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Abstract
The presence of mercury in soils has become a concern as artisanal gold mining activities in Ghana have increased sig-
nificantly. This study assessed mercury concentration, spatial distribution, and potential ecological effects in surface soils 
throughout Ghana. Mercury concentrations were analyzed in 327 soil samples collected at 25 km by 25 km grid intersec-
tions using a Lumex Zeeman RA 915M mercury analyzer equipped with the Pyro-915 + attachment. The arithmetic mean 
and median values for mercury in the current study, 0.024 mg/kg and 0.011 mg/kg, respectively, are low when compared to 
the global average for permissible levels of 0.07 mg/kg. The pH of the soil ranged from 5.20 to 8.38, with mean and median 
concentrations of 5.81 ± 0.84 and 5.81, respectively, indicating that it was acidic. The root mean square error of the spatial 
distribution of mercury in the soil was 0.004, indicating an accurate result, and the map accurately predicted a concentration 
range of 0–0.075 mg/kg. Spatial distribution analysis using Empirical Bayesian Kriging indicated high mercury concentra-
tions in the Ashanti, Eastern, Western, and Western North regions, exceeding the global standard average. The southwestern 
region of Ghana exhibited relatively higher mercury pollution levels than other regions. Geo-accumulation and potential 
ecological risk indices demonstrated that the soil was uncontaminated, and the potential ecological risk was low. These 
findings provide baseline information on mercury concentrations in surface soils in Ghana that can inform policymaking 
for sustainable resource management and environmentally friendly solutions for agricultural production, industrialization, 
and mining activities.
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1 Introduction

The release of mercury into the environment is a global 
concern due to its high volatility [1], persistence [2], and 
toxicity [3]. The mercury discharge in the environment is 
either from natural causes (volcanic eruptions and emissions 
from the ocean) or anthropogenic sources (mining, burning, 
industrial water discharge, melting). Globally, an estimated 
19.6 million metric tons of mercury were released into the 

atmosphere in 2010 [4]. In Ghana, the release of mercury 
into the environment is a major concern due to rapid urban 
growth and the huge explosion in artisanal small-scale min-
ing activities. Globally, artisanal and small-scale gold min-
ing (ASGM) is the leading source of anthropogenic mercury 
emission [5]. The small-scale miners in Ghana use mercury 
to process the gold ore [6–9]. Ghana is estimated to have 
released 57,488 kg of mercury in 2010 [4]. Of this, 91.32% 
is due to ASGM activities, 8.23% to non-ferrous metals, 
0.27% to cement production, 0.16% to waste products, 
and 0.02% to oil and gas burning. The Ghana Government 
reports that the country inputs an estimated 81,060 kg of 
mercury per year into the environment [10]. The anthropo-
genic emissions continue to add significantly to the global 
pool of mercury.

Artisanal small-scale gold mining (ASGM) is mainly 
conducted along river banks rich in alluvial gold [7]. Mer-
cury from ASGM activities enters rivers and is deposited 
into sediments [8, 9]. This is the primary source of mer-
cury in water bodies and fish. Methylmercury, which is 
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highly toxic, can be transported to pristine areas by rainwa-
ter, water currents, and volatilization [11], and is respon-
sible for mercury poisoning. Mercury remains elevated in 
soil long after anthropogenic emissions are reduced [12, 
13]. ASGM miners extensively use mercury, and emis-
sions into the atmosphere and soil pose significant risks [5, 
14]. Soil and atmospheric contamination are particularly 
significant near gold extraction and refining activities [15]. 
The main ways in which humans are exposed to mercury 
are through dust inhalation, consumption of contaminated 
fish, and occupational exposure, particularly for those 
involved in amalgamation or burning of mercury without 
protective gear [16]. Infants exposed to mercury through 
breastmilk can experience life-long cognitive defects [17]. 
A study conducted in Obuasi and Tarkwa municipalities 
in Ghana showed that more than 33.3% of babies living in 
mining towns were exposed to mercury [18]. Exposure to 
mercury can cause memory loss, miscarriages, psychotic 
reactions, kidney problems, respiratory failure, and neu-
rological damage in humans [19].

Soil mapping is crucial for comprehending soil prop-
erties, adopting sustainable practices, and preventing soil 
degradation [20]. Direct observation of soil has limitations 
[21], necessitating predictions for inaccessible areas to facil-
itate risk management and awareness. Spatial prediction is 
essential for high-quality mapping, which can be achieved 
through interpolation [22–24]. Interpolation methods like 
inverse distance weight and ordinary kriging [25, 26] are 
commonly used for mapping pollutants such as heavy met-
als in soil. The study employed empirical Bayesian kriging, 
which improves interpolation results based on numerous 
simulations considering distance and nearby values, unlike 
classical ordinary kriging.

Soils are important players in the global mercury cycle, 
serving as both a sink and a source of contaminants. The 
accumulation of pollutants in soil degrades its quality, affect-
ing plant growth, and high concentrations of mercury in soil 
can have toxic effects on plant growth and development. 
Mercury stress disrupts plant cellular structure, leading to 
stunted seedling growth, root development, and reduced 
yield [26]. With 69% of Ghana's land devoted to agricul-
ture [27], the presence of high concentrations of mercury in 
agricultural soils will ultimately affect crop yield and pose 
health risks to consumers as it bioaccumulates in the body. 
While many studies [28–36] have been conducted on mer-
cury concentrations in areas suspected to be contaminated 
with Hg due to mining and other industrial or urban activi-
ties, establishing contaminant levels typically present in soil 
to serve as a base map for pollution studies is crucial for 
pollution studies. This study aims to determine the mercury 
concentration in Ghana's surface soil, investigate Hg's spa-
tial distribution, and assess the potential ecological risk to 
humans and surrounding ecological systems.

2  Materials and Methods

2.1  Study Area

The study covers the entire land surface area of Ghana 
(Fig. 1). The country, which is located in West Africa and is 
bordered by Cote d’Ivoire, Burkina Faso, Togo, and the Gulf 
of Guinea. The country covers an area of 232,139.40  km2 
and has a population of approximately 24,658,823 people. 
The majority of the labour force is engaged in agriculture, 
which contributes 54% of Ghana’s GDP [38]. Gold mining 
is a major source of mineral revenue and has increased ten-
fold since 1989 [14], employing at least one million people 
directly and supporting four to five million others. ASGM 
activities are more prevalent in the southern section of the 
country.

2.2  Soil Sampling

A total of 327 surface soils were collected across the country 
from May 2018 to February 2019. random sampling tech-
nique (Fig. 1). The intersection of the gridded lines was used 
as sample points. The region was gridded at 25 km by 25 km 
from the first arbitrary point selected. These sample points 
were traced with a handheld global position system receiver. 
The land use information about the locations were docu-
mented. They included farmlands, forests, open vegetation, 
water banks, savanna, settlements, sand winning areas, cem-
etery, mountain, and roadside. The soil samples taken were 
at a depth of up to 10 cm using a stainless steel hand trowel 
since anthropogenic sources of pollutants contaminate the 
upper layers of soil [39]. At each sampling point, composite 
samples were taken (200 g) and homogenised to give a good 
representation of the sampled area. The samples collected 
were stored in labelled polyethene zip lock bags and sealed 
to avoid loss and external contamination of samples before 
transporting to the laboratory.

2.3  Analysis of Soil Samples

The collected samples were air-dried indoors to help prevent 
loss of Hg through vaporization. Close attention was given 
to each soil sample to avoid cross-contamination. The dried 
soil samples were sieved with 0.2 mm mesh nylon sieve to 
remove debris, stones, and pebbles. Total Hg contents in the 
soils were determined using the Lumex PYRO-915M Zee-
man Mercury Analyser (Lumex, St. Petersburg, Russia). 
It was calibrated based on a pre-set calibration coefficient 
from the activated charcoal reference material (Cat: 500292 
Lumex, Russia). In analyzing for the Hg contents, Soil sam-
ple of 0.3 g was weighed into the injection spoon of the 
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PYRO-915 + attachment [40]. Samples were analyzed three 
times to check the consistency of the data. Mercury concentra-
tions recorded were aggregated and averaged to represent the 
concentration of a particular sample site. A portable pH meter 
was used to determine pH.

2.4  Geo‑Accumulation Index  (Igeo)

The environmental impact of metals and the pollution level 
in the soil was assessed using geo-accumulation index  (Igeo). 
Geo-accumulation index  (Igeo) method is widely used for 
quantifying the enrichment or pollution degrees of heavy 
metals in soil by comparing the current background elements 
concentrations [38]. In this study, the quantity  Igeo is calcu-
lated using the global average shale data [41]. The  Igeo was 
calculated using Eq. 1.

(1)Igeo = log
2

Cn

1.5Bn

where  Cn is the measured concentration (mg  kg−1) of Hg 
at site n; and  C0 is the mean Hg background concentration 
in soil (mg  kg−1). Factor 1.5 is the background matrix cor-
rection factor due to the lithologic variation in the soils. 
The contaminated soils are categorized into seven classes 
as shown in Table 1.

2.5  Potential Ecological Risk Index

The Potential Ecological Risk Index (Er) was adopted to evalu-
ate the potential ecological risks of mercury [41]. This method 
comprehensively considers the toxic level, concentration and 
environmental sensitivity of the contaminant. The potential 
ecological risk index (Er) of mercury is defined in Eq. 2:

(2)EF =
Cm

Cb
∕
Cmref

Cbref

Fig. 1  Map Ghana showing the sampling points
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where Tr = 40 is the toxic response factor for mercury [41, 
42]  Ci is the concentration of mercury in surface soil at site 
i (mg  kg−1), and  C0 is the regional background mercury val-
ues in the topsoil. The potential ecological risks of mercury 
in soils could be put into five classes based on the calculated 
values of PERI (Table 2).

2.6  Geostatistical Interpolation of Mercury

Kriging is an interpolation technique that models the vari-
ogram and fits it to an experimental model for subsequent 
analysis. It utilises a type of Bayesian inference that gener-
ates both a deterministic prediction and a standard error that 
can be used to quantify confidence intervals [21]. Kriging 
provides an unbiased linear estimation of a regionalised vari-
able at unsampled locations. It works in a least-square sense 
where it aims to minimise the variance of estimation error. 
Kriging makes use of the basic tool known as the semi-vari-
ogram; which is half of the expectancy of deviation between 
values of samples separated by a distance h. In this case, 
it produces the spatial variability of the variable. Kriging 
makes use of a single semi-variogram which is a function 
of distance and direction separating two locations and then 
uses it to quantify the spatial dependence in the data. Every 
semi-variogram can be calculated using Eq. 3.

where �(h) = the experimental semi-variogram value at a 
distance h; N(h) = the number of sample value pairs within 

(3)�(h) =
1

2N(h)

N(h)
∑

i=1

{z
(

x
1

)

− z
(

x
1
+ h

)

}
2

distance h; and z
(

x
1

)

 , z
(

x
1
+ h

)

 = the sample value at two 
points separated by distance h. Empirical Bayesian Kriging 
(EBK) differs from the classical kriging as it accounts for 
error introduced by estimating the semi variogram model. 
A cross-validation method was adapted to validate the simu-
lation and the model fitting effect. The level of accuracy 
was achieved by assessing the Root Mean Square Errors 
(RMSE). RMSE is used to evaluate the prediction accuracy 
and evaluate or validate the spatial prediction accuracy and 
the effect of the simulation model. The low RMSE indicates 
a good predicted results [43].

where a is the measured value; b is the predicted values.

2.7  Descriptive Statistical Analysis of Mercury

Descriptive statistical analysis was conducted using R sta-
tistical software to determine the arithmetic mean, stand-
ard deviations, sample variance, skewness and confidence 
interval at 95%.

3  Results and Discussions

3.1  Descriptive Statistics of Mercury Concentration 
in Soil

Figure 2 shows the descriptive statistics of the concentra-
tions of mercury and pH of the samples analysed. The 
arithmetic mean and median values of mercury were found 
to be 0.024 ± 0.029 mg/kg and 0.011 mg/kg, respectively. 
These values were lower than the world average permis-
sible levels of 0.07 mg/kg [44], indicating that the soil 
samples analyzed had a relatively low concentration of 
mercury. However, the coefficient of variation indicated 
a high dispersion of mercury in the surface soil, suggest-
ing that the concentration of mercury was not uniformly 
distributed.

The pH levels of the soil samples ranged from 5.20 to 
8.38, with a mean and median concentration of 5.81 ± 0.84 
and 5.81, respectively. The mean and median values indi-
cate that the soil was acidic. Soil pH is an essential factor 
in determining the availability of nutrients to plants and 
microorganisms. Generally, most plants grow well within 
a pH range of 6.0–7.5 [45]. Hence, soil with a pH value of 
5.81 is relatively acidic and might require amendment to 
adjust the pH level for optimal plant growth.

(4)RMSE =

√

1

n

∑n

i=1

{

(a
(

x
i

)

− b(x
i
))
}

2

Table 1  Geo-accumulation Index (Igeo)

Class Values Interpretation

1 Igeo < 0 Uncontaminated
2 0 <  Igeo ≤ 1 Uncontaminated to Moderately Contaminated
3 1 <  Igeo ≤ 2 Moderately Contaminated
4 2 ≤  Igeo < 3 Moderately to Strongly Contaminated
5 3 ≤  Igeo < 4 Strongly Contaminated
6 4 ≤  Igeo < 5 Strongly to Extremely Strongly Contaminated
7 Igeo ≥ 5 Extremely Contaminated

Table 2  Potential Ecological Risk Index (PERI)

Values Interpretation

Er < 40 Low potential ecological risk
40 ≤ Er < 80 Moderate potential ecological risk
80 ≤ Er < 160 Considerable potential ecological risk
160 ≤ Er < 320 High potential ecological risk
Er ≥ 320 Significantly high potential ecological risk
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3.2  Spatial Distribution Map of Mercury in Ghana

A Bayesian kriging was used for creating the prediction 
map of the spatial distribution of mercury in the surface soil 
(Fig. 3). The spatial distribution of mercury in the soil gave 
an RMSE of 0.004 (Fig. 4), indicating an accurate result 
[43]. The prediction map showed concentrations that ranged 
from 0 to 0.075 mg/kg.

Low levels of mercury were observed in the Upper West, 
North East, Northern and the Savannah Regions. The pres-
ence of mercury in low concentrations could be attributed 
to a natural constituent of mercury in soil. Concentrations 
ranging from 0.04 to 0.075 mg/kg were measured in seven 
regions; Ashanti, Eastern, Western, Western North, Cen-
tral, Ahafo and Bono regions. Regional observation of the 
raw data reveals that Western North region have the highest 
mean concentration of mercury, 0.061 mg/kg, followed by 
Western and Ashanti regions with 0.54 mg/kg and 0.051 mg/
kg, respectively.

Generally, the northern part and the south eastern part 
of the country recorded low concentration as compared to 
the southwestern part of the country (Fig. 4). This could be 
attributed to the mining activities that are concentrated in the 
southwestern part of the country [33] other than the north-
ern part of the country. When the data was assessed against 
the land use land cover information gathered from the field 
(Fig. 5), it confirmed that mining activities gave the highest 
mean concentration of 0.108 mg/kg. The mean concentra-
tion of mercury from mining areas was higher than the world 
average of 0.07 mg/kg [46]. Hence the need to monitor the 
soil, as further increase may be toxic to the ecosystem and 
may result in possible leaching of mercury into groundwater.

3.3  Relationship Between Mercury, pH, Population 
Density and Soil Type

Soil pH plays an important role in the mercury in the soil 
and as such influences its distribution in the soil. Soil pH 
ranged from 5.2 to 8.38. mercury concentration showed no 
strong correlation with pH (p > 0.05). Soil pH has a strong 
influence on metal solubility and retention in soil; higher 
soil pH results in greater retention and lower metal solubil-
ity [38]. The soil pH at most of the sampled points were in 
the pH range for natural soils which is usually 4.0–9.0. The 
lack of correlation in the soil properties could be attributed 
to the variation in the soil type with the study area [28, 47].

Soil type was found to be significantly associated with 
mercury (p < 0.01). The mean concentration of mercury con-
centration was higher in alisols, followed by acrisols and 
nitisols (Fig. 6). Alisols, acrisols and nitisols are dominated 
by significant accumulation of clay [48]. Soil clay content 
plays an important role in soil- mercury binding, which sug-
gests that increased mercury sorption capacity in clayey soils 
may also relate to binding with organic matter [32]. It there-
fore reveals that elevated mercury levels are often associated 
with clayey soils. Rice paddy soil is susceptible to mercury 
due to the clay content in the soil [49]. Mercury presence in 
soil is however known to negatively affect seed germination 
and plant development [51].

Figure 7 is a map describing the population density of 
districts in Ghana was generated based on the 2010 popu-
lation census [50]. It was to determine districts with high 
population density and its direct association with the mer-
cury concentration observed in the district. An overlay of the 
population data and the mercury concentration showed that 

Fig. 2  Boxplot showing the concentration of mercury in the soil and pH of soils across Ghana
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Fig. 3  Spatial distribution of mercury concentration in soil
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high population within a district did not directly reflect high 
concentration of mercury therefore suggesting negative cor-
relation between high population density and the recorded 
concentrations.

3.4  Pollution Indices of Mercury in Soil 
and the Potential Ecological Risk Assessment

The Igeo results suggested that there is an absence of 
mercury pollution at these sampling sites. Ecological risk 

assessment ranged from 0.464 to 10.526, it indicated that the 
ecological risk assessed was less than 40. The soil therefore 
posed a low potential ecological risk across the country. It 
is therefore suitable for agricultural activities.

Contrary to works done in mining areas in the Ashanti 
region such as Amansie [37, 51], studies showed high poten-
tial risk in mining sites and other landfill sites which could 
be injurious to plants, animals and human health. The distri-
bution pattern of the ecological risk assessment map shows 
likely potential risk in the Ashanti, Western and Western 

Fig. 5  A graph of land use land 
cover and mercury concentra-
tion in soils
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North regions. However, the concentrations reported from 
studies at the community and sub-national levels show high 
mercury concentration. In Bogoso, an artisanal mining com-
munity in Ghana reported mercury levels in soils ranging 
from 0.125 to 0.352 mg/kg [52]. In some non-mining com-
munities in Ghana mercury concentration of ranging from 
0.039 to 0.093 mg/kg were recorded in soil [53]. A review 
on soils in Ghana presented a range of 0.020–185.9 mg/kg 
of mercury in soil in an abandoned mine in Tarkwa and 
0.297–330 mg/kg in a community in the Upper East region 
of Ghana [5]. An artisanal mining community in the Tal-
ensi district of Ghana measured mean mercury concentration 
from different groups of soil samples from Gbani; sites of 
active mining hotspots (7.1 mg/kg), line transects (2.7 mg/
kg), waste soil (1.5 mg/kg) and intersections of grid lines 
(0.5 mg/kg) [54]. All these values showed the effects of 

anthropogenic activity occurring at some parts of the coun-
try which can only be realized at the community levels.

4  Conclusions

The study investigated the nation-wide concentration and 
distribution trend of mercury. It further assessed the environ-
mental risk of mercury in surface soil samples across Ghana 
and its impact on soil and living organism. The spatial dis-
tribution of mercury was closely correlated with ASGM 
activities as the major anthropogenic source. The hotspot 
areas are noted to be slightly above the world permissible 
limits of 0.07 mg/kg. The high concentrations observed in 
the Ashanti, Western and Western North regions were as a 
result ASGM activities. Generally, the mercury pollutions 

Fig. 7  Overlay of mercury concentrations on population density based on 2010 census
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in the southwestern part of Ghana (Ashanti, Western and 
Western North regions) are relatively higher than it is in the 
south eastern and the northern section of the country hence 
suitable for agriculture. The geo-accumulation Index across 
Ghana on the scale of 25 km × 25 km showed that the soil 
is uncontaminated and has low potential ecological risk. On 
a country scale, the soils are not contaminated hence suit-
able for agriculture since it makes it a viable venture for 
farming activities in the northern section of the country to 
be intensified considering the very low concentration lev-
els of mercury in the soils. There is, however, the potential 
risk of elevated concentration as a result of some ongoing 
ASGM activities in the soil. Mercury pollution could well be 
underestimated in areas of ASGM and other anthropogenic/
industrial activities mainly because few data were analysed 
from these sites based on the gridding system. Nonetheless, 
so long as ASGM activities persist with the use of mercury 
for amalgamation, there is the need to monitor the concen-
tration of mercury in the soil to control the level of toxicity 
in the soil, especially in the southwestern part of the country, 
and ASGM areas as they are closer to human settlement and 
farmlands. Further studies should be carried out on other 
environmental media such as air and water to have a compre-
hensive analysis of the pathways of mercury in the Ghanaian 
environment. This study provides background information 
that will help effective formulation of pollution mitigation 
measure and policy-making on emission control, food safety, 
and public health protection in Ghana.
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