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Abstract
Computation of long-wave run-up has been of high interest in the fields of ocean sci-
ences and geophysics—particularly for tsunami and river floodmodeling. An accurate
calculation of run-up and inundation requires the numerical model to account for a
sequence of critical processes—each of themposing a different challenge to the numer-
ical solution. This study presents the strategic development of a numerical solution
technique for shallow water equations with a focus on accuracy and efficiency for
long-wave run-up. The present model is based on an explicit second-order finite-
volume scheme over a staggered grid that efficiently achieves fundamental properties.
The scheme is well-balanced and preserves shock fronts without the need for com-
putationally expensive solvers. The streamlined code serves as a foundation for the
implementation of nested grids. Computations of commonly used long-wave bench-
mark tests showcase that accurate predictions of local extreme run-up can often be
achieved with highly refined yet spatially focused nested grids. Strategic grid nesting
can lead to stable and accurate solutions of run-up at locations of interest and reduce
the computational load to a fraction of what is usually necessary for a comparable
solution over a single grid.

Keywords Shallow water equations · Explicit staggered grid · Grid nesting ·
Run-up · Long-waves · Numerical methods

1 Introduction

The estimation of run-up from long waves is crucial for the assessment and prediction
of hazardous flooding scenarios associated with tsunamis and storm surges. As wave
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run-up is the final stage a water wave undergoes when it reaches the shore, it depends
on multiple processes such as wave transformation, breaking, and interaction with
dry land. Consequently, a substantial and continuous effort has been made to better
understand and compute the run-up processes of long waves [1]. This includes studies
with respect to the derivation of analytical solutions for simplified geometries (e.g., [2–
5]), laboratory experiments (e.g., [6–8]), and development of new numerical methods
(e.g., [9, 10]). The latter provides approximate yet valid run-up solutions in more
general settings suitable for the reconstruction of past events, forecasting, and practical
engineering applications.

Numerical models for long waves, such as tides, storm surges, and tsunamis, have
traditionally been based on shallow-water equations (SWE). Despite their simplistic
hydrostatic assumptions, the SWE provide a valid basis for many long-wave prob-
lems and are often preferred over more complete equations thanks to their hyperbolic
nature in which shocks can form as part of the solution. These depth-averaged equa-
tions have proven to give a reasonable balance between the accuracy and numerical
cost [11] and serve by far as the most commonly used baseline for run-up calculations
(e.g., [12–14]). Various numerical techniques have been proposed for the discretization
of the SWE, ranging from conventional mesh-based methods such as finite difference
(FD), finite volume (FV), or finite element (FE) to unconventional mesh-free meth-
ods such as smooth particle hydrodynamics (SPH) [15]. The numerical solutions of
SWE have been subject to many trends. Earlier solutions were based on traditional
FD schemes solved on a staggered grid [16]. This approach has been successfully
employed in many first-generation tsunami models (e.g., TUNAMI [17], COMCOT
[18]). Several wetting–drying techniques have been proposed to achieve a reasonable
representation of the run-up heights. Shuto and Goto [19] used a staggered scheme
with a Lagrangian description for the moving boundaries. Another approach has been
based on the Neumann-type technique, which has been used to extrapolate the velocity
at thewet-dry fronts [20], while Liu et al. [21]modeled the run-up based onwater-level
changes through flooding and drying of the cells.

FDmethods offer a simplified solution for hyperbolic equations. However, they are
known to exhibit deficiencies when dealing with flow discontinuities [22, 23], which
particularly require local conservation of both mass and momentum. These conserva-
tion properties are necessary for the transport of breaking waves toward the shore and,
hence, are important for the accuracy of the run-up computation. FV methods, on the
other hand, solve the integral form of the SWE and directly benefit from conserva-
tion and shock-capturing capabilities. For this reason, FV methods such as Godunov
[24], and Roe [25] solvers, which were previously used in gas dynamics, have become
increasingly popular for the solution of long-wave problems. A new generation of
tsunami and flooding models has been developed [26–29] based on a finite-volume
interpretation of the equations, where the in-going and out-going fluxes over a con-
trol volume are computed with approximate Riemann solvers (e.g., [30–32]). These
solvers are designed to preserve the hyperbolicity of the governing equations to allow
for the formation of discontinuities in the numerical system. However, hyperbolicity
can be a source of problems for the solution of the SWE. One drawback of this prop-
erty is the well-balance between flux gradient, and source terms [33]. This means that
models based on the FV approach often require computationally expensive techniques
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to ensure the scheme is well-balanced—especially in the presence of dry cells [22,
34–38]. With respect to run-up and as a way to deal with the numerical problems
of the moving shoreline, many FV schemes employ an artificial bed-wetting algo-
rithm. These work through the definition of a minimum value of the water depth in
the dry cells adjacent to the wet cells for computation of the numerical flux [37, 39].
Another difficulty for these schemes lies in the conservation of the non-negativity
of the water depth—especially in the case of run-down [40]. Nevertheless, several
operational models such as FUNWAVE ([41], COULWAVE [42], and BOSZ ([43])
successfully utilize these schemes.

Another approach for solving the SWE is linked to the use of conservative stag-
gered schemes. These methods benefit from the efficiency and robustness of the FD
approximations while achieving conservative and shock-capturing properties. Such
schemes have been successfully applied to flows at high Froude numbers, including
hydraulic jumps and inundation of dry areas (e.g., [44–48]). These schemes are based
on specific FD approximations, which satisfy the Rankine–Hugoniot jump condition
at a discrete level [33], and achieve valid solutions for rapidly varying flows. The
concept from [45] has been widely used in many operational wave and run-up models
(e.g., SWASH [49], NEOWAVE [50] and Xbeach [51]). This scheme guarantees the
positivity of the water depth under the standard Courant–Friedrichs–Lewy (CFL) con-
dition and, therefore, is very efficient for the computation of large-scale inundation
problems.

The design of the numerical solutions of long-wave run-up requires taking the
multi-scale nature of the problem into account, i.e., large-scale long-wave propaga-
tion in combination with the small-scale run-up and inundation processes. High spatial
resolution is necessary for a detailed representation of the run-up process. However,
computing a high-resolution grid over the entire domain is often unnecessarily expen-
sive and can hinder the applicability of the model to real problems. With the objective
of achieving efficient long-wave run-up computations, it is, therefore, desirable to
utilize different grid sizes—each appropriate for the particular problems in the propa-
gation and the run-up stages. Different approaches have been used to obtain local mesh
refinement. For example, traditional nested grid methods have been implemented in
tsunami models [17, 18, 52]. These techniques are usually built into structured grids
where the refinement arises from the insertion of a sub-grid with higher resolution.
The exchange of information between the grids is achieved either with one-way or
two-way interactions. On the other hand, for unstructured grids, an adaptive mesh
refinement technique has been successfully implemented in a number of long-wave
models (e.g., [26, 53, 54]). The adaptive mesh refinement generates locally refined
cells adapted to the flow condition without the need to use fixed sub-grid [55]. The
refined region is, therefore, able to move with the area of interest, and unnecessary
refinement is avoided. The disadvantage of these methods lies mainly in the complex-
ity of the grid generation techniques, which require intensive data storage. In addition,
the time step constraint is bound to the smallest grid cell that can hinder the efficiency
of the implementation for explicit schemes [56].

This paper presents the rigorous development of a stable and accurate numeri-
cal framework for the computation of long-wave run-up. We address the details of
the numerical scheme and outline the strategy for grid nesting to achieve a fast and
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low-cost numerical tool for run-up computations. The model is based on a conser-
vative staggered scheme in which the shock-capturing capabilities are achieved by
satisfying the Rankine–Hugoniot at a discrete level. The scheme avoids the split-
ting of the free surface gradient into a pressure flux and topography term, resulting
in direct non-negativity preserving and well-balanced computations. The verification
process checks off the fundamental properties necessary for the computation of run-up:
shock-capturing capabilities, moving boundaries with bottom friction, and exchange
of information across nested grids. Two standard tsunami benchmark datasets are
then employed to demonstrate the sensitivity of long-wave run-up to the overall grid
resolution as well as to the extent of the nested grid and the refinement factor.

2 Methodology

2.1 Governing Equations

The present study considers the two-dimensional, depth-averaged Shallow Water
equations (SWE). These equations provide a powerful baseline for long-wave mod-
eling thanks to their wave-like hyperbolic structure. Moreover, the SWE serve as the
backbone for many numerical models that address nearshore wave propagation and
inundation. This is the case for dispersiveBoussinesq-type and non-hydrostaticmodels
in which the governing equations contain the SWE as a subset.

The SWE are derived from the Navier–stokes equations under the following
assumptions: (a) the pressure is hydrostatic, and (b) the vertical distribution of the
horizontal velocity is uniform (no variation). Under these assumptions, the equations
take the following differential form in Cartesian coordinates:

∂h

∂t
+ ∂hu

∂x
+ ∂hv

∂ y
= 0 (1)

∂hu

∂t
+ ∂hu2

∂x
+ ∂huv

∂ y
+ gh

∂η

∂x
= −gn2

u
√
u2 + v2

h1/3
(2)

∂hv

∂t
+ ∂huv

∂x
+ ∂hv2

∂ y
+ gh

∂η

∂ y
= −gn2

v
√
u2 + v2

h1/3
(3)

We define t as the time variable, x and y are the space variables, h is the water depth,
u and v are the depth-averaged velocities in the x- and y-directions, respectively. η

refers to the free surface elevation: η (x, y, t) = h (x, y, t) − d (x, y), where d is the
positive bottom topography (Fig. 1). The constant g is the gravitational acceleration
and n is the Manning roughness coefficient [s m−1/3].

We write the SWE, Eqs. (1)–(3) in a conservative form to ensure the conservation
of mass and momentum across discontinuities. The conserved variables, in this case,
are the total water depth h and its product with the velocity components: hu and hv.
In this form of the equations, we avoid the splitting of the free surface gradient into
an artificial flux gradient and a source term that includes the effect of bed slope. The
free surface gradient is, therefore, computed independently of the numerical flux, and
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Fig. 1 Definition sketch for the free surface flow problem with key variables

no additional treatments are required to ensure that the scheme is well-balanced. The
preservation of shocks and discontinuities will consequently depend on the numerical
approximations of the scheme, which have to satisfy the Rankine–Hugoniot jump
condition at the discrete level [33].

We introduce the auxiliary variables p and q, which denote the mass fluxes:

p = hu q = hv (4)

We rewrite the SWE in the following form:

∂h

∂t
+ ∂ p

∂x
+ ∂q

∂ y
= 0 (5)

∂hu

∂t
+ ∂ pu

∂x
+ ∂qu

∂ y
+ gh

∂η

∂x
= −gn2

u
√
u2 + v2

h1/3
(6)

∂hv

∂t
+ ∂ pv

∂x
+ ∂qv

∂ y
+ gh

∂η

∂ y
= −gn2

v
√
u2 + v2

h1/3
(7)

It is worth mentioning that in the momentum equations Eqs. (6) and (7), the vari-
ables hu and hv in the local acceleration and the variables p and q in the convective
acceleration play different roles. The former is a storage quantity, while the latter is
a transport quantity. Consequently, these terms are approximated differently, and in
order to avoid confusion, we avoid using the same symbols.

2.2 Conservative Staggered Scheme

As detailed in the introduction, a variety of numerical schemes have previously been
developed for the solution of the SWE. The choice of the numerical scheme depends
mainly on the problem being addressed, which defines the requirements for the scheme
properties. For the computation of long-wave run-up, a conservative shock-capturing
scheme is crucial for the preservation of momentum and propagation of shocks at the
correct speed and height. Other important properties are the well-balanced approxi-
mations of the topography variations, along with the non-negativity of the water depth
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Fig. 2 Schematic of the 2D staggered grid

to ensure mass conservation across wet/dry transitions without parasitic waves. This
adds to the stability and robustness of the numerical model—particularly over irreg-
ular bathymetry. Consequently, a scheme that provides these features is suitable for
computing wave-breaking processes and, subsequently, wave run-up estimations.

In this study, the objective is to develop a lightweight yet accurate and stable solution
structure that keeps the computational expenses at a low level. For these reasons, we
utilize a conservative scheme on a staggered grid where the numerical fluxes are
computed with simple FD approximations instead of Riemann solvers. The SWE
variables, in this case, are approximated on a staggered C-grid: the total water depth
h and the bed topography d are defined at the cell center, and the depth-averaged
velocities (u, v) are stored at the cell interfaces (see Fig. 2).

For the discretization, we consider a 2D rectangular computational domain with
a uniform grid spacing of �x and �y in the x- and y-directions, respectively. The
variables stored at the cell center are expressed as xi, j , where i and j are the spatial
indices in the x- and y-directions. The variables stored at the cell interface are denoted
by xi± 1

2 , j or xi, j± 1
2
in the x- and y-directions, respectively. The time stepping is based

on discrete, non-uniform time intervals tn = n�t , where n is the time index and �t
is the adaptive time step. The value of each variable a at the time level tn is denoted
with an . The water depth h is evaluated at each time step level t = n�t , whereas,
the depth-averaged velocities u and v are evaluated halfway between the present and
the following time step t = (

n + 1
2

)
�t . This leads to the staggering of spatial and

temporal information and facilitates consistent second-order accuracy in space and
time.

The present scheme first requires the solution of the continuity equation, which
is subsequently used in the momentum equation. The discretization of the continuity
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equation, Eq. (5), is expressed as

hn+1
i, j − hni, j

�t
+

pn
i+ 1

2 , j
− pn

i− 1
2 , j

�x
+

qn
i, j+ 1

2
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i, j− 1
2

�y
= 0 (8)

where
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i+ 1

2 , j
= ĥn
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2

i+ 1
2 , j
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i, j+ 1

2
= ĥn

i, j+ 1
2
v
n+ 1

2

i, j+ 1
2

(9)

ĥn
i± 1

2 , j
and ĥn

i, j± 1
2
are the water depths at the cell interfaces computed with an

upwind approximation:

ĥn
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=

⎧
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2

i+ 1
2 , j

≥ 0
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2
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2
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2
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(10)

The next step is the solution of the momentum equation, Eq. (6). First, we consider
the momentum equation without the friction term; the approximation of this term will
be detailed later. We employ the FD approximations recommended in Zijlema [33] to
achieve conservation of the momentum flux across discontinuities, as
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i, j
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(11)

Regarding the free surface gradient term, the use of the updated variable h̄n+1
i+ 1

2 , j
is

necessary for the scheme to guarantee the entropy inequality as demonstrated inDoyen
and Gunawan [47]. Further, it is necessary to approximate the convective acceleration
with an upwind scheme, where the mass fluxes p and q are the criteria for upwinding
and the velocities u and v are the upwinded quantities:

û
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2
i, j =

⎧
⎪⎨

⎪⎩

u
n+ 1

2

i− 1
2 , j

if p̄ni, j ≥ 0

u
n+ 1

2

i+ 1
2 , j

if p̄ni, j < 0
û
n+ 1

2

i+ 1
2 , j+ 1

2
=

⎧
⎪⎨

⎪⎩

u
n+ 1

2

i+ 1
2 , j
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i+ 1

2 , j+ 1
2

≥ 0

u
n+ 1

2

i+ 1
2 , j+1

if q̄n
i+ 1

2 , j+ 1
2

< 0
(12)

It is important to note, that a reversed approachwhere the upwinded quantities are p
and q, leads to errors in the computation of themomentumfluxes across discontinuities
as demonstrated in Zijlema [33].
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Since themass fluxes p and q are continuous quantities, an averaged approximation
of these quantities can be applied in the computation of the convective acceleration
terms:

p̄ni, j = 1

2

(
pn
i+ 1

2 , j
+ pn

i− 1
2 , j

)
q̄n
i+ 1

2 , j+ 1
2

= 1

2

(
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2
+ qn

i+1, j+ 1
2

)
(13)

The flow depth, originally defined at the cell centroid, is approximated at the cell
interface with arithmetic averaging to be used in the computation of the local acceler-
ation:

h̄n+1
i+ 1

2 , j
= 1

2

(
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)
(14)

Finally, themomentum equation, Eq. (7), in the y-direction is solved in an analogous
way as
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and

q̄ni, j = 1
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)
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The flow depth in this case is approximated as

h̄n+1
i, j+ 1

2
= 1

2

(
hn+1
i, j + hn+1

i, j+1

)
(18)
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2.2.1 Second-Order Numerical Accuracy

Staggering of the variables both in space and time and utilization of the Leapfrog
scheme lead to second-order accuracy for both the continuity and the momentum
equations, except for the advection terms, [45, 49]. The flux terms are responsible
for transporting the conserved quantities, and consequently, the construction of the
advection terms with upwind differencing is necessary for the robustness and stability
of the computed solution. However, first-order upwind methods are diffusive, and it
is, therefore, useful to target second-order accuracy for all terms in the equations. One
way to counter unnecessary numerical dissipation is based on extending the upwind
scheme to the second order in combination with a slope limiter.

The approximations in Eqs. (10), (12), (16), and (17) can be improved by including
two neighboring data points instead of only one, as is the case in the first-order upwind
approach. The second-order upwind discretization is shown for Eq. (10) and applied
to Eqs. (12), (16), and (17) in the same way:

ĥn
i+ 1

2 , j
=

⎧
⎪⎪⎨

⎪⎪⎩

hni, j + 1
2ψ

(
r+
i+ 1

2 , j

)(
hni, j − hni−1, j

)
, if un

i+ 1
2 , j

≥ 0

hni+1, j + 1
2ψ

(
r−
i+ 1

2 , j

)(
hni+1, j − hni+2, j

)
, if un

i+ 1
2 , j

< 0
(19)

r+
i+ 1

2 , j
and r−

i+ 1
2 , j

are, respectively, the left and right gradients of the flow depth:

r+
i+ 1

2 , j
= hni+1, j − hni, j

hni, j − hni−1, j
, r−

i+ 1
2 , j

= hni+1, j − hni, j
hni+2, j − hni+1, j

(20)

ψ(r) is the slope limiter function, which locally reduces the solution from second
to first order. The slope limiter is necessary to ensure the stability of the second-order
upwind scheme at locations with opposite slopes, zero gradients, or sharp transitions.
Here, a Generalized MinMod slope limiter is used:

φ (r , θ) = max

(
0,min

(
θr ,

1 + r

2
, θ

))
(21)

θ is a parameter that controls the diffusivity. The generalized MinMod limiter is
most dissipative for θ = 1 when it reduces to the traditional MinMod limiter, and it is
least diffusive for θ = 2.

A predictor–corrector method can be used to improve the temporal accuracy of
the advection terms to retain second-order accuracy in time. Here, we employ the
Total Variation Diminishing (TVD) Runge–Kutta method. This method enhances the
accuracy of the scheme in time while maintaining the strong stability property of
the first-order Euler integration [57]. It is worth mentioning that other time integration
methods canbe combinedwith the above-described spatial discretization. For example,
[49] used a MacCormack approach for the second-order integration in time.



526 F.-Z. Mihami et al.

Wesplit the SWEequations into a convective acceleration termF and a free surface
gradient term G , which simplifies the description of the multi-step method:

∂U

∂t
+ F (U ) + G (U ) = 0 (22)

where

U =
⎡

⎣
h
hu
hv

⎤

⎦ F (U ) =
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⎤

⎥⎥⎥
⎦

G (U ) =

⎡

⎢⎢
⎣

0

gh ∂η
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gh ∂η
∂ y

⎤

⎥⎥
⎦ (23)

The discretization described in Eqs. (8), (11), and (15) can be summarized in the
following expression:

Un+1
i j = Un

i j − �tF
(
Un
i j

)
− �tG

(
Un+1
i j

)
(24)

where

Un
i j =

⎡

⎢⎢⎢⎢
⎣

hni j

h̄n
i+ 1

2 , j
u
n+ 1

2

i+ 1
2 , j

h̄n
i, j+ 1

2
v
n+ 1

2

i, j+ 1
2

⎤

⎥⎥⎥⎥
⎦

(25)

At each time step, the variables (h, hu, hv) are solved using a two-stage time
integration with an intermediate solution obtained by the predictor step. In the first
step, we solve the equations with only the advection terms on the right-hand side:

U∗
i j = Un

i j − �tF
(
Un
i j

)
(26)

This leads to a predictor solution of first-order accuracy for the complete continuity
equation and incomplete momentum equations due to the lack of source terms. In the
second step, the surface gradient terms are added to the momentum equations, and the
predicted variables are corrected to full second-order accuracy in time by

Un+1
i j = �t

2

(
Un
i j +U∗

i j

)
− �t

2
F

(
U∗
i j

)
− �tG

(
Un+1
i j

)
(27)

It is important to emphasize that the predictor step of the time integration should
only involve the convective acceleration terms. The source terms attain second-order
accuracy by staggering the flow speed variables in time, and an application of Eq. (26)
to the source terms would lead to inaccurate results.

The last term on the right-hand side of Eq. (27) applies only to the momentum
equations and involves the corrected flow depth value hn+1. This completes the fully
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explicit time integration where no system of equations with data dependencies has to
be solved.

2.2.2 Flooding and Drying

Thewetting and drying process requires themodel’s performance for two fundamental
processes. The scheme has to be well-balanced and has to preserve the positivity of
the water depth across wet/dry boundaries.

The model is based on an explicit time integration. Although implicit methods lead
to unconditionally stable computations with no restriction on the time step, their solu-
tion is admittedly complex and requires the solution of systems of equations [58–60].
This solution structure can pose a bottleneck, especially in parallelized implementa-
tions due to data dependencies.

The explicit scheme is stable under the Courant–Friedrichs–Lewy (CFL) condition
given by

Cr = �t max
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Under this condition, the scheme preserves the non-negativity of the water depth
[33, 61]. This has the advantage that the run-up and inundation limits are inherent
solutions of the numerical scheme and are not subject to additional ad-hoc flooding
and drying treatments or require particular restructuring of the flux and source terms.

Since the flow depth can become arbitrarily small at the wet-dry transitions and,
therefore, can lead to excessively high-velocity values, it makes sense to limit the
minimum flow depth at the run-up front to a physically and numerically meaningful
level. For efficiency reasons, the velocity values can be set to zero when the local
water level falls below a threshold value hmin, and the calculation of the momentum
equations can be skipped:
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The value of hmin should be chosen as small as possible to accurately resolve the
wet-dry front [37], but large enough to avoid physically questionable values in the
local flow speed, which can cause excessively small time steps as shown in Eq. (28). It
should be noted that the present scheme is not particularly sensitive to this threshold,
and values between 10−8 and 10−4 m lead to virtually identical results. For the sake
of quality verification and validation, we are using hmin = 10−8 m in the subsequent
examples.
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2.2.3 Friction Term

The friction terms added to the momentum equations are discretized as
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and n, with units [s m−1/3], is the Manning roughness coefficient representing the

bottom property. Using the variables
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step in the friction terms improves the accuracy and the robustness of the solution
[49].

Some of the following numerical tests, presented in Sect. 3, are computed with the

Darcy–Weisbach formulation, which requires replacement of the term gn2

h1/3
by f

8 . f is
the dimensionless Darcy–Weisbach coefficient.

2.3 Nested Grid Method

The accuracy and applicability of a numerical model for free surface flows can sub-
stantially benefit from an efficient mesh refinement technique. Here, we concentrate
on the nested grid method, which provides a reasonable trade-off between computa-
tional complexity and the gain in accuracy of the numerical solution for long-wave
run-up. A simplified approach for mesh refinement involves the insertion of a high-
resolution Child grid into a surrounding Parent grid of coarser resolution. The grids
are herein fixed in space and predefined before the computation is executed. The SWE
are solved independently in each grid. Consequently, the overall solution structure of
the governing equations remains untouched as the exchange between the grids only
requires interpolation of the key variables.

The staggered C-grid has been widely used in combination with embedded grid
models due to its simplicity and conservative properties [56, 62, 63]. In this study,
we build the nested grid approach on some of the techniques used and validated by
several previously developed tsunami models [17, 18]. Several features are expected
from a functioning grid nesting technique:
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Fig. 3 Schematic illustrating the two-way nesting process on a Arakawa C grid

Data exchange The exchange of information between the grids occurs along the
boundary of the inner grid. The Parent grid provides the boundary conditions to the
Child grid in a one-way interaction. The flux variables (i.e., hu and hv) from the coarse
grid are linearly interpolated in time and space and then dynamically imposed in each
time step as boundary conditions to the solution of theChild grid (see Fig. 3). For a two-
way interaction, the high-resolution free surface elevation from the Child grid is used
to update the information in the Parent grid via an averaging operator. The update of
the free surface only occurs inside the feedback interface in the Parent grid (see Fig. 3),
rather than in the domain occupied by the Child grid. Several authors have proposed
separating the feedback interface from the dynamic interface where the boundary
values are interpolated [64–66]. This separation helps to avoid inconsistencies between
the solutions and stability problems that often arise from forcing the solution of the
Parent grid with the updated values of the inner grid [56].

Time synchronization The use of an explicit time integration means that the model
needs to verify the CFL stability condition, and the ratio �t/�x must be kept smaller
than a given value on the whole grid hierarchy. Consequently, a temporal refinement
must be applied in addition to the spatial mesh refinement. The integration algorithm
for a time refinement of 3 is depicted inFig. 4. Themodel is first integrated on theParent
grid �p with a time step equal to �tp1, the model is then advanced multiple times on
the Child grid�c to reach the same physical time as the outer grid. To synchronize the
two solutions, the last time step in the inner grid is imposed: �tc3 = �tp1 − ∑

�tci .

• 1: Model integration on the Parent grid �p

• 2: Model integration on the Child grid �c

• 3: Time and space interpolation of the boundary values
• 4: Update of the Parent Grid in feedback domain
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Fig. 4 Schematic illustrating the two-way nesting process

3 Verification

A systematical analysis of a numerical solution for long-wave run-up requires bench-
marking. Since the model was developed from scratch and involves a combination of
adapted numerical features, it is required to first verify its performance for idealized
flow problems, for which analytical solutions have been derived. These tests examine
the model’s ability to handle important flow processes, such as flow discontinuities
and wet/dry transitions. These features are particularly critical for the quality of the
computed run-up and can often pose numerical challenges. The implementation of the
nested grid approach is then verified with a 2D moving boundaries problem.

3.1 Shock-Capturing Capabilities

Shock-capturing schemes refer to numerical methods that can directly solve wave
propagation with large gradients and rapid changes in the free surface and veloc-
ity regimes. Such nonlinear phenomena are present in many wave problems (e.g.,
wave breaking, dambreak wave propagation, and propagation of wet/dry fronts). Con-
sequently, a lot of effort is made to compute shock waves as part of the complete
solution [37]. A stable numerical solution for shock waves targets the generation and
propagation of an oscillation-free discontinuity without excessive smearing across the
shock front.

In the following, we examine the solution of the present model in handling disconti-
nuities and assess the accuracy and quality of the results. Since many shock-capturing
flow models are built around Riemann solvers, we compare the solution from the pre-
sented scheme, referred to as “Present Scheme”, with the solution obtained by a 1D
HLLC Riemann solver (“HLLC Scheme”). The HLLC scheme used for comparison
was coded based on the techniques given by Toro [37]. For consistency with the pre-
sented scheme, the first-order HLLC scheme is extended to second-order accuracy
through a MUSCL reconstruction [67] combined with a generalized MinMod limiter
and a predictor–corrector Runge–Kutta time integration.

The dambreak problem is a widely used test to demonstrate the shock-capturing
capabilities of numerical schemes. We consider a one-dimensional dambreak over a
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Fig. 5 Dambreak over wet bed: water height profiles from the Present and HLLC schemes at t = 0.1 s for
a cell size �x of 1 cm

wet bed of uniform depth. The domain is 1m long and the initial condition is

h (x, 0) =
{
1m if x ≤ 0.5m

0.2m otherwise
u (x, 0) = 0m/s

The analytical solution for this test was derived by Stoker [68] and consists of a
shock and a rarefaction wave moving in opposite directions from the center of the
domain. The solutions of the dambreak test for 100 grid cells (�x = 1 cm) and at t =
0.1 sec are shown in Fig. 5. For both schemes, we use a constant Courant number of
CN = 0.7 and a diffusion parameter in the generalized MinMod limiter θ = 1.5.

Both numerical schemes correctly capture the rarefaction and shock waves despite
small discrepancies in comparison to the analytical solution. This small mismatch can
be reduced significantly with a reduction in grid size. In general, the Present scheme
achieves slightly sharper solutions around the flow transitions compared to the HLLC
scheme. Consequently, the Present scheme contains smaller L1-norm errors than the
HLLC scheme, as listed in Table 1, albeit the fact that both solutions converge towards
the exact solution with mesh refinement. The presented model is able to compute
the propagation of shocks with the correct wave speed and height, proving its pow-
erful shock-capturing capability without the need for the computationally expensive
sampling of the solution as it is necessary for the HLLC scheme.

3.2 Moving Boundaries

An essential feature of shallow-water models used for flood and inundation mapping
is the ability to compute wet-dry transitions and track moving boundaries. The biggest
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Table 1 Dambreak over a wet bed: L1-norm error

Number of cells h hu
Present HLLC Present HLLC

100 3.69 × 10−3 5.20 × 10−3 6.37 × 10−3 1.24 × 10−2

200 1.85 × 10−3 2.56 × 10−3 3.17 × 10−3 6.22 × 10−3

400 7.90 × 10−4 1.29 × 10−3 1.90 × 10−3 3.22 × 10−3

800 4.44 × 10−4 6.36 × 10−4 7.76 × 10−4 1.52 × 10−3

challenges are associated with the definition of the numerical fluxes and source terms
in the presence of dry cells. A clean and stable representation of the moving boundary
is essential for the correct description of run-up and inundation limits independent of
the previous stages of wave propagation and breaking.

We investigate the performance of the present model in describing fast sheet flows
induced by a dambreak over a dry bed with and without frictional resistance. This test
is also used to verify the implementation of the friction term.

The test case involves a 2000m long horizontal channel of uniform depth with �x
= 5m grid spacing and the following initial condition:

h (x, 0) =
{
6m if x ≤ 1000m

0m otherwise
u (x, 0) = 0m

The test is computed with a minimum water depth of hmin = 10−8 m and a Courant
number of 0.7. Two cases are taken into account:

1. Dambreak without friction: The numerical results are compared with the Ritter
solution. The solution involves a wet-dry front propagating downstream and a
rarefaction wave moving upstream into the reservoir.

2. Dambreak with friction: In this case, the Darcy–Weisbach friction law with a
coefficient f = 8g/402 is utilized in the friction source term of the momentum
equations. The reference solution is based on the Dressler/Whitham/Chanson con-
ceptual model [69–71], which is based on the assumption that near the wavefront,
frictional resistance controls the fluid motion. The exact shape of the wavefront can
be found in [71]. In contrast to the process at the downstream wave, the frictional
resistance in the rarefaction regime is neglected, and the solution at the front can
be described by a modified Ritter’s solution as presented in Delestre et al. [72].

In both cases, good agreement between the reference and the numerical solutions
is obtained (Fig. 6). In the case of bottom friction, the model accurately captures
the deceleration of the wavefront, which verifies its capability of correctly handling
bottom roughness. As before, the results can be improved through mesh refinement
but not through further reduction of the predefined minimum water depth hmin.
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Fig. 6 Dambreak on dry bed: water height profiles after t = 40 s for grid spacing�x = 10m. The wave front
around 1250m corresponds to the solution with a friction coefficient of f = 8g/402

3.3 Nested Grid Implementation

In this section, we examine the accuracy of the nested grid implementation. This
step is important to scrutinize the model performance with respect to the informa-
tion exchange across different grid resolutions, especially in the presence of wet/dry
transitions. For applications related to long-wave run-up, the nested grid approach is
expected to deal with moving boundaries and fast flows over varying topography in
two-dimensional settings. A few analytical solutions of the SWE exist for problems
in the 2D horizontal plane. The oscillation in a parabolic basin is one of them, as it
addresses a two-dimensional run-up problem, which helps examine the validity of the
numerical structure in the combined xy-directions.

The water oscillation is induced inside a [0, L] × [0, L] parabolic basin given by

z (r) = −h0

(
1 − r2

a2

)
where r =

√(
x − L

2

)2

+
(
y − L

2

)2

The value of h0 represents the still-water depth at the basin center, and a is the
radius of the wetted perimeter. The exact solution for this test was derived by Thacker
[4]. For a smooth bed with no friction, the analytical solution for the water depth is
described as

h (r , t) = h0

( √
1 − A2

1 − A cos (ωt)
− 1 − r2
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(
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(1 − A cos (ωt))2
− 1
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where ω = √
8gh0/a is the frequency of the oscillation, and the coefficient A =(

a2 − r20
)
/
(
a2 + r20

)
with r0 the radius of the initial shoreline. For the setup of the
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Fig. 7 Time series of water height at center point of parabolic basin (x = L/2, y = L/2). Grid spacing
�x = �y = 2 cm. The numerical solution is of low diffusion without requiring excessively fine mesh sizes

dimensions of the parabola and the initial condition of the free surface,we use a = 1m,
r0 = 0.8m, h0 = 0.1m and L = 4m.

The analytical solution is used to verify the symmetry and accuracy of the nested
grid implementation. Here, we place a nested domain off-center, including the moving
waterline, with a refinement factor of 4. The use of an off-center nested grid is critical
to verifying the grid exchange for both the normal and cross fluxes. The Parent grid is
computed with a quadratic cell size of 2 cm by 2 cm. The inner Child grid is computed
with �x = �y = 0.5 cm.

The water height evolution at the center of the basin is shown in Fig. 7 after 40 s
corresponding to over 17 full cycles in the Parent grid. The present solution convinces
through the maintenance of amplitude and phase over multiple oscillation cycles the
quality of the second-order numerical scheme. These results confirm not only the
low numerical diffusion but also the smooth transition across the wet/dry boundary
inherent to the model without the need for excessively small grid sizes.

Figure 8 depicts the free surface transect across the basin center line at several
stages, t = T , t = T + T /4, and t = T + T /2, where T = 2π/ω denotes the
oscillation period. The run-up is well described, and no numerical artifact arises from
the exchange between the Parent and Child grid. In addition, Fig. 9 gives a visual
impression of the three-dimensional problem and showcases that the definition of the
run-up outline benefits from mesh refinement.

4 Effect of Grid Nesting onWave Run-Up

Previous verification efforts have ensured that the present model correctly handles the
fundamental features that are essential for the accurate computation of long-wave run-
up. The following tests examine the sensitivity of the computed results to grid nesting
for efficient computation of local run-up problems. For this purpose, we utilize two
standard experimental benchmark tests that have been widely used in the tsunami
community and that highlight the complexity of the local long-wave run-up. The two
tests present common long-wave features such as the increase in local wave run-up
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Fig. 8 Oscillation in a parabolic basin: cross-section of water height after one full oscillation. Each circle
represents the solution from the numerical model at each grid cell across the transect. The solution from
the nested grid is indicated with blue circles

Fig. 9 Free surface elevation of oscillation in parabolic basin with grid nesting after 4.5 cycles (9.9 s). The
refined Child grid is denoted by the dashed line and shows a more detailed run-up limit than the coarse
Parent grid

from the collision of two or more waves as well as extreme run-up over highly detailed
terrain. We will present an analysis of the sensitivity of the computed run-up to the
general mesh size and further investigate the sensitivity of the maximum run-up extent
to the size of the nested grid and the refinement factor.
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4.1 SolitaryWave Run-Up Around a Conical Island

The transformation of long waves around islands has attracted a lot of attention in
the past—especially among tsunami researchers. A common observation is that long
waves can refract and diffract around an island from both sides and collide in the back.
In some cases, the maximum run-up occurs counter-intuitively at the island’s lee side
due to a superposition effect when the refracted/diffracted waves from both sides run
into each other and double up. The problem of the conical island is exemplary since
the high run-up and inundation at the lee side cannot be approximated with empirical
formulae or computationally cheap 1D calculations. Instead, the problems require a
full 2D solution that naturally exhibits a substantial computational effort.

Briggs et al. [7] conducted a large-scale laboratory experiment to investigate solitary
wave transformation around a conical island. The basin is 25 m by 30mwith a circular
island in the shape of a truncated cone constructed of concrete with a diameter of 7.2
m at the bottom and 2.2 m at the top. The island is 0.625 m high and has a side slope
of 1:4. A 27.4-m-long directional wavemaker consisting of 61 paddles generated the
input solitary waves for three laboratory tests. Wave absorbers at the three remaining
sidewalls reduced reflection in the basin. Further details about the laboratory model
setup, the location of thewavegauges, and the numerical setup canbe found inNTHMP
[73].

The present study focuses on experiments with a water depth h = 0.32 m and
solitary wave heights of A/h = 0.1. Consistent with NTHMP benchmark problem 6
[73], our numerical test uses the measured wave heights of A/h = 0.096 from the
laboratory experiment instead of the target wave heights as they better represent the
recorded data and thus the incident wave conditions to the conical island. A reflective

Fig. 10 Grid size sensitivity of
maximum run-up outlines for
the test with A/h = 0.096 of
Briggs et al. [7]. Black dots
denote experimental data, solid
lines represent results from the
present model
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boundary condition is imposed at the lateral sides. The wave absorbers from the lab-
oratory layout are not considered since their absorbing performance is unknown. The
model is set up with a reference grid of �x = �y = 5 cm. A Manning roughness
coefficient of n = 0.012 s/m1/3 accounts for the smooth concrete finish according to
Chaudhry [74]. The Courant number is set to Cr = 0.5. The model setup is comparable
to earlier work and will be used as a reference as it is expected to return solutions
of similar and comparable quality to previously published studies. The results from
the free surface elevation observed at five wave gauges are omitted here as they are
comparable to previously published results.

Sensitivity to grid resolution In view of sensitivity to the grid size, Fig. 10 shows the
run-up limits for the reference scenariowith�x = �y = 5 cm, aswell as the solutions
of the model with coarser grid sizes of �x = �y = 10 cm and �x = �y = 20 cm,
respectively. The referencemesh size of 5 cm returns the closest agreement overallwith
the run-up data—particularly at the lee side of the island. Nevertheless, a numerical
domain with four times fewer cells, i.e., uniform 10 cm grid spacing, still provides a
decent estimate of the run-up, albeit with less precision at the lee side. It is not really
surprising that a grid size of �x = �y = 20 cm is too coarse to represent the details
of the run-up outline, and virtually no run-up is recorded in the lee of the island.

Careful examination of the temporal evolution of the wave field at �x = �y =
5 cm resolution shows that the colliding waves in the back of the island locally and
momentarily augment the water level, but then pass through each other and continue
the refraction/diffraction process. The locally high run-up in the back of the island
results to a great extent from the two waves that shoal and spill up on either flank
of the leeward side. It often goes unnoticed that the steepened refracted waves then
meet head-on over the leeward topography, i.e., the initially dry beach, from where
a substantial portion of maximum run-up and inundation originates. For a relatively
steep slope, this wrapping process requires rather fine resolution to properly account
for the flooding process, and insufficient grid cells over the beach can lead to an
under-representation of the run-up.

Sensitivity to grid nesting It is understood that any reduction in the total cell count
will reduce the computational load. A nested grid approach caters to lowering the
computational effort without compromising too much on the quality of the results. A
question of practical interest is whether the overall wave transformation around the
island could potentially be computed over a coarse grid, from which information is
fed into a nested inner grid of higher resolution that is placed only over a local area of
interest. Figure 10 demonstrates that a grid resolution of 5 cm is an adequate choice
for the resolution of the wave run-up along the beach of the conical island and that
coarser mesh sizes, in particular the 20 cm resolution, are insufficient to resolve most
of the run-up.

The solitary input wave has a length of several meters. As shown in the previous
benchmark tests, e.g. Sect. 3.3, the present model computes long waves with minimal
numerical diffusion and hence is expected to handle the general processes of the soli-
tary wave transformation around the island even over a rather coarse mesh. Inspection
of the full free surface evolution has shown that even a grid of 20 cm mesh size can
account for the overall wave processes in the vicinity of the conical island and that it
only fails in computing the detailed run-up.
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Fig. 11 Maximum run-up
outlines for the test with
A/h = 0.096 of Briggs et al. [7].
Each model run uses a Parent
grid with �x = �y = 20 cm
resolution and one Child grid of
�x = �y = 5 cm. The three
individual nested grid set-ups
(a), (b), and (c) and their
corresponding maximum run-up
limits are color-coded and
denoted by the dashed rectangle
and the solid lines within

Figure 11 shows the results from three nested grid approaches—all with an inner
grid of 5 cm resolution placed into an outer grid of 20 cm resolution. The individual
inner domains are color-coded and of 2m by 4m, 1.2m by4m and 0.8m by1.2m.The
additional computational load arising from the inner grid is associatedwith 3200, 1920,
or 384 cells, respectively. It can be seen that the run-up outline in the nested grid (a)
denoted by the cyan line in Fig. 11 is nearly identical to the outline of the uniform 5 cm
reference grid. This implies that the overall wave processes are sufficiently resolved
by the coarse outer grid up to the boundary of the nested grid (a), which subsequently
takes care of the detailed wave transformation and run-up processes at the back side
of the conical island. The domain size of the nested grid is then reduced behind the
island, as illustrated by the red dashed rectangle. The corresponding run-up limit (red
line) remains nearly identical to the run-up outline from the largest nested grid setup.
The run-up at the lee side, therefore, depends only minimally on the higher resolution
in the area behind the island where the wave collision process occurs. The nested
grid extends to a very small area just around the hotspot of run-up, as denoted by
the green dashed rectangle. Surprisingly, the run-up along the center lee side remains
qualitatively very similar to the run-up computed by the larger nested grids.

The effect of the nested grid approaches can be seen in Fig. 12 in more detail.
Row 1 shows the free surface evolution over the 5 cm uniform reference grid. The
corresponding alternate solutions, denoted by the black dashed rectangles, illustrate
the nested grid solutions. As the wave is moving around the island, the nested grid (a)
(second row) picks up its energy and resolves the wrap of the run-up tongue in detail,
though with slightly less steepness at the leading edge compared to the reference
solution. The maximum run-up after 9.2 s in the nested grid is nearly identical to
the uniform reference solution. The third row shows the free surface elevation from
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the red rectangle and the run-up limit from Fig. 11. The high-resolution inner grid
extends only marginally over the bathymetry behind the island and mostly covers
the topography. The detailed solution of the colliding waves behind the island is
less critical for the maximum run-up than a high-resolution computation of the two
refracted run-up tongues that meet each other over the dry slope. The last row shows
that a representative run-up limit is achievable even by only using an extremely small
inner grid of high resolution at the location where the refracted waves collide over the
beach.

The long-wave refraction and collision processes do not necessarily require high
grid resolution given that a low-diffusive coarse solution captures the main energy
flux. Counter-intuitively, the locally high run-up of long waves, as illustrated in this
example, is often driven by wave processes in the immediate vicinity of the shoreline
and over the beach. Accurate run-up results can potentially be obtained with locally
very small nested grids as long as they cover the entire run-up zone over the beach.
This is particularly true for locations with steep beach slopes.

As for the results from Figs. 10, 11 and 12, the computed wave field is symmetric
to machine precision with respect to the horizontal center line at 15 m in the y-
direction. This supports the quality of the numerical results as any instability arising
from the interface at the boundary of the nested gridswould have eliminated the perfect
symmetry.

4.2 Long-Wave Run-Up at Monai Valley

The second benchmark is testing the sensitivity of the present model to the mesh
size and refinement of the solution with a nested grid for the computation of non-
linear wave processes over an irregular terrain that favors extreme run-up. The 1993
Hokkaido Nansei-Oki tsunami is a well-studied event thanks to the laboratory experi-
ments conducted by Matsuyama and Tanaka [75] at the Central Research Institute for
Electric Power Industry (CRIEPI) in Japan. The down-scaled laboratory test examined
the extreme run-up of over 30 m at Monai Valley, located between two headlands and
sheltered by the small Muen Island. The area around Monai Valley was reconstructed
with a plywood model at 1:400 scale based on bathymetric and topographic data as
shown in Fig. 13.

A wave gauge near the wavemaker recorded the initial low amplitude N-wave used
in the present numerical model as boundary input with the free surface elevation
interpolated from the data according to the model time step. As in the previous test,
we first examine the sensitivity of the numerical solution to the grid size over a single
domain with uniform resolution. Again, the Courant number is kept constant at Cr =
0.5. A Manning coefficient of n = 0.012 sm−1/3 accounts for the surface roughness
of the plywood model [74].

Sensitivity to grid resolutionFigure 14 shows the comparison between the computed
and recorded data at the wave gauges placed in the numerical and experimental setup
betweenMuen Island andMonai Valley. The computed results are of similar quality as
the solutions from previous studies. The wave regime at the locations of the gauges is
still reasonably well resolved with a rather coarse mesh. Even with a 10 cm grid size,



540 F.-Z. Mihami et al.

Fig. 12 Free surface elevation at lee side of conical island computed over the single reference grid of
�x = �y = 5 cm (first row) and with three separate grid nesting approaches each combining a coarse
outer grid of �x = �y = 20 cm mesh size with inner fine grids of �x = �y = 5 cm resolution (2nd,
3rd, 4th row). First column: refraction/diffraction of solitary wave around flank of conical island. Second
column: maximum run-up from superposition of refracted/diffracted waves. The extent of the nested grid
is outlined by the black dashed line in row 2 to 4

the general shape of the free surface time series is captured, and the overall energy of
the wave field behind Muen island is accounted for.

Figure 15A illustrates the sensitivity of the computed maximum run-up to different
uniform grid sizes of 1.25cm, 2.5cm, 5cm, and 10cm. The local run-up in Monai
Valley is more sensitive to the grid resolution than the nearshore wave field in front
of the beach. Since the terrain is steep and narrow, the computations with the present
model show that a rather fine grid of 1.25cm is necessary to obtain a proper outline
of the run-up envelope. NTHMP [73] confirms that most previous numerical studies



Efficient Numerical Computations of Long-Wave... 541

Fig. 13 Outline of the
bathymetry from the 1:400
scaled model used by
Matsuyama and Tanaka [75].
The black dashed and dotted
lines denotes the boundaries of
two individual inner nested grids
(a) and (b)

Fig. 14 Free surface time series
at the gauges shown in the left
panel from computations over
the entire domain with different
uniform mesh sizes

utilized a mesh size of � x = � y < 1.5 cm to obtain a consistent definition of the
wave run-up in the narrow and steep valley. The fine grid of 1.25cm in the second
row of Fig. 16 resolves the details of wave refraction and collision in front of the
steep cliff, whereas a coarser option of 10cm resolves neither the flow details nor the
small-scale flow features over the topography and consequently leads to a significant
underestimation of the run-up in the Monai Valley.

Sensitivity to grid nestingSimilar to the previous benchmark test, the question arises
whether it is possible to utilize a coarse mesh for the overall flow field in combination
with a fine nested grid for the detailed run-up in an area of interest like Monai Valley.
Knowing that the run-up over terrainwith irregular and steep slopes requires small grid
sizes, we utilize a 1.25cm nested grid (a) inside a Parent grid as outlined in Fig. 13.
The inner nested grid starts offshore of Muen island, similar to what Yamazaki et al.
[52] have used. The Parent grid is of 5.5m by 3.4m size. It contains only 1870 cells
with a 10cm resolution. The two nested grid options (a) and (b) have dimensions
of 2.3m by 1.8m and 1.3m by 2.3m and consequently add 26,496 or 14,976 grid
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Fig. 15 Maximum run-up limits around Monai Valley. Left A Uniform grid with different resolutions.
Center B Nested grid (a) with 1.25 cm resolution and different Parent grid resolutions of 2.5 cm, 5 cm, and
10 cm leading to refinement factors of RF = 2, RF = 4, and RF = 8. Right C Nested grid (a) and (b) with
1.25 cm resolution and Parent grid resolution 10 cm

cells, respectively, to the computation. Hence, the two nested grid options reduce the
total cell count by 76% and 86% in comparison to a single grid of uniform 1.25cm
resolution with 119,680 cells.

The sensitivity of the results with respect to the refinement factor is analyzed by
increasing the Parent grid resolution by factors of 2, 4, and 8 with respect to the
nested grid. Consequently, the individual run-up limits of Fig. 15B refer to the results
from a 1.25cm nested grid in combination with different Parent grids of 2.5cm, 5cm,
and 10cm. The refinement factor hardly influences the run-up limit with a nested
grid domain that covers most of the nearshore area (dashed line of the domain (a)
in Fig. 13). Again, a basic requirement for the utilization of a coarse Parent grid is
a low diffusivity of the numerical scheme. It is understood that the interpolation in
the nesting process between the individual grids can lead to small discrepancies in
comparison to a uniform grid with high resolution. This can be seen in Fig. 15. The
grid nesting strategy should, therefore, always be seen as method to primarily reduce
the computational load by still retaining an acceptable quality of the solution.

It is finally shown how the computed results are sensitive to the nested domain size.
This is analyzed through reduction of the area covered by the nested grid (see dotted
line (b) in Fig. 13). The resolutions of the Parent and Child grid are identical to the
setupwith nested grid (a). The two scenarios only differ in the domain size of the nested
grids. Figure 15C highlights that the run-up limit from the two scenarios varies only
at some locations. Though the flow details of the overtopping and refraction processes
around Muen island are resolved in detail with a fine grid as shown in rows two and
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Fig. 16 Free surface elevation in front of Monai Valley with single Parent grid of �x = �y = 10 cm (first
row) and �x = �y = 1.25 cm (second row) mesh size. Results from embedded nested Child grids a and
b of �x = �y = 1.25 cm in a Parent grid of �x = �y = 10 cm are shown in the second row and third
row. The extent of the respective Child grid is outlined by the black dashed lines. First column: drawdown
from leading depression of N-wave and approaching wave crest upstream of Muen island. Second column:
maximum run-up from superposition of refracted and reflected waves
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three of Fig. 16, they do not have a substantial influence on the run-up. It is sufficient
that the outer grid resolves the overall wave energy and the inner grid accounts for the
run-up process.

5 Conclusions and Perspectives

We have shown the performance of a newly developed model for long-wave run-up
with respect to standard analytical solutions and laboratory experiments. The model
was demonstrated to be shock-capturing, well-balanced, and water-depth positivity
preserving, which are crucial properties for the correct estimation of long-wave-driven
run-up. The model was proven to be stable and efficient in dealing with wet/dry
transitions without the need for computationally expensive treatment of the moving
boundary. The numerical scheme is based on a finite-volume staggered approxima-
tion with second-order accuracy in space and time. The accuracy in time arises from
a combination of the Runge–Kutta method for the convective acceleration and the
Leapfrog method for the surface gradient and friction terms. Similarly, the spatial
accuracy comes from a second-order upwinded advection along with a second-order
central difference scheme for the remaining terms.

Themodel performs consistently for shock-driven problems and compares to estab-
lished Riemann solver-based TVD methods. The wet-dry interface is stable and
well-defined without the need for additional treatment of the moving boundary. The
model contains a two-way grid nesting scheme that allows for local refinement of the
solution. The implementation has been verified and proven to be accurate and stable
for moving boundaries and was shown to be applicable to long-wave run-up problems.

The performance and sensitivity of long-wave run-up was then investigated in
dependence of the nested grid’s domain size and the level of its refinement. Two stan-
dard benchmark tests from the tsunami community were chosen for the investigation.
Though there are no universal rules for the size, position, and refinement factor of
nested grids, our results from the two benchmark tests reveal that computations of
high quality can be achieved with small nested grids placed strategically at a location
of interest such as in areas where locally high run-up occurs. The refinement factor
was found to have only small influence on the run-up limit, if the solution in the Parent
grid is representative of the wave envelope and the grid nesting method accounts for
the correct exchange of the total wave energy flux.

Further, it was demonstrated that it is possible to place a nested grid rather close to
the initial still-water level as long as the long-wave flow regime prevails across nested
grid’s offshore boundary. Long-wave run-up is often more subject to the resolution
of the local topography than it is influenced by the detailed wave processes over the
bathymetry. This is line with commonly used empirical run-up formulae for swell
waves where the maximum run-up envelope is controlled by the overall wave energy
and the slope.

The quality of the computed results encourages to expand the development of the
model with respect to frequency dispersion. This will allow for a further investigation
of how grid nesting can affect the run-up from swell waves. In the same context, the
model can be optimized through implementation of massive parallelization techniques
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commonly used to reduce the computation time associated with large flow problems.
It is evident that a low overall cell count reduces the model’s computation time and
that the insights gained from the present study can be used to efficiently decrease the
computational load for computations of long waves by retaining accuracy and quality
of the solutions.
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