using agent-based computation: A theoretical framework. Education and Information Technologies,
18(2), 351-380. https://​doi.​org/​10.​1007/​s10639-​012-​9240-x

Smith, M. (2015, January 3). Computer Science For All. The White House: President Barack Obama. https://​obama​white​house.​
archi​ves.​gov/​blog/​2016/​01/​30/​compu​ter-​scien​ce-​all

Sullivan, F. R., & Heffernan, J. (2016). Robotic Construction Kits as Computational Manipulatives for Learning in the STEM
Disciplines. Journal of Research on Technology in Education, 48, 1–24. https://​doi.​org/​10.​1080/​15391​523.​2016.​11465​63.

Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to computational action. Communica-
tions of the ACM, 62(3), 34-36. https://​doi.​org/​10.​1145/​32657​47

Tissenbaum, M., Weintrop, D., Holbert, N., & Clegg, T. (2021). The case for alternative endpoints in computing education.
British Journal of Educational Technology, 52(3), 1164-1177.

Vogel, S., Santo, R., & Ching, D. (2017). Visions of computer science education: Unpacking arguments for and projected
impacts of CS4All initiatives. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (pp. 609–614). ACM. https://​doi.​org/​10.​1145/​30176​80.​30177​55

Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P., & Sysło, M. M. (2017). Computer science in
K-12 school curricula of the 2lst century: Why, what and when? Education and Information Technologies, 22(2),
445-468. https://​doi.​org/​10.​1007/​s10639-​016-​9493-x

Webb, M. E., Cox, M. J., Fluck, A., Angeli-Valanides, C., Malyn-Smith, J., & Voogt, J. (2015). Thematic working group
9: curriculum-advancing understanding of the roles of computer science/informatics in the curriculum. In Summary
Report: Technology Advance Quality Learning for All (pp. 60–69). EDUSummit.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational
thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.
https://​doi.​org/​10.​1007/​s10956-​015-​9581-5

Wilkerson, M. H., Shareff, R., Laina, V., & Gravel, B. (2018). Epistemic gameplay and discovery in computational model-
based inquiry activities. Instructional Science, 46(1), 35-60. https://​doi.​org/​10.​1007/​s11251-​017-​9430-4

Wilkerson, M. H. & Fenwick, M. (2017). The practice of using mathematics and computational thinking. In C. V.
Schwarz, C. Passmore, & B. J. Reiser (Eds.), Helping Students Make Sense of the World Using Next Genera-
tion Science and Engineering Practices. National Science Teachers’ Association Press.

Wilkerson-Jerde, M. H, Gravel, B. E., & Macrander, C. (2015). Exploring shifts in middle school learners’ modeling
activity while generating drawings, animations, and computational simulations of molecular diffusion. Journal
of Science and Educational Technology, 24 (2-3), 396-415. https://​doi.​org/​10.​1007/​s10956-​014-​9497-5

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35. https://​doi.​org/​10.​1145/​11181​78.​11182​15
Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Com-

puters in Education, 141. https://​doi.​org/​10.​1016/j.​compe​du.​2019.​103607
Zhang, L., Kirschner, P. A., Cobern, W. W., & Sweller, J. (2022). There is an evidence crisis in science educational

policy. Educational Psychology Review, 34(2), 1157-1176. https://​doi.​org/​10.​1007/​s10648-​021-​09646-1

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing
agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this
article is solely governed by the terms of such publishing agreement and applicable law.

https://www.dcp.edu.gov.on.ca/en/curriculum/science-technology/downloads
https://www.dcp.edu.gov.on.ca/en/curriculum/science-technology/downloads
https://doi.org/10.1016/j.chb.2019.01.008
https://doi.org/10.1007/s10639-016-9475-z
https://doi.org/10.1016/j.compedu.2018.10.005
http://www.education.gouv.qc.ca/fileadmin/site_web/documents/education/jeunes/pfeq/PFEQ_presentation-primaire_EN.pdf
http://www.education.gouv.qc.ca/fileadmin/site_web/documents/education/jeunes/pfeq/PFEQ_presentation-primaire_EN.pdf
http://www.education.gouv.qc.ca/fileadmin/site_web/documents/education/jeunes/pfeq/PDA_PFEQ_science-technologie-primaire_2009_EN.pdf
http://www.education.gouv.qc.ca/fileadmin/site_web/documents/education/jeunes/pfeq/PDA_PFEQ_science-technologie-primaire_2009_EN.pdf
https://mres.medium.com/computational-fluency-776143c8d725
https://mres.medium.com/computational-fluency-776143c8d725
https://doi.org/10.1007/s10639-012-9240-x
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://doi.org/10.1080/15391523.2016.1146563
https://doi.org/10.1145/3265747
https://doi.org/10.1145/3017680.3017755
https://doi.org/10.1007/s10639-016-9493-x
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s11251-017-9430-4
https://doi.org/10.1007/s10956-014-9497-5
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.1007/s10648-021-09646-1

	The Integration of Coding and Computer Science Concepts in Canadian K-8 Curriculum
	Abstract
	Résumé
	Introduction
	Arguments for Coding Curriculum in the Younger Grades
	Theoretical Perspectives on Coding in the K-8 Grades
	Constructionism
	Computational Thinking
	Computational Fluency
	Computational Participation
	Computational Action
	Computational Literacy

	A Foundation for Analysis

	Problem Description
	Purpose and Research Questions
	Theoretical Frameworks and Methodology
	Constructivism
	Methodology and Document Analysis

	Findings
	British Columbia’s Applied Design, Skills, and Technologies Curriculum
	Alberta’s Science Curriculum
	Ontario’s Mathematics and Science and Technology Curricula
	Quebec’s Science and Technology Curriculum
	New Brunswick’s Technology Curriculum
	Nova Scotia’s Information and Communication Technology Curriculum
	Newfoundland and Labrador Technology Curriculum

	Comparative Analysis and Discussion
	Coding or Coding-Related? For Some or For All?
	Coding on Its Own or Integrated… Somewhere?
	Connecting Theory and Curricula
	Broadening Coding and Computational Thinking, Beyond Optional, Secondary Courses

	Conclusion
	References

