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Abstract
The influenza virus is usually influenced by genetic mutations and reassortment of its different strains, resulting in drug 
resistance and pandemics. This necessitates the search and discovery of more potential influenza inhibitors to prevent future 
outbreaks. As an extension of our previous report on 1, 3 thiazine derivatives as neuraminidase (NA) inhibitors, compound 
4 was selected as the template scaffold for the in-silico drug design due to its better NA inhibitory activity, good binding 
affinity, and pharmacokinetic profile. Therefore, a newly designed 4a compound resulted in better binding affinity (MolDock 
score) in comparison with the template scaffold and the oseltamivir as the reference drug. The conformational stability of the 
compound in the binding cavity of the targeted NA protein (3TI6) revealed hydrogen bondings and water-mediated hydro-
phobic interactions with the active residues after the system stabilized at 100 ns of molecular dynamic (MD) simulation. The 
drug-likeness and ADMET prediction of the designed 4a revealed non-violation of Lipinski’s rule with good pharmacokinetic 
properties. In addition, the DFT calculations portrayed the relevance of the compound in terms of chemical reactivity due 
to its smaller band energy gap. The outcome of this study proposed a reliable in-silico perspective for anti-influenza drug 
discovery and development.
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virus 2

WHO  World Health Organization
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RMSD  Root mean squaredeviation
NPT  Normal pressure and temperature
FMO  Frontier molecular orbital
E-LUMO  Lowest unoccupied molecular orbital 

energy
E-HOMO  Highest occupied molecular orbital 

energy
SID  Simulation interaction diagram
RMSF  Root mean square fluctuation
MEP  Molecular electrostatic potential

1 Introduction

Since emerging influenza may cause a global pandemic, it 
remains a danger to public health [1]. The influenza virus is 
a member of the Orthomyxoviridae family, which is respon-
sible for a high rate of illness and death in people worldwide 
[2]. The four primary kinds of influenza viruses are desig-
nated as A, B, C, and D, with A and B causing seasonal 
influenza epidemics [3]. The influenza A virus (IAV) has 
largely been documented to infect humans, and it is clas-
sified into subtypes based on the protein reassortments on 
the viral surface [4]. The 2009 pandemic was caused by 
the H1N1 subtype of IAV, which is generally referred to as 
A(H1N1)pdm09 and has progressively supplanted the sea-
sonal influenza A(H1N1) virus [5]. As a result, only type A 
viruses have been linked to influenza pandemics. Prior to 
2020, the influenza virus was believed to be one of the most 
common non-COVID-19 respiratory viruses [5, 6]. Never-
theless, the virus’s circulation decreased significantly during 
the first wave of the COVID-19 pandemic in 2020 [7]. Even 
though many localities have a high prevalence of COVID-
19 infections, most nations reported intermittent influenza 
detections to the World Health Organization (WHO) [8]. 
Throughout the SARS-CoV-2 pandemic, there has been a 
99% decrease in influenza virus isolation globally [9]. Influ-
enza may return and spread after the SARS-CoV-2 pandemic 
[9]. According to WHO prevalence figures, there are around 
2–5 million cases of severe influenza infections worldwide, 
with over 500,000 fatalities [10].

The currently circulating IAV subtypes in humans are 
H1N1 and H3N2, and hemagglutinin (HA) and neuramini-
dase (NA) are the two essential transmembrane glycopro-
teins found on the surface of the influenza virus [11]. The 
NA has three main functions: it aids the virus access to 
epithelial cells by breaking down respiratory tract mucins 
rich in sialic acids; it desialylated the virion and the cyto-
plasmic membrane, maximizing the fusogenic potential of 
the HA; and it promotes the production of new virions and 
prevents their accumulation on the surface of the host cell 
[12]. Because of the highly conserved binding site in the 

NA protein structure, it is an attractive molecular target for 
the discovery of new influenza virus inhibitors [13]. The 
basic and acidic groups found in the catalytic cavity of the 
NA-targeted protein are the two critical active pharmaco-
phores of NA inhibitors [14]. The majority of the FDA-
approved NA inhibitors, such as zanamivir (RelenzaTM) 
and oseltamivir (TamifluTM) are licensed for influenza 
treatment in several countries [15]. The rapid spreading 
of new influenza strains is becoming resistant to conven-
tional vaccinations and drugs for treatment and protection 
respectively [16]. In addition, the emergence of drug-
resistant strains of the influenza virus is due to the genetic 
mutability and resortments which has attracted the interest 
of many experts [15]. This necessitates the search quest 
for more powerful NA inhibitors. Yet, the experimental 
trial-and-error technique used in drug discovery and devel-
opment is tedious, time-consuming, and labor-intensive 
[17]. These constraints have been seen to be addressed 
by the use of theoretical models and computational tech-
niques. The use of computer-aided drug design (CADD) 
gives knowledge and understanding of a technique that can 
provide important information about the kinds of interac-
tion and binding affinity between protein and ligand (com-
plex) [18]. One of the most popular methods is molecu-
lar docking, which predicts possible drug binding modes 
at a particular target-binding site and measures affinity 
based on the drug’s conformation and complementarity 
with the characteristics found in the binding pocket [19]. 
Furthermore, the structure-based drug design (SBDD) 
method relies on the availability and understanding of the 
targeted receptor to build compounds with greater binding 
efficiency [20]. The molecular dynamics (MD) simulations 
estimate how the atoms in a protein or other molecular 
system move over time based on the fundamental physics 
model (Newtonian motion) [21]. Also, when evaluating 
potential medicine candidates for safety and effectiveness, 
the characteristics of absorption, distribution, metabolism, 
elimination, and toxicity (ADMET) are crucial [22]. To 
prevent drug rejections in later stages of clinical trials, 
ADMET prediction needs to be implemented.

Compound 4 (1 g) has been reported to have the best 
NA inhibitory rate of 68.08% (29.06 µg/mL) with good 
binding potentials and can be used as a template for the 
future design of potential candidates in previous studies 
[23, 24]. As a result, the current research employs this 
most active compound as a template scaffold to design 
a potent analog via a structure-based design strategy. In 
addition, the binding affinity and molecular dynamic sta-
bility of the targeted NA receptor are studied. The pharma-
cokinetics and frontier molecular orbital simulations of the 
designed analog are investigated to provide a molecular 
understanding of its chemical reactivity and potency.
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2  Materials and Methods

2.1  Template Scaffold Selection and Modification 
Strategy

Compound 4 (ethyl 2-acetamido-4-methyl-6-(2-(pentan-
3-yloxy)phenyl)-6 H-1,3-thiazine-5-carboxylate) of our 
previous report [24], was utilized as the template scaffold 
for the structural modification. The basis for this selection 
was because the compound has the; (i) highest NA activity, 
(ii) high binding affinity, (iii) favourable pharmacokinetic 
profile, and (iv) within the chemical space of our devel-
oped QSAR models [24]. The modification was done near 
the (pentan-3-yloxy) benzene fragment of the template 
with a steric and electronegative moieties in line with our 
QSAR modelling and molecular docking studies. Thus, the 
ethyl 2-acetamido-6-(6-acetamido-5-amino-3-ethoxy-5,6-di-
hydronaphthalen-2-yl)-4-methyl-6 H-1,3-thiazine-5-carbox-
ylate was obtained as the modified compound (designed 4a) 
for further in-silico studies. Figure 1 shows the modification 
scheme of the template 4 to the designed 4a compounds.

2.2  Preparation of Ligand and Target Protein 
Receptor for Molecular Docking Analysis

The 2D structures of the compounds were drawn using 
Chem Draw software and then optimized using Spartan 14 
software at the density functional level of theory (DFT) with 
Becke three-parameter hybrid exchange potentials of Lee-
Yang-Parr correlation potential (B3LYP) and 6-31G* basis 
set [25, 26]. The NA target of A/California/04/2009 (H1N1) 
strain complexed with oseltamivir (PDB code: 3TI6) was 
retrieved from the protein data bank at www. rcsb. org/ pdb, 
which is a repository for the 3D crystal structures of large 
biomolecules. NA proteins are commonly selected due to the 
observation of the open conformation for the 150-loop in the 
N1 and N8 (group 1 structures) which shows intrinsically 
lower energy than the closed-loop conformation for these 
enzymes [27]. The group 1 structures of the neuramini-
dase bind to oseltamivir in this open conformation but later 

switch to the closed conformation. Hence, it appears that 
the binding of oseltamivir towards group-1 neuraminidases 
prefers the closed conformation of the 150-loop (higher 
energy) that it possibly accesses through a relatively slow 
conformation change [27]. Thus, it should be possible to 
develop novel inhibitors for group 1 neuraminidase that is 
selective for the open 150-loop conformation with the abil-
ity to bind more strongly than oseltamivir [27]. The studied 
compounds were docked with the NA target to review their 
binding affinities using Molegro Virtual Docker (MVD) 
[28, 29]. The MVD was initially used to identify potential 
binding cavities/active sites for the target protein of interest. 
However, several binding cavities were predicted but only 
one was selected in view of the existing knowledge about 
the active residues in the literatures [30, 31]. The selected 
optimum active cavity was further used in our subsequent 
docking and molecular simulation investigations. The cavity 
was set within a constraint sphere of 15 Å radius with the 
center coordinate of X: − 28.02, Y: 14.69, Z: 20.22 for the 
docking simulation as shown in Fig. 2. The MolDock (Grid) 
score at a default grid resolution of 0.3 Å was set up for 10 

Fig. 1  2D structures of the tem-
plate scaffold (compound 4) and 
the newly designed compound 
(designed 4a) showing the 
modified regions in purple, and 
cyan colour

Fig. 2  Optimum detected binding cavities for the NA targets, volume: 
92.672 Å3, surface area: 247.04 Å2 for PDB: 3TI6 at radius 15

http://www.rcsb.org/pdb
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independent runs, and each run with a maximum number 
of 1500 iterations on a single population size of 50. The 
detailed steps for the MVD docking procedure and scoring 
functions have been described in our previous articles [29, 
32].

2.3  Molecular Dynamics Study

To explore the binding stability of the lead molecule in the 
most stable complex formed, the Molecular Dynamics(MD) 
simulation study was carried out using the Desmond MD 
program on Ubuntu 18.04 of an HP computer workstation 
(Z2 G2 TOWER) having NVIDIA Quadro 6000, graphics 
processing unit (GPU) of 4GB, and OPLS-3e force field [33, 
34]. The best ligand-protein complex acquired was loaded to 
the interface of Maestro of the Schrodinger software which 
was located at the center of the orthorhombic box shape 
(with size as 10 Å × 10 Å distance). To solvate, the simula-
tion box, single-point charge (SPC) water molecules were 
added with appropriate counter ions to neutralize the sys-
tem [35, 36]. The 0.15 M NaCl salt concentration was set 
to mimic the physiological conditions using the Desmond 
System Builder panel. Using the OPLS3e force field, the 
energy of the overall system was minimized with 2000 itera-
tions and a convergence criterion of 1 kcal/mol to remove 
electronic conflict between protein structures [37, 38]. The 
production MD simulation was run for 1000 steps for 100 
ns at 298 K and 1 bar using the NPT (Normal pressure and 
temperature) ensemble. The Nose-Hoover Chain thermostat 
algorithm and Matrtyna–Tobias–Klein barostat algorithm 
were used to uphold temperature and pressure during the 
simulation [39, 40]. The dynamic behavior and interactions 
between designed 4a and the NA target (3TI6) were analyzed 
using the Simulation Interaction Diagram (SID) tool, where 
the out.cms file was loaded and selected for the Root Mean 
Square Deviation (RMSD) and Root Mean Square Fluctua-
tion (RMSF) analysis.

2.4  Lipinski’s Rule and ADMET Characteristics 
Prediction

The preliminary evaluation of ADMET/pharmacokinetic 
features of potential drug candidates is vital at the early 
stage of drug development [41]. Therefore, an effective and 
precise pkCSM website was utilized to predict a variety of 
pharmacokinetic characteristics, as well as the drug-likeness 
and toxicity assessments of the proposed compounds in the 
study.

2.5  Density Functional Theory Calculations

The Density Functional Theory (DFT) analysis is an impor-
tant computational approach for studying the electronic 

structure, stability, and reactivity of compounds based on 
some relevant quantum chemical descriptors computed from 
the frontier molecular orbital (FMO) energies such as the 
lowest unoccupied molecular orbital energy  (ELUMO) and 
the highest occupied molecular orbital energy [42]. In this 
study, the quantum-chemical descriptors of the compounds 
were generated to examine their chemical reactivity. These 
descriptors include Ionization potential (IP = −  EHOMO), 
Electron affinity (EA = −  ELUMO) index, Energy gap (∆E  
=  ELUMO−  EHOMO), Electronegativity (χ = −  (ELUMO + 
 EHOMO)/2), Chemical hardness (η =  (ELUMO −  EHOMO)/2), 
and Chemical softness (S  =  1/η) [43]. In addition, the 
molecular electrostatic potential (MEP) surfaces were also 
computed from the population analysis. These are important 
parameters used in elucidating the efficiency of compound 
interaction in the binding site of the NA target enzyme.

3  Results and Discussion

3.1  Molecular Docking Studies

The binding cavity of all NA targets of influenza consists 
of 3 active residues arginine (Arg 118, Arg 292, and Arg 
371) which bind the carboxylate moiety of the sialic acid 
substrate, the acetamido moiety interacts with Arg 152 while 
the 8- and 9-hydroxyl groups of the substrate forms H-bonds 
with Glu 276 residue [44]. The predicted binding cavity with 
their amino acid residues by MVD and supported by numer-
ous literatures is shown in Fig. 3.

The validation of the docking algorithm is an essential 
step to ensure that ligand molecules bind within the active 
cavity of the receptor in a precise conformation through the 

Fig. 3  Predicted binding cavities of the NA target (PDB: 3TI6) by 
MVD and their active residues
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accurate selection of size and center coordinates of the grid 
box [45]. As such, the docking simulation protocol was vali-
dated by redocking the co-crystalized structure of the NA 
target with oseltamivir using the MolDock Simplex Evo-
lution (MolDock SE) search algorithm. The best binding 
pose parameters of the studied molecules were reported as 
MolDock (kcal/mol), re-rank, RMSD, and H-bond energies 
in Table 1.

The various binding poses obtained are similar to the 
co-crystalized ligand, and the RMSD scores are less than 
2 Å. The RMSD of the best binding pose of oseltamivir 
was 1.12 Å, with a MolDock score of − 144.85 kcal/mol 
and H-bond energy of − 9.68 kcal/mol which is similar 
to the results obtained for the docked conformer and co-
crystallized NA target (PDB:2HU0) with oseltamivir[27]. 
However, the oseltamivir binds to the active cavity of the NA 
target (3TI6) through H-bond interactions with Arg 118, Arg 
292, Glu 119, and Arg 371 amino acid residues as elucidated 
in Fig. 4. Others are Arg 118, Glu 277, Arg 292, and Arg 371 
for electrostatics interactions while Arg 118, Asp 151, Glu 
119, Glu 277, Arg 292, and Arg 371 for steric interactions.

The RMSD score of the best binding pose of template 
4 was 6.13 Å, with a MolDock score of − 137.05 kcal/mol 

and H-bond energy of − 2.23 kcal/mol. The template 4 com-
pound majorly formed one H-bond interaction with Arg 371 
residue (Fig. 5) while Arg, 118, Arg 371, Trp 403, Ser 404, 

Table 1  MolDock (kcal/mol), Rerank, RMSD and H-bond energy scores of the studied molecules with NA target (3TI6)

Ligand MolDock score (kcal/mol) Rerank score RMSD (Å) HBond

[00][00]4a − 159.22 − 103.06 0.86 − 12.74
[00][00]Oseltamivir − 144.85 − 109.36 1.13 − 9.69
[00][00]4 − 137.05 − 90.52 6.13 − 2.23

Fig. 4  Best binding pose (yellow) and the co-crystallized NA target 
(PDB: 3TI6) with Oseltamivir (green)

Fig. 5  Best binding pose (yellow) and the co-crystallized NA target 
(PDB: 3TI6) with template 4 (green)

Fig. 6  Best binding pose (yellow) and the co-crystallized NA target 
(PDB: 3TI6) with designed 4a (red)
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Pro 431, Lys 432, and Ile 427 interact through steric inter-
actions. However, the lowest RMSD score of 0.86 Å was 
recorded for the best binding pose of the newly designed 4a, 
with the highest MolDock score of − 159.22 kcal/mol and 
highest H-bond energy of −12.72 kcal/mol. This implies 
that the designed 4a binds more efficiently with the active 
residues of the NA target (complex 4a) through H-bond 
interactions with Arg 292, Arg 371, Asn 347, and Ser 404 
amino acids as shown in Fig. 6. Complex 4a also formed 
more steric interactions with Asp 151, Tyr 406, Asn 347, 
Arg 371, Arg 292, Ser 369, Thr 439, Ile 427, Asn 325, and 
Pro 431 residues. Therefore, complex 4a with the highest 
MolDock and H-bond energy scores was selected for further 
residual and conformational stability analysis through MD 
simulations.

3.2  MD Simulation Study

The conformational stability of the bound conformation for 
designed 4a in the binding cavity of the targeted NA protein 
(PDB: 3TI6) was studied via MD simulation. The studied 
complex 4a system was simulated for up to 100 ns which is 
enough for the Cα atoms configurations. Both RMSD and 
RMSF plots were generated at the end of the 100 ns simu-
lation period. Thus, the RMSD analysis shows the general 

overview of the conformational stability of the complex dur-
ing the simulation period. Lower RMSD scores during the 
simulation interval are related to the stable conformation of 
the protein-ligand complex and vice versa [46–50]. More so, 
significant RMSD fluctuations suggest a substantial confor-
mational change of the targeted protein during the simula-
tion while smaller fluctuations are acceptable for negligible 
conformational changes.

The RMSD plot of complex 4a was presented in 
Fig. 7A, and it was observed that the RMSD of the protein 
and ligand 4a negligibly fluctuates within the permissible 
range of 1–2.2 Å throughout the MD trajectory of 100 
ns. Since the RMSD plots of the protein backbone and 
ligand 4a were lying over each other during the simulation 
interval, a stable bound conformation of complex 4a can 
be inferred. The binding efficiency of ligand 4a was also 
studied using the RMSF values for all alpha-carbon atoms 
of all amino acid residues of the targeted protein based 
on the MD trajectory of 100 ns as shown in Fig. 7B. The 
RMSF defines the average deviation from the original site 
for each protein residue which depicts its flexibility and 
mobility throughout the simulation period [51]. Hence, 
high RMSF values suggest high backbone flexibility, while 
small RMSF values suggest good backbone stability dur-
ing the simulation. In this plot, insignificant fluctuations 

Fig. 7  MD simulation analysis of complex 4a, A RMSD (Protein RMSD in grey colour while RMSD of ligand 4a in red), B Protein RMSF plot, 
C 2D Interaction diagram, and D Protein-ligand contact analysis



2963Chemistry Africa (2023) 6:2957–2967 

1 3

(below 2.0 Å) during the interactions were observed which 
is an indication of a minimal conformation change and 
perfectly acceptable. This implies that the studied ligand 
4a was tightly bound within the binding cavity of the NA 
binding pocket. The active residues of the targeted NA 
protein contributing to the interactions with ligand 4a were 
Arg 371, Ile 437, Arg 430, Gly 147, and Trp 403, with 
percent contributions of 68%, 51%, 48%, 48%, and 35%, 
respectively (Fig. 7C). Thus, ligand 4a binds the active 
residues through hydrogen bonding and water-mediated 
hydrophobic interactions after the simulation, as shown 
in Fig. 7D.

3.3  Lipinski’s Drug‑likeness Rule and ADMET 
Prediction

For the purpose of avoiding the tendency of a failed drug 
candidate, the designed 4a was subjected to drug-likeness 
and ADMET appraisals as mentioned previously [52, 53]. 
Lipinski’s rule was utilized to appraise the drug-likeness 
properties of the compounds. The rule suggests that a drug-
like molecule should not violate more than two of the fol-
lowing criteria which include; MW ≤ 500 g/mol (molecular 
weight), Log P ≤ 5 (n-octanol/water distribution coeffi-
cient), nHA ≤ 10 (number of hydrogen bond acceptors), and 
nHD ≤ 5 (number of hydrogen bond donors) [54–56]. Inter-
estingly, ligand 4a showed non-violation of Lipinski’s rule 

and was compared with template 4 as shown in Table 2, and 
its synthetic accessibility (SA) score of 5.63 is within the 
average range as compared with template 4. This suggests 
that the studied molecule would be easily synthesized.

The percent absorbance of less than 30% depicts low 
human intestinal absorption, but the designed 4a was 
predicted to have 74.18%, which is comparable with the 
67.88% of oseltamivir and the 86.31% of template 4. This 
indicates the ease of absorption of the studied compound 
in the human intestine. The volume of distribution at a 
stable state (VDss) depicts an effective distribution of drug 
candidates to the tissues at sufficient time. A VDss score 
of greater than 0.5 signifies that the candidate tends to 
spread in the plasma, while a VDss score of below − 0.5 
suggests that the drug has a low tendency to spread to the 
cell membrane. As such, the VDss scores of the studied 
compounds 4, 4a, and oseltamivir are predicted as 0.047, 
− 0.098, and − 0.154 respectively which suggest proper 
distribution in the plasma. The metabolism in the body 
is an enzymatic process that helps in drug biotransforma-
tion due to the production of numerous metabolites that 
are crucial in catalyzing the biochemical reaction with 
different drug concentrations [57–59]. The cytochrome 
P450 enzyme plays a vital role in the metabolic process 
of the drug molecules. Out of the 57 cytochrome P (CYP) 
genes from 17 families were identified in humans. More 
so, only CYP1, CYP2, CYP3, and CYP4 are utilized in 
drug metabolism, with CYP (1A2, 2C9, 2C19, 2D6, and 
3A4) in charge of the biochemical transformation of more 

Table 2  Lipinski’s rule and 
synthetic accessibility score of 
the designed molecules

Sr No. MW (g/mol) Log P nHA nHD nLV Synthetic 
accessibil-
ity

Rule ≤ 500 ≤ 5 ≤ 10 ≤ 5 ≤ 2 –
4 486.58 2.06 7 3 0 5.63
4a 473.59 3.27 6 2 0 5.37
Comment Passed Passed Passed Passed Passed Passed

Table 3  ADMET parameters of the newly designed molecules

Comp. No. Absorption Distribution Metabolism Excretion Toxicity

Intestinal absorption
(human) (%)

VDss 
(human)
(Log L/kg)

Substrate and inhibitors of CYP Total clearance AMES

CYP Substrate CYP
inhibitors

2D6 3A4 1A2 2C19 2C9 2D6 3A4

4 86.31 0.047 No Yes No No No No Yes 0.45 No
4a 74.18 − 0.098 No Yes No No No No Yes 0.22 No
Oseltamivir 67.88 − 0.154 No No No No No No No 0.92 No
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than 90% of drugs experiencing metabolic processes in 
phase I. Both template 4 and designed 4a were predicted 
to be inhibitors and substrates of CYP3A4 only, while the 
oseltamivir was predicted as a non-substrate/inhibitor. The 
total clearance level is a measure that defines the correla-
tion between the rate of drug elimination and its concen-
tration in the body. A low clearance score infers high drug 
endurance in the body, and it was observed that the studied 
compounds showed low scores. Besides, it is essential to 
inspect whether the predicted molecules are non-toxic in 
the cause of drug selection. Interestingly, designed 4a of 
the study was predicted as non-toxic as shown in Table 3.

3.4  DFT Studies

The frontier molecular orbital energies are important quantum 
descriptors that explain some key features of molecules relat-
ing to charge transfer and interactions at the binding site of the 
targeted enzyme [36]. The quantum descriptors for the studied 
compounds were generated from the DFT calculations as ear-
lier stated (Table 4). The energy difference between LUMO 
and HOMO is referred to as the energy gap/band gap which 
describes the chemical reactivity of the molecules [60–62]. In 

addition, a smaller energy gap usually has a substantial effect 
on the intermolecular charge transfer and biological activity 
of molecules while a large energy gap negatively affects the 
electrons moving from the HOMO to LUMO, thereby caus-
ing weak affinity of the molecule towards the protein enzyme 
[63, 64].

The higher E-HOMO values of the studied compounds 
are − 6.43 eV and − 5.78 eV for template 4 and designed 4a 
respectively, which shows the tendency of these molecules 
to donate electrons to a suitable molecule with lower energy 
or empty molecular orbital [65]. Also, the lower E-LUMO 
are − 2.54 eV and − 1.57 eV for template 4 and designed 4a 
respectively, which depicts the ability of these compounds to 
accept electrons. The smaller energy gap (ΔE) is an indication 
of better chemical stability for complex formation. Hence, the 
chemical reactivity of the molecules increases with a decrease 
in the energy gap between HOMO and LUMO energies [66].

The chemical hardness (η) of a molecule is also interrelated 
to its chemical reactivity and stability [67]. Hard molecules 
tend to have a large energy gap between HOMO and LUMO, 
which indicates less chemical reactivity while a smaller energy 
gap depicts a softer and more stable molecule [68]. The quan-
tum descriptors for the designed 4a having the best binding 

Table 4  Quantum chemical 
descriptors of the designed 
molecules

Molecules E-HOMO (eV) E-LUMO (eV) ΔΕ
(eV)

IP
(eV)

EA
(eV)

χ
(eV)

η
(eV)

S
(eV)

Template 4 – 6.43 − 2.54 3.89 6.43 2.54 4.49 1.95 0.51
Designed 4a − 5.78 − 2.57 3.21 5.78 2.57 4.18 1.61 0.62

Fig. 8  LUMO-HOMO mesh 
surface diagram of template 4 
and designed 4a at B3LYP/6-
31G* basis set of DFT geo-
metrical optimization in vacuum



2965Chemistry Africa (2023) 6:2957–2967 

1 3

pose with PDB: 3TI6 receptor was computed as ΔE (3.21 eV), 
IP (5.78 eV), EA (2.57 eV), χ (4.18 eV), η (1.61 eV), and S 
(0.62 eV). Furthermore, the band gap of the designed com-
pound was observed to be slightly smaller than the template. 
This could also support the assertion on the relevance of the 
designed 4a as a better inhibitor toward the NA target. The 
HOMO and LUMO mesh surface of the optimized structure 
of 4a in comparison with the template at DFT/B3LYP/6-31G* 
calculations were presented in Fig. 8.

The surface charge distribution can be described by the 
molecular electrostatic potential map (MEP) of a compound, 
which provides a good understanding of its physical and 
chemical properties [42]. The MEP of a molecule predicts 
the electrophilic and nucleophile centers. Figure 9 elucidates 
the mesh MEP surfaces around the studied ligands; the red 
mesh colour represents the nucleophilic area, the blue mesh 
colour represents the electrophilic zone, and the green mesh 
colour represents the zero potential zone. In most scenarios, 
the negative potentials (red mesh) are sited on the O-atoms, 
while the positive potentials (blue mesh) are close to H-atoms, 
and the green mesh (neutral potential) are embedded on the 
C-atoms of the ligands [42, 69]. However, the various positive 
and negative centers of the studied molecules are important in 
forming the residual interactions in protein-ligand complexes.

4  Conclusion

In conclusion, the in-silico study unveiled “ethyl 2-aceta-
mido-6-(6-acetamido-5-amino-3-ethoxy-5,6-dihydronaph-
thalen-2-yl)-4-methyl-6H-1,3-thiazine-5-carboxylate” 
(designed 4a) as potential NA target through an in-sil-
ico designing strategy. The designed 4a showed a better Mol-
Dock score of − 159.22 kcal/mol when docked with PDB: 
3TI6 receptor and compared with the template 4 and the 
oseltamivir drug. The binding ability of designed 4a to remain 
tightly bound with numerous active residues and 430 loop cav-
ities in the binding site of the targeted NA protein was further 
confirmed through MD simulation for 100 ns. The compound 
was predicted to be bioavailable with drug-like properties by 
not violating Lipinski’s drug-likeness rules. Thus, the designed 
4a was predicted to have a good pharmacokinetic and non-tox-
icity profile with a smaller energy gap. Therefore, the outcome 

of this study could serve as a course for the design and synthe-
sis of novel NA inhibitors for influenza therapy.
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