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Abstract Human reasoning about and with uncertainty is often at odds with the principles of
classical probability. Order effects, conjunction biases, and sure-thing inclinations suggest that an
entirely different set of probability axioms could be developed and indeed may be needed to describe
such habits. Recent work in diverse fields, including cognitive science, economics, and information
theory, explores alternative approaches to decision theory. This work considers more expansive
theories of reasoning with uncertainty while continuing to recognize the value of classical proba-
bility. In this paper, we discuss one such alternative approach, called quantum probability, and
explore its applications within decision theory. Quantum probability is designed to formalize
uncertainty as an ontological feature of the state of affairs, offering a mathematical model for
entanglement, de/coherence, and interference, which are all concepts with unique onto-epistemolog-
ical relevance for social theorists working in new and trans-materialisms. In this paper, we suggest
that this work be considered part of the quantum turn in the social sciences and humanities. Our aim
is to explore different models and formalizations of decision theory that attend to the situatedness of
judgment. We suggest that the alternative models of reasoning explored in this article might be better
suited to queries about entangled mathematical concepts and, thus, be helpful in rethinking both
curriculum and learning theory.

Résumé Le raisonnement humain au sujet de l’incertain est souvent en conflit avec les principes des
probabilités traditionnelles. Les effets d’ordre, le biais de représentativité et la tendance à croire au
fait accompli suggèrent qu’on pourrait développer une série complètement différente d’axiomes des
probabilités, ou même que ceux-ci seraient en fait être nécessaires pour décrire de telles habitudes.
De récents travaux dans des disciplines diverses, incluant les sciences cognitives, l’économie et la
théorie de l’information, explorent de nouvelles approches à la théorie de la décision. Le présent
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travail prend en considération des théories plus vastes de raisonnement sur l’incertain, tout en
continuant de reconnaître la valeur des probabilités traditionnelles. Dans cet article, nous présentons
l’une de ces approches alternatives, appelée probabilités quantiques, et nous en analysons les
applications au sein de la théorie de la décision. Les probabilités quantiques visent à formaliser
l’incertain comme un trait ontologique de l’état des choses, proposant ainsi un modèle mathématique
pour l’intrication, la dé/cohérence et l’interférence, qui sont tous des concepts d’une pertinence
onto-épistémologique unique pour les théoriciens sociaux qui oeuvrent dans les disciplines trans-
matérialistes. Nous proposons qu’un tel travail soit considéré comme partie intégrante du virage
quantique que prennent les sciences humaines et les sciences sociales. Notre objectif est d’explorer
différents modèles et formalisations de la théorie de la décision qui traitent du situationnisme dans le
raisonnement. Nous estimons que les modèles alternatifs présentés dans cet article pourraient mieux
se prêter aux questions portant sur les concepts mathématiques d’intrication, et pourraient donc
servir à repenser aussi bien les curriculums que les théories de l’apprentissage.

Keywords Quantum . Indeterminacy . Uncertainty . Probability . Judgment . Newmaterialism . Barad

Introduction

Reasoning with and about uncertainty is a complex affair. One might argue that all reasoning entails
some measure of uncertainty, since choices and actions involve ambivalence, conflicted feelings, and
lack of knowledge. Indeed, it may be that everyday decisions, which appear fairly automatic and
without deliberation, are ground in micro-perceptual statistical calibrations of our sensory milieu,
processed below the level of consciousness. If there is a kind of Bprobability in the wild^ operating
at various micro-scales, much of what we name as Breasoning^ may in fact be essentially pre-
individual (Hansen 2015). The question is then whether uncertainty might be better considered in
terms of a fundamental indeterminacy at work in the material world, like the random swerve
proposed by Lucretius (c. 100-c. 55 BC) or quantum indeterminacy described by Niels Bohr.
Philosophers of science such as Karen Barad (2007, 2012a, 2012b) have argued that this ontological
perspective demands new ways of conceiving the mathematics of chance.

In this paper, we explore quantum probability (QP) as a possible alternative formalization of
reasoning with uncertainty. QP was formulated by John Von Neumann in the 1920s as a way of
describing quantum mechanics. Trueblood and Busemeyer (2011) argue that a quantum approach
to human judgment is compelling because (a) judgment is a responsive action and not simply an
accessing of stored information, (b) judgments disturb the learning environment and the distrib-
uted cognition across the given situation, (c) judgments impact future judgments, and thus order
of judgments matters, and (d) human judgments do not follow the commutative rule of classical
probability.

We explore the implications of this work for learning theory, suggesting that alternative
formalizations of probability offer different insights into human reasoning. We turn to recent
applications of quantum probability in psychology, exploring the ways that human judgment has
been conceptualized as a kind of quantum behaviour. Researchers in diverse fields are investigating
the implications of this alternative approach, including economics, information theory, cognitive
science, and machine learning (see Pothos and Busemeyer 2013 for a full list of references). The
idea that quantum mechanics might be a source for rethinking cognition is not new—the physicist
Niels Bohr himself suggested that quantum theory might offer insight into the nature of cognition
(Wang et al. 2013) as did Schrödinger in his now classic 1944 book What is life? We pursue this
study of probability as part of our project in inclusive materialism (de Freitas and Sinclair 2014),
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exploring the way that mathematical concepts are implicated in particular material and embodied
practices.

Our interest in exploring the formalisms of quantum probability derives in part from our commitment to
imagine the quantum at all scales. We want terms like entanglement, diffraction, and de/coherence to be
more than mere metaphors, and we see a need to dig deeper into the mathematics of quantum ontology.
Moreover, our work seeks to show how mathematics itself—at the level of concept, model, and form—is
implicated in the socio-material theories that we use at other scales. For these reasons, we decided to find out
what specifically was happening in mathematical quantum models. QP operates through a geometric
approach, rather than a set-theoretic approach. The Bobjects^ of this geometry are vectors, which entail a
vector algebra with different operators and different kinds of relationality, related to complex numbers.Most
importantly for our purposes, QP offers logical and mathematical formulations of concepts such as
entanglement, superposition, incompatibility, and interference, which are all distinctive characteristics of
quantum systems with its unique onto-epistemological associations and relevance for social theorists
working in new and trans-materialisms.

The Limits of Classical Probability

Hacking (1975) recounts how the mathematics of chance has always had a dual nature, being both epistemic
and ontological, the first aligned with theoretical laws of probability and the second aligned with empirical
experiments and the measurements of frequencies.1 The emergence of quantum physics in the twentieth
century further complicated this onto-epistemological mixture. Since quantum mechanics defies the causal
logic of classical Newtonian science and puts forward a new image of simultaneity and presence (of both
here and not here), it breaks with classical probability models.

Classical probability (CP) is captured in the Kolmogorov axioms which stipulate that (1) probability is a
non-negative real number, (2) the probability of the entire sample space is 1, and (3) the probability of the
union of a countably infinite set of mutually exclusive events is equivalent to the sum of the probabilities of
each of the events. Children are typically initiated into the logic of CP using examples that allow for
frequency testing, so as to prove empirically that the model is accurate and true. Notably for our purposes,
issues of total probability, order effects, and conditional conjunctions become pivotal learning moments in
developing skills associated with reasoning about chance. These facets of CP—rules regarding the
distribution of probabilities across outcomes, and the impact of order and conjunction on probability—
are often a source of difficulty for children learning about probability (see, for example, Fischbein and
Schwartz 1997; Watson and Moritz (2002).

Unfortunately, or perhaps predictably, humans do not always reason according to the rules of CP (see
Cosmides and Tooby (1996) on potential evolutionary reasons for this). Sutherland (2007) presents
numerous examples of doctors and judges and juries violating these rules, whether it will be ignoring the
conditional base in a particular context or revealing an Birrational^ order bias when asked a series of
questions about the likelihood of an outcome. For example, in the famous Linda problem, studied by
Tversky and Kahneman (1983), participants are given this information: BLinda is 31 years old, single,
outspoken and very bright. She majored in philosophy. As a student, she was deeply concerned with issues
of discrimination and social justice, and also participated in anti-nuclear demonstrations.^ Research
participants are then asked BIs Linda more likely to be (a) a bank teller or (b) active in the feminist
movement and a bank teller.^ In classical probability, the probability of the conjunction will always be less
than the probability of either of the individual events: P(A∩ B) ≤ P(A). In other words, people should

1 This distinction is sometimes referred to as Bayesian versus frequentist. In this paper, we explore alternative kinds of probability
(focusing on quantummodels). There aremany other types of probability as well and, as Gillies (2000) argues, theymay each offer valid
interpretations of the particular contexts from which they emerge.
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answer that it is more likely that she is a bank teller. And yet the study shows that 90% of respondents select
(b). Other similar experiments related to medical judgments, predicting the results of sporting events and
making risky choices show the same tendencies, revealing how these violations are widespread and
persistent (Tversky and Kahneman 1983).

It may be that we want people to reason according to classical probability, but a large body of evidence
suggests that people do not (Kahneman et al. 1982; Tversky and Shafir 1992). Rather than simply dismiss
this large body of evidence as though it pointed to human irrationality or incoherence, or offer some adhoc
explanation regarding the language used in such questions, growing interest in alternative formalizations of
probability has emerged. Various decision theories have attempted to address these habits of thought. Query
theory, fuzzy trace theory, and integration theory are all formalizations that alter the rules of CP in order to
better capture the way that people reason about complex lived events. What is considered paradoxical from
the perspective of CP, and what is seen as widespread violation of the laws, may in fact be evidence of an
alternative way of reasoning with uncertainty: Bif we are to understand the intuition behind human
judgment in such situations, we have to look for an alternative probabilistic framework^ (Pothos and
Busemeyer 2013, p. 257). Before unpacking some of the recent work in quantum decision theory, we first
situate this work as part of a quantum turn in the social sciences.

The Quantum Turn

The philosopher of science Karen Barad (2007) argues that quantum mechanics and field theory set the
stage for an entirely new kind of social science in the twenty-first century. She invites us to think about how
quantum behaviour, which has been observed in the microscopic level of sub-atomic particles, can also
produce effects in large-scale systems. She asks us to consider how we might live post-quantum causality?
How we might mesh sub-atomic and organic temporality? In what ways can we reconceive the very notion
of relationality in light of quantum science? It is important for Barad that this is not simply a matter of
recognizing the way that measurements Bdisturb^ the behaviour of that which is studied, that is, disturb
what would have happened in the absence of such a measurement (de Freitas 2017).2 In interpreting the
surprising findings of quantum mechanics experiments, Barad contrasts two perspectives, Heisenberg and
Bohr. Whereas for Heisenberg, quantum physics shows us the limits of our knowledge and the epistemo-
logical limits of what we are able to experience or understand, for Bohr, quantum science shows an
inherent indeterminacy in matter. In other words, Bohr’s interpretation insists that there are no separable
isolated entities that can be observed from the outside, and thus Bentities^ do not have a fixed inherent
nature (wave or particle or spin). Duality of wave and particle—and indeterminacy more generally—is
inherent to matter.

Barad (2012a) states very clearly that she is not Bapplying quantum physics to the social world by
drawing analogies between tiny particles and people^ for that would be a simplistic misuse of both theory
and practice (p. 17). She emphasizes that there are not two domains (the microscopic and the macroscopic)
with two different ontological principles. Thus, she claims that quantum ontology is directly (and not simply
analogically) relevant to every day matters—and that if this is not commonly evident, it is in part because
quantum effects are very difficult to observe. Although research methods in the social sciences have begun
to turn to the more-than-human in studying intra-activity, Barad (2012b) suggests we need to interrogate the
very nature of causality, origin, relationality, and change. Recent findings in ecology do suggest that systems
operate according to a quantum model that includes complementarity and non-locality, as evidenced in
causal effects that happen faster than the speed of light. For example, Bbirds exploit non-local connections

2 Indeed, Barad argues that the results of experiments conducted with the Stern-Gerlach apparatus, which measures the spin of particles
along different axes, do not make sense if interpreted using Heisenberg’s assumption that measurement disturbs particles (see pp. 258–
263).
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with the earth’s magnetic field to help them navigate… plants exploit quantum effects in photosynthesis…
fruit flies sense of smell relies on the ability to detect quantum vibrations in smelly molecules …^ (Wendt
2015, p. 135). These examples suggest that a quantum paradigm might explain diverse kinds of behaviour
and discernment (Atmanspacher 2013; Grace and Kemp 2013).

It was through the philosopher of mind Alexander Wendt (2015) that we were introduced to the vast
research on quantum cognition, quantum brain science, and quantum probability. Wendt argues for a new
quantum paradigm to better unify physical and social ontology, pursuing both a Bquantum vitalism^ and a
Bvitalist sociology^ (p. 33). He argues for a Bfundamental mentality^ such that Bmind is already inherent in
every electron^ and matter is intrinsically minded (p. 29–31). Such a perspective can be described as a kind
of panpsychism that takes the known effect of consciousness at the macroscopic level and Bscales it
downward^ (p. 31). He is principally focused on how quantum ontology offers an alternative theoretical
framework for the study of consciousness, but not simply as a form of epistemic limitation. Like Barad, he
lines up with Bohr in the debate with Heisenberg, and his project aims to show how cognition is entailed in
quantum ontology.

The concept of quantum coherence is crucial for Wendt’s approach. He suggests that life is a
Bmacroscopic instantiation of quantum coherence.^ We are walking wave functions capable of coherently
carrying incompatible potentialities; the collapse of a wave function into actuality (in the form of human
action, decision, and measurement) brings us into the Bincoherent^ world, which is separated out into
individuals, actions, decisions, etc. In other words, quantum coherence designates the virtual side of matter
where incompatible potentialities (wave and particular) are able to cohere and co-exist. The state of
quantum coherence is then actualized in individuated conscious states—decisions, actions, etc. According
to this approach, individuation (of a conscious mind) is an after-effect of an inherent indeterminacy in
matter, which is not spent or exhausted in the articulation of a decision or individual, but remains as a kind of
originating vibrational energy.

We focus here on de/coherence because it is directly relevant to our later exploration of decision/actions
and judgments. The coherence of organisms, suggests Wendt (2015), entails a pre-individual quantum
superposition of coherent potentialities over all space-time domains (all possible actualizations), each
correlated with one another and with the whole, and yet independent of the whole. In other words, the
quantum coherent state, which is the pre-individual state, maximizes both global cohesion (by containing
the superposition of diverse and even contradictory states) and local freedom (by fueling the active principle
that individuates choice, decision, and action). This richly textured virtual field of quantum coherence
Bunderlies the sensitivity of living systems to weak signals, and their ability to intercommunicate and
respond with great rapidity^ (Ho in Wendt, p. 139).

Quantum coherence is a kind of heterogeneous holism that allows us to reconsider the nature of reason
and judgment. Such an approach offers new ways of thinking about the future, remixing the temporal flow
of time, and re-distributing the here-now across all possible states. This invites speculation about the means
by which reasoned decisions and actions are undergone. Wendt is not arguing metaphorically, nor focusing
only on the unusual behaviour of the sub-atomic, but is taking a realist position about quantum relationality.
Wendt’s project is somewhat different from that of new materialists such as Barad (2007) because he is
focused on the problem of consciousness and subjectivity and because he uses quantum coherence to
distinguish life from non-life. His attention to cognition, however, pushes the quantum paradigm in new
directions, as we consider alternative models for reasoning with uncertainty.

What would it look like to operate according to a quantummodel of reasoning?What kind of logic would
accurately capture the machinations of a quantum mind? How would decisions and judgments be achieved
if they followed a quantum logic rather than a classical one? The fact that cognitive models must reckon
with our deeply situated knowledges makes the quantum paradigm very appealing: BIn quantum physics,
superposition appears puzzling: what does it mean for a particle to have a potentiality for different positions,
without it actually existing at any particular position? By contrast, in psychology, superposition appears to
be an intuitive way to characterize the fuzziness (the conflict, ambiguity, and ambivalence) of everyday
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thought^ (Pothos and Busemeyer 2013, p. 256). In the next section, we turn to comparisons between
classical and quantum probability models and their relevance to cognitive science. Our aim is to explore,
tentatively, the possibility that quantum probability models might shed light on thinking and learning, and to
gauge the extent to which QP seems to offer a better formal mathematical system for characterizing the
situatedness of judgment.

We ask the reader to bear in mind, however, that any formal system will involve massive limitations and
brutal simplifications. Probabilistic models of cognition are top-down—any such formalism will
misrecognize much of the dynamic nature of events. But our aim is not to argue that quantum probability
explains human judgment definitively—as that would go against the grain of the quantum—but rather to
trouble reliance on classical probability and to invite speculation and experiment around different ways of
reasoning with uncertainty.

Reasoning and Probability

Classical (Bayesian) probability theory has strongly influenced models of cognition, inference, and
learning. And yet there has always been ample evidence to suggest that human judgment rests on other
kinds of inference that cannot be adequately described by the subjective Bcorrections^ of Bayesian
probability. Wendt highlights three aspects of decision-making that arise from the work of Kahneman
and colleagues in psychology. One involves the Border effect^ in which the value that people ascribe to two
events depends on the order in which the event is presented to them. Non-commutative reasoning is often at
work when people assign probabilities to uncertain events or when people are asked to compare one thing to
another, especially in cases when the events are not independent. The second is the Bconjunction error^
(referred to above in relation to the Linda problem) in which people think that a given event A is less likely
than the combination of two events A and B. Finally, the third aspect relates to the disjunction error and
concerns the way people reason about unknown or hypothetical contexts. This is known as the Bsure-thing^
principle, described by Savage (1954) as follows: If under state of the world X, people prefer action A over
action B and in state of the world ~X people prefer action A over B, then if the state of the world is
unknown, a person should always prefer action A over B. Despite it being a Bsure thing,^ persistent
evidence suggests that humans do not follow the principle in practice. Increasingly, researchers are
exploring quantum probability theory to account for the preponderance of human judgments that do not
follow classical probability, including the sure-thing axiom of decision-making (Pothos and Busemeyer
2009), and order and conjunctive fallacies (Franco 2009; Busemeyer et al. 2011).

Quantum probability (QP) is simply a way of assigning probabilities to events, but it does so quite
differently from classical probability (CP). In other words, it offers an alternative formalization of reasoning
with uncertainty. This alternative approach links uncertainty to indeterminacy in ways that open up new
onto-epistemologies, better attending to the situatedness of reasoning. Knowledge states in QP are
considered indeterminate in that there is a superpositioning of different possible outcomes (decisions,
actions) associated or even entailed (virtually) in these states. Because such states are in fact dynamic
mixtures of potentiality, they are not consistent with any one action or decision in the conventional sense
(Pothos and Busemeyer 2013, p. 256). Classical probability represents knowledge as a discrete set of
propositions correlated to a discrete set of outcomes. Quantum probability operates in a slightlymessier way
and aims to capture the confusion inherent to knowledge, pointing to the underlying indeterminacy of
phenomena, and tapping into the specific logic of quantum entanglement.

In CP, we can always form a meaningful conjunction of two propositions A and B. If we are able to
determine the truth value of A and B independently, then we are able to determine the truth value of their
conjunction. In quantum probability, however, there can be cases where the truth of such a conjunction is
indeterminate. Our reasoning about complex events often involves incompatible insights that cannot be
cobbled together to create a well-formed probability claim. In such cases, it may be that knowing the truth
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value of A implies not knowing the truth value of B. We might characterize this logical relation as
A∩ (B ∪ ∼ B). Another way of presenting this is the statement: BIf A is true at time t1, then B is neither
true nor false at time t1.^ This logical formulation captures Heisenberg’s uncertainty principle where A and
B are position and momentum—the more we measure position, the less we can say about momentum. In
classical probability, incompatibility is defined in excusive terms. Two events are incompatible if they
contradict each other (A and ~ A). The quantum concept of incompatibility is defined somewhat different-
ly.3 Two events (A and B) are incompatible if there is a conditional entanglement between them that makes
it impossible to pose well-formed questions about their conjunction. In order to determine P(A∩ B) in such
cases, quantum probability introduces sequential relations between A and B, but must also then formalize
the interference of order effects. Because it attends to order effects, QP amplifies the richness of the event
and introduces sequential relations between knowledge claims, so that incompatible conjunctions can be
evaluated for truth value.

One of the major potential contributions of QP to decision theory pertains to this revised concept of
incompatibility. In QP, if two parameters are incompatible, it is impossible to define a single question using
their conjunction. In a given case study, there can be questions about an event that are perceived as
incompatible, that is, the questions concern different variables for which knowledge is not coherently
integrated. Determining what kinds of questions are incompatible is extremely tricky and is a crucial
lynchpin in any theory of quantummind. This concept of incompatibility is thus fundamental in the making
of quantum probability models, and disagreements about what constitutes incompatible parameters will
lead to very different models (Hampton 2013).

Both CP and QP freeze the event in order to grapple with its possible outcomes, and in this, they both fail
to really capture the dynamism of the event (Behme 2013). But, importantly, they impose very different
models on that event. CP must freeze the event and treat outcomes as mutually distinct and meaningful
within a single flat outcome space. All outcomes are compared within a space of complete knowledge in
which being situated in one belief does not alter or curtail one’s ability to determine the truth of another
belief (dependent events or beliefs are extracted one from the other using the rule for conditional
probability). This approach fails to reckon with the fundamental ambivalence of all thought, and the
inseparability of beliefs. In other words, CP does not offer a mathematics of chance that attends holistically
to the onto-indeterminacies that are immanent within all events.

In the case of the Linda example discussed in section one, CP sees only a fallacy when there is
surely some Bgood reason^ in choosing the second option (being a bank teller and a feminist) as the
higher probability. We may simultaneously hold beliefs that cannot be disentangled. 1980s beliefs about
bank tellers and feminists might be of this kind. CP describes Linda’s condition prior to decision as a
Bmixed state,^ referencing our lack of knowledge of her actual state. In other words, CP assumes that
Linda is definitely a feminist or not a feminist, and we simply do not know, and must assign
probabilities to the likelihood of one over the other. QP, on the other hand, describes Linda’s state
prior to decision as superposition in which she is both, and yet neither, feminist and not-feminist: she is
in an indefinite state with regard to any such disposition, simultaneously and unconsciously entertaining
a differentiated position, and uncommitted to either in some pre-individual way, perhaps in a kind of
trans-feminist state.

Before exploring the actual models, we want to emphasize the onto-epistemology entailed in the QP
approach. Decision is an inventive act in QP. Responses to questions like BIs she a feminist^ or BIs she a
bank teller?^ do not entail pre-given masked conditions yet to be observed, but are rather formulated or
constructed in the act of decision. Disambiguating a superposition state is an inventive process rather than
an act of evelation of previously hidden states. The virtual space of superposition does not consist of a set of
choices separated out (and then mixed up like a bag of colour marbles), but is rather a space of holistic
entanglement. The superposition state is not the same thing as the set of all possible outcomes (each with

3 Notably, Niels Bohr borrowed the notion of incompatibility from William James (Pothos and Busemeyer 2013).
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their own probabilistic weight); superposition describes the confused state of potentiality where there are no
determinate probabilities assigned to individual outcomes. In the description below, we focus on the key
issue of non-commutative actions/decisions, where order matters.

The Geometric Model

In 1900, during his famous lecture outlining twenty-three unsolved mathematical problems, David Hilbert
called for a mathematical treatment of the axioms of mechanics and probability. This challenge became all
the more daunting in the 1920s when quantummechanics emerged and demanded new ways of formalizing
causality and relationality. Attempts to formulate a set of mathematical axioms that might describe (and
predict) quantum behaviour were proposed. Max Born, Pascual Jordan, along with Heisenberg, elaborated a
matrix mechanics while Schrödinger outlined a wave mechanics. In 1926, the matrix mechanics and the
wave mechanics formulations were shown to be mathematically equivalent.4 John von Neumann, who was
for a time Hilbert’s assistant, developed what became the accepted mathematical formalism for quantum
mechanics during the years 1926–1932. Known as BHilbert space^, this approach, which was initially
developed in consort with Hilbert, focused on the amplitudes for the density of relative probabilities.5

Hilbert spaces are vector spaces with particular properties that allow for accurate modeling of the strange
behaviour of sub-atomic life.

Quantum probability is based on the mathematics of Hilbert spaces, and in this section, we attempt to
provide an overall sense of how this model works. Using vector geometry, we begin by imagining a multi-
dimensional Hilbert space of superimposed concepts, events, and situations, which all co-exist despite their
incompatibility. The vector space represents all possible outcomes for questions that could be asked about
the system. The vector space is a richly textured space whose geometry models the nature of quantum
relationality. This space is decomposable into various basis vectors that are themselves incompatible—we
position these basis vectors orthonormal to each other, and together they engender this complex space of
superpositioning. We then draw one particular Bknowledge state vector^ that represents our current
knowledge about some aspect of the situation. Each knowledge state vector is a kind of de/coherence. In
the context of quantum theory, this knowledge state vector is given by an equation, a wave functionψ, that
is a superposition of two eigenstates, which are solutions of the function. The knowledge state vector can be
expressed in terms of scalar multiples of the basis vectors (ψ = aX+ bY), where X and Y are the basis
vectors, and a and b are called the respective amplitudes; the sum of the squares of a and b (usually complex
numbers) is equal to 1. The question of where to draw the vector, with what angle, is discussed below. To
determine the probability that this state vector participates in the incompatible basis vectors, we project it
onto them, and then calculate its magnitude.

In the context of cognitive modeling, Pothos and Busemeyer (2013) work through the famous Linda
example, which we stay with, despite its awkwardness, for the sake of continuity. Let us begin first with the
question of whether Linda is a feminist. In this system, there are two eigenstates (feminist/non-feminist),
which correspond to two base vectors (see Fig. 1a). Linear combinations of these two base vectors produce
the knowledge state vectorψ, whose length is 1, and which can form any angle with respect to the two base
vectors (see Fig. 1). In order to set up our geometrical model, we must first posit a wave function that
contains the initial knowledge we have of the situation, which in turn enables us to determine the location of
the knowledge state vector. In this context, given the description of Linda, it seems initially more likely that

she is a feminist, so we decide to use the following wave function, ψ =
ffiffi
1
4

q
ψ~f +

ffiffi
3
4

q
ψf, which shows the

direction according to the coefficients ¼ and ¾. We have chosen the coefficients so that the original state

4 Though still today ambiguities remain over how to interpret the physical meaning of this mathematical equivalence (Barad 2007).
5 Von Neumann went on to seek alternatives to the Hilbert space model.
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vector is placed at a 30° angle toψf, since the height of the triangle is
ffiffi
1
4

q
and the base of the triangle is

ffiffi
3
4

q
:

Changing the initial knowledge about the system—called the Bpriors^—will change the wave function,
which will change the position of the knowledge state vector. If we did not know as much about Linda, our
Bpriors^ might lead us to think that she is not more likely to be a feminist, so we might end up with a wave

function such as this one:ψ =
ffiffi
1
2

q
ψ~f +

ffiffi
1
2

q
ψf which corresponds to the geometry in Fig. 1b. However, it is

crucial to recall that QP conceives her initial state prior to decision as a superposition in which she is both
and yet neither, occupying all possible outcomes at once as a kind of trans-feminist. The initial state vector is
meant to embody the entirety of these virtual potentialities, but represents a particular actualization (collapse
of the wave function).

When we ask the question, BIs Linda a feminist?^, the probability that she is a feminist will be calculated
by projecting the knowledge state vector onto the basis vectorψf. The probability of Linda being a feminist

will be the amplitude of the knowledge state vector along ψf, which in the case of Fig. 1a is, √34
2

� �
¼ 3

4.

In the original Linda problem, we are actually asking a conjunction question: Is Linda a feminist and a
bank teller? It is precisely in the case of conjunction that the model begins to be useful in better modeling
non-commutative human reasoning. In QP, conjunction problemsmust be asked sequentially, so we first ask
whether she is a feminist and then we ask whether she is a bank teller. Geometrically, this will involve
introducing another pair of base vectors for back teller and not bank teller. The choice about how to position
these relative to the feminist/~ feminist basis vectors depends again on the Bpriors^. In Fig. 2a, we have
shown a positioning that is based on the supposition that while being a bank teller is not the most likely of
professions for a 1980s feminist, it is not that unlikely either.

In attending to order, we project sequentially, first asking whether Linda is a feminist (projecting ontoψf)
and then asking whether she’s a bank teller (projecting ontoψbt). We can see that the sequential projections
(going from Fig. 2b to Fig. 2c) result in a greater amplitude compared to the direct projection onto ψbt

(shown in Fig. 2d).
The difference between Fig. 2c and Fig. 2d is significant. Whereas in CP, the probability of the

conjunction of two propositions should be smaller or equal to the probability of each of them, the geometry
in this model offers a different result, a result that aligns with most people’s responses to the Linda
experiment (see Kahneman et al. 1982). Further, if we had reversed the order and started with the probability
of Linda being a bank teller and then the probability of her being a feminist (projecting the state vector along
ψbt ontoψf), we see that the result differs. In other words, the geometric model captures the order effect and
kind of non-commutative logic that many people follow in reasoning about certain conjunctions, that is

a b

Fig. 1 aAn initial knowledge state vector for BIs Linda a feminist?^ bA different initial knowledge state vector for BIs Linda a
feminist^
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P(F∩ BT) ≠ P(BT∩ F) (compare Fig. 2e with Fig. 2d). This shows how the QP model might help us with
studying order effects more generally in decision theory. Although not well-captured in the geometric
model, it is important to note that order effects in quantum mechanics also entail a blurring of previous
decisions as new decisions are made.6

Discussion

We’ve stayed with the Linda example, to help linke with the other literature, but here we turn to applications
that interest us more. In thinking about using QP in decision theory, several non-trivial structural assumptions
must be made. As briefly mentioned, one must know how to place the initial knowledge state vector. When
considering two parameters like feminist and bank teller, or asking two questions, onemust also decide how the
two subspaces are oriented to each other. These decisions will affect the actual values that are computed. Also,
mentioned above is the issue of how to decide whether two questions or concepts are incompatible. Pothos and
Busemeyer (2013) suggest that, Ba heuristic guide of whether some questions should be considered compatible
is whether clarifying one is expected to interfere with the evaluation of the other^ (p. 259). But the fact is that
very different starting assumptions will lead to very different results (Tenton and Crupi 2013).

The Linda problem is a classic problem in the study of human reasoning and focuses on evaluating the
likelihood of an object possessing two characteristics or qualities. We are very conscious of how the Linda
problem strikes qualitative researchers as absurd, because it grossly simplifies the complex belief system
that might undergird a decision about someone’s disposition. Moreover, we suspect that the alternative
reasoning model explored in this article might be better suited to queries about entangled mathematical
concepts. Such reasoning is clearly relevant for a much broader set of situations—indeed any situation in
which we ask a student to discern whether an object is a member of two classes. For example, we might
consider a situation that is similar to the Linda problem, which would involve asking a student a question
such as BDo you think that an arbitrary number in the 100s chart can be both even and square?^ As with the
QP elaboration of the Linda problem, a student might consider it just as likely for a number to be even as
odd, in which case the situation will be as in Fig. 1b. Then the next two basis vectors (for square and ~
square) might be placed in such a way that makes the ~ square basis vector quite close to the original
knowledge state vector. This might represent the situation in which the student believes that there are not
many numbers that are also squares. Geometrically, we would obtain a situation similar to that in Fig. 2e,
which is shown in Fig. 3. The student’s belief that a given number is even and is square is thus greater than

6 This blurring might help shed light on the important role of forgetting in learning (de Castro 2013).

a b c d e

Fig. 2 a Setting up the two subspaces for the Linda problem with four basis vectors, where v is the initial state vector; b
projecting the knowledge state vector onto the feminist basis vector; c projecting the resulting vector onto the bank teller basis
vector; d projecting the knowledge state vector onto the bank teller basis vector; e projecting the resulting vector onto the
feminist state vector
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the student’s belief that the given number is square. This kind of example might even bemore salient since it
deals with concepts rather than dispositions (Aerts et al. 2013).

In QP terms, the student’s beliefs are commingled, and the act of deciding (in response to the question) is
the act of measurement. The student’s beliefs about the questions of evenness and squareness of a given
number are incompatible if we assert that clarifying one question (yes, it is even) interferes with the
evaluation of the other. Evenness and squareness are entangled concepts that are at this time—for the
student—incompatible in that they cannot accurately disentangle one from the other. As they think they
know or understand one (evenness) they lose sight of the other (squareness).

These kinds of formalist models are of course wholly inadequate in capturing the truly complex process of
discernment (Behme 2013). Following a more inclusive materialism, such models might be more conducive
to the study of entangled concepts whose rich indeterminismmight make them confused and related (see Aerts
et al. 2013 for this approach). Perhaps these kinds of models can show how children are engaged with the
inherent indeterminacy of concepts, as put forward in recent work in mathematics education (de Freitas and
Sinclair 2017). Such an approach might better address the intra-active nature of the phenomenon—of the
particle and the device, or the student and the question, of the concept with the other concept. Inclusive
materialism (de Freitas and Sinclair 2014) examines the way that student beliefs about number are not a
property of the student, but belong to the phenomenon. The question does not disclose pre-existing thoughts or
beliefs, but rather creates a pedagogical condition for entangled concepts to be individuated: Bit is the specific
material configuration that gives definition to the notion of the property in question, enacts a cut between,^ in
our case, the two concepts (Barad 2007, p. 264). The challenge of taking up QP in education research will be
to pursue the rich implications of this onto-epistemological quantum turn.

Conclusion

Paradoxical findings in cognitive psychology, such as order and anchoring effects in human judgments,
suggest that classical probability theory might be too limited to fully explain various aspects of human
cognition (Trueblood et al. 2011, p. 1519). Increasingly, researchers are exploring quantum probability
theory to account for the preponderance of human judgments that do not follow classical probability,

Fig. 3 Geometric configuration
for the question: Do you think that
an arbitrary number in the 100s
chart will be even and
square? The result is bigger (see
the blue projection) than the
answer to the question of whether
an arbitrary number in the 100s
chart is square (orange projection)
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including the sure-thing axiom of decision-making (Pothos & Busemeyer 2009), and the conjunctive and
disjunctive fallacies (Franco 2009; Busemeyer et al. 2011). If ambiguity, ambivalence, and fuzzy notions of
truth are more accurate ways of describing our thinking, then perhaps the logic of quantum relationality
offers a more suitable approach.

We suspect that quantum probability might help reevaluate developmental evidence regarding children
and learning. For instance, conventional interpretations of Piagetian tasks, when children incorrectly
respond to the question Bwhich container has more water in it?^, describe the children as distracted by
physical and sensory parameters, and unable to abstract the formal concept of conservation (Inhelder and
Piaget 1958). We wonder if quantum probability models might shed a different light on such experiments.
Perhaps these children are reasoning through uncertainty in ways that are at odds with classical logic and
abstraction. Indeed, it may be that they are mobilizing very different onto-epistemologies in which
uncertainty is directly linked to the inherent indeterminacy of concepts such as shape and number.

In practice, inferences entail complex entanglements between possible outcomes, and any discovery of
new evidence interferes in the process, while embodied mental states are often a superposition of
incompatible potential outcomes rather than a rational choice of one outcome over another. Classical
probability fails to adequately account for this complexity, and considers all deviations from its logic as
fallacious. Quantum probability, on the other hand, is designed to formalize this kind of complexity and is
derived from the behaviour of sub-atomic particles. Classical probability considers uncertainty an epistemic
limitation, and accordingly, it measures degrees of certainty. Quantum probability, on the other hand, treats
uncertainty as an ontological feature of the state of affairs. In this case, measures of uncertainty are realist
measures of an environment in which outcomes are literally mixed together in varying intensity. This
follows the Bohr insights in quantum physics, in which the fact that matter is both particle and wave is an
inherent indeterminism, and not simply a limitation of our measurement or our human understanding.

Such foundational indeterminism means that an entangled system defies prediction when relying on the
usual probability distribution of possible outcomes. The law of total probability (which is fundamental to
Bayesian modeling) is violated. Order effects, conjunction biases, and sure-thing inclinations suggest that an
entirely different set of probability axioms could be developed and may be needed to account for reasoning
with and about uncertainty. The logic that seems to describe our habits of reasoning is indeed physically
manifest in quantum mechanics, and motivates the turn to a quantum probability, to rethink cognition. This is
not to cast classical probability out the window, since it is clearly a fruitful and important way of reasoning
with uncertainty (Shanteau andWeiss 2013). Quantum probability actually subsumes classical probability (as
a particular case), while also addressing non-classical behaviour. Quantum decision theory builds on this
alternative approach to probability, and applies it to human judgment. We hope this brief introduction to this
topic will trigger more research on how the quantum mind is at work in teaching and learning.
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