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Abstract
In the applied mathematics literature solitary gravity–capillary water waves are mod-
elled by approximating the standard governing equations for water waves by a
Korteweg-de Vries equation (for strong surface tension) or a nonlinear Schrödinger
equation (for weak surface tension). These formal arguments have been justified by
sophisticated techniques such as spatial dynamics and centre-manifold reductionmeth-
ods on the one hand and variational methods on the other. This article presents a
complete, self-contained account of an alternative, simpler approach in which one
works directly with the Zakharov–Craig–Sulem formulation of the water-wave prob-
lem and uses only rudimentary fixed-point arguments and Fourier analysis.

Keywords Solitary waves · Dirichlet–Neumann operator · Korteweg-de Vries
equation · Nonlinear Schrödinger equation
1 Introduction

1.1 TheMain Results

The classical water-wave problem concerns the two-dimensional, irrotational flow of
a perfect fluid of unit density subject to the forces of gravity and surface tension. We

use dimensionless variables, choosing h as length scale, (h/g)
1
2 as time scale and

introducing the Bond number β = σ/gh2, where h is the depth of the water in its
undisturbed state, g is the acceleration due to gravity and σ > 0 is the coefficient
of surface tension. The fluid thus occupies the domain Dη = {(x, y) : x ∈ R,

y ∈ (0, 1 + η(x, t))}, where (x, y) are the usual Cartesian coordinates and η > −1
is a function of the spatial coordinate x and time t , and the mathematical problem is
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formulated in terms of an Eulerian velocity potential ϕ(x, y, t)which solves Laplace’s
equation

ϕxx + ϕyy = 0, 0 < y < 1 + η, (1.1)

and the boundary conditions

ϕy = 0, y = 0, (1.2)

ηt = ϕy − ηxϕx , y = 1 + η, (1.3)

ϕt = −1

2
ϕ2
x − 1

2
ϕ2
y − η + β

[
ηx√
1 + η2x

]
x

, y = 1 + η. (1.4)

Travelling waves are solutions of (1.1)–(1.4) of the form η(x, t) = η(x − ct),
ϕ(x, y, t) = ϕ(x − ct, y), while solitary waves are non-trivial travelling waves which
satisfy the asymptotic conditions η(x −ct) → 0 as |x −ct | → ∞; they correspond to
localised disturbances of permanent form which move from left to right with constant
speed c.

It is instructive to review the formal weakly nonlinear theory for travelling waves.
We begin with the linear dispersion relation for a two-dimensional periodic travelling
wave train of wave number k ≥ 0 and speed c > 0, namely

c2 = 1 + βk2

f (k)
, f (k) = k coth k

(see Fig. 1). The function k �→ c(k) has a unique global minimum at k = ω, and one
finds that ω = 0 (with c(0) = 1) for β > 1

3 and ω > 0 for β < 1
3 . We denote the

minimumvalue of c by c0, so that c20 = 1 forβ > 1
3 and c

2
0 = 2ω/(2ω f (ω)−ω2 f ′(ω))

for β < 1
3 (the formula β = f ′(ω)/(2ω f (ω) − ω2 f ′(ω)) defines a bijection between

the values of β ∈ (0, 1
3 ) and ω ∈ (0,∞)). Using c as a bifurcation parameter, we

expect branches of small-amplitude solitary waves to bifurcate at c = c0 (where the

c

k

1

ω

c

k

1

c0

Fig. 1 Dispersion relation for a travelling wave train of wave number k ≥ 0 and speed c > 0 with strong
surface tension (left) and weak surface tension (right)
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Fig. 2 Solitary wave of depression predicted by the Korteweg-de Vries equation for strong surface tension
(above) and the symmetric solitary waves predicted by the nonlinear Schrödinger equation for weak surface
tension (below)

linear group and phase speeds are equal) into the region {c < c0}where linear periodic
wave trains are not supported (see Dias and Kharif [8, Sect. 3]).

In the case β > 1
3 (‘strong surface tension’), one writes c2 = 1 − ε2, where ε is a

small positive number, substitutes the Ansatz

η(x) = ε2ρ1(X) + ε2ρ2(X) + · · · , (1.5)

where X = εx , into the travelling-wave version of Eqs. (1.1)–(1.4), and finds that ρ1
satisfies the stationary Korteweg-de Vries equation

ρ − (β − 1
3 )ρXX + 3

2ρ
2 = 0; (1.6)

this equation admits an explicit solitary wave of depression given by the formula

ρ	(X) = −sech2
(

X

2(β − 1
3 )

1/2

)
(1.7)

(see Benjamin [3]). In the case β < 1
3 (‘weak surface tension’), one writes

c2 = c20(1 − ε2), uses the Ansatz

η(x) = 1
2ε

(
ζ1(X)eiωx + ζ1(X)e−iωx) + ε2ζ0(X) (1.8)

+ 1
2ε

2(ζ2(X)e2iωx + ζ2(X)e−2iωx) + · · · ,

and finds that ζ1 satisfies the stationary nonlinear Schrödinger equation

− a1ζXX + a2ζ − a3|ζ |2ζ = 0, (1.9)
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where

a1 = 1
2g

′′(ω), a2 = c20 f (ω)

and

a3 = 1
4

(
2g(2ω)−1A(ω)2c40 + 2g(0)−1B(ω)2c40 + C(ω)c20 + 3

2βω4
)

with

A(ω) = 3
2ω

2 − 1
2 f (ω)2 − f (ω) f (2ω), B(ω) = ω2 − 2 f (ω) − f (ω)2,

C(ω) = −6ω2 f (ω) + 4 f (ω)2 + 2 f (ω)2 f (2ω)

and

g(k) = 1 + βk2 − c20 f (k)

(see Ablowitz and Segur [1]). This equation admits a family {eiθ0ζ 	}θ0∈[0,2π) of
solitary-wave solutions, where

ζ 	(X) =
(
2a2
a3

)1/2
sech

(
a2
a1

)1/2
X , (1.10)

two of which, namely ±ζ 	 (corresponding to θ0 = 0 and π ), are symmetric. (The
positivity of a3 follows by elementary arguments after substituting the expressions for
β and c20 as functions of ω.) The corresponding free-surface profiles are sketched in
Fig. 2.

The results of these formal calculations have been rigorously confirmed by spatial
dynamics and centre-manifold methods on the one hand (Kirchgässner [17], Amick
and Kirchgässner [2], Sachs [20], Iooss and Kirchgässner [15], Iooss and Pérouème
[16]) and variational techniques on the other (Buffoni [4,5], Groves and Wahlén [11,
12]), the results of which are summarised in the following theorem.

Theorem 1.1

(i) Suppose that β > 1
3 and c2 = 1− ε2. For each sufficiently small value of ε > 0

there exists a symmetric solitary-wave solution of (1.1)–(1.4) whose free surface
is given by

η(x) = ε2ρ	(εx) + o(ε2)

uniformly over x ∈ R.
(ii) Suppose thatβ < 1

3 and c
2 = c20(1−ε2), where c0 = c(ω) is the global minimum

of the linear dispersion relation (see Fig. 1 (right)). For each sufficiently small
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value of ε > 0 there exist two symmetric solitary-wave solutions of (1.1)–(1.4)
whose free surfaces are given by

η(x) = ±εζ 	(εx) cosωx + o(ε)

uniformly over x ∈ R.

This article presents an alternative, simpler proof of Theorem 1.1 in which one
works directly with the Zakharov–Craig–Sulem formulation of the travelling water-
wave equations (see below) and uses only rudimentary fixed-point arguments and
Fourier analysis. Some intermediate results are special cases of more general theorems
available elsewhere; their proofs have been included here for the sake of a complete,
self-contained exposition.

1.2 Methodology

We proceed by formulating the water-wave problem (1.1)–(1.4) in terms of the
variables η and  = ϕ|y=1+η (see Zakharov [22] and Craig and Sulem [7]). The
Zakharov–Craig–Sulem formulation of the water-wave problem is

ηt − G(η) = 0,

t + η + 1

2
2

x − (G(η) + ηxx )
2

2(1 + η2x )
− β

[
ηx√
1 + η2x

]
x

= 0,

where the velocity potential ϕ is recovered as the (unique) solution of the boundary-
value problem

ϕxx + ϕyy = 0, 0 < y < 1 + η,

ϕy = 0, y = 0,

ϕ = , y = 1 + η,

and the Dirichlet–Neumann operator G(η) is given by G(η) = ϕy − ηxϕx
∣∣
y=1+η

.
Travelling waves are solutions of the form η(x, t) = η(x − ct), (x, t) = (x − ct);
they satisfy

− cηx − G(η) = 0, (1.11)

− cx + η + 1

2
2

x − (G(η) + ηxx )
2

2(1 + η2x )
− β

[
ηx√
1 + η2x

]
x

= 0. (1.12)

It is possible to reduce Eqs. (1.11), (1.12) to a single equation for η. Using (1.11),
one finds that  = −cG(η)−1ηx , and inserting this formula into (1.12) yields the
equation

K(η) − c2L(η) = 0, (1.13)
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where

K(η) = η − β

[
ηx√
1 + η2x

]
x

, (1.14)

L(η) = −1

2
(K (η)η)2 + (ηx − ηx K (η)η)2

2(1 + η2x )
+ K (η)η (1.15)

and

K (η)ξ = −(G(η)−1ξx )x .

Note the equivalent definition

K (η)ξ = −(ϕ|y=1+η)x , (1.16)

where ϕ is the solution of the boundary-value problem

ϕxx + ϕyy = 0, 0 < y < 1 + η, (1.17)

ϕy = 0, y = 0, (1.18)

ϕy − ηxϕx = ξx , y = 1 + η (1.19)

(which is unique up to an additive constant).
We proceed by defining the Fourier transform û = F[u] of a function u of a real

variable by the formula

û(k) = 1√
2π

∫
R

u(x)e−ikx dx

and using the notation m(D) with D = −i∂x for the Fourier multiplier-operator with
symbol m, so that m(D)u = F−1[mû]. The Ansätze (1.5) and (1.9) suggest that the
Fourier transform of a solitary wave is concentrated near the points k = ±ω (which
coincide at k = 0 when β > 1

3 ). Indeed, writing c2 = c20(1 − ε2), one finds that the
linearisation of (1.13) at ε = 0 is

g(D)η = 0,

where

g(k) = 1 + βk2 − c20k coth k ≥ 0, k ∈ R,

with equality precisely when k = ±ω (so that g(ω) = g′(ω) = 0 and g′′(ω) > 0). We
therefore decompose η into the sum of functions η1 and η2 whose Fourier transforms
η̂1 and η̂2 are supported in the region S = (−ω − δ,−ω + δ) ∪ (ω − δ, ω + δ) (with
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Fig. 3 (a) The support of η̂1 is contained in the set S, where S = (−δ, δ) for β > 1
3 (left) and

S = (−ω − δ, −ω + δ) ∪ (ω − δ, ω + δ) for β < 1
3 (right)

δ ∈ (0, 1
3 )) and its complement (see Fig. 3), so that η1 = χ(D)η, η2 = (1− χ(D))η,

where χ is the characteristic function of the set S. Decomposing (1.13) into

χ(D)
(
K(η1 + η2) − c20(1 − ε2)L(η1 + η2)

)
= 0,

(1 − χ(D))
(
K(η1 + η2) − c20(1 − ε2)L(η1 + η2)

)
= 0,

onefinds that the second equation canbe solved forη2 as a functionofη1 for sufficiently
small values of ε > 0; substituting η2 = η2(η1) into the first yields the reduced
equation

χ(D)
(
K(η1 + η2(η1)) − c20(1 − ε2)L(η1 + η2(η1)

)
= 0

for η1 (see Sect. 3).
Finally, the scaling

η1(x) = ε2ρ(X), X = εx, (1.20)

transforms the reduced equation into

ε−2g(εD)ρ + f (εD)ρ + 3
2χ0(εD)ρ2 + O(ε1/2) = 0 (1.21)

for β > 1
3 , while the scaling

η1(x) = 1
2εζ(X)eiωx + 1

2εζ(X)e−iωx , X = εx, (1.22)

transforms the reduced equation into

ε−2g(ω + εD)ζ + c20 f (ω + εD)ζ − a3χ0(εD)(|ζ |2ζ ) + O(ε1/2) = 0 (1.23)

for β < 1
3 ; here χ0 is the characteristic function of the set (−δ, δ), the symbol D

now means −i∂X and precise estimates for the remainder terms are given in Sect. 4.
Eqs. (1.21) and (1.23) are termed full dispersion versions of (perturbed) stationary
Korteweg-de Vries and nonlinear Schrödinger equations since they retain the linear
part of the original equation (1.13); the fully reduced model equations (1.6) and (1.9)
are recovered from them in the formal limit ε → 0.

Variational versions of this reduction procedure have previously been given by
Groves and Wahlén [12]. Starting with the observation that (1.13) is the Euler–
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Lagrange equation for the functional

J (η) =
∫
R2

(
1

2
η2 + β(

√
1 + η2x + η2z − 1) − 1

2
c2η K (η)η

)
dx dz,

they use the decomposition η = η1+η2(η1) and scaling of η1 described above to derive
reduced variational functionals for ρ and ζ whose Euler–Lagrange equations are given
to leading order by (1.6) and (1.9). Critical points of the reduced functionals (and hence
solitary-wave solutions of the reduced equations) are found by the direct methods of
the calculus of variations. In the present paper we apply a more direct perturbative
approach introducedbyStefanov andWright [21] for another full dispersionKorteweg-
de Vries equation, namely, the Whitham equation (see Ehrnström et al. [9] for a
variational treatment of this equation).

The travelling-wave Whitham equation is

cu − m(D)u − u2 = 0, m(k) =
√
tanh k

k
.

Noting that its linear dispersion relation has a unique global maximum at k = 0 (with
c(0) = 1), one writes c = 1 + ε2 and seeks solitary waves of the form

u = ε2w(X), X = εx,

so that

ε−2(1 + ε2 − m(εD))w − w2 = 0,

which can be rewritten as a fixed-point equation of the form

w =
(
1 − 1

6∂
2
X + O(ε2)

)−1
w2. (1.24)

In the formal limit ε → 0 we recover the stationary Korteweg-de Vries equation

w − 1
6wXX − w2 = 0;

its (unique, symmetric) solitary-wave solution w	 is nondegenerate in the sense that
the only bounded solution of its linearisation at w	 is w	

X . Restricting to spaces of
symmetric functions eliminates this antisymmetric solution of the linearised equation
and a solution to (1.24) can be constructed as a perturbation of w	 using the implicit-
function theorem.

In Sect. 5 we apply the above argument to (1.21) and (1.23), first reformulating
them as fixed-point equations. The functions ρ	 and ±ζ 	 are nondegenerate solutions
of (1.6) and (1.9) in the sense that the only bounded solutions of their linearisations
at ρ	 and ±ζ 	 are respectively ρ	

X and ±ζ 	
X , ±iζ 	. Observe that equation (1.13)

is invariant under the reflection η(x) �→ η(−x), and the reduction procedure pre-
serves this property: the reduced equation for η1 is invariant under the reflection
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η1(x) �→ η1(−x), so that (1.21) and (1.23) are invariant under respectively
ρ(x) �→ ρ(−x) and ζ(x) �→ ζ(−x). Restricting to spaces of symmetric functions
thus eliminates the antisymmetric solutions ρ	′ and ±ζ 	

X , ±iζ 	 of the linearised equa-
tions, and solutions to (1.21) and (1.23) can be constructed as perturbations of ρ	 and
±ζ 	 using an appropriate version of the implicit-function theorem.

1.3 Function Spaces

We study the equation

K(η) − c20(1 − ε2)L(η) = 0

in the basic space X = H2(R), where

Hs(R) = {η ∈ S ′(R) : ‖η‖s := ‖(1 + D2)s/2η‖L2(R) < ∞}, s ≥ 0,

are the usual Bessel-potential spaces. The decomposition η = η1 + η2, where
η1 = χ(D)η, η2 = (1− χ(D))η, is accommodated by writing X as the direct sum of
X1 = χ(D)X and X2 = (1 − χ(D))X , where X1 and X2 are equipped with respec-
tively the scaled norm

|||η1||| :=
(∫

R

(1 + ε−2(|k| − ω)2)|η̂1(k)|2 dk
)1/2

and the usual norm for H2(R). The norm forX1 is so chosen because the final scalings
(1.20) and (1.22) transform |||η1||| into a multiple of the standard norm for H1(R),
namely, |||η1||| = ε3/2‖ρ‖1 and |||η1||| = ε1/2‖ζ‖1, and the reduced equations (1.21)
and (1.23) are discussed in this space.

The following proposition yields in particular the estimate

‖η1‖∞ � ε1/2|||η1|||

for the supremum norm of η1 ∈ X1. We can also estimate higher-order derivatives of
η1 ∈ X1 using the fact that the support of η̂1 is contained in the fixed bounded set S,
so that, for example

‖η1‖n � ‖η1‖0, ‖η1‖n,∞ � ε1/2|||η1|||

for each n ∈ N0.

Proposition 1.2 The estimate

‖η̂1‖L1(R) � ε1/2|||η1|||

holds for each η1 ∈ X1.
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Proof This estimate follows from the calculation∫
R

|η̂1(k)| dk =
∫
R

(1 + ε−2(|k| − ω)2)1/2

(1 + ε−2(|k| − ω)2)1/2
|η̂1(k)| dk

� |||η|||
(∫ ω+δ

ω−δ

1

1 + ε−2(k − ω)2
dk

)1/2

= 1
2π

1/2ε1/2|||η|||.

��
It is also helpful to use the larger space

Z = {η ∈ S ′(R) : ‖η‖Z := ‖η̂1‖L1(R) + ‖η2‖2 < ∞},

into which H2(R) is continuously embedded. In Sect. 2 we demonstrate that
K (·) : Z → L(H3/2(R), H1/2(R)) is analytic at the origin and deduce that K, L
map the open neighbourhood

U = {η ∈ H2(R) : ‖η‖Z < M}

of the origin in H2(R) analytically into L2(R) for sufficiently small values of M .
Moreover, we take advantage of the estimate

‖η‖Z � ε1/2|||η1||| + ‖η2‖2 (1.25)

for η ∈ H2(R) to obtain estimates for K and L which are necessary for the reduction
procedure described above (see Sect. 3). Note, however, that in the entirety of the
existence theory we work in the fixed subset U of H2(R) (whose elements are ‘well-
behaved’ functions).

2 Analyticity

In this section, we study the operator K given by (1.16) using basic results from
the theory of analytic functions in Banach spaces (see the treatise by Buffoni and
Toland [6] for a complete account). In particular, we present an elementary proof that
K (·) : Z → L(H3/2(R), H1/2(R)), and hence K, L : U → L2(R), are analytic at
the origin (see Sect. 1.3 above). A more comprehensive treatment of the analyticity of
operators ofDirichlet–Neumann andNeumann–Dirichlet type inwater-waveproblems
is given by Lannes [18, Ch. 3 and Appendix A] (see also Nicholls and Reitich [19]
and Hu and Nicholls [14]).

We begin with the boundary-value problem (1.17)–(1.19), which is handled using
the change of variable

y′ = y

1 + η
, u(x, y′) = ϕ(x, y),



An Existence Theory for Gravity–Capillary Solitary Water Waves 223

to map �η = {(x, y) : x ∈ R, 0 < y < 1 + η(x)} to the strip � = R × (0, 1).
Dropping the primes, one finds that (1.17)–(1.19) are transformed into

uxx + uyy = ∂x F1(η, u) + ∂y F2(η, u), 0 < y < 1, (2.1)

uy = 0, y = 0, (2.2)

uy = F2(η, u) + ξx , y = 1, (2.3)

where

F1(η, u) = −ηux + yηxuy, F2(η, u) = ηuy

1 + η
+ yηxux − y2

1 + η
η2xuy,

and

K (η)ξ = −ux |y=1.

We discuss (2.1)–(2.3) using the standard Sobolev spaces Hn(�), n ∈ N, together
with Hn+1

	 (�), n ∈ N, which is defined as the completion of

S(�,R) = {u ∈ C∞(�̄) : |x |m |∂α1
x ∂α2

y u| is bounded for all m, α1, α2 ∈ N0}

with respect to the norm

‖u‖2n+1,	 := ‖ux‖2Hn(�) + ‖uy‖2Hn(�).

Proposition 2.1 For each F1, F2 ∈ Hn(�) and ξ ∈ Hn+1/2(R), n ∈ N, the boundary-
value problem

uxx + uyy = ∂x F1 + ∂y F2, 0 < y < 1,

uy = 0, y = 0,

uy = F2(η, u) + ξx , y = 1,

admits a unique solution u = S(F1, F2, ξ) in Hn+1
	 (�) given (with a slight abuse of

notation, in that derivatives should be taken) by the explicit formula

S(F1, F2, ξ) = F−1
[∫ 1

0

(
ikG(y, ỹ)F̂1 − Gỹ(y, ỹ)F̂2

)
d ỹ − ikG(y, 1)ξ̂

]
,

in which

G(y, ỹ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−cosh |k|y cosh |k|(1 − ỹ)

|k| sinh |k| , 0 ≤ y ≤ ỹ ≤ 1,

−cosh |k|ỹ cosh |k|(1 − y)

|k| sinh |k| , 0 ≤ ỹ ≤ y ≤ 1,
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so that

‖S(F1, F2, ξ)‖n+1,	 � ‖F1‖Hn(�) + ‖F2‖Hn(�) + ‖ξ‖n+1/2.

Lemma 2.2 For each ξ ∈ H3/2(R) and each sufficiently small η ∈ Z the boundary-
value problem (2.1)–(2.3) admits a unique solution u ∈ H2

	 (�). Furthermore, the
mapping Z → L(H3/2(R), H2

	 (�)) given by η �→ (ξ �→ u) is analytic at the origin.

Proof Define

T : H2
	 (�) × Z × H3/2(R) → H2

	 (�)

by

T (u, η, ξ) = u − S(F1(η, u), F2(η, u), ξ),

and note that the solutions of (2.1)–(2.3) are precisely the zeros of T (·, η, ξ). Using
the estimates

‖ηw‖H1(�) � ‖η‖1,∞‖w‖H1(�)

� (‖η1‖1,∞ + ‖η2‖2)‖w‖H1(�),

‖yηxw‖H1(�) � (‖η1x‖1,∞‖w‖H1(�)

+ ‖η2xw‖L2(�) + ‖η2xwx‖L2(�) + ‖η2xxw‖L2(�))

� (‖η1x‖1,∞ + ‖η2x‖∞)‖w‖H1(�) + ‖η2xx‖0‖w‖H1(�)

� (‖η1x‖1,∞ + ‖η2‖2)‖w‖H1(�),

‖y2ηnη2xw‖H1(�) � ‖η‖n1,∞(‖η1x‖21,∞‖w‖H1(�)

+ ‖η22xw‖L2(�) + ‖η22xwx‖L2(�) + ‖η2xη2xxw‖L2(�))

� ‖η‖n1,∞((‖η1x‖1,∞ + ‖η2x‖∞)2‖w‖H1(�)

+ ‖η2x‖∞‖η2xx‖0‖w‖H1(�))

� (‖η1‖2,∞ + ‖η2‖2)n+2‖w‖H1(�)

(uniformly in n) and

‖η1‖2,∞ + ‖η2‖2 � ‖η̂1‖L1(R) + ‖η2‖2 = ‖η‖Z ,

one finds that the mappings Z × H2
	 (�) → H1(�) given by (η, u) �→ F1(η, u) and

(η, u) �→ F2(η, u) are analytic at the origin; it follows that T is also analytic at the
origin. Furthermore T (0, 0, 0) = 0 and

d1T [0, 0, 0](u) = u − S(F1(0, u), F2(0, u), 0) = u − S(0, 0, 0) = u

(because S is linear and F1, F2 are linear in their second arguments), so that
d1T [0, 0, 0] = I is an isomorphism. By the analytic implicit-function theorem there
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exist open neighbourhoods N1 and N2 of the origin inZ and H3/2(R) and an analytic
function v : N1 × N2 → H2

	 (�), such that

T (v(η, ξ), η, ξ) = 0.

Since v is linear in ξ one can take N2 to be the whole space H3/2(R). ��
Corollary 2.3 The mapping K (·) : Z → L(H3/2(R), H1/2(R)) is analytic at the ori-
gin.

Corollary 2.4 The formulae (1.14), (1.15) define functions U → L2(R) which are
analytic at the origin and satisfy K(0) = L(0) = 0.

Proof This result follows from Corollary 2.3 and the facts that H1(R) is a Banach
algebra and (u1, u2) �→ u1u2 is a bounded bilinear mapping H1/2(R) × H1/2(R) →
L2(R) (see Hörmander [13, Theorem 8.3.1]). ��

In keeping with Lemma 2.2 and Corollaries 2.3 and 2.4 we write

u(η, ξ) =
∞∑
j=0

u j (η, ξ), (2.4)

where u j is homogeneous of degree j in η and linear in ξ , and

K (η) =
∞∑
j=0

K j (η), K(η) =
∞∑
j=1

K j (η), L(η) =
∞∑
j=1

L j (η),

where K j (η),K j (η) andL j (η) are homogeneous of degree j in η (andwe accordingly
abbreviate K0(η) to K0).

Remark 2.5 Note that K j (η) = m j ({η}(n)), where m j is a bounded, symmetric,
j-linear mapping Z j → L(H3/2(R), H1/2(R)).

We examine the first few terms

K1(η) = η − βηxx ,

K2(η) = 0,

K3(η) = 3
2βη2xηxx (2.5)

and

L1(η) = K0η,

L2(η) = 1
2η

2
x − 1

2 (K0η)2 + K1(η)η,

L3(η) = −K0ηK1(η)η − η2x K0η + K2(η)η (2.6)
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in the Maclaurin expansions of K and L in more detail since they play a prominent
role in our subsequent calculations. We begin by computing explicit expressions for
K0, K1 and K2.

Lemma 2.6

(i) The operators K0 and K1 are given by the formulae

K0ξ = f (D)ξ, K1(η)ξ = −(ηξx )x − K0(ηK0ξ)

for each η ∈ H2(R) and ξ ∈ H3/2(R).
(ii) The operator K2 is given by the formula

K2(η)ξ = 1
2 (η

2K0ξ)xx + 1
2K0(η

2ξxx ) + K0(ηK0(ηK0ξ))

under the additional regularity hypothesis that η ∈ H3(R) and ξ ∈ H5/2(R).

Proof (i) The solution to the boundary-value problem

u0xx + u0yy = 0, 0 < y < 1,

u0y = 0, y = 0,

u0y = ξx , y = 1,

is

u0 = F−1
[
ik

|k|
cosh |k|y
sinh |k| ξ̂

]
,

while the solution to the boundary-value problem

u1xx + u1yy = (−ηu0x + yηxu0y)x + (ηu0y + yηxu0x )y, 0 < y < 1,

u1y = 0, y = 0,

u1y = ηu0y + ηxu0x , y = 1,

is

u1 = yηu0y + F−1
[
ik

|k|
cosh |k|y
sinh |k| F[ηu0x |y=1]

]
,

whence

K0ξ = −u0x |y=0 = f (D)ξ, K1(η)ξ = −u1x |y=0 = −(ηξx )x − K0(ηK0ξ).
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(ii) Supposing that ξ ∈ H5/2(R), so that u0 ∈ H3
	 (�), and η ∈ H3(R), so that

u1 ∈ H3
	 (�) (see Proposition 2.1), we find that the solution u2 ∈ H4

	 (�) to the
boundary-value problem

u2xx + u2yy = (−ηu1x + yηxu1y)x

+ (ηu1y + yηxu1x )y − η2u0yy − (y2η2xu0y)y, 0 < y < 1,

u2y = 0, y = 0,

u2y = ηu1y + ηxu1x − η2u0y − η2xu0y, y = 1,

is

u2 = − 1
2η

2(y2u0y)y + ηu1y − F−1
[
ik

|k|
cosh |k|y
sinh |k| F[ 12 (η2u0y)x

∣∣
y=1]

]

+F−1
[
ik

|k|
cosh |k|y
sinh |k| F[ηu1x

∣∣
y=1]

]
.

It follows that

K2(η)ξ = −u2x |y=0

= − 1
2 (η

2u0xx )x + (η2u0y)x

− (η(ηu0y + ηxu0x ))x − 1
2K0((η

2ξx )x ) − K0(ηK1(η)ξ),

= 1
2 (η

2K0ξx )x + (ηηx K0ξ)x

− 1
2K0((η

2ξx )x ) + K0(η(ηξx )x ) + K0(ηK0(ηK0ξ))

= 1
2 (η

2K0ξ)xx + 1
2K0(η

2ξxx ) + K0(ηK0(ηK0ξ)).

��
Remark 2.7 Explicit expressions for K3, K4, . . . can be computed in a similar fashion.
However, computing an expansion in terms of Fourier-multiplier operators in this fash-
ion leads a loss of one derivative at each order. It is therefore necessary to compensate
by increasing the regularity of ξ and η by one derivative at each order.

Corollary 2.8

(i) The function L2 is given by the formula

L2(η) = 1
2

(
η2x − (K0η)2 − (η2)xx − 2K0(ηK0η)

)

for each η ∈ H2(R).
(ii) The function L3 is given by the formula

L3(η) = K0η K0(ηK0η) + K0(ηK0(ηK0η)) + η(K0η)ηxx

+ 1
2K0(η

2ηxx ) + 1
2 (η

2K0η)xx

under the additional regularity hypothesis that η ∈ H3(R).
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Finally, we record the representation L2(η) = m(η, η), where

m(u, v) = 1
2 (uxvx − (K0u)(K0v) − (uv)xx − K0(uK0v + vK0u)) , (2.7)

which is helpful when performing calculations, and some straightforward estimates
for the higher-order parts of K and L.

Proposition 2.9 The estimate ‖m(u, v)‖0 � ‖u‖Z‖v‖2 holds for each u, v ∈ H2(R).

Proposition 2.10

(i) The quantities

Kc(η) :=
∞∑
j=3

K j (η), Lc(η) :=
∞∑
j=3

L j (η)

satisfy the estimates

‖Kc(η)‖0 � ‖η‖2Z‖η‖2, ‖dKc[η](v)‖0 � ‖η‖2Z‖v‖2 + ‖η‖Z‖η‖2‖v‖Z ,

‖Lc(η)‖0 � ‖η‖2Z‖η‖2, ‖dLc[η](v)‖0 � ‖η‖2Z‖v‖2 + ‖η‖Z‖η‖2‖v‖Z

for each η ∈ U and v ∈ H2(R).
(ii) The quantities

Kr(η) :=
∞∑
j=4

K j (η), Lr(η) :=
∞∑
j=4

L j (η) + 1
2 (K1(η)η)2

satisfy the estimates

‖Kr(η)‖0 � ‖η‖4Z‖η‖2, ‖dKr[η](v)‖0 � ‖η‖4Z‖v‖2 + ‖η‖3Z‖η‖2‖v‖Z ,

‖Lr(η)‖0 � ‖η‖3Z‖η‖2, ‖dLr[η](v)‖0 � ‖η‖3Z‖v‖2 + ‖η‖2Z‖η‖2‖v‖Z

for each η ∈ U and v ∈ H2(R).

Proof These estimates follow from the explicit formulae (2.5), (2.6), together with the
calculations

K(η) − K1(η) − K2(η) − K3(η) = β

(
1 − 3

2η
2
x − 1

(1 + η2x )
3/2

)
ηxx

and
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L(η) − L1(η) − L2(η) − L3(η)

= − 1
2 (K1(η)η)2 − 1

2 (Kr(η)η)2 − (K0η + K1(η))Kr(η)η − η2x (K1(η)η + Kr(η)η)

+ 1
2η

2
x (K (η)η)2 − η2x

2(1 + η2x )
(ηx − ηx K (η)η)2 + (Kr(η) − K2(η))η,

where

Kr(η) =
∞∑
j=2

K j (η).

��

3 Reduction

In this section, we reduce the equation

K(η) − c20(1 − ε2)L(η) = 0 (3.1)

to a locally equivalent equation for η1. Clearly η ∈ U satisfies (3.1) if and only if

χ(D)
(
K(η1 + η2) − c20(1 − ε2)L(η1 + η2)

)
= 0,

(1 − χ(D))
(
K(η1 + η2) − c20(1 − ε2)L(η1 + η2)

)
= 0,

and these equations can be rewritten as

g(D)η1 + c20ε
2K0η1 + χ(D)N (η1 + η2) = 0, (3.2)

g(D)η2 + c20ε
2K0η2 + (1 − χ(D))N (η1 + η2) = 0, (3.3)

in which

N (η) = Kc(η) − c20(1 − ε2)(L2(η) + Lc(η)).

We proceed by writing (3.3) as a fixed-point equation for η2 using Proposition 3.1,
which follows from the fact that g(k) � |k|2 for k /∈ S, and solving it for η2 as a
function of η1 using Theorem 3.2, which is proved by a straightforward application
of the contraction mapping principle. Substituting η2 = η2(η1) into (3.2) yields a
reduced equation for η1. Note that the reduced equation is invariant under the reflection
η1(x) �→ η1(−x), which is inherited from the invariance of (3.1) under the reflection
η(x) �→ η(−x) (see below).

Proposition 3.1 The mapping (1 − χ(D))g(D)−1 is a bounded linear operator
L2(R) → X2.
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Theorem 3.2 Let X1, X2 be Banach spaces, X1, X2 be closed, convex sets in, respec-
tively, X1, X2 containing the origin and G : X1 × X2 → X2 be a smooth function.
Suppose that there exists a continuous function r : X1 → [0,∞), such that

‖G(x1, 0)‖ ≤ 1
2r , ‖d2G[x1, x2]‖ ≤ 1

3

for each x2 ∈ B̄r (0) ⊆ X2 and each x1 ∈ X1.
Under these hypotheses there exists for each x1 ∈ X1 a unique solution x2 = x2(x1)

of the fixed-point equation x2 = G(x1, x2) satisfying x2(x1) ∈ B̄r (0). Moreover x2(x1)
is a smooth function of x1 ∈ X1 and in particular satisfies the estimate

‖dx2[x1]‖ ≤ 2‖d1G[x1, x2(x1)]‖.

3.1 Strong Surface Tension

Suppose that β > 1
3 . We write (3.3) in the form

η2 = −(1 − χ(D))g(D)−1
(
ε2K0η2 + N (η1 + η2)

)
(3.4)

and apply Theorem 3.2 with

X1 = {η1 ∈ X1 : |||η1||| ≤ R1}, X2 = {η2 ∈ X2 : ‖η2‖2 ≤ R2};

the function G is given by the right-hand side of (3.4). Using Proposition 1.2 one can
guarantee that ‖η̂1‖L1(R2) < 1

2M for all η1 ∈ X1 for an arbitrarily large value of R1;
the value of R2 is constrained by the requirement that ‖η2‖2 < 1

2M for all η2 ∈ X2.

Lemma 3.3 The estimates

(i) ‖G(η1, η2)‖2 � ε1/2|||η1|||2+ε1/2|||η1|||‖η2‖2+|||η1|||‖η2‖22+‖η2‖22+ε2‖η2‖2,
(ii) ‖d1G[η1, η2]‖L(X1,X2) � ε1/2|||η1||| + ε1/2‖η2‖2 + ‖η2‖22,
(iii) ‖d2G[η1, η2]‖L(X1,X2) � ε1/2|||η1||| + |||η1|||‖η2‖2 + ‖η2‖2 + ε2

hold for each η1 ∈ X1 and η2 ∈ X2.

Proof Observe that

‖K0η2‖0 � ‖η2‖2,

and using Propositions 2.9 and 2.10(i), one finds that

‖L2(η1 + η2)‖0 = ‖m({η1 + η2}(2))‖0 � ‖η1‖Z‖η1‖2 + ‖η1‖Z‖η2‖2 + ‖η2‖Z‖η2‖2
and

‖Kc(η1 + η2)‖0, ‖Lc(η1 + η2)‖0 � ‖η1 + η2‖2Z‖η1 + η2‖2;
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part (i) follows from these estimates and inequality (1.25). Parts (ii) and (iii) are
obtained in a similar fashion. ��

Theorem 3.4 Equation (3.4) has a unique solution η2 ∈ X2 which depends smoothly
upon η1 ∈ X1 and satisfies the estimates

‖η2(η1)‖2 � ε1/2|||η1|||2, ‖dη2[η1]‖L(X1,X2) � ε1/2|||η1|||.

Proof Choosing R2 and ε sufficiently small and setting r(η1) = σε1/2|||η1|||2 for a
sufficiently large value of σ > 0, one finds that

‖G(η1, 0)‖2 � 1
2r(η1), ‖d2G[η1, η3]‖L(X2,X2) � ε1/2

for η1 ∈ X1 and η2 ∈ Br(η1)(0) ⊂ X2 (Lemma 3.3(i), (iii)). Theorem 3.2 asserts that
equation (3.4) has a unique solution η2 in Br(η1)(0) ⊂ X2 which depends smoothly
upon η1 ∈ X1, and the estimate for its derivative follows from Lemma 3.3(ii). ��

Substituting η2 = η2(η1) into (3.2) yields the reduced equation

g(D)η1 + c20ε
2K0η1 + χ(D)N (η1 + η2(η1)) = 0 (3.5)

for η1 ∈ X1. Observe that this equation is invariant under the reflection
η1(x) �→ η1(−x); a familiar argument shows that it is inherited from the corre-
sponding invariance of (3.2), (3.4) under η1(x) �→ η1(−x), η2(x) �→ η2(−x) when
applying Theorem 3.2.

3.2 Weak Surface Tension

Suppose that β < 1
3 . Since χ(D)L2(η1) = 0 the nonlinear term in (3.2) is at leading

order cubic in η1, so that this equation may be rewritten as

g(D)η1 + c20ε
2K0η1 + χ(D)

(
N (η1 + η2) + c20(1 − ε2)L2(η1)

)
= 0. (3.6)

To compute the reduced equation for η1 we need an explicit formula for the leading-
order quadratic part of η2(η1), which is evidently given by

F(η1) := c20(1 − ε2)(1 − χ(D))g(D)−1L2(η1). (3.7)

It is convenient to write η2 = F(η1) + η3 and (3.3) in the form

η3 = −(1 − χ(D))g(D)−1(
c20(1 − ε2)L2(η1)+ N (η1+F(η1)+η3) + c20ε

2K0(F(η1) + η3)
)

(3.8)
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(with the requirement that η1 + F(η1) + η3 ∈ U ). We apply Theorem 3.2 to equation
(3.8) with

X1 = {η1 ∈ X1 : |||η1||| ≤ R1}, X3 = {η3 ∈ X2 : ‖η3‖3 ≤ R3};

the functionG is given by the right-hand side of (3.8). (Herewewrite X3 rather than X2
for notational clarity.) Using Proposition 1.2 one can guarantee that ‖η̂1‖L1(R) < 1

2M
for all η1 ∈ X1 for an arbitrarily large value of R1; the value of R3 is constrained
by the requirement that ‖F(η1) + η3‖2 < 1

2M for all η1 ∈ X1 and η3 ∈ X3, so
that η1 + F(η1) + η3 ∈ U (Proposition 3.5 below asserts that ‖F(η1)‖2 = O(ε1/2)

uniformly over η1 ∈ X1).

Proposition 3.5 The estimates

‖F(η1)‖2 � ε1/2|||η1|||2, ‖dF[η1]‖L(X1,X2) � ε1/2|||η1|||

hold for each η1 ∈ X1.

Proof This result follows from the formula

F(η1) = c20(1 − ε2)(1 − χ(D))g(D)−1m2(η1, η1),

Proposition 2.9 and inequality (1.25). ��
Remark 3.6 Noting that

K0F(η1) = c20(1 − ε2)(1 − χ(D))g(D)−1 f (D)m2(η1, η1)

and that m(u1, v1) has compact support for all u1, v1 ∈ X1, one finds that K0F(η1)

satisfies the same estimates as F(η1).

Lemma 3.7 The quantity

N1(η1, η3) = L2(η1 + F(η1) + η3) − L2(η1) (3.9)

satisfies the estimates

(i) ‖N1(η1, η3)‖0 � ε|||η1|||3 + ε1/2|||η1|||2‖η3‖2 + ε1/2|||η1|||‖η3‖2 + ‖η3‖22,
(ii) ‖d1N1[η1, η3]‖L(X1,L2(R)) � ε|||η1|||2 + ε1/2|||η1|||‖η3‖2 + ε1/2‖η3‖2,
(iii) ‖d2N1[η1, η3]‖L(X2,L2(R)) � ε1/2|||η1||| + ‖η3‖2
for each η1 ∈ X1 and η3 ∈ X3.

Proof We estimate

N1(η1, η3) = 2m(η1, F(η1) + η3) + m(F(η1) + η3, F(η1) + η3)

and its derivatives, which are computed using the chain rule, using Propositions 2.9
and 3.5 and inequality (1.25). ��
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Lemma 3.8 The quantity

N2(η1, η3) = Kc(η1 + F(η1) + η3) − c20(1 − ε2)(Lc(η1 + F(η1) + η3) (3.10)

satisfies the estimates

(i) ‖N2(η1, η3)‖0 � (ε1/2|||η1||| + ‖η3‖2)2(|||η1||| + ‖η3‖2),
(ii) ‖d1N2[η1, η3]‖L(X1,L2(R)) � (ε1/2|||η1||| + ‖η3‖2)2,
(iii) ‖d2N2[η1, η3]‖L(X2,L2(R)) � (ε1/2|||η1||| + ‖η3‖2)(|||η1||| + ‖η3‖2)
for each η1 ∈ X1 and η3 ∈ X3.

Proof We estimate N2 and its derivatives, which are computed using the chain rule,
using Propositions 2.10(i) and 3.5 and inequality (1.25). ��

Altogether we have established the following estimates for G and its derivatives
(see Remark 3.6 and Lemmata 3.7 and 3.8).

Lemma 3.9 The estimates

(i) ‖G(η1, η3)‖2 � (ε1/2|||η1||| + ‖η3‖2)2(1 + |||η1||| + ‖η3‖2) + ε2‖η3‖2,
(ii) ‖d1G[η1, η3]‖L(X1,X2) � (ε1/2|||η1||| + ‖η3‖2)(ε1/2 + ε1/2|||η1||| + ‖η3‖2),
(iii) ‖d2G[η1, η3]‖L(X2,X2) � (ε1/2|||η1||| + ‖η3‖2)(1 + |||η1||| + ‖η3‖2) + ε2

hold for each η1 ∈ X1 and η3 ∈ X3.

Theorem 3.10 Equation (3.8) has a unique solution η3 ∈ X3 which depends smoothly
upon η1 ∈ X1 and satisfies the estimates

‖η3(η1)‖2 � ε|||η1|||2, ‖dη3[η1]‖L(X1,X2) � ε|||η1|||.

Proof Choosing R3 and ε sufficiently small and setting r(η1) = σε|||η1|||2 for a suffi-
ciently large value of σ > 0, one finds that

‖G(η1, 0)‖2 � 1
2r(η1), ‖d2G[η1, η3]‖L(X2,X2) � ε1/2

for η1 ∈ X1 and η3 ∈ Br(η1)(0) ⊂ X3 (Lemma 3.9(i), (iii)). Theorem 3.2 asserts that
equation (3.8) has a unique solution η3 in Br(η1)(0) ⊂ X3 which depends smoothly
upon η1 ∈ X1, and the estimate for its derivative follows from Lemma 3.9(ii). ��

Substituting η2 = F(η1) + η3(η1) into (3.6) yields the reduced equation

g(D)η1 + c20ε
2K0η1

+χ(D)
(
N (η1 + F(η1) + η3(η2)) + c20(1 − ε2)L2(η1)

)
= 0 (3.11)

for η1 ∈ X1. This equation is also invariant under the reflection η1(x) �→ η1(−x); it is
inherited from the invariance of (3.6), (3.8) under η1(x) �→ η1(−x), η3(x) �→ η3(−x)
when applying Theorem 3.2.
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4 Derivation of the Reduced Equation

In this section we compute the leading-order terms in the reduced equations (3.5) and
(3.11) and hence derive the perturbed full dispersion Korteweg-de Vries and nonlinear
Schrödinger equations announced in Sect. 1. The main steps are approximating the
Fourier-multiplier operators appearing in lower-order terms by constants, estimating
higher-order terms and performing the scalings (1.20) and (1.22).

It is convenient to introduce some additional notation to estimate higher-order
‘remainder’ terms.

Definition 4.1

(i) The symbol O(εγ |||η1|||r ) denotes a smooth function R : X1 → L2(R) which
satisfies the estimates

‖R(η1)‖0 � εγ |||η1|||r , ‖dR[η1]‖L(X1,L2(R)) � εγ |||η1|||r−1

for each η1 ∈ X1 (where γ ≥ 0, r ≥ 1), and the underscored notation
O(εγ |||η1|||r ) indicates additionally that the Fourier transform ofR(η1) lies in a
fixed compact set (independently of ε and uniformly over η1 ∈ X1). Furthermore

O0(ε
γ |||η1|||r ) := χ0(D)O(εγ |||η1|||r ),

O+(εγ |||η1|||r ) := χ+(D)O(εγ |||η1|||r ),

where χ0 and χ+ are the characteristic functions of the sets (−δ, δ) and
(ω − δ, ω + δ) (for ω > 0).

(ii) The symbol Oε
n(‖u‖r1) denotes χ0(εD)R(u), where R is a smooth function

BR(0) ⊆ χ0(εD)H1(R) → Hn(R) or BR(0) ⊆ H1(R) → Hn(R) which
satisfies the estimates

‖R(u)‖n � ‖u‖r1, ‖dR[u]‖L(H1(R),Hn(R)) � ‖u‖r−1
1

for each u ∈ BR(0) (with r ≥ 1, n ≥ 0).

4.1 Strong Surface Tension

The leading-order terms in the reduced equation

g(D)η1 + c20ε
2K0η1 + χ(D)N (η1 + η2(η1)) = 0

derived in Sect. 3.1 are computed by approximating the operators ∂x and K0 in the
quadratic part of the equation by constants.
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Proposition 4.2 The estimates

(i) η1x = O0(ε|||η1|||),
(ii) K0η1 = η1 + O0(ε|||η1|||),
(iii) K0η

2
1 = η21 + O(ε3/2|||η1|||)

hold for each η1 ∈ X1.

Proof Note that

‖η1x‖20 = ‖|k|η̂1‖20 ≤ ε2|||η1|||2

and

‖(K0 − I )η1‖20 = ∥∥(|k| coth |k| − 1) η̂1
∥∥2
0 � ‖|k|2η̂1‖20 ≤ ε2|||η1|||2;

the corresponding estimates for their derivatives are trivially satisfied since the oper-
ators are linear. The quantity to be estimated in (iii) is quadratic in η1; it therefore
suffices to estimate the corresponding bilinear operator. The argument used above
yields

‖(K0 − I )(u1v1)‖0
�

∥∥∥∥|k|
∫
R

|û1(k − s)||v̂1(s)| ds
∥∥∥∥
0

�
∥∥∥∥
∫
R

|k − s||û1(k − s)||v̂1(s)| ds +
∫
R

|s||û1(k − s)||v̂1(s)| ds
∥∥∥∥
0

� ‖ |k|û1 ‖0‖v̂1‖L1(R) + ‖û1‖L1(R)‖ |k|v̂1 ‖0
� ε3/2|||u1||| |||v1|||

for each u1, v1 ∈ X1, where we have also used Young’s inequality. ��
Lemma 4.3 The estimate

L2(η1 + η2(η1)) = − 3
2η

2
1 + O(ε|||η1|||2)

holds for each η1 ∈ X1.

Proof Using Proposition 2.9 and Theorem 3.4, one finds that

L2(η1 + η2(η1)) = m(η1, η1) + 2m(η1, η2(η1)) + m(η2(η1), η2(η1))

= L2(η1) + O(ε|||η1|||3),

and

L2(η1) = − 3
2η

2
1 + O(ε3/2|||η1|||2)

because of (2.7) and Proposition 4.2. ��
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Lemma 4.4 The estimate

N (η1 + η2(η1)) = O(ε|||η1|||3)

holds for each η1 ∈ X1.

Proof This result follows from Proposition 2.10(i) and Theorem 3.4. ��
We conclude that the reduced equation for η1 is the perturbed full dispersion

Korteweg-de Vries equation

g(D)η1 + ε2K0η1 + 3
2χ0(D)η21 + O0(ε|||η1|||2) = 0,

and applying Proposition 4.2, one can further simplify it to

g(D)η1 + ε2η1 + 3
2χ0(D)η21 + O0(ε|||η1|||2) + O0(ε

3|||η1|||) = 0.

Finally, we introduce the Korteweg-de Vries scaling

η1(x) = ε2ρ(εx),

so that ρ ∈ BR(0) ⊆ χ(εD)H1(R), where R > 0 and ε is chosen small enough that
ε3/2R ≤ R1, solves the equation

ε−2g(εD)ρ + ρ + 3
2χ0(εD)ρ2 + ε1/2Oε

0(‖ρ‖1) = 0 (4.1)

(note that |||η||| = ε3/2‖ρ‖1, the change of variable from x to X = εx introduces an
additional factor of ε1/2 in the remainder term and the symbol D now means −i∂X ).
The invariance of the reduced equation under η1(x) �→ η1(−x) is inherited by (4.1),
which is invariant under the reflection ρ(X) �→ ρ(−X).

4.2 Weak Surface Tension

In this section we compute the leading-order terms in the reduced equation (3.11)
derived in Sect. 3.2. To this end, we write

η1 = η+
1 + η−

1 ,

where η+
1 = χ+(D)η1 and η−

1 = η+
1 , so that η

+
1 satisfies the equation

g(D)η+
1 + c20ε

2K0η
+
1

+χ+(D)
(
N (η1 + F(η1) + η3(η1)) + c20(1 − ε2)L2(η1)

)
= 0 (4.2)

(and η−
1 satisfies its complex conjugate). We again begin by showing how Fourier-

multiplier operators acting upon the function η1 may be approximated by constants.
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Lemma 4.5 The estimates

(i) ∂xη
+
1 = +iωη+

1 + O+(ε|||η1|||),
(ii) ∂2xη

+
1 = −ω2η+

1 + O+(ε|||η1|||),
(iii) K0η

+
1 = f (ω)η+

1 + O+(ε|||η1|||),
(iv) K0((η

+
1 )2) = f (2ω)(η+

1 )2 + O(ε3/2|||η1|||2),
(v) K0(η

+
1 η−

1 ) = η+
1 η−

1 + O(ε3/2|||η1|||2),
(vi) F−1[g(k)−1F[(η+

1 )2]] = g(2ω)−1(η+
1 )2 + O(ε3/2|||η1|||2),

(vii) F−1[g(k)−1F[η+
1 η−

1 ]] = g(0)−1η+
1 η−

1 + O(ε3/2|||η1|||2),
(viii) K0((η

+
1 )2η−

1 ) = f (ω)(η+
1 )2η−

1 + O(ε2|||η1|||3)
hold for each η1 ∈ X1.

Proof Note that

‖∂xη+
1 − iωη+

1 ‖20 ≤
∫
R

(k − ω)2|η̂1(k)|2 dk ≤ ε2|||η1|||2,

and iterating this argument yields (ii); moreover

‖K0η
+
1 − f (ω)η+

1 ‖20 = ‖( f (k) − f (ω))η̂+
1 ‖0 �

∫
R

(k − ω)2|η̂1(k)|2 dk ≤ ε2|||η1|||2.

The corresponding estimates for their derivatives are trivially satisfied since the oper-
ators are linear.

Notice that the quantities to be estimated in (iv)–(vii) are quadratic in η1; it therefore
suffices to estimate the corresponding bilinear operators. To this end we take u1,
v1 ∈ X1. The argument used for (iii) above yields

‖F[K0(u
+
1 v+

1 ) − f (2ω)u+
1 v+

1 ]‖0
�

∥∥∥∥|k − 2ω|
∫
R

|û+
1 (k − s)||v̂+

1 (s)| ds
∥∥∥∥
0

�
∥∥∥∥
∫
R

|k − s − ω||û+
1 (k − s)||v̂+

1 (s)| ds

+
∫
R

|s − ω||û+
1 (k − s)||v̂+

1 (s)| ds
∥∥∥∥
0

� ‖ |k − ω|û+
1 ‖0‖v̂+

1 ‖L1(R) + ‖û+
1 ‖L1(R)‖|k − ω, 0)|v̂+

1 ‖0
� ε3/2|||u1||| |||v1|||,

where we have also used Young’s inequality. Turning to (v), we note that

‖F[K0(u
+
1 v−

1 ) − f (0)︸︷︷︸
=1

u+
1 v−

1 ]‖0

�
∥∥∥∥|k|

∫
R

|û+
1 (k − s)||v̂−

1 (s)| ds
∥∥∥∥
0
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�
∥∥∥∥
∫
R

|k − s − ω||û+
1 (k − s)||v̂−

1 (s)| ds

+
∫
R

|s + ω||û+
1 (k − s)||v̂−

1 (s)| ds
∥∥∥∥
0

� ‖ |k − ω|û+
1 ‖0‖v̂+

1 ‖L1(R) + ‖û+
1 ‖L1(R)‖ |k + ω|v̂+

1 ‖0
� ε3/2|||u1||| |||v1|||.

Estimates (vi) and (vii) are obtained in the same fashion.
To establish (viii) we similarly estimate the relevant trilinear operator. Take u1, v1,

w1 ∈ X1 and observe that

‖F[K0(u
+
1 v+

1 w−
1 ) − f (ω)u+

1 v+
1 w−

1 ‖0
�

∥∥∥∥|k − ω|
∫
R

|û+
1 (k − s)||F[v+

1 w+
1 ](s)| ds1 ds2

∥∥∥∥
0

�
∥∥∥∥
∫
R

|k − s + ω||û+
1 (k − s)||F[v+

1 w+
1 ](s)| ds

+
∫
R

|(s − 2ω||û+
1 (k − s)||F[v+

1 w+
1 ](s)| ds

∥∥∥∥
0

� ‖ |k + ω|û+
1 ‖L1(R)‖v+

1 w+
1 ‖0 + ‖û+

1 ‖L1(R)‖ |k − 2ω|F[v+
1 w+

1 ]‖0
� ‖ |k + ω|û+

1 ‖0‖v+
1 ‖∞‖w+

1 ‖0 + ‖û+
1 ‖L1(R)‖ |k − 2ω|F[v+

1 w+
1 ]‖0

� ε2|||u1||||||v1||||||w1|||.

��
Weproceed by approximating each term in the quadratic and cubic parts of equation

(4.2) according to the rules established in Lemma 4.5, recalling that

N (η1 + F(η1) + η3) = N2(η1, η3) − c20(1 − ε2)N1(η1, η3),

where F(η1), N1(η1, η3) and N1(η1, η3) are defined by respectively (3.7), (3.9) and
(3.10).

Proposition 4.6 The estimate

F(η1) = g(2ω)−1c20A(ω)
(
(η+

1 )2 + (η−
1 )2

)
+ g(0)−1c20B(ω)η+

1 η−
1 + O(ε3/2|||η1|||2),

where

A(ω) = 3
2ω

2 − 1
2 f (ω)2 − f (ω) f (2ω), B(ω) = ω2 − 2 f (ω) − f (ω)2,

holds for each η1 ∈ X1.
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Proof Using equation (2.7) and the expansions given in Lemma 4.5, we find that

L2(η1) = m(η1, η1) = A(ω)
(
(η+

1 )2 + (η−
1 )2

)
+ B(ω)η+

1 η−
1 + O(ε3/2|||η1|||2).

It follows that

(1 − χ(D))g(D)−1L2(η1)

= g(2ω)−1A(ω)
(
(η+

1 )2 + (η−
1 )2

)
+ g(0)−1B(ω)η+

1 η−
1 + O(ε3/2|||η1|||2)

because of Lemma 4.5(vi), (vii) and the facts that χ(D)L2(η1) = 0 and

(1 − χ(D))g(D)−1O(ε3/2|||η1|||2) = O(ε3/2|||η1|||2)

(since (1 − χ(k))g(k)−1 is bounded). We conclude that

F(η1) = c20(1 − ε2)(1 − χ(D))g(D)−1L2(η1)

= g(2ω)−1c20A(ω)
(
(η+

1 )2 + (η−
1 )2

)
+ g(0)−1c20B(ω)η+

1 η−
1 + O(ε3/2|||η1|||2).

��
Proposition 4.7 The estimate

χ+(D)N1(η1, η3(η1))

=
(
2g(2ω)−1A(ω)2c20 + g(0)−1B(ω)2c20

)
χ+(D)

(
(η+

1 )2η−
1

) + O+(ε3/2|||η1|||3)

holds for each η1 ∈ X1.

Proof Observe that

N1(η1, η3(η1)) = 2m(η1, F(η1) + η3(η1)) + m(F(η1) + η3(η1), F(η1) + η3(η1))

= 2m(η1, F(η1)) + O(ε3/2|||η1|||3),

in which we have used the calculations

m(η1, η3(η1)) = O(ε3/2|||η1|||3), m(F(η1), η3(η1)) = O(ε3/2|||η1|||4)

(see Propositions 2.9 and 3.5 and Theorem 3.10) and

m(F(η1), F(η1)) = O(ε3/2|||η1|||4)

(because of Propositions 2.9 and 4.6). Furthermore
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χ+(D)m(η1, F(η1)) = g(2ω)−1c20A(ω)χ+(D)m(η−
1 , (η+

1 )2)

+ g(0)−1c20B(ω)χ+(D)m(η+
1 , η+

1 η−
1 ) + O+(ε3/2|||η1|||3),

and it follows from (2.7) and Lemma 4.5 that

m(η−
1 , (η+

1 )2)) = A(ω)(η+
1 )2η−

1 + O(ε3/2|||η1|||3),
m(η+

1 , η+
1 η−

1 ) = 1
2 B(ω)(η+

1 )2η−
1 + O(ε3/2|||η1|||3).

��
Proposition 4.8 The estimates

χ+(D)K3(η1 + F(η1) + η3(η1)) = − 3
2βω4χ+(D)

(
(η+

1 )2η−
1

) + O+(ε3/2|||η1|||3),
χ+(D)L3(η1 + F(η1) + η3(η1)) = C(ω)χ+(D)

(
(η+

1 )2η−
1

) + O+(ε3/2|||η1|||3),

where

C(ω) = −6ω2 f (ω) + 4 f (ω)2 + 2 f (ω)2 f (2ω),

hold for each η1 ∈ X1.

Proof Using the estimates for F(η1) and η3(η1) given in Proposition 3.5 and Theorem
3.10, we find that

K3(η1 + F(η1) + η3(η1)) = K3(η1) + O(ε3/2|||η1|||4)

and

χ+(D)K3(η1) = − 3
2βω4χ+(D)

(
(η+

1 )2η−
1

) + O+(ε3/2|||η1|||3)

(because of equation (2.5)). It similarly follows from the formula

L3(η) = −K0ηK1(η)η − η2x K0η + m2(η, η)η

(see equation (2.6) and Remark 2.5) that

L3(η1 + F(η1) + η3(η1)) = L3(F(η1) + η1) + O(ε3/2|||η1|||4),

and using Corollary 2.8(ii) twice yields

L3(F(η1) + η1) = L3(η1) + O(ε3/2|||η1|||3)

and

χ+(D)L3(η1) = C(ω)χ+(D)
(
(η+

1 )2η−
1

) + O+(ε3/2|||η1|||3).

��
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Proposition 4.9 The estimates

Kr(η1 + F(η1) + η3(η1)) = O(ε2|||η1|||5),
Lr(η1 + F(η1) + η3(η1)) = O(ε3/2|||η1|||4)

hold for each η1 ∈ X1.

Proof This result follows from Propositions 2.10(ii) and 3.5 and Theorem 3.10. ��
Proposition 4.10 The estimate

− 1
2χ

+(D)
(
K1(η1 + F(η1) + η3(η1))(η1 + F(η1) + η3(η1)

)2 = O+(ε3/2|||η1|||4)

holds for each η1 ∈ X1.

Proof Using Proposition 3.5 and Theorem 3.10 we find that

− 1
2

(
K1(η1 + F(η1) + η3(η1))(η1 + F(η1) + η3(η1)

)2
= − 1

2 (K1(η1)η1)
2 + O(ε3/2|||η1|||4),

and furthermore

− 1
2χ

+(D)(K1(η1)η1)
2 = − 1

2χ
+(D)

(
(η1η1x )x + K0(η1K0η1)

)2 = 0

(see Lemma 2.6(i)). ��
Corollary 4.11 The estimate

χ+(D)N2(η1, η3(η1)) = − 3
2βω4 − C(ω)c20 + O+(ε3/2|||η1|||3)

holds for each η1 ∈ X1.

We conclude that the reduced equation for η1 is the perturbed full dispersion non-
linear Schrödinger equation

g(D)η+
1 + c20ε

2K0η
+
1 − D(ω)χ+(|η+

1 |2η+
1 ) + O+(ε3/2|||η1|||3) = 0,

where

D(ω) = 2g(2ω)−1A(ω)2c40 + 2g(0)−1B(ω)2c40 + C(ω)c20 + 3
2βω4,

and applying Lemma 4.5(iii), one can further simplify it to

g(D)η+
1 + c20 f (ω)ε2η+

1

−D(ω)χ+(|η+
1 |2η+

1 ) + O+(ε3/2|||η1|||3) + O+(ε3|||η1|||) = 0.
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Finally, we introduce the nonlinear Schrödinger scaling

η+
1 (x) = 1

2εζ(εx)eiωx ,

so that ζ ∈ BR(0) ⊆ χ0(εD)H1(R), where R > 0 and ε is chosen small enough that
ε1/2R ≤ 2R1, solves the equation

ε−2g(ω + εD)ζ + c20 f (ω)ζ − 1
4D(ω)χ0(εD)(|ζ |2ζ ) + ε1/2Oε

0(‖ζ‖1) = 0 (4.3)

(note that |||η1||| = ε1/2‖ζ‖1, the change of variable from x to X = εx introduces an
additional factor of ε1/2 in the remainder term and the symbol D now means −i∂X ).
The invariance of the reduced equation under η1(x) �→ η1(−x) is inherited by (4.3),
which is invariant under the reflection ζ(X) �→ ζ(−X).

5 Solution of the Reduced Equation

In this section, we find solitary-wave solutions of the reduced equations

ε−2g(εD)ρ + ρ + 3
2χ0(εD)ρ2 + ε1/2Oε

0(‖ρ‖1) = 0 (5.1)

and

ε−2g(ω + εD)ζ + c20 f (ω)ζ − a3χ0(εD)(|ζ |2ζ ) + ε1/2Oε
0(‖ζ‖1) = 0, (5.2)

noting that in the formal limit ε → 0 they reduce to respectively the stationary
Korteweg-de Vries equation

− (β − 1
3 )ρXX + ρ + 3

2ρ
2 = 0 (5.3)

and the stationary nonlinear Schrödinger equation

− a1ζXX + a2ζ − a3|ζ |2ζ = 0, (5.4)

which have explicit (symmetric) solitary-wave solutions ρ	 and ±ζ 	 (Eqs. (1.7) and
(1.10)). For this purpose we use a perturbation argument, rewriting (5.1) and (5.2)
as fixed-point equations and applying the following version of the implicit-function
theorem.

Theorem 5.1 LetX be a Banach space, X0 and�0 be open neighbourhoods of respec-
tively x	 in X and the origin in R and G : X0 × �0 → X be a function which is
differentiable with respect to x ∈ X0 for each λ ∈ �0. Furthermore, suppose that
G(x	, 0) = 0, d1G[x	, 0] : X → X is an isomorphism,

lim
x→x	

‖d1G[x, 0] − d1G[x	, 0]‖L(X ) = 0
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and

lim
λ→0

‖G(x, λ) − G(x, 0)‖X = 0, lim
λ→0

‖d1G[x, λ] − d1G[x, 0]‖L(X ) = 0

uniformly over x ∈ X0.
There exist open neighbourhoods X of x	 in X and � of 0 in R (with X ⊆ X0,

� ⊆ �0) and a uniquely determined mapping h : � → X with the properties that

(i) h is continuous at the origin (with h(0) = x	),
(ii) G(h(λ), λ) = 0 for all λ ∈ �,
(iii) x = h(λ) whenever (x, λ) ∈ X × � satisfies G(x, λ) = 0.

5.1 Strong Surface Tension

Theorem 5.2 For each sufficiently small value of ε > 0 equation (5.1) has a small-
amplitude, symmetric solution ρε in χ0(εD)H1(R) with ‖ρε − ρ	‖1 → 0 as ε → 0.

The first step in the proof of Theorem 5.2 is towrite (5.1) as the fixed-point equation

ρ + ε2
(
ε2 + g(εD

)
)−1

(
3
2χ0(εD)ρ2 + ε1/2Oε

0(‖ρ‖1)
)

= 0 (5.5)

and use the following result to ‘replace’ the nonlocal operator with a differential
operator.

Proposition 5.3 The inequality

∣∣∣∣∣ ε2

ε2 + g(εk)
− 1

1 + (β − 1
3 )k

2

∣∣∣∣∣ � ε

(1 + k2)1/2

holds uniformly over |k| < δ/ε.

Proof Clearly

∣∣∣∣∣ ε2

ε2 + g(εk)
− 1

1 + (β − 1
3 )k

2

∣∣∣∣∣ = g(εk) − (β − 1
3 )k

2ε2

(ε2 + g(εk))(1 + (β − 1
3 )k

2)
;

furthermore

g(s) − (β − 1
3 )s

2 � |s|3, |s| ≤ δ,

and

g(s) � s2, s ∈ R.
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It follows that

∣∣∣∣∣ ε2

ε2 + g(εk)
− 1

1 + (β − 1
3 )k

2

∣∣∣∣∣ � ε|k|3
(1 + |k|2)2 , |k| < δ/ε.

��

Using the above proposition, one can write equation (5.5) as

ρ + Fε(ρ) = 0,

where

Fε(ρ) = 3
2

(
1 − (β − 1

3 )∂
2
X

)−1
χ0(εD)ρ2 + ε1/2Oε

1(‖ρ‖1).

It is convenient to replace this equation with

ρ + F̃ε(ρ) = 0,

where F̃ε(ρ) = Fε(χ0(εD)ρ) and study it in the fixed space H1(R) (the solution sets
of the two equations evidently coincide).

We establish Theorem 5.6 by applying Theorem 5.1 with

X = H1
e (R) := {u ∈ H1(R) : u(X) = u(−X) for all X ∈ R},

X = BR(0), �0 = (−ε0, ε0) for a sufficiently small value of ε0, and

G(ρ, ε) := ρ + F̃|ε|(ρ)

(here ε is replaced by |ε| so that G(ρ, ε) is defined for ε in a full neighbourhood of
the origin in R). Observe that

G(ρ, ε) − G(ρ, 0)

= 3
2

(
1 − (β − 1

3 )∂
2
X

)−1 [χ0(|ε|D)(χ0(|ε|D)ρ)2 − ρ2] + |ε|1/2O|ε|
1 (‖ρ‖1),

and noting that

lim
ε→0

‖χ0(|ε|D) − I‖L(H1(R),H3/4(R)) = 0

because
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‖χ0(|ε|D)u − u‖23/4 =
∫

|k|> δ
|ε|

(1 + |k|2)3/4 ∣∣û∣∣2 dk
≤ sup

|k|> δ
|ε|

(1 + |k|2)−1/4
∫

|k|> δ
|ε|

(1 + |k|2)|û|2dk

≤
(
1 + δ2

|ε|2
)−1/4

‖u‖21,

that

χ0(|ε|D)(χ0(|ε|D)ρ)2 − ρ2

= χ0(|ε|D)(χ0(|ε|D)ρ + ρ)(χ0(|ε|D) − I )ρ + (χ0(|ε|D) − I )ρ2

and that H3/4(R) is a Banach algebra, we find that

lim
ε→0

‖G(ρ, ε) − G(ρ, 0)‖1 = 0, lim
ε→0

‖d1G[ρ, ε] − d1G[ρ, 0]‖L(H1(R)) = 0

uniformly over ρ ∈ BR(0). The equation

G(ρ, 0) = ρ + 3
2

(
1 − (β − 1

3 )∂
2
X

)−1
ρ2 = 0

has the (unique) nontrivial solution ρ	 in H1
e (R) and it remains to show that

d1G[ρ	, 0] = I + 3
(
1 − (β − 1

3 )∂
2
X

)−1
(ρ	·)

is an isomorphism.
Noting that ρ	 ∈ S(R), we obtain the following result by a familiar argument (see

Kirchgässner [17, Proposition 5.1] or Friesecke & Pego [10, §4]).

Proposition 5.4 The formula ρ �→ 3
(
1 − (β − 1

3 )∂
2
X

)−1
(ρ	ρ) defines a compact

linear operator H1(R) → H1(R) and H1
e (R) → H1

e (R).

This proposition implies in particular that d1G[ρ	, 0] is a Fredholm operator with
index0. Its kernel coincideswith the set of symmetric bounded solutions of theordinary
differential equation

− (β − 1
3 )ρXX + ρ + 3ρ	ρ = 0, (5.6)

and the next proposition shows that this set consists of only the trivial solution, so that
d1G[ρ	, 0] is an isomorphism.

Proposition 5.5 Every bounded solution to the equation (5.6) is a multiple of ρ	
X and

is therefore antisymmetric.
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Proof Define

ρ1(X̌) = sech2( 12 X̌) tanh( 12 X̌),

ρ2(X̌) = cosh X̌ + 3
2 sech

2( 12 X̌)
(
−8 + 2 cosh X̌ + 5X̌ tanh( 12 X̌)

)
,

where X̌ = (β − 1
3 )

−1/2X , and observe that {ρ1, ρ2} is a fundamental solution set for
(5.6). Its bounded solutions are therefore precisely the multiples of ρ1. ��

5.2 Weak Surface Tension

Theorem 5.6 For each sufficiently small value of ε > 0 equation (5.2) has two small-
amplitude, symmetric solutions ζ±

ε in χ0(εD)H1(R)with ‖ζ±
ε ∓ζ 	‖1 → 0 as ε → 0.

We again begin the proof of Theorem 5.6 by ‘replacing’ the nonlocal operator in
the fixed-point formulation

ζ + ε2
(
ε2c20 f (ω) + g(ω + εD)

)−1
(
−a3χ0(εD)(|ζ |2ζ ) + ε1/2Oε

0(‖ζ‖1)
)

= 0

of equation (5.2) with a differential operator.

Proposition 5.7 The inequality

∣∣∣∣∣ ε2

c20 f (ω)ε2 + g(ω + εk)
− 1

a1 + a2k2

∣∣∣∣∣ � ε

(1 + k2)1/2

holds uniformly over |k| < δ/ε.

Proof Clearly

∣∣∣∣∣ ε2

c20 f (ω)ε2 + g(ω + εk)
− 1

a1 + a2k2

∣∣∣∣∣
= |g(ω + εk) − ε2(c20 f (ω) + 1

2g
′′(ω)k2)|

(c20 f (ω)ε2 + g(ω + εk))(c20 f (ω) + 1
2g

′′(ω)k2)
,

while

g(ω + s) − 1
2g

′′(ω)s2 � |s|3, |s| ≤ δ,

and

g(ω + s) � s2, s ∈ R.
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It follows that∣∣∣∣∣ ε2

c20 f (ω)ε2 + g(ω + εk)
− 1

a1 + a2k2

∣∣∣∣∣ � ε|k|3
(1 + |k|2)2 , |k| < δ/ε.

��
Using the above proposition, one can write equation (5.2) as

ζ + Fε(ζ ) = 0,

where

Fε(ζ ) = −a3
(
a1 − a2∂

2
X

)−1 |ζ |2ζ + ε1/2Oε
1(‖ζ‖1),

or equivalently with

ζ + F̃ε(ζ ) = 0,

where F̃ε(ζ ) = Fε(χ0(εD)ζ ), and studying it in the fixed space H1(R,C). We estab-
lish Theorem 5.2 by applying Theorem 5.1 with

X = H1
e (R,C) = {ζ ∈ H1(R) : ζ(X) = ζ(−X) for all X ∈ R},

X = BR(0), �0 = (−ε0, ε0) for a sufficiently small value of ε0 and

G(ζ, ε) := ζ + F̃|ε|(ζ ).

Observe that

G(ζ, ε) − G(ζ, 0)

= −a3
(
a1 − a2∂

2
X

)−1 [
χ0(|ε|D)

(|χ0(|ε|D)ζ |2χ0(|ε|D)ζ
) − |ζ |2ζ |)]

+ |ε| 12O|ε|
1 (‖ζ‖1),

so that

lim
ε→0

‖G(ζ, ε) − G(ζ, 0)‖1 = 0, lim
ε→0

‖d1G[ζ, ε] − d1G[ζ, 0]‖L(H1(R,C)) = 0

uniformly over ζ ∈ BR(0).
The equation

G(ζ, 0) = ζ − a3
(
a1 − a2∂

2
X

)−1 |ζ |2ζ = 0
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has (precisely two) nontrivial solutions ±ζ 	 in H1
e (R,C), which are both real, and

the fact that d1G[±ζ 	, 0] is an isomorphism is conveniently established by using real
coordinates. Define ζ1 = Re ζ and ζ2 = Im ζ , so that

d1G[±ζ 	, 0](ζ1 + iζ2) = G1(ζ1) + iG2(ζ2),

where G1 : H1
e (R) → H1

e (R) and G2 : H1
o (R) → H1

o (R) are given by

G1(ζ1) = ζ1 − 3a3
(
a1 − a2∂

2
X

)−1
ζ 	2ζ1,

G2(ζ2) = ζ2 − a3
(
a1 − a2∂

2
X

)−1
ζ 	2ζ2

and

H1
e (R) := {u ∈ H1(R) : u(X) = u(−X) for all X ∈ R},

H1
o (R) := {u ∈ H1(R) : u(X) = −u(−X) for all X ∈ R}.

Proposition 5.8 The formulae

ζ1 �→ −3a3
(
a1 − a2∂

2
X

)−1
ζ 	2ζ1, ζ2 �→ −a3

(
a1 − a2∂

2
X

)−1
ζ 	2ζ2

define compact linear operators H1(R) → H1(R), H1
e (R) → H1

e (R) and
H1
o (R) → H1

o (R).

The previous proposition implies in particular that G1, G2 are Fredholm operators
with index 0. The kernel of G1 coincides with the set of symmetric bounded solutions
of the ordinary differential equation

− a1ζ1XX + a2ζ1 − 3a3ζ
	2ζ1 = 0, (5.7)

while the kernel of G2 coincides with the set of antisymmetric bounded solutions of
the ordinary differential equation

− a1ζ1XX + a2ζ1 − a3ζ
	2ζ1 = 0, (5.8)

and the next proposition shows that these sets consists of only the trivial solution, so
that G1, G2 and hence d1G[ζ 	, 0] are isomorphisms.

Proposition 5.9

(i) Every bounded solution to the equation (5.7) is a multiple of ζ 	
X and is therefore

antisymmetric.
(ii) Every bounded solution to the equation (5.8) is a multiple of ζ 	 and is therefore

symmetric.
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Proof Introducing the scaled variables

ζ̌1(X̌) = (a3/a2)
1/2ζ1(X), ζ̌2(X̌) = (a3/a2)

1/2ζ2(X), X̌ = (a2/a1)
1/2X

transforms Eqs. (5.7), (5.8) into

− ζ̌1X̌ X̌ + ζ̌1 − 3ζ̌ 	2ζ̌1 = 0, (5.9)

− ζ̌2X̌ X̌ + ζ̌2 − ζ̌ 	2ζ̌2 = 0, (5.10)

where ζ̌ 	(X̌) = √
2 sech X̌ , and it obviously suffices to establish the corresponding

results for these equations.
Define

ζ̌1,1(X̌) = sech X̌ tanh X̌ ,

ζ̌1,2(X̌) = sech X̌
(
−3 + cosh2 X̌ + 3X̌ tanh X̌

)
,

ζ̌2,1(X̌) = sech X̌ ,

ζ̌2,2(X̌) = sech X̌
(
2X̌ + sinh 2X̌

)

and observe that {ζ1,1, ζ1,2} is a fundamental solution set for (5.9), whose bounded
solutions are therefore precisely themultiplies of ζ̌ 	

X̌
, while {ζ2,1, ζ2,2} is a fundamental

solution set for (5.10), whose bounded solutions are therefore precisely the multiples
of ζ̌ 	. ��
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