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1 Introduction

Parkinson’s disease (PD) is second only to Alzheimer’s 
disease in prevalence [1]. The progressive loss of dopa-
mine-producing neurons in the brain is thought to have a 
complex nature involving multiple pathways such as dopa-
mine metabolism, oxidative phosphorylation, the ubiquitin-
proteasome system, and mitochondrial dysfunction [2]. The 
development of dual-targeting ligands for monoamine oxi-
dase B (MAO-B) and adenosine A2A receptor (AA2AR) has 
garnered significant attention in recent years, supported by 
a growing body of computational and experimental stud-
ies [3–5]. Computational approaches, including molecular 
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Abstract
Currently available treatments for Parkinson’s disease offer limited symptomatic relief to patients and do not halt the 
progress of the disease. Several studies have reported that the use of a multi-targeting approach for treating neurodegen-
erative diseases may prove more beneficial for patients. In this study, two successful drug targets for treating Parkinson’s 
disease known for their potential to slow down neuronal loss were selected. Natural products have long been known to 
be effective and safe in treating various diseases. Therefore, we used computational approaches to screen the North, East, 
and South African Natural Products databases for novel dual-targeting drug candidates against MAO-B and AA2AR. A 
hybrid virtual screening was performed through pharmacophore modelling and molecular docking followed by ADME/
Toxicity evaluation. Our results revealed two furanoisoflavones with equally favourable binding affinities and interaction 
profiles for MAO-B and AA2AR as well as desirable pharmacokinetic properties for drugs acting on the brain. Molecular 
dynamics simulations were conducted to assess the stability of the lead compounds and the reference drugs over time. The 
findings emphasized the notable stability of the suggested drugs in comparison to safinamide. Notably, 7,3’-dimethoxy-
4’,5’-methylenedioxyisoflavone established a crucial hydrogen bond with Gln-206, a characteristic interaction observed 
in most MAO-B inhibitors. Regarding AA2AR, while the interaction strength with Asn-253 may not match that of the 
reference drug, simulation results indicated a parallel trend in protein interaction, suggesting its potential as an antago-
nist. The findings from this study could potentially act as starting points for refining and developing natural products into 
disease-modifying remedies for Parkinson’s disease patients. Nevertheless, it is imperative to conduct experimental assays 
to substantiate these discoveries.
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docking, structure-activity relationship (SAR) analyses, and 
pharmacokinetic property predictions, have been instru-
mental in elucidating the structural determinants for dual 
MAO-B/AA2AR inhibition and identifying promising lead 
compounds. Molecular docking has revealed key binding 
interactions and insights into selectivity, while SAR stud-
ies have identified critical structural modifications, such as 
substitutions at the C8 position of caffeine, that enhance 
dual activity [3]. Virtual screening campaigns, leveraging 
the structural information from computational studies, have 
facilitated the discovery of novel scaffolds with potent dual 
MAO-B/AA2AR inhibitory activity. Additionally, molecu-
lar dynamics simulations have assessed the stability of 
ligand-receptor complexes, refining our understanding of 
the molecular interactions involved [4]. Experimental vali-
dation of the dual-targeting concept has yielded promising 
results. Several studies have reported the development of 
potent dual MAO-B/AA2AR inhibitors based on various 
scaffolds, including caffeine analogues, indanone deriva-
tives, and 2-aminopyridine-3-carbonitriles [3, 6]. Notably, 
C8-substituted caffeine analogues containing a 4-phenyl-
butadiene moiety have demonstrated remarkable potency 
and selectivity for both targets. These findings highlight the 
potential of rational drug design approaches in the devel-
opment of novel therapeutic agents for Parkinson’s disease 
and other neurological disorders. Furthermore, existing 
drugs like safinamide (primarily a MAO-B inhibitor) has 
been shown to exhibit off-target activity against the other 
receptor, suggesting the potential for repurposing this com-
pound for dual-targeting therapy. The most recent medica-
tion approved for PD treatment is istradefylline, which is 
often used as an adjunctive treatment in combination with 
levodopa/carbidopa for people with PD who experience 
motor fluctuations despite standard therapy [7]. Istradefyl-
line acts as a potent AA2AR antagonist with a Ki value of 
2.2 nM [8]. Studies have shown that it has MAO-B inhibi-
tory activity, although in the micromolar range (IC50 = 28 
µM) which prompts the search for novel potent compounds 
[9]. MAO-B is another relevant target in PD, as its blockade 
increases dopamine in the brain while also contributing to a 
reduced production of reactive oxygen species (ROS), such 
as hydrogen peroxide (H2O2) which results in mitochondrial 
dysfunction [10].

MAO is a mitochondrial flavin adenine dinucleotide 
(FAD)-dependent enzyme that catalyzes the degradation 
of some neurotransmitters such as dopamine [11]. It is 
expressed in two isoforms: MAO-A and MAO-B, shar-
ing 70% of sequence similarity [12]. The development 
of MAO-A inhibitors has been abandoned due to their 
tyramine-related side effects such as cardiovascular and 
hypertensive crisis [13, 14]. Therefore, a new generation of 
selective MAO-B inhibitors has been of interest for a while, 

and they have proven to be relevant, especially when con-
sidering the age-related increase in MAO-B activity in par-
kinsonian brains [14].

AA2AR is considered a relevant target in PD, given the 
fact that its blockade increases dopamine signaling, which 
otherwise would be inhibited by adenosine [15]. Moreover, 
an experimental study has shown that AA2AR antagonists 
may prevent the loss of dopaminergic neurons, suggesting 
their neuroprotective activities [16].

Natural products have long been used in traditional medi-
cine for their therapeutic potential and structural diversity 
[17]. Numerous studies have demonstrated the potent MAO 
inhibitory activity of various herbal compounds, including 
flavonoids, xanthones, coumarins [18]. These natural com-
pounds have emerged as promising sources for the develop-
ment of novel synthetic MAO inhibitors [19].

The present study aims to search for novel potent natural 
compounds as dual MAO-B inhibitors/AA2AR antagonists 
that could exert combined symptomatic relief and neuropro-
tective activities for PD patients. The selection of African 
natural products is driven by their diverse chemical com-
positions and historical use in traditional medicine, present-
ing compelling prospects for uncovering novel therapeutic 
agents. This approach not only aims to advance drug dis-
covery initiatives but also highlights the significance of 
biodiversity conservation in exploring new treatments for 
complex neurological conditions such as Parkinson’s dis-
ease. A multi-stage virtual screening approach, combin-
ing pharmacophore, docking-based, and ADME/Toxicity 
screening, was conducted to study at the molecular level the 
interactions of natural products from North, East, and South 
Africa with the structures of MAO-B and AA2AR (Fig. 1). 
The stability of the lead compounds was further assessed 
through 100 ns molecular dynamics simulations and com-
pared to the reference drugs.

2 Materials and Methods

2.1 Protein Preparation and Grid Generation

The crystallographic structures of MAO-B (Chain A in 
complex with safinamide, SAG) and AA2AR (in complex 
with ZM-241385, ZMA) were fetched and retrieved from 
the RCSB Protein Data Bank (https://www.rcsb.org/) at a 
resolution of 1.7 Å, with PDB IDs: 2V5Z and 5IU4 respec-
tively [20, 21]. Co-crystallized ligands and water molecules 
were removed from the proteins as they were not involved 
in the ligand binding. The target proteins were optimized 
using protein preparation wizard in Maestro 12.5 [22]. 
Missing loops and side-chain atoms were filled using Prime 
[23–25]. Explicit hydrogens were added to the structures. 
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Protonation states were optimized for all residues using 
PROPKA at pH = 7.0 [26]. Receptor grid generation was 
used to generate the active site grid box with a size of 15 Å 
at the centroid of the active site residues formed by: Tyr-60, 
Pro-102, Pro-104, Leu-164, Phe-168, Leu-171, Cys-172, 
Ile-198, Ile-199, Gln-206, Ile-316, Tyr-326, Phe-343, Tyr-
398 and Tyr-43 for MAO-B [27], and Asn-253, Ser-277, 
His-278, Thr-88, Phe-168, Glu-169, Met-177, Leu-249, Ile-
274 for AA2AR [28].

2.2 Ligands’ Database Preparation

The chemical structures of 6,511 ligands were retrieved and 
downloaded from the Northern and Eastern African Natural 
Products Databases (NANPDB and EANPDB) in SDF-3D 
format [29, 30]. A total of 1,017 natural compounds were 
retrieved from the South African Natural Compounds Data-
base (SANCDB) which is a free database containing com-
pounds isolated from the plant and marine life in and around 
South Africa [31]. Possible ionization states were generated 
for all ligands at physiological pH of 7.0 ± 2.0 using Lig-
Prep module of Maestro 12.5 and OPLS3e force field [32]. 
QikProp module was employed to calculate physicochemi-
cal properties and assess the drug-likeness of the selected 
ligands [33]. Primary filtration was conducted based on 
Lipinski’s rule of five to eliminate all compounds that pres-
ent any violation of the five rules of orally active drugs [34, 
35].

2.3 Pharmacophore Modelling

Pharmacophore modelling was conducted using the Phase 
module of Maestro 12.5 [36]. Twenty-five known inhibitors 
of MAO-B were sourced from ChEMBL database (Table S1 
in Supporting Information) [37]. Selected inhibitors were 
prepared with LigPrep at the default settings and added to 
the Phase module to develop pharmacophore models, with 
hypothesis settings set to match 25% and a preferred mini-
mum number of features of five. As for AA2AR, a five-point 
pharmacophore model previously published within our 
group was used as a query for virtual screening [28].

2.4 Structure-based Virtual Screening

Structure-based virtual screening of the filtered ligands was 
conducted against MAO-B and AA2AR by employing Glide 
module in Maestro 12.5 using Glide SP (standard precision) 
docking protocol with default parameters [38]. To further 
reduce the number of obtained hits, the top-ranking com-
pounds which displayed a binding score of − 10.0 kcal/mol 
or less were then subject to a molecular docking study using 
Extra precision (XP) in Glide module [39].

2.5 ADME/Toxicity Properties Prediction

In silico ADME/Toxicity prediction is a rapid tool that can 
help to identify drug-like compounds by calculating their 
pharmacokinetic parameters, physicochemical properties, 
and toxicity profiles. This can significantly reduce the time 
and resources required for the overall drug development 

Fig. 1 The crystallographic structure of MAO-B and AA2AR. Binding cavities are shown in surface representation
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ΔGSA represents the difference in surface area energies 
between the complex and the combined surface area ener-
gies of the apo protein and the ligand.

3 Results

3.1 Pharmacophore Model Validation

Pharmacophore hypotheses were generated using Phase 
module for MAO-B (Table S2 in Supporting Information). 
The most accurate pharmacophore model consisted of one 
hydrophobic group, two aromatic rings and two hydrogen 
bond acceptors, as for AA2AR a previously pharmacophore 
model within our group consisting of three aromatic rings, 
one hydrogen bond donor and one hydrogen bond acceptor 
was selected as shown in Fig. 2. Pharmacophore hypotheses 
for MAO-B were validated using 68 active ligands and 6,931 
decoys downloaded from the DUD-E database (https://dude.
docking.org/) [49]. The performance of the best pharmaco-
phore models is depicted in Table 1. The receiving operating 
characteristic (ROC) plots and percentage screening results 
are shown in Figure S1 in Supporting Information. The 
prepared compounds were initially screened using the gen-
erated MAO-B pharmacophore model to remove the com-
pounds that did not match the pharmacophoric sites. This 
reduced the dataset to 942 compounds, which were then 
screened using the AA2AR pharmacophore. At this stage, 
426 out of the 4,201 compounds were retained.

3.2 Glide Molecular Docking Results

The accuracy of the Glide docking protocol was assessed 
by redocking the native ligands and comparing the result-
ing poses to the experimental conformations as illustrated in 
Fig. 3. The RMSD values between the native and redocked 
structures were calculated, resulting in values of 1.26 Å for 
safinamide and 1.67 Å for ZM-241,385. These low RMSD 
values indicate a good agreement between the predicted 
and experimental binding poses, thereby validating the reli-
ability of the Glide docking protocol. Structure-based vir-
tual screening was conducted on the selected compounds 
against MAO-B and AA2AR active sites using SP mode in 
Glide. Twenty compounds displayed a docking score of 
− 10.0 kcal/mol or lower against the selected protein targets. 
Glide Extra Precision (XP) mode was employed to further 
predict and score the orientations of each drug with respect 
to the binding sites of MAO-B and AA2AR. The compounds 
were ranked by their docking scores for both targets, then 
a consensus rank was calculated for each compound as 
shown in Table 2. The chemical structures of the retained 
compounds are displayed in Fig. 4. Five compounds which 

process. In the present study, the QikProp tool was used to 
predict pharmacokinetic parameters such as water solubil-
ity, human oral absorption, central nervous system (CNS) 
activity, brain/blood partition coefficient (QPlogBB), 
human serum albumin binding, and Madin-Darby Canine 
Kidney (MDCK) cell permeability [33, 40] Organ toxicity 
and toxicity endpoints were predicted using ProTox-3.0 web 
server for the prediction of toxicity of chemicals [41].

2.6 Molecular Dynamics Simulations

Two promising compounds with high affinity for MAO-
B) and AA2AR, along with favourable pharmacokinetic 
properties, were selected for molecular dynamics (MD) 
simulations to investigate and compare the stability of their 
protein-ligand complexes over time relative to reference 
drugs. The Desmond module of Schrödinger’s suite (2020-
3) was employed to perform 100 ns MD simulations [42, 
43]. Utilizing the System Builder panel within Desmond, 
a water-soaked solvated system was constructed for each 
protein. The OPLS3e force field was employed, and for both 
proteins, a 10 Å orthorhombic box was employed in con-
junction with the Single Point Charge (SPC) solvent model. 
Randomly adding enough counterions (Na+ and Cl−) neu-
tralized the system, and the addition of 0.15 M NaCl main-
tained an isosmotic state. The OPLS3e force field parameters 
were utilized as the default Desmond protocol to subject the 
solvated model system to energy minimization [44, 45]. 
Subsequently, the system was equilibrated throughout the 
simulation duration via the NPT ensemble at a constant tem-
perature of 300 K and a pressure of 1 atm, employing the 
Nose-Hoover thermostat algorithm and Martyna-Tobias-
Klein Barostat algorithm, respectively [46]. A total of 100 
ns simulations were conducted, during which 1,000 frames 
were recorded. Finally, the Simulation Interaction Diagram 
(SID) tool was used to analyse the MD simulation trajectory 
[47]. The Prime module was also utilized to perform MM-
GBSA free energy calculations [48] to ascertain the relative 
binding free energies and energy characteristics of individ-
ual ligand, receptor, and complex structures that influence 
overall binding energies following the formula below:

∆Gbind = ∆Gsolv + ∆EMM + ∆GSA (1)

Where, ΔGsolv represents the difference in GBSA solvation 
energy between the protein-ligand complex and the com-
bined solvation energies of the apo protein and the ligand.

ΔEMM represents the difference in minimized energies 
between the protein-ligand complex and the combined ener-
gies of the apo protein and the ligand.
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acting on the CNS. Alternatively, brain/blood partition coef-
ficient (logBB) was also predicted, the highest values were 
observed for 7,3’-dimethoxy-4’,5’-methylenedioxyisofla-
vone, and maximaisoflavone H since these parameters are 
correlated. Moreover, MDCK cells are a good mimic for 
the blood-brain barrier, predicted apparent MDCK cell per-
meability is considered great if > 500 and poor if < 25. The 
predicted MDCK values show that most compounds have 
medium to high cell permeability, particularly for 7,3’-dime-
thoxy-4’,5’-methylenedioxyisoflavone, and maximaisofla-
vone H which yielded high values of 2546.71 and 2393.63, 
respectively. Prediction of binding to human serum albumin 
(QPlogKhsa) yielded values ranging between − 0.93 and 
0.68 which are within the recommended range (− 1.5 and 
1.5) for 95% of known drugs.

displayed binding scores of − 7.0 kcal/mol or higher were 
omitted from the results.

3.3 ADME/Toxicity Evaluation Results

Table 3 summarizes the ADME properties of the selected 
natural products as predicted by QikProp. All compounds 
exhibit aqueous solubility values within the recommended 
range (− 6.5 to 0.5), aligning with 95% of known drugs. 
Additionally, the natural compounds demonstrate superior 
predicted human oral absorption compared to reference 
inhibitors, suggesting enhanced bioavailability. Predicted 
CNS permeability displayed the highest values for eight 
compounds belonging mainly to isoflavones which is an 
important parameter to consider in the development of drugs 

Table 1 Validation of the proposed pharmacophore model for MAO-B and AA2AR
Target Hypothesis EF1% BEDROC160.9 ROC AUAC Total Actives Ranked Actives Matches
MAO-B AAHRR_1 21.96 0.35 0.90 0.90 68 68 4 of 5
AA2AR ADRRR_2 51.00 0.89 0.97 0.96 14 14 4 of 5
EF1%: enrichment factor at 1% of the validation set; BEDROC160.9: Boltzmann-enhanced discrimination of receiver operating characteristics; 
ROC: receiver operating characteristic curve value; AUAC: area under the accumulation curve.

Fig. 3 Superposition and RMSD values of native ligands (shown in yellow) and redocked ligands (shown in in green)

 

Fig. 2 Proposed 3D-pharmacophore models to screen for MAO-B 
inhibitors (A) and AA2AR antagonists (B). Hypothesis consisted of 5 
pharmacophoric features: one hydrophobic group, two aromatic rings 

and two hydrogen bond acceptors for MAO-B; three aromatic rings, 
one hydrogen bond donor and one hydrogen bond acceptor for AA2AR
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each colour. Dark blue indicates high probability, while 
light yellow signifies low probability.

The toxicity heatmap analysis indicates that most of the 
studied natural products have a low likelihood of causing 
neurotoxicity, in contrast to the reference drugs. Cardio-
toxicity appears inactive for the majority of compounds, 
though the probability varies. While carcinogenicity is also 
assessed, the probability is very low across all compounds. 

The heatmap shown in Fig. 5 illustrates the toxicity pro-
files of the studied compounds across 11 toxicity endpoints. 
The toxicity endpoints include hepatotoxicity, neurotoxic-
ity, nephrotoxicity, respiratory toxicity, cardiotoxicity, car-
cinogenicity, immunotoxicity, mutagenicity, cytotoxicity, 
ecotoxicity, and clinical toxicity. The legend indicates the 
class of toxicity and the prediction toxicity associated with 

Table 2 Molecular docking results of the top-ranking natural compounds with MAO-B and AA2AR
N° Compound Glide XP (kcal/mol) Hydrogen bonds Aromatic interactions

MAO-B AA2AR MAO-B Dis-
tance* 
(Å)

Atom 
type

AA2AR Atom 
type

Dis-
tance* 
(Å)

MAO-B AA2AR

— safinamide −13.2 −9.1 Gln-206 2.9 N — — — Ile-199
Tyr-326

Phe-168

— ZM-241,385 −9.9 −10.9 — — — Glu-169
Asn-253

NH2
N

2.8
3.1

Tyr-326
Tyr-435

Phe-168
Hid-250

1 aliarin −11.5 −10.8 Thr-201 2.6 OH Asn-253
Ala-265

OH
OH

2.9
3.4

Tyr-326 Phe-168

2 norisojamicin −12.6 −9.3 Pro-102 2.9 OH Phe-168 OH 3.3 Tyr-326 Phe-168
Hid-250

3 kraussianone 6 −12.7 −8.9 Ile-199 3.1 OH Glu-169
Tyr-271

OH
OH

3.2
2.8

— —

4 3,6-dihyroxy-1,7-dimethyl-
9-methoxyphenanthrene

−10.4 −11.0 Cys-172
Ty-188

3.3 OH
OH

Asn-253
Tyr-271

OH
OH

3.1
2.5

Tyr-326
Tyr-398

Phe-168

5 parvisoflavone B −12.3 −9.1 Ile-199 2.7 OH — — — Tyr-326 Tyr-271
6 gancaonin C −10.1 −12.7 Glu-84

Pro-102
Thr-201

3.2
3.4
2.9

OH
OH
OH

Ala-81
Glu-169

OH
OH

3.2
2.9

— Phe-168
Hid-250

7 5,7-dihydroxy-
3’-(4hydroxy-3methylbutyl) 
3,6,4’-trimethoxyflavone

−11.2 −10.0 Glu-84
Thr-201

3.5
3.1

OH
OH

Asn-253 OH 3.1 Tyr-326 Phe-168

8 dalbergin −11.2 −10.1 Tyr-188 3.6 OH Asn-253
Tyr-271

O
OH

2.8
3.3

Tyr-398 Phe-168

9 7,3’-dimethoxy-4’,5’-methyl-
enedioxyisoflavone

−10.5 −10.3 — — — Phe-168 O 3.4 Tyr-326
Tyr-398

Phe-168

10 alpinumisoflavone −11.3 −9.4 — — — Asn-253 O 3.1 — Phe-168
11 maximaisoflavone H −10.3 −10.4 — — — Asn-253 O 2.9 Tyr-326 Phe-168

Hid-250
12 11-methyoxylettowianthine −9.6 −11.1 Tyr-188 3.1 O Asn-253 O 2.8 Phe-343 Phe-168
13 6-demethyldurallone −11.5 −8.4 — — — — — — Tyr-326 Phe-168
14 calopogonium isoflavone A −11.2 −8.8 — — — Asn-253 O 3.1 Tyr-326 Phe-168

Tyr-271
15 calopogonium isoflavone B −11.5 −8.1 — — — — — — Tyr-326 Phe-168

Hid-250
16 isoarnottinin-4’-O-beta-D-

glucoside
−8.1 −10.3 Tyr-435 3.5 OH Glu-169

Asn-253
OH
OH

2.9
3.3

— —

17 3-(4-methoxyphenyl)-
6-methoxy-8,8-dimethyl-
4H,8H-benzo[1,2-b:3,4-b’] 
dipyran-4-one

−10.3 −9.5 — — — — — — Tyr-326 Phe-168

18 isojamaicin −11.5 −8.0 — — — — — — Tyr-326
Tyr-398

Phe-168
Tyr-271

19 forbexanthone −10.9 −8.7 — — — — — — Tyr-326 Phe-168
20 durmillone −7.1 −9.5 — — — — — — Tyr-326

Tyr-398
Phe-168
Hid-250

*2.2–2.5 Å indicates a strong hydrogen bond whereas 2.5–3.1 Å indicates a weak hydrogen bond.
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3.4 Lead Candidates’ Analysis

To discover potential dual MAO-B/AA2AR inhibitors from 
natural products, visual inspection was conducted on the 
highest-ranking compounds, the latter revealed that most 
compounds belong to flavonoids, isoflavones, alkaloids and 
anthraquinones chemical classes.

Two compounds that exhibited good docking scores 
and favourable interactions for MAO-B and AA2AR bind-
ing sites as well as suitable ADME profiles for CNS-drugs 

The most concerning endpoint is immunotoxicity, which 
shows a high probability of activity for the natural com-
pounds. To confirm these findings, further in vitro cyto-
toxicity assays are necessary to assess the toxic effects on 
immune cells. Overall, certain compounds, like compound 
11, exhibit fewer “active” toxiccity predictions, potentially 
making them safer alternatives.

Fig. 4 The chemical structures of the reference drugs and the retained natural products after the virtual screening
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7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone is a 
furanoisoflavone which exhibited a docking score of − 10.5 
and − 10.3 kcal/mol for MAO-B and AA2AR, respectively. 
The furan ring linked to the isoflavone skeleton was found 
to be directed towards the entrance cavity and involved in 
numerous hydrophobic interactions.

Maximaisoflavone H is another furanoisoflavone that is 
characterized by its furan ring which is linked to the bicyclic 
scaffold of the isoflavone skeleton. This compound interacts 
in a similar fashion as seen in other isoflavones but with the 
furan ring occupying the substrate cavity and is sandwiched 
by the aromatic cage forming three 𝜋-𝜋 stacking interac-
tions with the residues Ty-398 and Tyr-435. Another 𝜋-𝜋 
stacking interaction was observed through the phenyl ring 
and the gating residue Tyr-326 [56, 57].

Analysis of the redocking of the co-crystallized adenos-
ine A2A antagonist, ZM-241,385, revealed that the latter is 
surrounded by a network of amino acids: Leu-85, Phe-168, 
Glu-169, Met-177, Trp-246, Leu-249, His-250, Asn-253, 
His-264, Leu-267, Met-270. These residues constitute the 
inhibitory binding cavity [58].

Upon further investigation, ZM-241,385 was found 
to interact with two polar residues Glu-169 and Asn-
253 via the formation of non-covalent hydrogen bonds. 

were selected for further analysis. Binding conformations 
and protein-ligand interactions analysis were conducted on 
7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone and maxi-
maisoflavone H using PyMOL and Ligplot + v2.2 as shown 
in Figs. 6 and 7 respectively [50, 51].

Literature investigation revealed the presence of 
7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone and maxi-
maisoflavone H in Milletia dura and Milletia oblata respec-
tively which both belongs to the Leguminosae family and 
can be found in East tropical Africa as ornamental trees 
[52–54].

Analysis of the redocked safinamide revealed that it inter-
acts through hydrogen bonding with Gln-206 as mentioned 
in the literature [3]. Various hydrophobic interactions were 
observed consisting of the following residues: Pro-102, Trp-
119, Leu-164, Leu-167, Phe-168, Leu-171, Tyr-326, Pro-
103, Cys-172, Pro-104, Ile-198, Ile-199, Tyr-435, Phe-343, 
Tyr-398, Tyr-188. These amino acids form the entrance and 
substrate cavity of MAO-B binding site [55].

ZM-241,385 was also docked to MAO-B cavity to gain 
an insight into its mode of interaction, results show a dock-
ing score of − 9.9 kcal/mol with a similar hydrophobic inter-
actions profile as seen in other ligands.

Table 3 ADME prediction results of the selected natural products
N° Compound QPlogS %HOA CNS QPlogBB QPPMDCK QPlogKhsa
— safinamide −1.87 79.74 0 −0.22 313.14 −0.29
— ZM-241,385 −3.8 73.84 −2 −1.78 53.51 −0.2
1 aliarin −4.69 78.33 −2 −2.20 41.02 0.16
2 norisojamicin −4.79 100 0 −0.42 687.59 0.32
3 SANC00352 −6.05 100 −2 −1.01 259.89 0.68
4 3,6-dihyroxy-1,7-dimethyl-9-methoxyphenanthrene −4.14 100 0 −0.51 562.21 0.34
5 parvisoflavone B −4.73 88.27 −2 −1.23 128.02 0.36
6 gancaonin C −4.49 74.13 −2 −2.23 29.23 0.12
7 5,7-dihydroxy-3’-(4hydroxy-3methylbutyl)

3,6,4’-trimethoxyflavone
−5.42 91.64 −2 −1.77 128.02 0.37

8 dalbergin −3.34 90.83 −1 −0.70 311.21 0.01
9 7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone −2.9 100 1 0.20 2546.71 −0.35
10 alpinumisoflavone −5.09 100 −1 −0.79 317.42 0.54
11 maximaisoflavone H −2.5 100 1 0.20 2393.63 −0.33
12 11-methyoxylettowianthine −2.86 85.92 0 -0.68 282.93 −0.53
13 6-demethyldurallone −5.62 100 0 −0.57 750.08 0.52
14 calopogonium isoflavone A −5.25 100 1 0.08 2444.51 0.53
15 calopogonium isoflavone B −4.58 100 1 0.15 2385.13 0.28
16 isoarnottinin-4’-O-beta-D-glucoside −2.69 48.64 −2 −2.90 9.10 −0.93
17 3-(4-methoxyphenyl)-6-methoxy-8,8-dimethyl-

4H,8H-benzo[1,2-b:3,4-b’] dipyran-4-one
−5.34 100 1 0.03 2534.48 0.51

18 isojamaicin −4.64 100 1 0.08 2426.05 0.23
19 forbexanthone −4.84 94.08 −1 −0.89 254.50 0.39
20 durmillone −4.72 100 1 0.08 2398.81 0.27
QPlogS: Predicted water solubility; %HOA: Percentage of human oral absorption; CNS: Predicted central nervous system activity on a -2 (inac-
tive) to + 2 (active) scale; QPlogBB: Predicted brain/blood partition coefficient; QPPMDCK: Predicted apparent MDCK cell permeability in 
nm/sec; QPlogKhsa: Prediction of binding to human serum albumin.
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with a similar binding mode to the native antagonist, where 
hydrogen bonding with Asn-253 was maintained.

The binding pattern of 7,3’-dimethoxy-4’,5’-methylene-
dioxyisoflavone showed that it interacted with the polar 
residue Asn-253 via its endocyclic oxygen atom. Besides, 
two additional 𝜋-𝜋 stacking interactions involving Phe-168 
and Tyr-271 took place.

Although structurally different, maximaisoflavone H 
shared some resemblance in the binding mode to that of 
7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone. The 
ligand’s exocyclic oxygen atom was involved in the hydro-
gen bonding interaction with Asn-253. Regarding 𝜋-𝜋 
interactions, the ligand gained an interaction with Hid-250, 
while maintaining two interactions with Phe-168.

3.5 Molecular Dynamics Simulations Analysis

The lead compounds obtained from the virtual screening 
study could be further validated using molecular dynam-
ics simulations to assess the stability of the selected natu-
ral products with MAO-B and AA2AR under dynamical 

Hydrophobic interactions also played into anchoring the 
antagonist, whereby an adjacent aromatic amino acid, Phe-
168, was reported to form 𝜋-𝜋 stacking interactions with the 
heterocyclic core and the furan ring of the antagonist. These 
two components are deemed crucial to a good ligand-bind-
ing pocket interaction, seeing that they are responsible for 
mediating the receptor’s biological activity [59].

Safinamide was also docked into AA2AR binding pocket. 
Although results showed a docking score of − 9.1 kcal/mol, 
an indicating sign of a good binding affinity, safinamide 
showed little to no resemblance to ZM-241,385 binding 
profile. The inhibitor formed hydrophobic interactions with 
several residues from the orthosteric region of the receptor 
[60], this includes but not limited to: Ile-66, Val-84, Leu-85, 
Leu-167, Met-270, Tyr-271. While Glu-169 contributed to 
hydrophilic interactions via the formation of one hydrogen 
bond with the inhibitor’s oxygen group.

Docking results of the selected ligands revealed a score of 
− 10.3 and − 10.4 kcal/mol for 7,3’-dimethoxy-4’,5’-meth-
ylenedioxyisoflavone and maximaisoflavone H respectively 

Fig. 5 Toxicity profiles of reference drugs and top-scoring natural products across 11 toxicity endpoints
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structural deviations equilibrating around 2.4 Å in the last 
20 ns in Complex B whereas it equilibrated much faster in 
Complex C after the first 40 ns. Meanwhile, the reference 
complex displayed higher deviations reaching an RMSD 
value of 3.5 Å throughout the simulation time.

However, C-alpha atoms of the reference complex A 
showed notable structural deviations which are stabilized at 
around 3.5 Å after the first 20 ns. Moreover, visual inspec-
tion of MD trajectory showed that the selected compounds 
are stable in the binding site demonstrating negligeable 
deviations with RMSD value averaging around 0.4 Å in 
Complex B and C in contrast to the reference inhibitor 
which is stabilized at around 1.5 Å.

On the other hand, the RMSD analysis of C-alpha atoms 
of AA2AR revealed a similar pattern in deviation which 
converges at 2.8 Å in the three complexes. Furthermore, 
an inspection of the selected ligands’ RMSD revealed that 
the reference inhibitor with respect to protein is averag-
ing at around 1.2 Å. However, these atomic deviations are 
less noticeable in the selected compounds with an average 

conditions. The predicted binding poses as well as the sta-
bility of 7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone, 
and maximaisoflavone H in complex with MAO-B and 
AA2AR were evaluated and compared to reference inhibi-
tors, safinamide and ZM-241,385 using 100 ns molecular 
dynamics simulations regarding various parameters such 
as root mean square deviation (RMSD), root-mean square 
fluctuation (RMSF), protein-ligand interactions analysis, 
and cross-correlation matrices.

3.5.1 Root-mean Square Deviation

The protein and ligand RMSD were evaluated to check their 
structural stability over time and measure the conforma-
tional changes of the given complexes as well as describe 
whether the simulation is in equilibrium. The RMSD plots 
of C-alpha atoms and the ligands with respect to the proteins 
are displayed in Fig. 8.

The analysis of MAO-B protein in complex with 
7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone and maxi-
maisoflavone H remained significantly stable with slight 

Fig. 6 Docking poses of 7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone and maximaisoflavone H in the MAO-B (purple blue colour) and AA2AR 
(orange colour) binding sites, respectively, are shown alongside the superimposed native ligands
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interacting with the ligands exhibit fluctuations around 1.2 
Å, suggesting a stable binding pocket. The regions with the 
highest mobility are dispersed around the sequence regions, 
specifically residues 280–300 at the N-terminal position and 
residues 208–219. This heightened mobility is due to the 
undetermined nature of these sequence segments [63].

3.5.3 Protein-Ligand Interactions

Monitoring the protein-ligand contacts throughout the 
simulation highlighted the contribution of each amino acid 
during the protein-ligand interactions. The protein-ligand 
diagrams of MAO-B complexes (Fig. 10) showed that most 
interactions with MAO-B active site consists of hydropho-
bic forces, the hydrogen bond involving Gln-206 present in 
the reference inhibitor, safinamide, is preserved and stron-
ger in MAO-B complex with 7,3’-dimethoxy-4’,5’-methyl-
enedioxyisoflavone, however this interaction is not present 
in maximaisoflavone H in complex C. The most important 
hydrophobic interactions were mainly involving Leu-171, 
Ile-199, Tyr-326, Tyr-398, and Tyr-435.

RMSD value of 0.8 Å which can be attributed to their lim-
ited flexibility.

3.5.2 Root-mean Square Fluctuation

The RMSF analysis of C-alpha atoms of the studied proteins 
was used to evaluate the average atomic fluctuations for a 
given amino acid during the simulation (Fig. 9). RMSF is an 
indicator that reflects the level of flexibility and the stabil-
ity of any given residue during a simulation [61, 62]. Fig-
ure 9 shows that residues of the three studied ligands with 
MAO-B enzyme remained stable throughout the simulation 
time especially at the level of residues involved in ligand 
binding. The results show that the highest fluctuations were 
observed around 4.5 Å for the three complexes. However, 
these highly fluctuating protein residues are not involved 
in ligand interactions as they are in the C-terminal region 
which indicates that the conformational change was slight. 
For AA2AR, the RMSF analysis indicates a consistent pat-
tern of fluctuations across all three complexes. Most fluc-
tuating residues peak at 2.4 Å. However, the amino acids 

Fig. 7 The ligand interaction diagrams, created using LigPlot + v2.2, illustrate the reference ligand, 7,3’-dimethoxy-4’,5’-methylenedioxyisofla-
vone, and maximaisoflavone H in complex with MAO-B (A, B, C) and AA2AR (D, E, F), respectively
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interaction with Phe-168 and a water mediated interaction 
with Glu-169. The last two interactions were conserved 
through the simulation for maximaisoflavone H and 
7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone, although 
the latter displayed a more dampened interaction with Asn-
253, maximaisoflavone H completely lost its H-bonding 
interaction with Asn-253. Intriguingly, another H-bonding 

Figure 11 plots the different type of interactions between 
the binding pocket residues of AA2AR and the docked 
ligands. The plot provides valuable insights into the preser-
vation of key contacts (H-bonding, hydrophobic interactions 
and water mediated contacts) throughout the simulation.

Complex D displays a strong H-bonding interaction 
involving Asn-253, an equally important π-π stacking 

Fig. 8 RMSD analysis of C-alpha atoms and ligand RMSD with respect 
to protein during MD simulation. (A, B, C) MAO-B in complex with 
safinamide, 7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone, and 

maximaisoflavone H respectively; (D, E, F) AA2AR in complex with 
ZM-241,385, 7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone, and 
maximaisoflavone H, respectively
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Fig. 9 Protein root mean square fluctuation (RMSF) plot of MAO-B 
and AA2AR in complex with the selected compounds. (A, B, C) 
MAO-B in complex with safinamide, 7,3’-dimethoxy-4’,5’-methyl-

enedioxyisoflavone, and maximaisoflavone H respectively; (D, E, F) 
AA2AR in complex with ZM-241,385, 7,3’-dimethoxy-4’,5’-methyl-
enedioxyisoflavone, and maximaisoflavone H, respectively
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Fig. 10 Protein-ligand interactions histograms of safinamide (A), 
7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone (B) and maximaiso-
flavone H (C) in complex with MAO-B. Residues involved in the inter-

actions are presented in the x axis, the y axis presents the normalized 
value of the temporal length of the interactions during the simulation
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Fig. 11 Protein-ligand interactions histograms of ZM-241,385 (D), 
7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone (E) and maximaiso-
flavone H (F) in complex with AA2AR. Residues involved in the inter-

actions are presented in the x axis, the y axis presents the normalized 
value of the temporal length of the interactions during the simulation
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3.5.5 Dynamic Cross-correlation Matrices

A contour plot of the dynamic cross-correlation matrices 
(DCCMs) constitutes a heatmap where atomic motions with 
strong correlations are represented by high correlation val-
ues [64, 65]. The DCCMs provide insights into the corre-
lated motions between different regions of the protein-ligand 
complex during the MD simulations. By analyzing these 
matrices, we can identify regions that exhibit concerted 
motions, which are critical for understanding the dynamic 
behavior of the system and the stability of the interactions 
between the protein and the ligand. This information helps 
us pinpoint areas that are crucial for maintaining the bind-
ing affinity and overall structural integrity of the complex. 
Strong positive correlations between specific pairs of atoms 
in the DCCM indicate coordinated motions, suggesting that 
these atoms move together over time. Conversely, strong 
negative correlations indicate anti-correlated motions, sug-
gesting that changes in one atom’s position are associated 
with opposite changes in another atom’s position at a later 
time.

The DCCMs plots in Fig. 12 show the cross-correlations 
between the residues of the MAO-B protein (complexes A, 
B, and C) and the AA2AR (complexes D, E, and F). Cross-
correlations are a measure of how correlated the motions 
of two residues are. A high cross-correlation indicates that 
the two residues move together, while a low cross-corre-
lation indicates that the two residues move independently. 
The plots for complexes A, B, and C show that there are 
strong cross-correlations between many of the residues in 
the MAO-B protein. This suggests that the MAO-B protein 
is a rigid structure, with the residues moving together as a 
unit. The plots for complexes D, E, and F show that there are 
also strong cross-correlations between many of the residues 
in the adenosine A2A receptor. However, the cross-correla-
tions are not as strong as in the MAO-B protein, suggesting 
that the adenosine A2A receptor is a more flexible structure.

3.5.6 Principal Component Analysis

Principal Component Analysis (PCA) is a technique used 
to analyze the movement of biomolecular systems in MD 
simulations [66]. It is a dimensionality reduction technique 

interaction can be seen with Asn-181 in complex F, which 
was not depicted earlier in the molecular docking study.

3.5.4 MM-GBSA Free Energy Calculations

Table 4 shows the mean values and standard deviations 
of all free energy components including the binding free 
energy taken from MM-GBSA analysis for the six com-
plexes, A-F. The binding free energy is a measure of the 
overall strength of the interaction between the protein and 
ligand. The largest contributors to the binding energy for 
all complexes are the electrostatic energy, polar solvation 
energy, and van der Waals energy. The electrostatic energy 
is the energy of interaction between charged atoms and is 
typically negative for protein-ligand complexes due to the 
formation of favourable electrostatic interactions. The polar 
solvation energy is the energy of interaction between the 
polar atoms of the ligand and the surrounding solvent mol-
ecules. It is typically positive, as it represents the energy 
required to remove the ligand from the solvent. The van 
der Waals energy is the energy of attraction between non-
polar atoms and is typically negative for protein-ligand 
complexes. The other energy components, such as the cova-
lent interaction energy and lipophilic interaction energy, 
are generally smaller in magnitude. The covalent interac-
tion energy is the energy of interaction between covalently 
bonded atoms and is typically negative for protein-ligand 
complexes due to the formation of new covalent bonds. The 
lipophilic interaction energy is the energy of interaction 
between non-polar atoms and the surrounding solvent mol-
ecules. It is typically negative, as it represents the energy 
released when non-polar atoms are removed from the sol-
vent. Complex B exhibited the lowest binding free energy 
for both MAO-B and AA2AR complexes. 7,3’-dimethoxy-
4’,5’-methylenedioxyisoflavone emerged as the most sta-
ble complex energetically, with binding free energies of 
-139.40 ± 6.66 and − 74.23 ± 2.95 kcal/mol for MAO-B and 
AA2AR, respectively.

ΔGbinding: Binding energy; ΔGcoulomb: Coulombic inter-
action energy; ΔGcovalent: Covalent interaction energy; 
ΔGhbond: Hydrogen bonding energy; ΔGlipo: Lipophilic 
interaction energy; ΔGsolv: Solvation free energy; ΔGvdW: 
van der Waals energy.

Table 4 Mean values and standard deviations of all energetic components including the binding energy taken from MM-PBSA analysis
Complex MM-GBSA (kcal/mol)

ΔGbinding ΔGcoulomb ΔGcovalent ΔGhbond ΔGlipo ΔGsolv ΔGvdW

A −133.69 ± 6.88 −1.49 ± 16.98 14.30 ± 4.52 −12.63 ± 0.59 −29.41 ± 2.21 8.92 ± 19.78 −109.76 ± 5.70
B −139.40 ± 6.66 −3.03 ± 23.22 10.77 ± 2.20 −11.69 ± 0.55 −31.76 ± 1.26 10.38 ± 21.51 −109.21 ± 3.35
C −133.20 ± 5.79 15.97 ± 21.85 12.63 ± 1.35 −11.38 ± 0.50 −32.88 ± 0.51 0.69 ± 21.31 −113.50 ± 5.61
D −72.22 ± 6.27 −19.61 ± 3.81 4.61 ± 1.87 −1.74 ± 0.58 −21.76 ± 1.30 23.89 ± 1.82 −51.94 ± 2.43
E −74.23 ± 2.95 −9.34 ± 2.42 2.77 ± 0.77 −0.70 ± 0.11 −19.80 ± 0.82 13.65 ± 0.94 −55.88 ± 1.74
F −62.65 ± 2.41 −6.31 ± 1.08 2.96 ± 1.31 -0.02 ± 0.02 −20.27 ± 1.11 15.66 ± 1.57 −51.34 ± 1.88
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Fig. 12 Analysis of cross-correlation matrices of the investigated complexes during 100 ns simulations revealed the extent of motion, represented 
by a spectrum of colours. Blue signifies positive correlation, while red represents anticorrelation
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Table 5 summarizes the RMSD values of the ligand poses 
throughout the 100 ns MD simulation. Notably, all ligands 
exhibited RMSD values below 2 Å, with the most signifi-
cant deviations observed during the initial nanoseconds. 
This initial fluctuation is expected as the system adjusts to 
the simulation environment. However, for the remainder of 
the simulation, RMSD fluctuations remained consistently 
below 1 Å, indicating a high degree of stability for the 
ligand-protein complexes.

4 Discussion

The results of this work emphasize the dual-targeting poten-
tial of furanoisoflavones on MAO-B and AA2AR and may 
lead to a better understanding of the reported neuroprotective 
properties of flavonoids against Parkinson’s disease [67]. In 
summary, this study’s aim was the bioprospecting for small 
molecules found in natural sources present in North, East, 
and South Africa using the state-of-the-art virtual screen-
ing approaches [68]. The key contribution of this study is 
the computational exploration of the entire African natural 
products which revealed two natural compounds belonging 
to the isoflavone chemical class. The two drugs displayed 
favourable affinities for the selected targets: MAO-B and 
AA2AR as well as desirable pharmacokinetic properties for 
CNS-acting drugs. The selected candidates in complex with 
MAO-B and AA2AR were subject to molecular dynamics 
simulations and binding free energy calculations. MMG-
BSA binding free energy confirmed the role of van der Waals 
binding free energy (ΔGvdW) as a considerable contributor 
to the stability of MAO-B inhibitors and AA2AR antagonists 
as mentioned in the literature [69, 70]. The analysis of the 
RMSD of the selected complexes throughout the simulation 
time revealed that 7,3’-dimethoxy-4’,5’-methylenedioxy-
isoflavone with the dioxolane ring linked to the monocy-
cle of the flavonoid scaffold is more stable when bound to 
MAO-B in contrast to maximaisoflavone H which displayed 

that can be used to identify the most important features of 
a dataset. In the context of protein-ligand complexes, PCA 
can be used to identify the most important motions of the 
complex. The PCA plots shown in Fig. 13 show the pro-
jection of the studied complexes (A-F) onto the first two 
principal components (PCs). The PCs are ordered by their 
eigenvalues, which represent the amount of variance they 
explain. The first PC typically explains the most variance, 
followed by the second PC, and so on. In MAO-B, the three 
complexes exhibit distinct collective motions along the 
first PC, as evidenced by their separation along this axis. 
This separation suggests that the complexes undergo dif-
ferent global movements. The second PC, with its tighter 
range of values between − 20 and 20, likely corresponds to 
more localized motions, such as the movement of the ligand 
binding pocket. The AA2AR plot shows that while the com-
plexes exhibit some separation along the first PC, it is less 
pronounced compared to MAO-B. Visual analysis reveals a 
similar pattern of motion between complexes D and F, form-
ing a U shape. In contrast, complex E displays a reversed 
pattern, suggesting a distinct motion compared to the other 
two complexes.

3.5.7 Post-MD Complexes Analysis

We performed superimposition of all the investigated com-
plexes and the binding poses of each ligand throughout 
the 100 ns MD simulation time. Figure 14 illustrates the 
superimposition of the studied MAO-B and AA2AR com-
plexes with reference and proposed lead compounds at a 
10-ns interval, respectively. Visual analysis of the proteins 
revealed compactness and a high level of stability through-
out the simulation. Moreover, the ligands remained stable 
and bound within their respective binding sites. The most 
notable movement was noticed in maximaisoflavone H, 
which deviated from its initial docked conformation. A 
similar occurrence was found in AA2AR in complex with 
7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone.

Fig. 13 Principal component analysis of the studied complexes over 100 ns simulation time by projecting onto the first two PCs
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Fig. 14 Superposition of snapshots of each MAO-B (A, B, C) and AA2AR complex (D, E, F) at each 10 ns
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Recent studies have similarly investigated dual-target 
approaches and novel compounds for Parkinson’s disease, 
emphasizing the significance of our findings. For instance, 
one study examined the dual-targeting inhibitory potential 
of Phenylxanthine derivatives on MAO-B and AA2AR, dem-
onstrating high affinities and promising pharmacokinetic 
properties, further supporting the dual-targeting strategy 
in PD therapy [72]. Another study highlighted the MAO-B 
inhibitory potential of rutin, a natural flavonoid, suggest-
ing its strong binding interactions and potential as a lead 
compound for PD treatment [73]. Additionally, the FDA’s 
approval of istradefylline marks a significant advancement 
in PD treatment, reinforcing the importance of targeting 
the AA2AR [74]. Furthermore, the exploration of indanone 
derivatives as MAO-B inhibitors also showed promising 
results, supporting the development of new compounds 
to inhibit dopamine degradation in PD [75]. Furthermore, 
previous studies have explored the inhibitory effects of 
other isoflavones on MAO-B. For example, genistein and 
daidzein have been tested on MAO-B. Genistein inhibits 
MAO-B with an IC50 of 6.81 µM and MAO-A with an IC50 
of 4.31 µM, acting as a time-independent, reversible, and 
competitive inhibitor of both enzymes. Genistein’ inhibition 
of MAO-B is more potent than its inhibition of MAO-A, 
and it also inhibits MAO-B tyramine oxidation and hydro-
gen peroxide production more effectively than MAO-A. 
Conversely, daidzein exhibits weak inhibitory effects on 
both MAO-A and MAO-B, with IC50 values of 304.05 and 
356.87 µM, respectively [76]. These findings highlight 
that while genistein shows significant reversible inhibi-
tion of MAO-B, daidzein has minimal inhibitory effects on 
MAO isozymes. Although genistein is known to bind to the 
adenosine A1 receptor subtype, its effects on AA2AR have 
not been extensively studied [77]. Biochanin A is another 
isoflavone compound found in various plants such as red 
clover, chickpeas, and soybeans. Several studies have inves-
tigated the effects of Biochanin A on MAO-B. Biochanin 
A has been shown to be a potent, reversible, and selective 
inhibitor of MAO-B. In one study, Biochanin A inhibited 
MAO-B with an IC50 of 0.003 µg/mL, demonstrating high 
potency and 38-fold selectivity for MAO-B over MAO-A. 
The inhibition of MAO-B by Biochanin A was found to be 
competitive and reversible, with a low Ki of 3.8 nM [78].

better stability when bound to AA2AR. This suggestion is 
further emphasized in the RMSF plots which displayed 
notable fluctuations in AA2AR when bound to 7,3’-dime-
thoxy-4’,5’-methylenedioxyisoflavone. The results of the 
protein-ligand diagrams displayed a strong presence of a 
hydrogen bond with Gln-206 in 7,3’-dimethoxy-4’,5’-meth-
ylenedioxyisoflavone in complex with MAO-B. Gln-206 is 
recognized as a hydrogen bond acceptor for most MAO-B 
inhibitors and contributes significantly to their stability in 
the substrate cavity [71]. As for AA2AR, the key hydrogen 
bond with Asn-253 was maintained during the whole simu-
lation for the reference antagonist [3]. This interaction was 
slightly present in 7,3’-dimethoxy-4’,5’-methylenedioxyi-
soflavone which may explain its weak stability to AA2AR. 
However, for maximaisoflavone H, a new hydrogen bond 
with Asn-181 was observed for 20% of the simulation 
time. Furthermore, hydrophobic interactions were observed 
which conferred to the stability of maximaisoflavone H. By 
analyzing the DCCMs, we observed strong positive correla-
tions between specific residues in MAO-B, indicating coor-
dinated motions and a rigid protein structure. In contrast, the 
DCCMs of the AA2AR displayed weaker correlations, sug-
gesting a more flexible structure. The PCA analysis suggests 
different global and local dynamics between the MAO-B 
and AA2AR complexes. In the MAO-B system, the distinct 
separation of the three complexes along the first principal 
component indicates different overall motions. The tighter 
range of values on PC2 suggests more localized move-
ments, potentially related to the ligand binding pocket. The 
AA2AR system displays less pronounced separation along 
the first PC, indicating similarities in global motions. How-
ever, the U-shaped pattern formed by complexes D and F 
and the reversed pattern of complex E reveal distinct local 
motions within the AA2AR complexes. Finally, the visual 
inspection revealed strong compactness and minimal struc-
tural changes in the proteins, demonstrating their stability. 
While some ligands exhibited initial fluctuations during 
the first few nanoseconds, they quickly settled into stable 
binding poses with RMSD values consistently below 1 Å 
for most of the simulation. These findings provide strong 
evidence for the stability and tight interactions between the 
proposed lead compounds and their respective target pro-
teins, MAO-B and AA2AR.

Table 5 RMSD calculation of each ligand at 20 ns intervals
Simulation time (ns) RMSD (Å)

Complex A Complex B Complex C Complex D Complex E Complex F
0–20 1.17 0.83 1.53 1.53 0.90 0.77
20–40 1.66 0.70 0.74 0.55 0.78 0.72
40–60 0.52 0.56 0.64 0.54 0.38 0.92
60–80 0.56 0.50 0.55 0.38 0.78 0.75
80–100 1.22 0.90 0.64 0.84 0.75 0.83
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14. Foley P, Gerlach M, Youdim MBH, Riederer P (2000) MAO-B 
inhibitors: multiple roles in the therapy of neurodegenerative dis-
orders? Parkinsonism Relat Disord 6(1). https://doi.org/10.1016/
S1353-8020(99)00043-7
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Attraqchi NHA (2019) Adenosine A2A receptor as a potential 
drug target - current status and future perspectives. Curr Pharm 
Des 25(25). https://doi.org/10.2174/13816128256661907161134
44

16. Ikram M, Park TJ, Ali T, Kim MO (2020) Antioxidant and neuro-
protective effects of caffeine against Alzheimer’s and Parkinson’s 
disease: insight into the role of Nrf-2 and A2AR signaling. Anti-
oxidants 9(9). https://doi.org/10.3390/antiox9090902

17. Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and 
modern medicine from natural products. Molecules 21(5). https://
doi.org/10.3390/molecules21050559

To the best of our knowledge, this is the first study to 
investigate all the natural products isolated from African 
medicinal flora and marine life as drug candidates for Par-
kinson’s disease. However, some study limitations should 
be acknowledged such as lack of experimental data. This 
poses an area for future work that should focus on bioac-
tivity validation of the selected compounds, in vitro blood-
brain barrier permeability, and cell viability assays. Finally, 
future research should also focus on the further optimization 
of the proposed natural products into a potent and selective 
dual-target-directed drug for PD patients.

5 Conclusion

The present study aimed to identify novel potent compounds 
from natural sources capable of simultaneously inhibiting 
MAO-B and AA2AR. This approach holds promise for pro-
viding more effective and beneficial treatments for patients 
with Parkinson’s disease (PD). Among the screened natural 
products, two compounds with the highest binding affini-
ties, as determined by molecular docking, and favourable 
ADME profiles were selected. Structural analysis revealed 
promising interactions with both MAO-B and AA2AR bind-
ing sites. To further assess the stability of these compounds, 
molecular dynamics simulations were conducted, confirm-
ing their ability to effectively bind and inhibit the action of 
both MAO-B and AA2AR.

The findings of this study suggest a potential shift of 
interest towards the development of novel antiparkinsonian 
drugs with neuroprotective properties derived from natural 
compounds. However, to validate these results, additional 
experimental studies such as bioactivity assays and in vitro 
ADME profiling are warranted.
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