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Abstract
In this study, the modified Hummer method was used to prepare graphene oxide (GO) and magnetic graphene oxide (α-Fe2O3/
GO). The as-obtained Go and α-Fe2O3/GO were characterized using Fourier Transform Infrared, Raman spectroscopy, X-ray 
diffraction, and Brunauer Emmett Teller. The adsorptive capacity of these materials towards cadmium  (Cd2+) and lead  (Pb2+) 
has been studied. An adsorption process with regeneration was carried out, such as equilibrium time, effect of the initial 
concentration of  Cd2+ and  Pb2+, effect of the amount of the GO, and α-Fe2O3/GO and pH effect. The adsorption of an aque-
ous solution of  Cd2+ and  Pb2+ with an initial concentration of  10–3 M of the two heavy metals onto 0.1 g of the prepared 
materials reached an equilibrium time in 2 h with an adsorption rate of more than 90% for both metals. The fine morphology 
of the adsorbents facilitated the rapid diffusion of the metals studied in the pores, which increased the kinetic. The kinetics 
can be described by the pseudo-second-order model with  R2 = 0.993 and  R2 = 0.997 for  Cd2+ and  Pb2+, respectively. The 
thermodynamic study reveals that the adsorption process is spontaneous, exothermic, and random as temperature increases. 
The adsorption mechanism included physical adsorption, ion exchange and possibly surface complexation. According to the 
results obtained and the ease of obtaining α-Fe2O3/GO, we can say that it is a promising adsorbent for  Cd2+ and  Pb2+. The 
magnetic nanoparticle α-Fe2O3/GO can be recovered using a magnet. As a result, it is a reusable and recyclable adsorbent.
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1 Introduction

In recent years, an increasing interest has been observed 
on an international scale concerning the aquatic pollution 
caused by toxic metals coming directly from human activi-
ties [1–3]. In countries with high industrial concentrations, 
heavy metals released into nature are a major source of tox-
icity for the aquatic ecosystem, which causes a lot of concern 
among the population [4, 5]. Indeed, these heavy metals are 
the cause of many health problems [6].

Wastewater that contains heavy metals comes from 
several sources [7, 8]. The surface treatment industry 

(electroplating) is the one that releases the most heavy met-
als into solution [9–11]. It produces the most wastewater 
with cadmium [12], lead [13], nickel [14], chrome [15], zinc 
[16], and copper concentrations greater than 1 mg/L [17].

Other industries are also responsible for the contami-
nation of wastewater by heavy metals: foundries [18], 
petroleum refineries [19], the paint industry [20], ink and 
associated products [21]. Due to the strict control of dis-
charges of wastewater containing heavy metal ions into the 
environment, practical solutions are needed. To overcome 
these problems, researchers have concentrated their efforts 
on the development of treatment methods (physicochemi-
cal and biological processes) [22, 23] and disposal of this 
toxic waste.

Treatment methods such as chemical precipitation [24, 
25], electrodeposition [26], ion exchange [27], membrane 
separation [26], reverse osmosis [28], oxidation–reduction, 
evaporation, and solvent extraction are all techniques that 
are still used today [29].
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Depollution techniques, in particular those using chelat-
ing resins allowing the selective fixation of heavy metals 
[30], have also been widely demonstrated and touted as 
applicable technologies. The use of microorganisms [31, 
32] to remove metal ions in solutions has also been studied 
for a long time. Depending on the nature of the aqueous 
effluents and the concentrations of metal ions, the industrial 
application of these processes is restricted, either because 
of the operating costs or because of the ineffectiveness of 
the technique to achieve a degree of purification respecting 
water quality standards [33].

The appearance of new so-called “clean” technology [34] 
makes it possible to solve a large part of all the problems 
inherent in the treatment of wastewater containing metals.

Graphite-based inorganic materials, such as Graphene 
oxide GO and magnetized Graphene oxide α-Fe2O3/GO can 
be used as metal cation adsorbents [35–37]. However, one of 
the serious drawbacks of the use of GO is the presence of the 
latter in the treated wastewater due to insufficient filtration 
and centrifugation processes for its separation [38]. Magneti-
zation of graphene oxide as a simple method for the separa-
tion of nano-pollutants such as cadmium  (Cd2+) and lead 
 (Pb2+) becomes highly desirable in wastewater treatment 
[39–42]. This is an efficient technique for recovering mag-
netic nanoparticles using a magnet and this makes α-Fe2O3/
GO as a reusable and recyclable adsorbent.

Several techniques have been reported in the literature 
in recent years for the synthesis of magnetite nanoparticles 
α-Fe2O3, such as thermal decomposition [43], solvothermy, 
micro-emulsion [44], sono-chemistry, chemical vapor depo-
sition, microwaves [45], hydrothermal energy, photolysis, 
sol–gel [46], and electrochemical processes [47–49].

Graphene oxide (GO) is widely used because of its long-
lasting properties, which make it an excellent adsorbent 
material for removing dyes and heavy metals. Despite these 
properties, when using GO as an adsorbent, some problems 
arise, such as difficult recycling and irreversible aggregation 
on its surface, resulting in poor performance. To address 
these issues, graphene oxide has been chemically reacted 
with other materials such as clay, polymers, and zeolites. 
The primary goal of this research is to study the perfor-
mance of magnetized graphene oxide α-Fe2O3/GO as a sub-
stituent of graphene oxide GO for the retention of cadmium 
 (Cd2+) and lead  (Pb2+) in polluted waters thanks to its ease 
of recovery. By demonstrating the potential and viability 
of magnetized graphene oxide α-Fe2O3/GO for the removal 
of existing cadmium and lead in contaminated water, and 
by proving the idea that it serves as a depollutant for water 
treatment. Finally, understand well the chemical interac-
tions that occur between the produced substance and metal 
cations. The efficiency of the materials synthesized for the 
retention of the targeted metal cations was evaluated using 
a variety of parameters, including equilibrium time, water 

pH effect, adsorbent quantity effect, and adsorbate concen-
tration impact.

2  Experimental Section

2.1  Chemicals

Graphite powder, ferric chloride  FeCl3, sodium nitrate 
 NaNO3, sulfuric acid  H2SO4, potassium permanganate 
 KMnO4, hydrogen peroxide  H2O2, hydrochloric acid HCl, 
and the bases used, such as sodium hydroxide NaOH and 
potassium KOH, were purchased from Sigma Aldrich. They 
were used in adequate concentrations. Distilled and deion-
ized water were the main solvents for dilution and washing.

2.2  Preparation of Graphene Oxide GO

Graphene oxide GO was prepared according to the modified 
Hummer method, by chemical oxidation of graphite to give 
graphite oxide. This method is based on two main steps: 
chemical oxidation of graphite to give graphite oxide and 
exfoliation of the latter by sonication in water to obtain exfo-
liated graphene oxide nanosheets. For this purpose, 2 g of 
graphite and 1 g of sodium nitrate  NaNO3 were mixed with 
46 mL of sulfuric acid  H2SO4 and stirred for 1 h in an ice 
bath. Then, with vigorous stirring, 6 g of  KMnO4 was slowly 
added in an ice bath, so that the temperature of the mixture 
remained below 5 °C. After stirring the solution for 2 h at a 
temperature of 35 °C, 30 mL of distilled water was slowly 
added, giving an exothermic reaction, allowing the solution 
to reach a temperature of 95 °C [35, 50, 51].

The solution was stirred for 30 min at 95 °C to complete 
the reaction. The solution was diluted with distilled water 
(75 mL) and treated with a hydrogen peroxide (30%  H2O2, 
drop by drop) solution to reduce the residual permanganate 
to soluble manganese ions until the evolved gas stopped. 
Finally, the mixture was filtered, after cooling in air, to give 
a pasty product of yellow–brown color.

The graphite oxide solution is subjected to ultrasonic 
treatment for 30 min in order to exfoliate the layers of graph-
ite oxide and obtain graphene oxide (GO). The latter was 
centrifuged and washed with HCl solution (37%), and then 
with distilled water (several times). Graphene oxide is dried 
for 24 h at 60 °C.

2.3  Preparation of Magnetized Graphene Oxide 
α‑Fe2O3/GO

To begin, a 0.5 M aqueous solution of the ferric chloride 
 FeCl3 was prepared and left to stir for 3 h until a homogene-
ous solution was obtained. Another aqueous GO solution 
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(1 g of GO in 100 mL of  H2O) was left under sonication 
for 100 min until a uniform solution was obtained [52, 53].

The GO solution was gradually added to the first solution 
1:1 (v/v). Subsequently, a concentrated aqueous solution of 
NaOH was slowly added (drop by drop) to the previous solu-
tion with stirring until the pH value was around 11. Alkaline 
solutions like NaOH and KOH have been used, to promote 
the precipitation of metallic precursors [52, 54].

The resulting solution was vigorously stirred for 30 min 
before being placed in an autoclave for 3 h of hydrothermal 
treatment at 180 °C.

2.4  Characterization

A spectrometer of the brand FTIR-ATR (Alpha-Brucker) 
was used to characterize the synthesized materials in the 
range of mid-infrared wave numbers, between 400 and 
4000  cm−1. This instrument runs on Opus 6.5 software and 
comes with a tough diamond crystal total reflectance (ATR) 
attachment that allows for useful analysis without the usage 
of KBr pellets.

A Bruker Senterra dispersive Raman spectrometer with a 
785 nm laser beam as the light source and a 10 mW excita-
tion power was used for the Raman investigations.

Scherrer and Williamson-Hall based X-ray diffraction is 
based on the recording of a diffractogram, which makes it 
possible to identify and quantify the phases, calculate the 
crystallographic parameters and determine the average size 
of the crystallites by different methods (Scherrer, William-
son-Hall). Our samples were analyzed using a Bruker D8 
Advance Eco diffractogram with a copper tube (= 1.54).

The concentration of metal cations was measured using 
a Shimadzu UV-2401 PC spectrophotometer. The 3,6-bis 
(2-arsenazophenylazo)-4,5 dihydroxynaphtalene-2,7-disul-
phonique acid, also known as Arsenazo(III), was used for 
molecular absorption spectroscopy. The latter is particularly 
well suited for UV–visible measurement of cadmium and 
lead ions [55–57], as well as certain other elements.

The Brunauer–Emmett–Teller (BET) method was used to 
determine the specific surface and pore size. The measure-
ments are recovered through  N2 adsorption and desorption 
at 77 °K, and the data is collected and processed by Quanta 
Chromium Autosorb-6.

Cd2+ and  Pb2+ calibrations were performed with stand-
ard solutions with concentrations ranging from  10–3 to 
5.10–5 mol/L. Calibration curves (absorbance according to 
concentration) obtained from linear regression of experi-
mental points have shown good linearity at 600  cm−1 wave-
length  (Cd2+) and 650  cm−1  (Pb2+). The regression coeffi-
cients of  Cd2+ and  Pb2+ are, respectively, 0.98 and 0.97. The 
accuracy and precision of the instrument were determined 
by measuring the absorbance against the prepared standard 
in the concentration range.

3  Results and Discussion

FTIR spectra were used to investigate the vibration modes 
of functional groups of GO or the α-Fe2O3/GO composite 
(shown in Fig. 1). The GO curve shows the C=O stretch 
vibration (1726  cm−1), the –OH bend vibration and C=C 
stretch vibration (1613  cm−1), the C–OH bend vibration 
(1432  cm−1), and the epoxy or alkoxy C–O stretch vibra-
tion (1044  cm−1) [58, 59]. Other weaker peaks in the FTIR 
spectra of the α-Fe2O3/GO composite, such as the C–O 
functional groups of GO, are also visible, showing that 
the α-Fe2O3 nanoparticles are anchored to the GO sheets 
[60, 61].

The presence of α-Fe2O3 and GO in the α-Fe2O3/GO 
composite was confirmed using Raman spectroscopy. Fig-
ure 2 shows two typical peaks at 1333  cm−1 and 1594  cm−1 
for the GO (the D band signifies disorder carbon) (the G 

Fig. 1  ATR-FTIR spectra of GO and α-Fe2O3/GO

Fig. 2  Raman spectra of GO and α-Fe2O3/GO
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band represents graphitic carbon), respectively. In carbon 
materials, the intensity ratio of these two bands (ID/IG) 
can be utilized to determine the degree of structural laws 
and disorder [62]. This ratio was higher in the α-Fe2O3/GO 
composite (ID/IG = 1.3) than in the GO (ID/IG = 0.99). 
This implies that the α-Fe2O3/GO composite has grown 
more disordered, as well as confirming that the GO has 
become partially reduced due to the presence of iron 
[63]. The low wave number range (400–1000  cm−1) was 
fine scanned to further establish the development of the 
α-Fe2O3/GO composite; the two broad bands at 412  cm−1 
and 602  cm−1 can be seen in Fig. 2, and they belong to 
α-Fe2O3.

The XRD patterns of the GO and α-Fe2O3/GO compos-
ite are shown in Fig. 3. As illustrated, a diffraction peak 
of GO was found at 2θ = 11°, corresponding to an inter-
layer spacing (d) of 8 Å with Miller indices (001) [64]. At 
2θ = 28°, another large diffraction peak was discovered, 
corresponding to an interlayer spacing of around 2.9 Å 
with Miller indices of (002).

The XRD patterns of as-prepared α-Fe2O3/GO com-
posite. The peaks at 2θ = 31°, 46°, 53°, 63° and 96° are 
respectively indexed as the (012), (104), (110), (024) and 
(116) [65–67]. The intercalation of α-Fe2O3 nanoparti-
cles in GO prevented the restacking of GO layers, hence 
the characteristic peak for GO was not identified in the 
α-Fe2O3/GO composite.

The nitrogen adsorption/desorption isotherms for the 
prepared α-Fe2O3/GO material are shown in Fig. 4. The 
isotherm emphasizes the mesoporous character of these 
materials by having the same shape (IV) as the IUPAC 
classification and systematic hysteresis [68, 69]. In 
Table 1, associated parameters such as special surface area 
 (SBET), and pore size are also presented.

3.1  Adsorption Experiments

3.1.1  Equilibrium Time

As illustrated in Fig. 5, After 110 min of reaction between 
magnetized graphene oxide (α-Fe2O3/GO) and metal ions 
 (10–3 M,  Cd2+ and  Pb2+), 67% of the  Cd2+ ions were retained 
and the elimination capacity corresponding to that was 
75.12 mg/g. The  Pb2+ ions have a nearly identical elimina-
tion rate, but it took 205 min. The adsorption peak of the two 
ions decreased after it reached a maximum, indicating that 
there is adsorption followed by desorption under the influ-
ence of agitation [70–72]. Despite the relatively low rate, the 
goal of this work has been achieved. Adsorption–desorption 
in 300 min with simple adsorbent recovery.

3.1.2  Influence of Solution pH

As long as various metal ions and the surface charge of the 
adsorbent are affected by pH [73, 74], the solution pH was 
important in the adsorption of  Cd2+ and  Pb2+ on GO and 
α-Fe2O3/GO. Figure 6 depicts the adsorption efficiency of 
 Cd2+ and  Pb2+ solutions (100 mg/L) at pH 4.0, 6.0, and 8.0. 
For this the solutions pH were adjusting with 0.1 mol/L HCl 
and 0.1 mol/L NaOH, and the pH range was from 4 to 8. 
The two metal cations  Cd2+ and  Pb2+ appear to have been 
maintained in substantial percentages (86% and 75% respec-
tively) by the α-Fe2O3/GO at pH 6 after 150 min of stirring. 

Fig. 3  XRD spectra of GO and α-Fe2O3/GO

Fig. 4  BET isotherm pattern α-Fe2O3/GO

Table 1  Brunauer–Emmett–Teller (BET) parameters for  Fe2O3/GO 
and GO

Sample Surface area  (m2/g) Pore size (nm)

GO 51 15.2
α-Fe2O3/GO 72 12.9
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These results are remarkably similar to those obtained with 
the GO at pH 6.

3.1.3  Effect of the Initial Concentration of  Cd2+ and  Pb2+

The study of this effect is critical for understanding the phe-
nomenon of adsorption, particularly the adsorbent/adsorb-
ate ratio. Figure 7 shows the rate of retention of metallic 
cations  (Cd2+ and  Pb2+) by α-Fe2O3/GO and GO increases 
as concentration decreases and decreases as concentra-
tion of cationic pollutants increases [75]. This is perfectly 
reasonable, adsorption sites are largely sufficient to fix the 
maximum amount of  Cd2+ and  Pb2+ at low concentrations. 
Consequently, at high concentrations, these sites become 

saturated, reducing the percentage of adsorption [76]. The 
best yield achieved is more than 90% for  Cd2+ on α-Fe2O3/
GO and 55% for  Pb2+ on the same adsorbent. Extraction 
yields with GO are nearly identical to those obtained with 
α-Fe2O3/GO.

3.1.4  Effect of Amount of Adsorbent

The amount of adsorbent has a substantial impact on the 
adsorption study, particularly the cost of the process [77, 
78]. For this purpose, the effect of adsorbent dosage was 
investigated, and the results are given in Fig. 8. A suf-
ficient amount of adsorbent results in a higher extraction 
yield and vice versa. Possibly, this is due to an increment 

Fig. 5  Equilibrium time

Fig. 6  pH effect
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in the number of active sites on the outer layer of the 
adsorbent [79, 80].

3.2  Adsorption Isotherm

Adsorption isotherms describe the distribution of adsorb-
ate species between liquid and adsorbent through linearly 
plotted graphs based on a set of assumptions related to the 
heterogeneity or homogeneity of adsorbents [81]. In this 
study, Freundlich and Langmuir isotherms were studied to 
describe the process of adsorption of  Cd2+ and  Pb2+ onto 
α-Fe2O3/GO.

3.2.1  Langmuir Isotherm

The Langmuir isotherm is possibly the most important and 
widely used equation for describing adsorption equilibrium. 
This model explains the variation of adsorption of molecules 
(adsorbates) at a constant temperature [81]. The adsorption 
energy is uniform in this isotherm, and there is no migration or 
interaction between adsorbate molecules in the surface plane. 
The linear form of the Langmuir model is as follows.

(1)
1

qe
=

1

qm*b
*

1

Ce

+
1

qm

Fig. 7  Effect of the initial concentration of  Cd2+ and  Pb2+

Fig. 8  Effect of the amount of the α-Fe2O3/GO and GO
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qe denotes the amount of metal cation adsorbed per unit 
weight of adsorbent (mg/g), where  Ce denotes the equi-
librium concentration of  Cd2+ and  Pb2+ in the solution 
(mg/L).  qm is the amount of  Cd2+ and  Pb2+ required to form 
a monolayer (mg/g), and b is a constant related to adsorp-
tion energy (L/mg) that represents adsorption enthalpy and 
should vary with temperature. The slope and intercept of line 
plots (Fig. 9) of 1/qe = f (1/Ce) at different temperatures were 
used to calculate b and  qm values. By plotting a line graph 
of 1/qe as a function of 1/Ce. The slope of the line and the 
point of intersection with the y-axis can be used to calculate 
the values of  qe and b.

Figure 9 shows that the curve 1/Ce as a function of 1/qe 
is a straight line with a correlation coefficient  (R2 = 0.9918, 
0.9847) and an intersection (b = 12.099, 0.2831) for  Cd2+ 
and  Pb2+ respectively.

3.2.2  Freundlich Isotherm

Freundlich proposed an empirical relationship between 
pressure and the extent of adsorption (the amount of mass 
adsorbed per unit mass of adsorbent). Freundlich’s equation, 
also known as Freundlich’s adsorption isotherm, describes 
this relationship and explains the type I adsorption isotherm 
[82]. The linear equation of the Freundlich model can be 
represented as

The intercept and slope of the plot log  Ce as a function of 
log  qe can be used to calculate the values of parameters  Kf 
and n  (Kf = − 0.449, − 1.172) (n = 1.233, 5.602)  (R2 = 0.761, 
0.977) Fig. 10.

(2)Log qe = Log Kf +
1

n
Log Ce

According to the correlation coefficients of the two 
models (Table 2), Langmuir  (R2 = 0.9918) and Freundlich 
 (R2 = 0.761), it is clear that the adsorption of  Cd2+ and  Pb2+ 
on α-Fe2O3/GO follows the Langmuir model.

In order to confirm the results obtained from the two iso-
therms studied, we proceeded to a non-linear adjustment of 
the isotherm equations [83, 84] called SSE values (Eq. 3)

Cadmium  (Cd2+) and lead  (Pb2+) isotherm data were best 
fitted by the Langmuir isotherm model with SSE < 0.010 and 
SSE ˂ 0.13, respectively.

3.3  Adsorption Kinetics

The most important parameter in an adsorption study is 
adsorption kinetics, which determines the rate of adsorp-
tion. It depends on three parameters: the complexity of the 
adsorbent surface, the concentration of the adsorbate, and 
the flow rate [85, 86]. Pseudo-first-order, pseudo-second-
order, Elovich, and Intra-Particle models are among those 
that predict the adsorbent/adsorbate interaction [87, 88]. 
The first two models are commonly used in adsorption 
studies. Adsorption kinetics were investigated by dissolv-
ing 2 mg of adsorbent (GO and α-Fe2O3/GO) in 25 mL of 
metal ion solutions  (Cd2+ and  Pb2+) at  10–3 mol/L con-
centrations. The concentration of metal ions in the vials 
was continuously measured at predetermined time inter-
vals Fig. 11. The kinetics of  Cd2+ and  Pb2+ adsorption 
on α-Fe2O3/GO and GO can be described by the pseudo-
second-order model with  R2 = 0.993 and  R2 = 0.997, 

(3)
n
∑

i=1

(qe,cal − qe,exp).

Fig. 9  Langmuir adsorption isotherm  (Cd2+ in the left and  Pb2+ in the right)
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respectively. The occupancy rate of adsorption sites is 
assumed to be proportional to the square of unoccupied 
sites in this model [89, 90], and chemisorption is the step 
controlling the adsorption rate [91].

3.4  Thermodynamic Study

A system's thermodynamic priorities are static averages 
that correspond to a large number of molecules. When 

Fig. 10  Freundlich adsorption isotherm  (Cd2+ in the left and  Pb2+ in the right)

Table 2  The adsorption 
isotherm parameters and 
correlation coefficients  (R2)

Isotherm Equation Parameters R2

Langmuir 1

qe
=

1

qm*Kl

*
1

Ce

+
1

qm

Cd2+ Kl = 0.617 L/mg
qm = 83.3

R2 = 0.9918

Pb2+ Kl = 0.036 L/mg
qm = 35.5

R2 = 0.9847

Freundlich Log qe = Log Kf +
1

n
Log Ce

Cd2+ Kf = 0.638  g−1

1/n = 1.232
R2 = 0.7610

Pb2+ Kf = 0.309  g−1

1/n = 5.602
R2 = 0.9765

Fig. 11  Pseudo-first-order (PFO) (in left) and pseudo-second-order (PSO) (in right), kinetic models
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a solute molecule approaches the surface, its energy 
decreases until it reaches a minimum at a certain distance, 
close to an adsorption site [92]. This minimum is known 
as a potential energy well or, more simply, a potential well 
characterized by the determination of thermodynamic 
parameters (ΔH, ΔS, and ΔG) of the extracted heavy met-
als [93]; by the application of the following thermody-
namic relations at the extraction equilibrium:

The Gibbs adsorption energy is made up of two terms: 
an enthalpy term that expresses the energies of interac-
tions between molecules and the adsorbent surface, and an 
entropy term that expresses the modifications and arrange-
ment of molecules in the liquid phase on the surface [94]. 
The adsorbate-adsorbent system under discussion dictates 
the relative relevance of the two terms.

We derive the following expression from these two 
equations:

The equation below can be used to get the equilibrium 
constant  Kd:

The following equation was used to calculate the 
adsorption capacity (q) of the metal ions  (Cd2+ and  Pb2+) 
that α-Fe2O3/GO and GO studied:

qe: The adsorption capacity at equilibrium.
C0: Initial metal cation concentration in mol/L.
Ce: The concentration of metal cations at equilibrium 

in mol/L.
V: The volume of the treated metal cation solution 

(10 mL).

(4)ΔG0 = ΔH0− TΔS0

(5)ΔG0 = −RT ln kd

(6)ln kd =

(

ΔS0

R

)

−

(

ΔH0

R

)

1

T

(7)Kd =
qe

Ce

(8)q

(

mg

g

)

=
(

C0 − Ce

)

. V.
M

m

M: Molar masses of  (Cd(NO3)2,4H2O) and 
(Pb(NO3)2,4H2O).

m: The mass of the α-Fe2O3/GO and GO (0.1 g).
n: The number of moles (mol).
R: The ideal gas constant (R = 8.314 J/mol/K).
Kd: The Adsorbent/adsorbate partition (distribution) 

coefficient.
The fitted and calculated thermodynamic results are 

shown in Table 3.
The results obtained from the thermodynamic functions: 

for cadmium ions, ΔG < 0, ΔH < 0 and ΔS ˃ 0 indicate that 
the adsorption is spontaneous, exothermic and that the ran-
domness increases. Whereas for lead ions, ΔG < 0, ΔH < 0 
and ΔS < 0 indicate that the adsorption is spontaneous, exo-
thermic and order increasing. Furthermore, as the tempera-
ture rose, ΔG became almost as negative. A more negative 
ΔG means more spontaneity. The advantageous effect of 
increasing temperature on adsorption may be motivated by 
the fact that increasing temperature facilitates the ioniza-
tion of functional groups, resulting in the formation of more 
adsorption sites [95, 96].

According to the literature, several sorbents have been 
used to remove  Cd2+ and  Pb2+ ions from aqueous solutions. 
The results obtained in terms of maximum sorption capac-
ity were compared with this study and collected in Table 4. 
These results tell us that, under ideal conditions, magnetic 
graphene oxide α-Fe2O3/GO exhibits good adsorption of two 
metal ions, particularly cadmium  (Cd2+), with an elimination 
rate of 83.3 mg/g of sorbent.

Regarding the absorption rate of lead  (Pb2+), it is rela-
tively low compared to other adsorbents such as manganese 
oxide coated zeolite and tea waste.

4  Conclusion

In this study, the synthesis of graphene oxide GO and modi-
fied graphene oxide α-Fe2O3/GO was carried out and veri-
fied using various analytical techniques. The synthesized 
materials have been studied as adsorbent of cadmium  Cd2+ 
and lead  Pb2+ in aqueous media. A parametric, kinetic, and 
thermodynamic study was conducted for this purpose, and 
the results show that 0.1 g of α-Fe2O3/GO can adsorb more 
than 90% of the metal ions at concentrations of  10–3 M of 

Table 3  Fit and calculation of 
the thermodynamic results of 
 Cd2+ and  Pb2+ adsorption by 
α-Fe2O3/GO

T (°C) T (°K) ΔH (KJ/mol) ΔS (J/K mol) ΔG (KJ/mol) Kd

Pb2+ Cd2+ Pb2+ Cd2+ Pb2+ Cd2+ Pb2+ Cd2+

25 298.15 − 2.31 − 12.33 − 3.432 8.273 − 1.021 − 2.479 1.51 2.72
35 308.15 − 2.3 − 12.1 − 3.432 8.275 − 1.055 − 2.562 1.51 2.72
45 318.15 − 2.3 − 11.5 − 3.431 8.279 − 1.089 − 2.645 1.51 2.72
55 328.15 − 2.28 − 10.9 − 3.431 8.282 − 1.123 − 2.728 1.51 2.72
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 Cd2+ and  Pb2+. The kinetic study revealed that adsorption 
is of pseudo-second-order, which means that in this model, 
the occupancy rate of adsorption sites is assumed to be 
proportional to the square of unoccupied sites, and chem-
isorption is the step that controls the adsorption rate. The 
thermodynamic study showed that the adsorption phenom-
enon is spontaneous, exothermic, and random as tempera-
ture increases. Based on these findings, we can conclude 
that α-Fe2O3/GO is a promising  Cd2+ and  Pb2+ adsorbent in 
aquatic environments with a relatively simple regeneration 
process.
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