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Abstract
Green chemistry and technology involve the development of chemical manufacturing systems that aim to minimize their 
negative impact on the environment. The primary objective of this field is to reduce the environmental consequences associ-
ated with chemical processes and manufacturing, and also improve overall process performance. While it is advantageous to 
simply decrease the use of organic solvents in chemical processes, green chemistry, and technology take a more comprehen-
sive approach by evaluating the entire process to identify techniques that can minimize hazards while remaining economi-
cally viable. Assessing the environmental impacts of manufacturing processes requires a systematic approach and the use 
of appropriate metrics that enable quantitative evaluation of environmental hazards. This review focuses on the introduction 
of heteropoly acids, highlighting their unique features and applications in various fields. The structures and preparation of 
heteropoly acids, specifically Keggin, Wells Dawson, and Preyssler types, salts of potassium and aluminium, as well as their 
catalytic applications, are discussed in the present review article.
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1  Introduction

In the previous years, the focus has been amplified on 
using environmentally friendly and recyclable catalysts 
in industrial processes. This has given rise to the concept 
of sustainable chemistry, which aims to minimize or com-
pletely remove the use of harmful substances in chemical 
materials [1]. Like healthcare, green chemistry focuses 
on preventing and taking precautions rather than treating 
problems after they occur. Recently, there has been a focus 
on using environmentally friendly catalysts in industrial 
processes, leading to the development of green chemistry. 
Green chemistry seeks to minimize [2] the use of harm-
ful substances in chemical processes by taking preven-
tative measures. Using eco-friendly catalysts not only 
benefits the environment [3, 4] but also allows for their 
reuse in chemical reactions [5]. Heteropoly compounds 
have garnered significant attention as catalysts because 
of their capacity as finely-tuned acidic and redox func-
tions on a molecular scale [6–8]. This versatility makes 
them useful in various catalytic applications. Heteroge-
neous acid catalysts, as opposed to homogeneous ones, 
offer advantages such as increased stability, resistance 
to corrosion, and the ability to be recovered and regen-
erated [9]. Hetero polyanions are polymeric oxo anions 
[10] that exhibit high catalytic activity and can be used 
in non-polar solvents, as they not only enhance product 
selectivity but also streamline the separation of catalyst 
[11]. By replacing homogeneous acid catalysts with het-
erogeneous alternatives like heteropoly anions, research-
ers, and industries [5] can improve stability [12], ease of 
use, and the ability to recover and regenerate catalysts. The 
Wells–Dawson molecule and the Keggin anion are popu-
lar examples of heteropoly anions, which are formed by 
connecting metal–oxygen polyhedral building [13] blocks 
through covalent bonding. A generalized diagram showing 
the characteristics of heteropolyacid salts is represented 
in Fig. 1.

1.1 � Special Features of Heteropoly Acids

Researchers are currently dedicated to finding alternative 
catalysts to replace acid catalysts, as environmental prob-
lems have become a major concern for future generations. 
The new catalysts present numerous applications and 
advantages across different areas [14, 15]. Heteropolyacid 
compounds, made up of metal cations and oxygen atoms, 
have diverse applications due to their unique properties 
and versatility [16, 17]. They are exceptional catalysts, 
making them valuable in various industrial processes 
[18]. In the petrochemical industry, they are widely used 

to convert crude oil into high-quality fuels and chemi-
cals, improving the efficiency of refining [19, 20], in the 
synthesis of valuable chemicals and many pharmaceutical 
entities [21], enabling the production of complex organic 
compounds with high selectivity and yield. They are effec-
tive in environmental remediation, as they can degrade 
pollutants and contaminants in water and air. Additionally, 
these acids show promise in energy storage and conver-
sion, contributing to the development of sustainable and 
clean energy solutions [22].

In conclusion, the application of heteropolyacids spans 
various industries, including petrochemicals, pharmaceuti-
cals, environmental remediation, and energy storage. Their 
exceptional catalytic properties and versatile nature make them 
indispensable in these fields. As research continues to uncover 
new possibilities, the potential applications of heteropolyacid 
are expected to expand, further enhancing their significance 
in the scientific and industrial realms.

In the present study, we have described the structure and 
characterization features of Heteropoly acid/salts containing 
Keggin, Wells Dawson, and Preyssler structures. Furthermore, 
we explore the production of environment-friendly catalysts 
made from potassium and aluminium based polyoxometalate 
compounds, which incorporate molybdenum and tungsten. 
Additionally, we have also highlighted the catalytic uses of 
these synthesized polyoxometalate compounds in organic 
transformations. To enhance the clarity and comprehensibility, 
we have created visually engaging graphical representations of 
these polyoxometalates.
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Fig. 1   Characteristics of heteropolyacids/salts
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2 � Literature Survey

Polyoxometalates (POMs) are anionic clusters composed 
of metal-oxo compounds. By substituting transition metals 
and carefully selecting counter cations these clusters can be 
manipulated through transition metal substitution and the 
choice of counter cation to impart distinct chemical proper-
ties [23, 24].

Polyoxometalates (POMs) are coordination compounds 
made up of more than two metal atoms. These are nega-
tively charged d(0) configuration clusters of metal and oxy-
gen atoms and come in two types: Isopoly anions (with only 
one metal) and heteropoly anions (several metals and are 
comparatively more studied). The heteropoly anions, which 
have a tetrahedral structure with a central heteroatom, are 
essential for creating the metal-oxo framework [25]. Differ-
ent types of structures are exhibited by these compounds 
as given below with their application in organic synthesis.

2.1 � Keggin Structure

The primary structure is known as the Keggin structure 
(Fig. 2), which has a roughly spherical shape [26]. It is rep-
resented by the formula XM12, wherein X represents the 
heteroatom and M represents the metal having a d(0) con-
figuration. The heteroatom tetrahedron in this structure is 
connected to four M3O13 units at each corner. For an exam-
ple; By acidifying a mixture of metasilicate and tungstate 
with a 1:12 molar ratio, a negatively charged anion called 
[SiW12O40]3− can be obtained containing Si as a hetero 
atom, which is incorporated in the cavity generated by W, 
addenda atoms [24]. These addenda atoms, which are coor-
dinated with oxygen atoms in an octahedral arrangement, 
can be replaced by other metal atoms. The triplet M3O13 is 

made up of three WO6 octahedra that share octahedral edges 
and four triplets then come together tetrahedrally around 
the heteroatom Si. The oxygen atoms that are shared by the 
triplet M3O13 are coordinated to the Si atom, resulting in a 
Td symmetric polyoxometalate [25, 26].

2.1.1 � Preparation of Keggin Type Structure

Keggin HPA can be modified by either removing or filling 
a specific unit to create lacunar HPA or introduce transition 
metal ions. Additionally, the metal ions in these POM salts 
can be substituted with other metal ions. The mentioned 
changes empower Keggin HPA to go beyond its initial use 
restricted to acid-catalysed reactions, granting it the capabil-
ity to function as a catalyst in oxidation reactions, too. The 
most common method to produce Keggin HPA potassium 
salt involves reacting commercially available HPA with a 
solution containing the required amount of KCl or K2CO3 
in water.

2.1.1.1  Preparation of K4SiW12O40  The synthesis of various 
types of HPA salts was performed using various methods 
detailed in literature sources [27–32]. Sodium tungstate dihy-
drate (Na2WO4·2H2O) was dissolved in distilled water, and 
concentrated hydrochloric acid (40 mL) was slowly added. 
Twenty millilitres were added before heating and another 
20 mL were added after heating the mixture. A solution of 
sodium silicate (7.5 g) and concentrated hydrochloric acid 
(60 mL) was then, added to the mixture and boiled for half 
an hour. A precipitates formed, which were subsequently 
filtered. The remaining liquid was mixed with hydrochloric 
acid (40 mL) and ether (50 mL). The lower oily layer was 
separated, and the complex was vacuum-dried overnight to 
obtain a white solid product, H4SiW12O40·xH2O. Potassium 
chloride (13.4 mmol) was added to an aqueous solution con-
taining H4SiW12O40·nH2O (100 mL containing 6.29 mmol), 
which was then reacted with K2CO3 to produce potassium-
based HPA salts [32]. A schematic representation of this 
methodology is given in Fig. 3. By following this method 
(Fig. 3), Shenzhen Chane et al. were able to produce high-
quality HPA salts suitable for use in various applications.

2.1.1.2  Synthesis of  K2.5H0.5PW12O40  The synthesis of 
MCM-41-supported K2.5H0.5PW12O40 salts was achieved 
through the utilization of the incipient wetness impregna-
tion method (Fig. 4) [33, 34].

To synthesize the potassium salt of phosphotungstic acid 
(K2.5H0.5PW12O40), a precise quantity of an aqueous solu-
tion containing the corresponding carbonates was gradually 
introduced into the phosphotungstic acid (PTA) solution, 
accompanied by continuous stirring [33–35]. Subsequently, 
the resulting precipitate underwent a thorough drying pro-
cess at 110 °C under vacuum conditions for 24 h, followed Fig. 2   Keggin type structure of heteropolyacid/salts
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by 3 h calcination at 300 °C. The product obtained in the 
above process was utilized by S.B. Hamid et al. who con-
ducted an analysis on the dehydration process of glyc-
erol to acrolein in the presence of K2.5HPW as a catalyst 
(Scheme 1) [37]. The study yielded a remarkable conversion 
rate of 91.3% and a selectivity of 95.6% [36, 37].

Joao Carlos Soares et  al. conducted an experimental 
study on the oxidation reaction of cyclohexene (Scheme 2) 
to adipic acid using K3PW12O40 as a catalyst. The study also 
investigated the thermal effect treatment on catalyst for the 
reaction [38].

Himmat Singh et al. conducted an experimental study on 
the esterification and trans-esterification of waste oil. They 

utilized potassium-imbued tungstophosphoric acid sup-
ported by graphene oxide as a heterogeneous catalyst. The 
reaction was carried out at 65℃ for 1.5 h with a molar ratio 
of 9:1 and 10% catalyst by weight [39].

2.1.1.3  Preparation of  K3 [PMo6W6O40]  To prepare 
K3[PMo6W6O40], an equimolar solution of sodium tungstate 
and sodium molybdate dissolved and sodium dihydrogen 
phosphate in a 2/5 molar ratio in 60 ml of deionized water. 
Next, the solution was heated to 80 °C and left to stir for 3 h. 
Afterward, the solution was concentrated to nearly 30 ml to 
change the solution's colour from yellow to its desired state, 
and 30 ml of 24% hydrochloric acid was added. Finally, the 
crystal was obtained by extracting the solution with diethyl 
ether at room temperature [40].

The esterification process of phthalic anhydride with 
alcohol occurs in two distinct stages as the experimental 
proof is given by S. Sheshmani et al. [40]. The initial stage 
is remarkably swift, allowing it to be conducted without the 

Fig. 3   Layout depicting the 
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need for a catalyst. On the other hand, the esterification of 
the next takes place at a very miserable rate and necessitates 
the assistance of an acid catalyst K3[PMo6W6O40] showing 
the highest conversion i.e. 97% (Scheme 3) [40].

2.1.1.4  Preparation of K3 [PMo12O40]  This salt was synthe-
sized through the reaction between 0.01  mol of disodium 
hydrogen phosphate and a solution of 0.04 mol of sodium 
molybdate in 30 ml of water. The solution was vigorously 
stirred and heated to its boiling point. Subsequently, 8 ml 
of 37% hydrochloric acid was added. The purification pro-
cess was done by diethyl ether. The esterification process 
of phthalic anhydride reagent catalysed by K3[PMo12O40] 
provided 37% yield in xylene solvent [40].

A comparison of the activity of different POM catalysts at 
variable Ph in xylene and toluene is explained in Fig. 5. [40].

2.1.2 � Metal substituted Lacunary Keggin ion Structure

The K8−xSiW11Mx+O39 catalysts, where Mx+ represents 
Cu2+, Fe3+, Co2+, Ni2+, and Al3+, were prepared using 

a modified method described in the literature [41–46]. 
To prepare lacunary HPA salts, a solution contain-
ing H4SiW12O40·nH2O (6.29 mmol; 100 mL) and KCl 
(13.4 mmol) is vigorously stirred. pH 5.5 was adjusted 
using KHCO3, and the solution was filtered and concen-
trated to obtain a white precipitate. A flow diagram for the 
preparation of K8−xSiW11Mx+O39 is represented in Fig. 6 
[47].

The precipitates, K8SiW11O39·nH2O, were separated 
and dried [47]. A metal cation was incorporated into the 
lacunar heteropoly anion, K8SiW11O39 (5 g in 30 ml) by 
dissolving in water and then a metal precursor solution 
was added slowly as stated by M. J. da Silva et al. In the 
study, M. J. da Silva et al. carried out a study on the reac-
tion catalyzed by lacunary ion for conversion of benzal-
dehyde to benzoic acid (Scheme 4) with a conversion rate 
of 91% and selectivity of 100% [30].

Scheme 2   Oxidation reaction of cyclohexene to adipic acid by KPW

Scheme 3   Reaction catalysed by K3[PMo6W6O40]
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2.2 � Polyoxometalate with Wells Dawson structure:

The Well-Dawson structure is a type of structure that has 
an ellipsoidal shape and is represented by the formula 
X2M18 [48, 49]. The Dawson structure [50] is based on the 
truncated Keggin unit (XM9) and the [X2M18O62] cluster 
can be created by symmetrically assembling two of these 
fragments, as shown in Fig. 7 [24, 25]. The phosphotung-
state and phosphomolybdate anions, [P2M18O62]6− (abbre-
viated as P2M18 where M is either W or Mo), are respon-
sible for the majority of the compositions connected 
to the Dawson structure. This structure consists of two 

heteroatoms stacked on the top of each other, with each 
end composed of an M3O13 cap. Additionally, there are 
two six-metal belts encircling the molecule. The eighteen 
metal atoms in P2M18, and other Dawson structure deriva-
tives, are arranged in four parallel rings, consisting of 3, 
6, 6, and 3 unit metal ions each, forming a local pseudo-
octahedral environment. The Dawson structure is different 
from the Keggin anion because it has two distinct specific 
positions. The M3 rings, acting as caps, are strategically 
located in the polar regions, while the two M6 rings form 
a belt in the equatorial region [24].

These structural differences lead to different chemical 
behaviour. In terms of electronic structure, the Dawson 
anion has the first unoccupied molecular orbital (LUMO) 
across the equatorial region. Moreover, the first virtual 
orbital in the cap region is calculated to be 0.85 eV higher 
in energy [51–53]. The original structure also allows for 
multiple metal substitutions.

2.2.1 � Preparation of K6 [P2W18O62]

30 ml of water was mixed with 0.01 ml of sodium tung-
state, and then 2 ml of phosphoric acid was added. For a 
continuous 8 h, the solution underwent reflux. Potassium 
chloride (1 g) was added to precipitate the salt, which was 
then purified by re-crystallization and allowed to cool to 
5℃ overnight. After filtering and washing, the product was 
vacuum-dried for 8 h [54]. M Moudjahed et al. investigated 
the relationship between catalyst mass, the nature of the 
substrate and the POM composition during the reaction and 
their reaction parameters are detailed in Fig. 8 [54].

Hugo. C. Novais et al. demonstrated the oxygen reduction 
experiment using a K7[P2W17(FeOH2)O61] catalyst immo-
bilized onto graphene flakes and multi-walled carbon nano-
tubes doped with nitrogen. This setup exhibited excellent 
activity and selectivity toward the oxygen reduction reaction 
[55].

H4SiW12O40.nH2O
K4SiW12O40.nH2O K8SiW11O39 K8-

xSiW11Mx+O39
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K+K+

K+

K+
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KCl KHCO3
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Fig. 6   Preparation of lacunary Keggin ion

Scheme 4   Reaction Catalysed by Lacunary K8SiW11O39 Keggin ion

Fig. 7   Wells Dawson structure
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2.2.2 � Preparation of K6[P2Mo18O62]

Molybdenum-based Well-Dawson compounds, such as 
X6P2Mo18O62 with different cations, can be used as cata-
lysts in the gas-phase oxidative dehydrogenation process 
of iso-butyraldehyde to produce methacrolein and acetone 
[56]. These compounds have relatively (~ 30% conver-
sion) low activity when heated to 260 °C, but supported 
molybdenum-based Well-Dawson compounds patented by 
Lyons and co-workers for use in heterogeneous gas-phase 
oxidation reactions [57]. These substances have the abil-
ity to catalyze the conversion of alkanes, such as propane 
to acrylic acid and iso-butane to methacrylic acid, into 
unsaturated carboxylic acids or nitrites. It has been dis-
covered that, in comparison to Keggin-type compounds, 
partially protonated Well-Dawson compounds exhibit 
greater activity in these oxidation processes [58–61]. 
Reza Tayebeeet al. carried out a study to explore the 
interaction between 2, 3 butadione and urea while using 
different heteropoly acids/salts as presented in Fig. 9. The 
objective was to ascertain the rate of conversion and pro-
duce a high yield of glycoluril derivative as an outcome 
and the eactions catalysed by K6 [P2Mo18O62] provided 
95% conversion rate [62].

2.2.3 � Lacunary Wells Dawson Preparation Methods

The following procedure was used to synthesize the metal-
doped α2-WD POMs [63, 64]. A generalised layout for the 

Fig. 8   Reaction catalysed by K6 
[P2W18O62]
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synthesis of metal doped Wells Dawson type’s heteropoly 
acid salts (Fig. 10).

2.2.3.1  Synthesis of M‑WD (α2‑KXP2MW17O61)  The research-
ers synthesized lacunary POM doped with different metals 
(Ru, Pd, Fe, and Pt) by modifying existing protocols [65–
68]. They started the process by dissolving α2-K10P2W17061 
(α2-WD) {0.42  mmol} in water (8  ml) at 90  °C. Next, a 
metal precursor (α- WD) solution (0.45 mmol) was gradu-
ally added drop wise while stirring the α2-WD solution. The 
solution obtained was agitated at 90 °C. The reaction solu-
tion was allowed to cool to room temperature, after that KCl 
was dissolved in it. The precipitates were collected, washed, 
and recrystallized to obtain the desired product [69, 70].

2.3 � Preyssler Structure

[(NH4)14NaP5W300110] is a Preyssler-type catalyst in 
which the ammonium salt unit cell comprises two 
[P5W300110]15− anions that the centre of symmetry con-
nects. The anions have an internal fivefold symmetry and 
resemble ellipsoids (prolate spheroids). Each is built of 
five PW6 units arranged in a crown so that the whole anion 
has an internal fivefold symmetry axis (Fig. 2). Perpen-
dicular to this axis is a mirror plane containing five phos-
phorus atoms. The tungsten atoms are distributed in four 
parallel planes perpendicular to the axis: each of the outer 
planes contains five tungsten atoms; each of the inner ones 
contains ten tungsten atoms. A PW6 unit consists of two 
groups of three corner-shared WO6 octahedra [71–73]. 
Two pairs of octahedra of each group are joined together 

by sharing one edge located in the mirror plane. Each octa-
hedron contains only one W = O double bond which is 
directed toward the exterior of the polyanion.

2.3.1 � Preparation of Potassium Based Preyssler Type 
Catalyst

The polyoxometalate with Preyssler structure, K14 
[NaP5W30O110], was made by following a series of steps 
[74] showing in Fig. 11. This method ensures the desired 
polyoxometalate is obtained in its purest form.

In the majority of Preyssler-type phosphotungstate, 
the enclosed cation occupies one of the two side cavi-
ties, forming co-ordination with five Oa oxygen, five Ob 
oxygen, and one water molecule for coordination [75–77].

2.3.1.1  Preparation of K14[P5W30O110K]·17H2O  A solution 
containing K13[P5W30O110Ca(H2O)]0.25H2O (2.39 g) and 
KCl (0.45 g) was mixed with a potassium acetate buffer 
(5 ml) at pH 4.7. The mixture was stirred at room tempera-
ture for 5 min before being transferred to an oven set at 
170 °C for 24 h. After cooling, the solution produced col-
ourless crystals which were isolated and underwent two 
rounds of recrystallization. The resulting product was then 
suitable for analysis using X-ray diffraction. The crystals 
were carefully collected, dried, and ultimately provided a 
2% yield based on the initial materials used. Further anal-
ysis showed that the elemental composition of the final 
product was K14 [P5W30O110K]0.17H2O [74].

Na2WO4.2H2O

Water
PH 6-7

H3PO3

HCl

Cool 3-4
Hours

Yellow 
ppt.

Water

Filter and 
cover

Without
cover

70h

Refrigerator

K14[P2W18O62]

Add KCl

5℃℃

80℃℃
3
Days

Fig. 10   Diagrammatic representation of preparation of Lacunary Wells Dawson Heteropolyacid salt
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2.3.1.2  Preparation of H14[P5W30O110K]0.40H2O  K14[P5W30
O110K]0.17H2O (0.20 g) compound was dissolved in water 
and passed through a special substance 2.5 g of Dowex 50 
WX8 to make it neutral. The liquid was then evaporated at 
60 °C and water was added. The resulting solution was dried 
and yielded a high percentage of the desired compound. The 

elemental composition of the compound was measured and 
compared to the expected values, showing close agreement 
[78–80].

A new type of phosphotungstate compound called 
[P5W30O110K]14− was created and studied. It contains one 
potassium ion inside the central cavity. When heated, one 
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Fig. 11   Schematic diagram of potassium Preyssler type catalyst [74]
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hydrolysis of ethyl acetate
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of the potassium ions moved from the central cavity to a 
side cavity, making room for another potassium ion to be 
trapped inside, resulting in a compound with two trapped 
potassium ions [76].

Hayashi Akio et al. conducted research on the cata-
lytic aspects of Preyssler type catalyst for hydrolysis of 
ethyl acetate. The following diagram (Fig. 12) shows the 
conversion rate of different metal-substituted Preyssler 
catalysts [75].

Luis A. Gallego-Villada et al. investigated the reaction 
of levulinic acid (Scheme 5) with butanol using a Preyssler 
catalyst (K14NaP5W30O110) at a concentration of 40 mg. 
The ratio of butanol to levulinic acid was 5:1, and the reac-
tion was conducted at 160℃ for 3 h. The results showed a 
77% conversion rate with 100% selectivity [81].

2.3.2 � Aluminium Based Catalyst

2.3.2.1  Preparation of AlPW  To prepare the catalyst, a solu-
tion was formed by dissolving 2 g of aluminium phospho-
tungstate in 25 mL of 50% aqueous methanol at room tem-
perature. While stirring, an inorganic support weighing 1 g 
was gradually introduced into the solution. The solution was 
continuously stirred for duration of 4 h. Subsequently, the 
slurry underwent filtration using a G4-grade crucible. The 
resulting catalyst was then dried in an air oven at a tempera-
ture of 70 °C for 6 h. Finally, the dried catalyst was carefully 
stored in an airtight bottle within desiccators, ensuring its 
preservation and quality. Tipnis et al. performed the experi-
ment on the conversion of benzylation of  benzyl chloride 
and benzyl alcohol in the presence of AlPW (Scheme 6), 

Scheme 5   Reaction of Lev-
ulinic acid with Butanol

Scheme 6   Represent the Ben-
zylation of benzyl chloride and 
benzyl alcohol

Table 1   Selectivity and conversion rate with different catalyst at 80 °C temperature

DBE Dibenzyl ether, DPM Dipropylene glycol monomethyl ether

Catalyst Benzyl alcohol 
(conversion) %

Benzyl chloride 
(conversion) %

Selectivity (benzyl alcohol) 
%

Selectivity (benzyl chloride) % Benzylation %

DBE DPM Diben-
zylation

DBE DPM Dibenzylation

HPW 48.6 4.7 75.6 24.6 0 – – – 100
AlPW 55.0 24.6 77.2 22.8 0 – – – 100
AlPW/K-10 10.5 56.0 76.2 23.8 0 – 100 0 –
AlPW/Silica 5.9 - 85.7 14.6 0 – – – –
AlPW/H-ZSM-5 11.4 100 92.3 6.7 0 – 93.4 6.6 –
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which showed conversion and selectivity as represented in 
Table 1 [82].

2.3.2.2  Preparation of  AlPMo12O40  H3PMo12O40 (MPA) 
was typically dissolved in 12  ml of distilled water. To 
obtain the desired salt, the previous solution was supple-
mented with the required milligrams of Al2(SO4)3.18H2O, 
Al2O(CH3COO)4, or CuSO4.H2O. Once the solution reached 
between 50 and 60 ℃, it was constantly stirred. After that, 
BaCO3 was gradually added, and the reaction was carried 
out until all CO2 had been eliminated. The mixture was 
stirred for 2 h while it cooled. After that, the BaSO4 or Ba 
(CH3COO)2 solid was eliminated through filtration and it 
underwent three rounds of distilled water washings. After 
a week, the leftover water was evaporated to produce Al or 
Cu salts [83, 84].

S. Mansilla et al. conducted research on synthesizing 
chromanes to demonstrate the catalytic action of MPA salts 
in this process (Scheme 7). They particularly decided to 
examine the interaction between m-cresol (1) and geraniol 
(2) in order to conduct additional research [83].

A.A. Rodrigues et al. analyzed the conversion and reac-
tion selectivity of nerol oxidation reactions (Scheme 8) with 

H2O2 in the absence or presence of AlPMo12O40. The Reac-
tion conditions include nerol (1.0 mmol), H2O2 (2.0 mmol), 
catalyst (0.5 mol %), temperature (363 K) in the presence of 
CH3CN solvent (10.0 mL) [85].

2.3.2.3  Preparation of  Al2/3H2SiW12O40  To synthesize 
Al2/3H2SiW12O40 (AlHSiW), 0.7 mmol of H4SiW12O40 was 
dissolved in 100 mL of water using ultrasonic dispersion. 
Subsequently, 0.47 mmol of AlCl3 was added and the mix-
ture was continuously stirred at a temperature of 93 °C for 
the duration of 12 h. Excess water was then removed through 
vacuum distillation. AlHSiW was obtained by washing the 
resulting solid with diethyl ether and drying it at 105 °C for 
12 h. The synthesis of the Al-modified catalyst was care-
fully controlled by combining AlCl3 and HSiW in a stoichi-
ometric molar ratio of 2:3:1 during the feeding process. This 
process was repeated to prepare various metal-modified 
HPAs using different metal salts and HPAs [86, 87]. C. Tao 
et al. conducted research on an aluminium-based catalyst to 
determine the production of alkyl levulinate derived from 
cellulose and lignocellulosic materials (Scheme 9), result-
ing in a yield of 50–72% [86].

Scheme 7   Represent the 
formation of chromanes in the 
presence of AlPMo12O40

Scheme 8   Oxidation of nerol in 
the presence of AlPMo12O40
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2.3.2.4  Preparation of  AlWP Catalyst  The aluminum and 
copper salts of tungstophosphoric acid (TPA) were syn-
thesized through a carefully controlled process. These salts 
will be referred to as AlTPA and CuTPA, respectively. To 
create these compounds, aqueous solutions of Al2[SO4]3 or 
Cu[NO3]2  were slowly added to an aqueous solution of 
H3PW12O40, with the appropriate stoichiometric amounts 
[87–90]. This addition was done under vigorous stirring to 
ensure thorough mixing.

Once the solutions were combined, they were stirred 
at room temperature for 1 h. After this time, the solvent 
was evaporated in air at a temperature of 70 ℃. The result-
ing salts were then washed with ethanol and dried again at 
100◦C to remove any remaining impurities. This process was 
repeated to obtain the salts of tungstosilicic acid [91].

Hydro arylation of a styrene derivative (Scheme 10) was 
investigated by K. Mohan Reddy et al. under solvent-free 
conditions [92]. The researchers found that adding AlTPA 
noticeably enhanced the product formation efficiency [92].

2.4 � Preyssler Aluminium Based Catalyst

The highly complex isopolycation Al13
7+ was synthesized 

by carefully adjusting the ratio of OH− to Al3+ to 2.4 in an 
aqueous solution [93]. In order to achieve this, a solution 
of 1.25 M sodium carbonate was meticulously added drop 
by drop to a vigorously stirring 1.67 M boiling solution of 
AlCl3. The resulting solution was then utilized to precipi-
tate the heteropoly anion from the aqueous solution. This 

process yielded a visually striking white emulsion, from 
which a solid was precisely separated using a centrifuge 
operating at 2000 rpm. The solid was subsequently dried 
at 80 °C under 5 Torr for a duration of 24 h. Prior to con-
ducting any catalytic tests, the catalyst underwent a crucial 
calcination process at 300ºC for 2 h. The molecular weight 
of the compound [Al13O4 (OH) 24(H2O) 12]2[NaP5W30O110] 
is determined to be 9530 g/mol [94]. Nemati Kharat et al. 
conducted a study on the epoxidation of aromatic alkanes 
using acetonitrile as the solvent (Fig. 13) Remarkably, the 
catalysts exhibited consistent activity throughout three 
consecutive cycles, without any noticeable decrease. This 
finding highlights the stability of the catalysts employed 
in the process [94].

Scheme 9   Formation of 
Ethyl levulinate using 
Al2/3H2SiW12O40 as catalyst

Scheme 10   Hydro arylation of 
a styrene by AlTPA

Aroma�c
Arenes

1,1
Diphenyl
Ethylene

48 C
46 S

42 C
83 S

52 C
90 S

Preyssler type
catalyst

Indene

Styrene

Preyssler type
catalyst

Preyssler type
catalyst

C-Conversion rate
S-Selec�vity

Fig. 13   Diagram represents the epoxidation of aromatic alkanes
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2.5 � Preparation of Aluminium Based Catalyst Wells 
Dawson Catalyst

Tw o  p o t a s s i u m  s a l t s ,  K 1 0 [ { A l 4 ( μ - O H ) 6 }
(α,αSi2W18O66)] ·28.5H2O and K10[{Ga4(μ-OH)6}
(α,αSi2W18O66)]·25H2O-open POM, were synthesized 
and characterized. Al-containing open Wells Dawson was 
obtained with a yield of 13.7% and Gallium (Ga) contain-
ing with a yield of 26.2%. Al based-open Wells Dawson 
was prepared by reacting Na10[A-α-SiW9O34]0.18H2O 
with Al(NO3)3.9H2O, while Ga based Wells Dawson was 
prepared by reacting K10[A-α-SiW9O34]0.10H2O with 
Ga(NO3)3.nH2O. The samples were characterized using vari-
ous analytical techniques. The formation of polyoxoanions 
was described by crystallization of Al4-open resulted in the 
formation of minor products, including Al16-tetramer. By 
removing the crude crystals and adding saturated KCl aque-
ous solution, pure aluminium based POM was obtained from 
the mother liquor [95, 96].

3 � Characterization Techniques HPA Salts

Keggin HPAs are characterized using a variety of methods 
in both the liquid and solid phases. But in this discussion, 
we will specifically focus on the most widely utilized tech-
niques. Fourier Transform Infrared Spectroscopy (FTIR). 
The characterization data and accompanying graphs pre-
sented in this study have been sourced from previously pub-
lished papers.”

3.1 � Infrared Spectroscopy

Infrared spectroscopy serves as an invaluable tool in unravel-
ling the primary structure of Keggin HPAs. By analysing the 
characteristic chemical bonds found within Keggin anions, 
we can pinpoint their primary vibration bands, which are 
predominantly situated within the fingerprint region. The 
FTIR analysis allows us to examine the vibrational modes 
and functional groups found in the silicotungstate salt, 
molybdotungstate, and phosphomolybdate structures. By 
studying the characteristic absorption peaks in the infrared 
spectra, we can identify the specific bonds and interactions 
within these compounds. This technique allows us to gain 
profound insights into the intricate composition of Keggin 
HPAs.

The Keggin-type molybdophosphate and molybdotung-
state compounds display distinct spectral bands at specific 
wave numbers. Specifically, these bands are observed at 
973 cm−1 for the M=O bond, 878 cm−1 for the M-Ob-M 
bond, and 789 cm−1 for the M-OC-M bond. Moreover, the 
vibration absorption peak positions of the P-O, W=O, 
and W–O–W bonds are expected to occur at 1085 cm−1, 

962 cm−1, and 893 cm−1, respectively [97–99]. IR frequency 
of one of the Keggin structures is shown in Fig. 14 [99].

The parent P2Mo18 Dawson unit has characteristic bands 
at various wavelengths, including 3567–3287  cm−1 for 
water, 1609 cm−1 for OH bending, 1058–1035 cm−1 for P-O 
stretching, 946 cm−1 for terminal Mo–O stretching, 880 cm−1 
for edge sharing Mo-Oe-Mo stretching, and 737 cm−1 for 
corner sharing Mo-Oe-Mo stretching. This means that differ-
ent types of chemical bonds are present in the parent P2Mo18 
Dawson unit at these specific wavelengths.

On the other hand, the α-WD (α-phospho-tungstic-WD 
metal substituted Wells Dawson) has stretching bands at 
1087 cm−1, 1021 cm−1, and 996 cm−1 in the P-O (phos-
phorus-oxygen) region, as well as other stretching bands at 
953 cm−1, 901 cm−1, and 733 cm−1 in the W–O-W (tung-
sten-oxygen-tungsten) region, and bending vibrations in the 
600–500 cm−1 region. These bands correspond to different 
types of stretching and bending motions present in the α-WD 
structure [70, 99–101]. When tungsten is removed from the 
α-WD to form α2-WD (α2 -phospho-tungstic Wells Daw-
son), the band at 1087 cm−1 splits into three distinct bands 
at 1079, 1047, and 1013 cm−1. This splitting occurs because 
the bonding interactions with the removed tungsten octahe-
dra are no longer present in α2-WD [70, 101, 102].

The Preyssler structure exhibits four distinct types of 
oxygen, which contribute to the characteristic bands of the 
Preyssler anion between 1200 and 600 cm−1. Notably, the 
Preyssler structure, H14[NaP5W30O110]0.25H2O, is respon-
sible for several key bands. These include the P–O stretch-
ing band at 1163 cm−1, the W–O-W bands at 948 cm−1 and 
917 cm−1, and a band at 760 cm−1 corresponding to W=O 
stretching [103].

This figure is taken from potassium tungstocobaltate(III)-
catalysed borneol oxidation 2 with hydrogen peroxide manu-
script by author permission.

Fig. 14   IR spectra of substituted tungtophosphate heteropolyacid salts
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This review paper also focuses on the Fourier Transform 
Infrared (FTIR) analysis of potassium-based Keggin, Wells 
Dawson, and Preyssler-type structures of silicotungstate salt, 
molybdotungstate, and phosphomolybdate.

4 � Conclusion

Based on recent research articles, it has been observed that 
heteropolyacids have numerous applications across various 
fields, including pharmaceuticals and organic reactions. 
These catalysts, known as heteropolyacid catalysts, possess 
distinctive properties for the exchange of metal ions. These 
catalysts possess commendable environmental and are con-
sidered environmentally friendly. An important property of 
these catalysts is that they can be used without solvents in 
many reactions. Their activity remains unaffected as they 
can be effortlessly regenerated, separated, and reused numer-
ous times.

This review provides an overview of the structure fea-
tures of heteropolyacids mainly Keggin, Wells Dawson, and 
Preyssler types of polyoxometalate. Furthermore, we have 
provided insights into the preparation methods for molybdo, 
phospho, and tungstate compounds of potassium and alu-
minium based on these polyoxometalate structures. The 
article also highlights the application of these catalysts in 
various organic reactions. Moreover, we have also included 
FTIR data of Keggin, Preyssler and Wells Dawson structure 
from the previous studies to enhance the understanding and 
clarification of these catalysts.
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