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Abstract
The present study focuses on the processing of a poly-mineralized concentrate attained from a physical beneficiation of pro-
cess applied to high grade pegmatitic rock sample of Gabal El- Aurf area. The concentrate contains significant amounts of 
niobium (Nb), tantalum (Ta), titanium (Ti) and rare earth elements (REE) plus yttrium (Y) assaying 19.5, 2.5, 14.2 and 21.2%, 
respectively. The economic minerals within the concentrate include euxenite, tant-euxenite, samrsakite, allanite, and anatase.
The processing procedures involve an alkaline potassium hydroxide fusion applied to the poly- concentrate. This is fol-
lowed by water leaching to extract dissolved Nb and Ta as water-soluble potassium niobate and tantalate. The remaining 
hydrous cake undergoes leaching process using 1.2M oxalic acid for selective extraction of titanium as soluble potassium-
oxalatotitanat. The residue obtained after oxalic acid leaching is then utilized for the recovery of insoluble REE- oxalate. 
Subsequently, yttrium is individually separated from a nitrate solution using 2M tri-butyl phosphate (TBP) at pH 1.5. The 
final proposed technical flowsheet outlines the recovery of pure oxides of Nb–Ta, Ti, and Y.
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1  Introduction

Gabal (G.) El-Aurf area in the Central Eastern Desert of 
Egypt is characterized by pegmatitic bodies containing rare 
metals and radioactive minerals. Positioned between lati-
tudes 26°37 and 26°45S and longitudes 33°20 and 33°26W, 
the area is geologically classified into South and North 
pegmatitic bodies [1]. The younger granite of South G. El-
Aurf forms a rugged mountain extending about 14 km in 
the southwest direction, with a triangulation point at 989m 
above sea level.

The pegmatitic rocks that intrude the monzogranites of G. 
El-Aurf exhibit poly-phased mineralization, including min-
erals such as tant-euxenite, euxenite, monazite, bastnasite, 
anatase, and zircon [2]. These minerals host various rare 
metals, predominantly REE, Nb, Ta, Ti, and Zr. Two phases 
of mineralization have been identified: an earlier phase 

characterized by colorful mineralization with the presence of 
radioactive minerals like thorite, xenotime, and zircon, and a 
latter phase characterized by additional accessory minerals 
(fluorapatite, cassiterite, atacamite, sulfides, and Nb miner-
als), alongside REE-bearing minerals like pyrochlore and 
bastnasite, as well as iron oxides minerals [1, 3–5].

Given the significant importance of Nb, Ta, Ti, and REE 
in modern electronics and nuclear industries, a physical 
beneficiation process is crucial for extracting these metals 
from their natural resources [6]. The objectives of physi-
cal beneficiation include increasing the metal grade of ore, 
reducing the amount of associated gangue minerals (quartz, 
feldspar, hematite, and goethite), lowering leaching plant 
costs, and enhancing productivity. The beneficiation process 
typically involves a combination of unit operations such as 
gravity concentration, magnetic separation, and froth flota-
tion [7–11].

In general, hydrometallurgical processing of Nb–Ta min-
erals involves acidic and/or alkaline leaching, followed by 
solvent extraction techniques [12]. The leaching process 
often employs concentrated acidic solutions, such as HCl/
HNO3/H2SO4/H3PO4/HCl + HNO3, due to the lower solubil-
ity of Nb–Ta minerals under mild aqueous conditions [13, 
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14]. Single HF or a mixture of HF and HNO3/H2SO4 solu-
tions is also effective in dissolving these minerals [15–17]. 
Alternatively, leaching agents like NH4.HF2, NaF, and KF 
can be used, although fluoride leaching systems may face 
challenges like HF loss through volatilization and wastewa-
ter contamination, necessitating treatment [9, 18, 19].

To address these challenges, alternative approaches such 
as alkaline fusion, roasting followed by water leaching, or 
a mixture of mineral acid solutions have been employed for 
the leaching of Ta and Nb from their minerals [20–26]. In 
the context of titanium leaching, sulfuric acid or hydrochlo-
ric acid is commonly employed for extracting titanium from 
minerals like ilmenite and rutile under optimal leaching con-
ditions, as outlined in studies by Xiong et al.; Haverkamp 
et al.; Li et al.; Zhao et al.; Nguyen and Lee & Ahn and Lee 
[12, 27–31]. Organic acids, such as oxalic acid and citric 
acid, have shown superior leaching efficiencies for extracting 
metals from inert minerals when compared to mineral acids. 
The chelation of metal ions by organic ligands contributes 
to this improved efficiency, as noted by Panda et al.; Miao 
et al.; & Li et al., [32–34]. Notably, the decomposition of Ti 
using concentrated KOH followed by organic acids, particu-
larly citric acid and oxalic acid, has been reported to enhance 
the leaching efficiencies of titanium from potassium titanate 
roasted material [35–38].

Oxalic acid is distinguished as a more effective leach-
ing agent relative to other organic acids like citric, malonic, 
and acetic acids. This distinction is based on oxalic acid's 
unique characteristics, which encompass a higher level of 
acidity, superior complexing capabilities, and enhanced 
reduction potential [39, 40]. Studies by Jonglertjunya et al. 
[41] on the dissolution of ilmenite by oxalic acid reported 
that 86.4% of Ti was leached under conditions of 4M oxalic 
acid concentration, 1/20 solid/liquid ratio, and a temperature 
of 90˚C. In contrast, using the same conditions with 4M 
sulfuric acid resulted in only 16.1% dissolution of Ti. Also, 
Nayl and Aly [42] reported on the solubility of Ti and Fe in 
potassium hydroxide-treated ilmenite using eighty percent 
oxalic acid. Their findings indicated that the dissolution of 
titanium (93%) remained unchanged after 180 min., while 
that of iron (73%) had increased slightly. The extreme dis-
solution of Ti and Fe was observed with 80% oxalic acid 
within the studied acid concentration between 20 and 80%. 
The influence of temperature on the dissolution of ilmenite 
in oxalic acid was also investigated, revealing a decrease in 
the percentage of Ti extracted at temperatures higher than 
150 °C as result of the hydrolysis of Ti, while the recovery 
of iron improved with rising temperature.

The significant demand for purified Y compounds in 
industrial development has led to increased market demand. 
Solvent extraction (SX) emerges as a widely used commer-
cial technology for Y separation due to its ease of use, scal-
ability, and the ability to achieve high purity in the final 

product [43]. Various solvents have been employed for the 
individual separation of Y from other rare earth elements, 
including Primene JM-T (ω-trimethylalkylamine), di(2-eth-
ylhexyl)phosphoric acid (D2EHPA), and Tri-butyl phosphate 
(TBP) [44–46]. Additionally, Cyanex has been utilized for 
separating Y from light lanthanides [47]. Tri-butyl phos-
phate has been successfully developed for preparing pure 
Y2O3 from a nitrate solution, as documented in studies by 
Jorjani and Shahbazi; Li; and Khalil et al. [48–50]

2 � Experimental Work

In the investigation of G. El-Aurf area, the raw sample 
underwent a comprehensive characterization involving min-
eralogical and chemical specifications, as well as physical 
beneficiation processes. Subsequent chemical processing 
steps were applied to the obtained concentrate to recover 
Nb–Ta oxide, TiO2, and achieve individual separation of 
Y2O3 from the prepared REE-cake.

2.1 � Chemical Characterization

Chemical analyses, encompassing major oxides of both the 
raw host rock and the concentrated sample, were conducted 
using Axios advanced WDXRF-PANalytical (Netherlands). 
The chemical determination of Nb, Ta, and Ti was carried 
out using the Microwave Plasma Atomic Emission Spec-
trometer (4200 MP-AES, Agilent Technologies) throughout 
the entire workflow. Quantitative analysis of REE was per-
formed by UV spectroscopy using Arsenazo III, with Y serv-
ing as a reference [51]. The scanning electron microscope 
(ESEM) equipped with an EDAX microanalysis unit played 
a crucial role in identifying the final Nb, and REE products, 
along with some selected mineral grains. Also, Inductively 
Coupled Plasma (Prism ICP) High Dispersion (Teledyne 
Leeman Labs. USA) was used for chemical analysis of the 
final products.

2.2 � Mineralogical Characterization

The mineralogical composition of the representative G. 
El-Aurf rock sample was investigated by initially grinding 
and sieving it into the grain size range of 1 to + 0.063 mm. 
Subsequently, the light and heavy fractions were separated 
using bromoform (sp. gr. 2.84 gm/cm3). Heavy mineral par-
ticles were meticulously picked under a binocular micro-
scope, and selected mineral grains were identified using the 
X-ray diffraction technique (XRD). A PHILIPS X-ray gen-
erator model PW1140/90 fitted with a diffractometer model 
PW1050/80 was employed. The X-ray tube used was a Cu-
target model PW2233/30 fitted with a Ni-filter, operating at 
40 kV and 20mA.
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2.3 � Physical Beneficiation Procedure

A five kg bulk sample from G. El-Aurf raw pegmatitic mate-
rial underwent a physical upgrading process to concentrate 
economic minerals and separate them from the gangue one. 
Initially, the raw material was deslimed to generate a heavy 
minerals concentrate. The deslimed portion was subsequently 
segregated using screens with mesh sizes ranging from –1 
to + 0.063 mm, a range optimal for gravity-based separation 
techniques. A laboratory-grade wet Wilfley shaking table 
(No.13, Germany) was utilized under defined operational 

parameters: a feed rate of 5 kg/h, water flow of 4 L/min, a 
stroke length of 10 mm, and a table inclination set at 8 degrees. 
Following this, the Carpco high-intensity lift-type magnetic 
separator Model MLH (13) III-5 (USA) was employed to per-
form magnetic separation. This process successfully separated 
Nb, Ti, and REE minerals as a magnetic fraction at a current 
setting of 3A, distinctly apart from the lighter silicate gangue 
minerals.

Fig. 1   XRD pattern of brownish 
euxenite mineral

Euxenite, Syn PDF_2No. (9-442).

Fig. 2   XRD pattern of tant-
euxenite in association with 
anatase, qurtz and hematite 
minerals 

Quartz, Syn PDF_2No. (5-0450).
Hematite, Syn PDF_2No. (13-534).
Anatase, Syn PDF_2No. (21-1272).
Tanteuxenite, Syn PDF_2No. (8-293).

Fig. 3   XRD pattern of samar-
skite mineral
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2.4 � Chemical Processing Procedures

Two sequential leaching processes were conducted on the 
poly-mineralized concentrate sample. The first involved KOH 
fusion to break down the refractory structure of Nb-Ti and 
REE minerals, bringing Nb–Ta metal values into a solution. 
This was followed by atmospheric agitation leaching using 
oxalic acid to dissolve Ti, leaving the REE as an insoluble 
oxalate cake. Subsequently, individual separation of yttrium 
from a nitrate solution was achieved using TBP in kerosene 
under optimum extraction and stripping conditions.

2.4.1 � KOH Fusion of Poly‑mineralized Concentrate

A series of experiments were executed, involving the com-
bination of a fixed mass of 5g of finely pulverized concen-
trate sample (S) with solid KOH (which has a melting point 
of 360°C) as the fusion reagent (R) in varying proportions 
(from a 1/1 to a 1/2.5 ratio). This mixture was then subjected to 
fusion at temperatures ranging from 400 to 600 °C for different 

time spans (1–2.5 h). Upon cooling, the resultant fused cake 
(C) was subjected to washing and leaching processes using 
distilled water at various water to cake (W/C) ratio of 1/10, 
Leaching time 30 min. The leaching temperature (35–90°C) of 
the fused cake was also studied to achieve maximum leaching 
efficiencies of Nb and Ta. After filtration and washing, Nb, 
Ti, and REE in the prepared alkaline solution were analyzed, 
and their leaching efficiencies (%) were calculated using the 
equation:

The working alkaline leach liquor, essential for Nb and 
Ta recovery, was prepared by mixing 100g of the working 
concentrate with KOH under optimum leaching condi-
tions. After filtration and washing with distilled H2O, the 
alkaline leach liquor was directed towards Nb–Ta recovery 
via hydrolysis process.

2.4.2 � Atmospheric Oxalic Acid Agitation Leaching of Spent 
Residue

The spent residue, containing both Ti and REE along with 
a small amount of Nb, underwent leaching using an oxalic 
acid solution. The objective was the selective separation of 
Ti and Fe from REE, considering various leaching condi-
tions such as oxalic acid concentration (%), solid/liquid 
(S/L) ratio, leaching time (hour), and leaching temperature 
(oC). Subsequently, the insoluble REE-oxalate cake, after 
dissolving Ti, Fe and the remaining Nb, was further pro-
cessed for individual yttrium separation.

Leaching efficiency, %

=
Metal concentration in the leach liquor
Original metal concentration in the ore

× 100

Fig. 4   EDX analysis data of allanite mineral

Table 1   The particle size distribution and amount of heavy minerals 
in each size fractions

Sieving size Bulk sample, 
Wt. (%)

Heavy min-
erals (g)

Distribu-
tion, (%)

 – 1 + 0.7 mm 23.2 0.72 22.4
 – 0.7 + 0.5 mm 20.5 0.59 18.4
 – 0.5 + 0.25 mm 12.6 0.39 12.1
0.25 + 0.125 mm 15.8 0.57 17.8
 – 0.125 + 0.063 mm 13.4 0.52 15.6
Sum ( – 1 + 0.063mm) 85.5 2.79 86.3
 – 0.063 mm 14.5 0.42 13.1
Bulk sample 100 3.21 99.4
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2.4.3 � Individual Separation of Yttrium

The insoluble REE-oxalate cake, post dissolution of Ti, 
Fe, and the remaining Nb, was employed for the individual 
separation of yttrium, a predominant element in the cake. 
To enhance purification, the obtained REE-oxalate, which 
contained impurities of Mg, Na, and K, underwent dis-
solution in 10M HCl. Subsequent re-precipitation using 
NH4OH at pH 8.5 resulted pure RE(OH)3. The latter was 
then re-dissolved in a 6M HNO3 acid solution and directed 
to a solvent extraction circuit for selective Y extraction. 
TBP in kerosene, in the presence of a 0.5M ethylenediami-
netetraacetic acid (EDTA) solution as a complexing agent, 
was utilized for this purpose.

3 � Results and Discussion

3.1 � Mineralogical Characteristics

A crucial objective of this study is to highlight the metal-
logenic features of the rare metal-bearing pegmatites in 
G. El-Aurf area. To achieve this, a representative sample, 
enriched in rare metals like Nb, Ta, Ti, and REE, was 
selected from extensive sections of the pegmatitic bodies. 
Mineral grains, representing 3.2% of the heavy fractions, 
were subjected to XRD and EXD analyses to identify the 
mineralization.

The data revealed that the principal minerals belong to 
the Euxenite–Polycrase series. This series is character-
ized by multiple replacement sites and the presence of Ti, 
whose content relative to Nb and Ta determines the min-
eral name. Notably, in euxenite, Nb and Ta are enriched 
relative to Ti, while in polycrase, Ti is more enriched than 
Nb and Ta. The identified minerals include:

Euxenite: (Y, Ce, Ca)(Nb, Ta, Ti)2(O)6: widespread nio-
bates resembling columbite-(Fe) and pyrochlore. It exhibits 
colors ranging from black to greenish or brownish, Fig. 1.

Tant-euxenite: (Y, Ce, Ca)(Ta, Nb, Ti)2(O)6: Named for 
its similarity to euxenite-(Y) with a higher Ta2O5 content 
than Nb2O5. Found in granite pegmatites, it appears brown-
ish-black and is associated with anatase (TiO2), hematite 
(Fe2O3), and quartz (SiO2), Fig. 2.

Samarskite: (Y, Ce, Fe+3)3(Nb, Ta, Ti)5 O16: Dark pitchy 
to velvety black or dark brown, with irregular massive grains 
and sub-conchoidal fracture (Fig. 3).

Allanite: Typically black but can be brown or brown-vio-
let. Coated with a yellow–brown alteration product, it com-
prises various minerals within the allanite group (allanite-
(Ce), allanite-(La), allanite-(Nd), and allanite-(Y)), Fig. 4.

This comprehensive mineralogical study of G. El-Aurf 
raw sample unveiled significant Nb, Ta, Ti, REE, and Zr-
bearing minerals alongside gangue minerals like quartz and 
feldspar. The latter constitutes the main mineral component, 
emphasizing the need for physical beneficiation before pro-
ceeding to recovery processes.

3.2 � Gravity Concentration and Magnetic Separation

Depending on the substantial variance in specific gravities 
of heavy minerals (Sp.gr. 3.9–5.9) in contrast with the asso-
ciated gangue minerals (primarily quartz and feldspar with 
Sp. gr. ≈ 2.6), the technique of gravity concentration via a 
shaking table was harnessed as an effective strategy for the 
primary separation and concentration of valuable minerals. 
A 5 kg bulk raw specimen was partitioned into various size 
fractions (ranging from – 1 to + 0.063 mm), and the Wilfley 
Shaking Table No. 13 was deployed to procure a preliminary 
mineral concentrate.

The data in Table 1 revealed variations in specific gravi-
ties between heavy minerals and associated gangue miner-
als. The distribution of heavy minerals among fraction sizes 
suggested that the crushing operation effectively saved the 
majority of heavy minerals (86.3%) in fraction sizes ( – 1 
mm to + 0.063 mm). Approximately 86% of the heavy min-
eral content accumulated in about 86% of the total weight 
of the original sample.

The obtained pure concentrate was primarily composed of 
euxenite, tant-euxenite, samarskite, and anatase associated 
with zircon. The evident variations in magnetic susceptibili-
ties between Nb-Ti REE minerals and zircon and remains 

Table 2   Chemical composition of both of the bulk raw sample and 
the obtained concentrate

* L.O.I. Loss of Ignition

Bulk sample (Wt. %) Concentrate sample Wt. (%)

SiO2 76.9 Nb2O5 27.9
Al2O3 9.7 TiO2 23.8
Fe2O3

tot 1.8 Ta2O5 3.1
K2O 3.53 Y2O3 18.1
CaO 0.37 RE2O3 8.8
MgO 0.7 SiO2 4.5
Na2O 1.5 Fe2O3

tot 6.8
MnO 0.29 Al2O3 0.9
P2O5 0.1 MgO 1.2
TiO2 0.45 K2O 0.3
Nb2O5 0.75 CaO 1.5
Ta2O5 0.05 ZrO2 0.01
Y2O3 0.26 MnO2 2.1
RE2O3 0.11 Na2O 0.4
ZrO2 0.2
*L.O.I 0.6 *L.O.I 0.15
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silicate minerals formed the basis for their final magnetic 
separation. A magnetite-free feed was prepared and sub-
jected to magnetic separation using a high-intensity lift-type 
magnetic separator (Carpco Model MLH (13) III-5). The 
data illustrated that the ultimate non-magnetic concentrate at 
3 amps mainly contained zircon and silicate minerals, while 
the magnetic concentrate contained tant-euxenite, euxenite, 
samarskite, and anatase, ready for recovery processes.

3.3 � Chemical Composition of the Study Sample

Both the bulk raw sample and the working concentrate of G. 
El-Aurf underwent chemical analysis for their major and trace 
element composition (Table 2).The results clearly indicate 
that the raw material contains economic rare metals such as 
Nb, Ta, Ti, and REE, alongside Zr. Additionally, it contains 
well-known gangue minerals, namely quartz and feldspar, 
evidenced by high SiO2 (76.9%) and Al2O3 (9.7%) content, 
together with K2O (3.53%). These findings underscore the 

importance of applying a physical beneficiation process before 
chemical treatment to recover the metals of interest. It is note-
worthy that after applying the beneficiation process, Nb, Ta, 
Ti, and (REE + Y) increased from 0.52, 0.04, 0.27, and 0.3% to 
19.5, 2.5, 14.2, and 21.2%, respectively. Conversely, SiO2 con-
tent decreased to 4.5% from the original 76.9%, while Al2O3 
and K2O decreased to 0.9 and 0.3% from the original 9.7 and 
3.53%, respectively.

3.4 � Results of KOH Atmospheric Fusion Processes

The mineralogical composition of the working concentrate 
necessitated the application of alkaline KOH breakdown for 
the selective leaching of Nb and Ta, separating them from 
Ti and REE contents. In this process, Nb and Ta were trans-
formed into water-soluble K-niobates and tantalates, while Ti 
and REE formed an insoluble potassium-hydrous cake. The 
expected chemical reactions are summarized as follows [20, 
52]:
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Fig. 5   Effect of sample concentrate/ KOH weight ratio (A), fusion temperature (B), fusion time (C) and leaching temperature (D) upon Nb, Ta, 
Ti and REE leaching efficiencies
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The relevant factors affecting the leaching efficiencies 
of the metals of interest were studied as follows:

3.4.1 � Effect of Concentrate Sample/KOH Weight Ratio

The effect of varying the weight ratio of concentrate sam-
ple to KOH was meticulously analyzed, spanning a range 
from 1/1 to 1/2.5, while maintaining a consistent set of 
fusion conditions: a fusion duration of 2 h and a tempera-
ture setting of 450°C. Post-fusion, the solidified matrix 
underwent leaching with distilled water at ambient temper-
ature for a duration of 30 min, adhering to a water to cake 
(W/C) ratio of 1/10. The findings, depicted in (Fig. 5A), 
revealed a notable enhancement in the Nb and Ta leaching 
efficiencies, which escalated from 30.6 and 21.3% to 79.9 
and 66.7%, respectively as the weight ratio of concentrate 

(Fe,Mn)O(Ta, Nb)2O5 + 6KOH → 2K3(Ta, Nb)O4

+ (Fe,Mn)O + 3H2O6K3(Ta, Nb)O4 + (5 + n)H2O
→ K8(Ta, Nb)6O19 ⋅ nH2O + 10KOH4FeO + O2

→ 2Fe2O3Y2O3 + 3KOH → Y(OH)3 + 3K+3TiO2

+ 4KOH → K4Ti3O8 + 2H2O

sample to KOH (S/R) was adjusted from 1/1 down to 
1/1.75. Nonetheless, a further diminution of the weight 
ratio beyond 1/1.75 resulted in a marginal increase in Nb 
and Ta leaching efficiencies. This marginal enhancement 
may be ascribed to the consumption of KOH for the leach-
ing of interfering metal ions like Si, as discussed by [20].

In contrast, the leaching efficiencies of other economic 
metal values, namely Ti and REE, remained low, record-
ing values of 1.5 and 3.6%, respectively, at the S/R ratio 
of 1/1.75.

3.4.2 � Effect of Fusion Temperature

The data summarized in Fig. 5B highlighted that the max-
imum Nb (87.4%) and Ta (78.5%) leaching efficiencies 
were achieved at 550°C, with an S/R weight ratio of 1/1.75 
and a fusion time of 2 h, under fixed leaching conditions 
(W/C 1/10, 30 min leaching time at room temperature). 
However, a further increase in fusion temperature up to 
600°C resulted in decreased Nb and Ta leaching efficien-
cies. This decline could be attributed to the fact that the 
reaction between Nb–Ta and KOH occurred more readily 
at a temperature of 550°C [20, 25].

3.4.3 � Effect of Fusion Time

The impact of fusion time was examined in the range 
of 1 to 3 h, with the other parameters held constant at 
a fusion temperature of 550ºC and an S/R weight ratio 
of 1/1.75, along with W/C 1/10, and a 30 min leaching 
time at room temperature. The data presented in Fig. 5C 
revealed that the leaching efficiencies of both of Nb and 
Ta did not exhibit any improvement beyond 2 h of fusion 
time. Regarding Ti and REE, their leaching efficiencies 
remained at very limited values across all fusion time 
intervals.

Fig. 6   EXD data of the prepared 
pure Nb–Ta oxide concentrate

Table 3   Chemical analysis of Ti-REE hydrous cake

Element Wt.,% Element Wt.,%

TiO2 24.1 Fe2O3 6.9
Y2O3 17.9 MgO 2.3
RE2O3 8.9 CaO 1.1
K2O 32.1 MnO2 0.12
Nb2O5 1.1 Na2O 1.0
SiO2 1.2 moisture 2.4
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3.4.4 � Effect of Water Leaching Temperature

Different water leaching temperatures (ranging from 35 ± 5 
to 90°C) for the fused cake were investigated under optimal 
fusion conditions: S/R weight ratio of 1/1.75, fusion time of 
2 h, fusion temperature of 550°C, W/C of 1/10, and leach-
ing time of 30 min. The results indicated that the maximum 
Nb and Ta leaching efficiencies were achieved at a leach-
ing temperature of 80°C, reaching 91.1 and 83.5%, respec-
tively (Fig. 5D). Conversely, the leaching efficiencies for Ti 
and REE were limited, recording values of 1.2 and 3.1%, 
respectively.

3.4.5 � Recovery of Nb and Ta

Accordingly, an alkaline pregnant leach liquor of Nb andTa 
was then prepared by fusing of 100g of the concentrate 
sample with a solid KOH at the obtained optimum fusion 
and leaching conditions. The chemical composition of the 
pregnant solution (1000mL) of pH value 13.2 was found 

to assay in g/L: 17.8 Nb, 2.1 Ta, 1.3 Si, 0.45 Y and 0.1 Ti. 
Almost complete precipitation of Nb associated with Ta was 
achieved via hydrolysis and acidification of the leach liquor 
(using nitric acid) to pH 2.5 with continuous stirring for 
30 min at room temperature to avoid precipitation of the 
associated impurities e.g. Si and K which remain soluble in 
the solution. After filtration, washing, drying and ignition 
at 650°C, the pure Nb–Ta oxide was then identified using 
EDX analysis (Fig. 6).

3.5 � Results of Oxalic Acid Agitation Leaching 
of Ti‑REEs Hydrous Cake

The hydrous cake, left behind after dissolving almost 
of Nb (91.1%) and 83.5% of Ta, was subjected to XRF 
analysis to identify its components (Table 3). It was found 
that the hydrous cake contains significant amounts of the 
economic elements Ti and REE, accounting for 14.3 and 
21.1%, respectively, in addition to the remaining Nb. The 
concentration of K was notably high at 32.1%, likely due 
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Fig. 7   Effect of oxalic acid conc. (A), Solid/ liquid ratio (B), leaching time (C) and leaching temperature (D) upon Ti, Fe and Nb leaching effi-
ciencies



Chemistry Africa	

to the formation of potassium titantate, hydrous K-REE, 
and potassium niobate.

To selectively dissolve Ti, an oxalic acid solution 
was chosen, forming water-soluble potassium-oxala-
totitanate (IV) K8[TiO(C2O4)2]4 [53] and Fe as iron 
oxalate Fe(C2O4)3

3−; Fe(C2O4)2
2− [54], along with 

the remaining Nb as niobium oxalates [Nb(C2O4)2]−; 
[Nb(C2O4)3]3− [55]. The obtained residue after the oxalic 
acid leaching process was then utilized for the recovery 
of insoluble REE- oxalate [REE2(C2O4)3]. Various factors 
affecting the dissolution of metal values, namely Ti, Fe, 
and Nb, were studied. These factors include oxalic acid 
concentration, solid/liquid (S/L) ratio, leaching time, and 
leaching temperature.

3.5.1 � Effect of Oxalic Acid Concentration

Different oxalic acid concentrations (ranging from 0.5 to 
1.5M) were employed to investigate their impact on the 
leaching efficiencies of the studied metal values, includ-
ing Ti, Fe, and Nb, from the potassium hydrous cake. The 
other leaching conditions were kept constant at room tem-
perature, a leaching time of 1 h, and S/L ratio of 1/5. The 
results (Fig. 7A) revealed that the leaching efficiencies 
of all metals of interest increased with the rise in acid 
concentration, reaching maximum efficiencies of 50.4, 
67.9, and 58.4% for Ti, Fe, and Nb, respectively, at 1.2M. 
Beyond this concentration, a negligible effect on the leach-
ing efficiencies of the metal values was observed.

Fig. 8   XRD chart of the pre-
pared pure titanium oxide

Fig. 9   EDX analysis of impure 
(A) and pure (B) REE- cake
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3.5.2 � Effect of Solid/Liquid Ratio

The impact of the S/L ratio was examined at different 
ratios ranging from 1/5 to 1/12, using a 1.2M oxalic acid 
concentration at room temperature and stirring for 1 h. The 
data (Fig. 7B) demonstrated that the leaching efficiencies 
of Ti, Fe, and Nb increased with an increasing S/L ratio 
up to 1/10. However, an S/L ratio higher than 1/10 had no 
significant effect on the leaching efficiencies of all metal 
values.

3.5.3 � Effect of Leaching Time

Various leaching times, ranging from 1 to 3 h, were consid-
ered under the conditions of 1.2M oxalic acid, an S/L ratio 
of 1/10, and room temperature. The corresponding leaching 
efficiencies (Fig. 7C) indicated that after 1.5 h, efficiencies 
of 83.9, 86.2, and 84.1% for Ti, Fe, and Nb, respectively, 
were achieved. Beyond this time, a slight decrease in the 
leaching efficiencies of Ti and Nb was observed, possibly 
due to hydrolysis.

3.5.4 � Effect of Leaching Temperature

The influence of leaching temperature on the dissolution 
efficiencies of various metals was studied across a range 
from ambient temperature to 90°C, while other leach-
ing parameters were held constant: an acid concentration 
of 1.2 M oxalic acid, a S/L ratio of 1/10, and a leaching 
duration of 1.5 h. The collated data (Fig. 7D) underscored 
that a near-complete dissolution of all target metals was 
achieved at 80°C. Specifically, at this temperature, disso-
lution rates of 99.6% for Fe, 99.9% for Nb, and 99.1% for 
Ti were observed.

Conclusively, based on the oxalic acid agitation leaching 
experiments conducted on the potassium-Ti, Nb, and REE 
hydrous cake, it is evident that Ti, Fe, and Nb were predomi-
nantly dissolved by oxalic acid, forming water-soluble metal 
ion oxalates. This process left the REE as an insoluble resi-
due. The following conditions were determined to be opti-
mal: a 1.2M concentration of oxalic acid, a 1/10 S/L ratio, a 
leaching duration of 1.5 h, and a temperature of 80°C.

3.5.5 � Recovery of Titanium

To recover both titanium (Ti) and niobium (Nb), the pre-
pared oxalate leach solution (pH 1.8), containing 29 g/L 
Ti, 1.1 g/L Nb, 5.2 g/L Fe, and 0.05 g/L Ta, underwent 
direct precipitation through a hydrolysis process at ele-
vated temperature. Nearly complete precipitation of Ti 
and Nb was achieved by boiling the oxalate solution, fol-
lowed by addition to boiled distilled water with stirring 
for 2 h at 120°C. The Ti-Nb hydrated oxide precipitated 
and was separated from the soluble Fe-oxalate solution 
by filtration. The obtained precipitate underwent several 
washes with water, was dried, ignited at 700°C to produce 
TiO2 pigment, and analyzed using XRD (Fig. 8). The ICP 
chemical analysis of the final product indicated a TiO2 
purity of 97.9% with associated Nb.

3.5.6 � Individual Separation of Yttrium

In this procedure, the isolated REE-oxalate cake was 
retrieved post-filtration, followed by washing and drying at 
110°C. It underwent SEM–EDX analysis (Fig. 9A), reveal-
ing the presence of trace impurities of K, Mg, and Na within 
the REE. For enhanced purification, the resultant cake was 
dissolved in a 10M HCl solution at 85°C and stirred for 
an hour. Subsequently, re-precipitation was executed using 

Fig. 10   XRD chart of pure Y 
oxide cake
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Fig. 11   Proposed techniqual flowsheet for recovering pure Nb–Ta, Ti and Y oxides from G. El-Aurf pegmatitic concentrate
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NH4OH at a pH of 8.5, yielding a highly pure RE(OH)3, as 
depicted in Fig. 9B [56].

Given yttrium’s significant industrial relevance, notably 
in nuclear energy, metallurgy, ceramics, and luminescence, 
a dedicated separation process for pure yttrium was initiated. 
The process commenced with dissolving the REE-hydroxide 
cake, which assays 53.2% of Y, in a 6M HNO3 solution to 
liberate the REE content. The resultant nitrate solution, with 
a Y concentration of 5.45 g/L, was subjected to a selective 
extraction process utilizing 2MTBP in kerosene. The pro-
cess was facilitated by 0.5M EDTA, serving as a complex-
ing agent to sequester various impurities. The incorporation 
of 0.5M EDTA into the aqueous phase significantly bol-
stered the selectivity of yttrium separation from other REE. 
Approximately 90% of Y was extracted from the aqueous 
phase under specific conditions: using 2M TBP, pH 1.5, and 
with an O/A ratio of 1/1 over a shaking duration of 10 min. 
Subsequent water scrubbing (1/1) of the loaded solvent was 
performed to eliminate any co-extracted REE.

Eventually, around 97% of Y was regenerated from the 
loaded solvent using 3M H2SO4, maintaining an A/O ratio of 
2/1 and a shaking time of 20 min. The resultant strip sulfate 
solution, containing 2.4 g/L of Y, was processed for yttrium 
precipitation using ammonia solution. This step resulted in 
the formation of insoluble Y(OH)3 and soluble ammonium 
sulfate, in accordance with the reaction:

Yttrium precipitation was nearly complete at pH of 8.5, 
with stirring for 20 min at ambient temperature. The yielded 
Y precipitate was filtered, rinsed with distilled water, dried, 
and dehydrated to Y2O3 at 450°C, as verified through XRD 
analysis (Fig. 10). ICP chemical analysis of the final product 
indicated a Y purity of 98.4%, with minor impurities com-
prising 0.9% Dy and 0.6% Er.

4 � Conclusion

The processing methodology for the raw material from 
G. El-Aurf area is a well-structured and comprehensive 
approach that involves multiple stages of beneficiation and 
chemical processing to recover various economic minerals. 
Initially, the identification of minerals such as tant-euxenite, 
euxenite, samrsakite, allanite, and anatase sets the founda-
tion. Subsequent concentration techniques, including gravity 
separation and magnetic separation, efficiently concentrate 
these economic minerals. The application of an alkaline 
fusion with KOH, followed by water leaching, proves highly 
effective in selectively leaching niobium and tantalum as 
water-soluble potassium niobates and tantalates, achieving 
remarkable efficiencies of 91.1% and 83.5%, respectively. 
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Furthermore, the use of oxalic acid under optimized condi-
tions enables the dissolution of Ti and Fe from the spent 
residue. The recovery of hydrated titanium oxide through 
a hydrolysis process yields a final TiO2 product with a 
purity of 97.9%. Additionally, individual separation of Y 
from the recovered REE oxalate is accomplished using a 
solvent extraction process with 2M TBP in kerosene and 
0.5M EDTA as a chelating agent. The proposed technical 
flowsheet outlines a systematic approach for the recovery of 
pure oxides of Nb–Ta, Ti, and Y, highlighting the efficiency 
and optimization achieved at each step in the complex pro-
cessing sequence (Fig. 11).
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