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Abstract
Trypanosoma cruzi causes chagas disease, a life threating disease in non-endemic and endemic regions globally, the life 
cycle of T. cruzi strictly depends on endogenous synthesis of sterol via 14-α-demethylase pathway. The available drugs 
for chagas disease treatment are currently resistance and parade unwanted side effects. Herein, molecular docking, QSAR, 
molecular mechanics/generalized born surface area (MM/GBSA) estimation, ADME screening, and molecular dynamics 
(MD) simulation were performed using Schrodinger suite to identify 14-α-demethylase protease antagonist from Ilex kud-
ingcha. Density function theory of the hit ligands was carried out using Spartan 14 to investigate the molecular reactivity of 
the lead molecules. Nine (9) hit molecules were predicted as 14-α-demethylase protease inhibitors with binding energy range 
of − 7.632 to − 9.559 kcal/mol which was comparable to the standard drug (benznidazole = − 6.969), two lead molecules 
were further subjected to MD simulation over 50 ns predicting that kulactone and gallocatechin form stable interactions with 
vital residues at the catalytic site of the protein. DFT analysis revealed that, the hit ligands have the ability to donate and 
accept proton donating and accepting hence, effective as solubility and inhibitory agent and the ADME screening revealed, 
all the hit ligands obey Lipinski rule of five presenting them as drug candidate. The observations from this study predict 
kulactone and gallocatechin as putative antagonist of 14-α-demethylase protease and should be experimentally verify as a 
lead compound for chagas disease therapy.
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1  Introduction

Chagas disease (CD) common known as American trypa-
nosomiasis is one of the neglected tropical diseases (NTDs) 
caused by Trypanosoma cruzi, this protozoan is spread by 

kissing bug [1], the disease constitute one of the serious pub-
lic health issues in most endemic countries [2]. The World 
Health Organization (WHO) reported that almost 6–7 mil-
lion individuals globally are victim of CD. It is common 
in the rural areas of Latin American nations, where it is 
contacted by humans and other mammals through contact 
with the waste or urine of kissing bug (triatomine bugs) [3]. 
The disease has spread beyond the Latin American nations 
due to migration from these endemic countries to Japan, the 
United States, Canada, and Australia [4].

Contact with T. cruzi, the host is permanently infected 
with chagas disease which has three (3) stages: acute, inde-
terminate, and chronic [5]. The acute stage of chagas disease 
occurs immediately after infection, and the symptoms are 
difficult to detect due to the relatively non-specific clinical 
symptoms observed in the majority of infected patients, as 
well as the ancient and subjective methods available [6]. 
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This delay in diagnosis has an impact on the infected by 
impeding treatment and thus the cure [7].

nifurtimox and Benznidazole have been the initial-
line treatments for CD for many years. CD regarded as a 
neglected disease, therefore there is lack of competition 
among drug manufacturers to meet production quality 
criteria. It is also worth noting that the current and only 
CD medications are prohibitively expensive, making them 
inaccessible to CD patients [8]. Production of sterols by 
14-α-demethylase is a vital pathway in the life cycle of T. 
cruzi [1]; sterol 14-α-demethylase protease is in charge of 
mammalian cholesterol biosynthesis. T. cruzi wholly relay 
on biologically active sterols for proliferation and survival, 
they cannot use host cholesterol; therefore, the parasite's 
sterol biosynthetic pathway is particularly appealing for drug 
development [9].

The unique biochemical activities and health benefits of 
phytochemicals pre-dates to human existence and most of 
the available pharmaceuticals are isolated from medicinal 
plants which have proven to possess herbal remedies [10]. 
Ilex, commonly known as holly, belongs to the family aqui-
foliaceae. Kudingcha, a bitter spike tea from Ilex latifolia 
and Ilex kudingcha is taken as a medicinal herb in south-
ern China. Kudingcha is referred to as a dietetic drink and 
is becoming well-known with trade names green-golden 
tea, beauty-slimming tea, clearing-heat tea and longevity 
tea in China. Ilex kudingcha has been observed to possess 
anti-inflammatory, lipid metabolism, antioxidant and anti-
tumor properties [11, 12]. Soniran et al., [13] has reported 
the in vitro anti-trypanosomal activities of methanol and 
chloroform extracts of Ilex kudingcha with their effects on 
the hepatocytes. The anti-trypanosomal mechanisms of the 
phyto-compounds from Ilex kudingcha have not been stud-
ied. Therefore, we aim to explore computational approaches 
to predict inhibitory activities of phyto-compounds from Ilex 
kudingcha against T. cruzi 14-α-demethylase protease.

2 � Materials and Methods

2.1 � Ligands and Protein Structure Preparation

Ninety-eight (98) compounds from Ilex kudingcha got-
ten from literature search were retrieved from database of 
PubChem (https://​pubch​em.​ncbi.​nlm.​nih.​gov), the com-
pounds were prepared by Ligprep tool from Schrodinger 
suite according to Omoboyowa [14].

The crystallographic structure of sterol-14α-demethylase 
protease was downloaded from databank (pdb: 4CKA) 
(https://​www.​rcsb.​org/). This biomolecule was prepared 
with protein preparation wizard to rectify all errors includ-
ing assigning of bond orders and missing hydrogen atoms. 
Receptor grid generation tool was used to generate the 

target glide grid file at the binding site of the co-crystalized 
ligand which automatically generate coordinates x = 0.52, 
y = 26.38, z = 459.97.

2.2 � Quantum Chemical Calculation

The lead molecules were minimized by the DFT/Becke 
Three Lee Yang Parr/6-31G(d) level of theory, restricted 
hybrid Hartree Fock-DFT self-consistent field calculation 
with Pulay’s direct inversion of the iterative sub-space and 
geometric direct minimization was employed using Spar-
tan 14 computational chemistry software. The HOMO and 
LUMO energies (EHOMO and ELUMO) were calculated with 
the reactivity descriptors extrapolated from the EHOMO and 
ELUMO values [15].

2.3 � Virtual Screening by Molecular Docking

Ninety-eight (98) ligands from I. kudingcha and reference 
drug (Benznidazole) were screened through HTVS docking 
precision. Twenty (20.4%) of the lead ligands were further 
screened by SP and XP docking precision, the top-scored 
ligands with higher docking score than the reference drug 
were finally selected. Validation of the screening protocol 
was carried out by extracting, preparing and re-docking of 
the co-crystalized ligand into the original catalytic site of 
4CKA to validate the reliability of the docking procedure 
[14].

2.4 � Calculation of the MM/GBSA

The docked ligands-sterol-14α-demethylase protease com-
plexes were optimized by local optimization feature in 
prime, binding energies (∆bind) for the ligands-sterol-14α-
demethylase protease complexes were determined by the 
OPLS3 force field. The MM/GBSA estimation was per-
formed on the docked complexes using the formula:

2.5 � Screening for ADME Profile

The pharmacokinetic and drug-likeness profile of the lead 
ligands from I.kudingcha was predicted by the Qikprop tool 
of Schrodinger suite.

2.6 � Development of Automated QSAR Model

The experimental data with pIC50 of 14α-demethylase 
protease antagonists were retrieved from the database of 
CHEMBL via www.​ebi.​ac.​uk/​chembl/ by blasting of the 
protein FASTA sequence. The inhibitors were converted 
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to sdf format using DataWarrior v.2 [1]. The file saved 
as sdf was uploaded onto the workspace of the software 
and prepared by macromodel minimization. QSAR model 
for 14α-demethylase protease was developed based on the 
inhibitors’ pIC50. Mlr_2 model was preferred based on the 
ranking outcomes.

2.7 � Molecular Dynamic Simulation

Molecular dynamics simulation tends to compute the 
movement of atoms based on time by incorporating the 
classical equation of Newton’s motion. The simulations 
were performed for a period of 50 ns with Desmond tool 
of Schrödinger suite. The ligand–protein docking com-
plexes were the initial stages of the simulation; this was 
carried out to determine the binding status of the ligands 
in physiological state.

The pre-process of the protein–ligand complexes were 
performed using protein preparation wizard of Schrodinger 

suite which involve the minimization and optimization 
of complexes. All systems were prepared by the Sys-
tem Builder tool according to the protocol described by 
Omoboyowa et al. [15].

3 � Results and Discussion

3.1 � Post‑Docking Analysis and Calculation of MM/
GBSA

Molecular docking remains an important and established 
computational structural based virtual screening method 
employed in drug discovery and design. It predicts poten-
tial drug targets and molecular ligand-target interactions at 
the atomic level [16]. In this study, the molecular docking 
protocol was validated by preparation of extracted co-crys-
talized ligand, re-docked it into the active site of the target. 
Figure 1 represents the overlapping of the re-docked ligand, 
the ligand deviated from its original geometry with RMSD 
value of 0.74 Å (> 2.0 Å), suggesting the reproducibility and 
reliability of the protocol [17].

The binding affinity of the nine (9) lead molecules and the 
standard drug (structures shown on figure S1) are presented 
in Fig. 2, the result reveals that, the nine hit compounds 
have higher binding affinity compared with the standard 
drug (benznidazole) (− 6.979 kcal/mol). Kulactone showed 
the highest binding affinity of − 9.559 kcal/mol at the bind-
ing domain of the target, since the negativity of the binding 
energy reveal the intensity of the interaction [15]. Molecular 
docking has been reported to form a key method used in 
the drug discovery process. The pharmaceutical industries 

Fig. 1:   4CKA co-crystalized ligand overlapped at its binding domain
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Fig. 2   Representation of the binding affinity and MM/GBSA (ΔGbind) 
of lead compounds viz: 15560423: Kulactone; 65084: (+)(−)Gallo-
catechin; 72276: (−)(−)Epicatechin; 101761: Erythrodiol; 5281605: 

Baicalein; 72281: Hesperetin; 5280445: Luteolin; 4788: Phloretin; 
5280343: Quercetin; 31593: Benznidazole
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currently rely on this computational model to screen large 
library of compounds to identify novel molecules for 
design of new therapeutic agent [18]. From Table 1 and 
Fig. 3, (−)(−)epicatechin, Luteolin and Quercetin showed 
three H-bonds interaction with the residues at the binding 
domain of the protein while the standard drug (benznida-
zole) showed 2 H-bonds interaction with TYR 116. The 
interaction of small molecules with the catalytic site amino 
acid of protein is necessary for their inhibitory activity [1]. 
Five hit compounds were observed from Table 1 to form 
H-bond with CYS 422. Cysteine (CYS) has been observed 
to act as a switch to control the activity of proteins including 
metabolic enzymes, transcription factors and protein kinases 
[19, 20]. Thus, the functional importance and high nucleo-
philicity and of CYS makes it attractive for development of 
targeted covalent ligands to modulate the function of diverse 
proteins [21].

The MM/GBSA protocol is a popular model to calcu-
late the binding free energy of small ligands binding to bio-
logical macromolecules. They are intermediate in accuracy 
and computational effort of strict alchemical perturbation 
methods and empirical scoring, which have been applied to 
a large number of systems with varying degree of success 
[22]. Herein, the free binding energy values (Δbind) of the 
hit compounds-protein complexes were presented in Fig. 2, 
the result reveals that, kulactone (− 50.047) has the highest 
negative value for the MM/GBSA. Erythrodiol (− 30.203), 
baicalein (− 29.783) and hesperetin (33.933) were observed 
to have lower negative MM/GBSA values compared with the 

standard drug (− 40.840), with other compounds presenting 
higher negative values than the standard drug.

3.2 � Pharmacokinetics and Drug‑Likeness Screening

Pharmacokinetic profiling  relate to the metabolism and 
excretion of drug candidates. These features are predicted 
after drug discovery protocol; however, with computational 
tools such absorption, distribution, metabolism and excre-
tion (ADME) profiles can be carried out at the early stage 
of drug design. Optimization of the ADME profiles of small 
molecules is often the most challenging part of drug dis-
covery process which also has a major impact on the prob-
ability of success of drug candidates [23]. Herein, the nine 
(9) top-scored compounds from the post-docking analysis 
were screened for their ADME properties. From Table 2, 
Lipinki’s rule of five was use to predict the drug likeness 
of the compounds which includes H-bond donor (> 5.00), 
H-bond acceptor (> 10), and molecular weight (> 500 KD) 
[24]. Interesting, the entire lead compound obeyed Lipinski 
rule of five with at most one violation, this suggest that the 
lead compounds are drug candidates.

The pharmacokinetic profiles of the hit compounds were 
analyzed for QPPcaco, QPlogHERG, QPPMDCK, QPlogBB, 
QPlogkp and QPlogkhsa parameters using Qikprop of Schro-
dinger suite. From Table 3, the result showed that, the hit 
ligands are within the recommended range for brain/blood 
partition coefficient (− 1.3 to 1.2) and the IC50 QPlogHERG 
(> − 5). The results obtained reveal that the hit ligands have 
low QPlogHERG values suggesting that, the hit compounds 
could block hERG channels therefore more cardiotoxic [25]. 
Penetration of the blood–brain barrier is often reported as 
a significant barrier in the neurological drug development 
stages [26]. This has been reported to obstruct the entry 
of drug molecules into the central nervous system (CNS), 
hence poses as a serious challenge in drug discovery for 
the CNS disorders [1]. Only kulactone and erythrodiol 
showed great calcium carbonate (Caco) cell permeability 
of 1507.214 nm/s and 1905.837 nm/s respectively observed 
to be greater than the reference value of 25 nm/s. The Caco 
cell line is use as a model of human intestinal absorption 
of new therapeutic agents [27]. The Madin-Darby Canine 
kidney (MDCK) cells are used for the rate of drug active 
transport, permeability and efflux in drug design [28]. (+)
(−)Gallocatechin (6.689 nm/s) and Quercetin (7.210 nm/s) 
were observed with low QPPMDCK values.

Table 1   Post docking analysis of the docked complexes

Compound name No H-bonds Interacting amino acid

Kulactone 1 CYS 422
(+)(−)Gallocatechin 2 CYS 422; TYR 103
(−)(−)Epicatechin 3 TYR 116; MET 358
Erythrodiol 1 CYS 422
Baicalein 2 CYS 422; TYR 103
Hesperetin 1 CYS 422
Luteolin 3 TYR 166; MET 460; LEU 

357
Phloretin 2 MET 460; TYR 116
Quercetin 3 ALA 291; MET 358
Benznidazole (standard) 2 TYR 116
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3.3 � Analysis of Auto QSAR Model

Quantitative structure–activity relationship (QSAR) is vital 
tool in computational model that reveals the connection 
between chemical molecules and structural features [29]. 
AutoQSAR is a plugin in Schrodinger suite with various top-
ological descriptors with independent variable for generation 
of models [1]. From Table 4, the autoQSAR splits the dataset 
into 23% test and 77% train set as computed from the predic-
tive model (mrl_2) for the experimental data. The param-
eters generated from the model includes: standard deviation 
(S.D) (0.7123), R2 (0.5265), root mean square error (RMSE) 
(0.6855) and the predictive squared correlation coefficient 
(Q2) (0.5202) as shown in Table 5. Figure 4 showed the scat-
ter plot of the observed activity and predicted activity of the 
dataset which revealed more train set (blue colour) than the 
test set (red colour). The result on the plot was consistent 
with the data on Table 4. The inhibitory capacity (pIC50) 
of the lead molecules and reference ligand were predicted 
base on the generated best predictive model is presented in 
Table 6. IC50 is the half maximal inhibitory concentration of 
an inhibitor required for 50% inhibition of proteins in-vitro 
[30]. All the hit compounds were observed to posess lower 
PIC50 values compared with the standard drug.   

3.4 � Density Functional Theory Analysis

Density functional theory (DFT) has been estimated through 
quantum mechanical methods and showed competence to 
be employed in pharmacological studies. Hence, DFT has 
formed a vital protocol in drug designing process [31]. The 
energies of highest occupied molecular orbital (HOMO) and 
Least unoccupied molecular orbital (LUMO) are vital orbital 
descriptors of small molecules, play vital roles in the elec-
tric properties, optical and quantum chemistry [32]. Other 
descriptors such as energy band gaps (Eg), chemical hard-
ness (η), softness (δ), Electronegativity (χ) and chemical 
potential (Cp) were obtained from the HOMO and LUMO 
energies as shown in Table 7.

The EHOMO and ELUMO give reveals the reactivity of the 
compounds, while EHOMO reveals the electron donating 
ability of molecules; ELUMO predicts the electron accept-
ance ability. Hence, the higher the EHOMO the more readily 

Fig. 3   2D interaction of lead molecules at the binding domain of 
14α-demethylase viz: 15560423: Kulactone; 65084: (+)(−)Gallo-
catechin; 72276: (−)(−)Epicatechin; 101761: Erythrodiol; 5281605: 
Baicalein; 72281: Hesperetin; 5280445: Luteolin; 4788: Phloretin; 
5280343: Quercetin; 31593: Benznidazole

▸
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the molecule donate electrons and the lower the ELUMO the 
more readily the molecule accept electrons, this predict 
the reactivity of molecules [32]. From Table 7 and Fig. 
S2, the value of EHOMO (− 5.48 eV and − 6.69 eV) showed 
that the molecules would interact readily through donation 
of electrom. The ELUMO values (− 0.78 eV and − 2.76 eV) 
indicated that the molecules would be an electron acceptor. 
The standard drug (benznidazole) showed higher EHOMO 
and ELUMO values (− 6.69 and − 2.76 respective) compared 
with the hit compounds, suggesting that the standard would 
readily donate and accept protons than the hit compounds. 
The reactivity of the compounds was further ascertained by 
the values of other descriptors derived from the EHOMO and 

ELUMO such as chemical hardness, softness, electronegativity 
and chemical potential (Table 7).

3.5 � Molecular Dynamic Simulations 
of 14‑α‑Demethylase Protease‑Ligand 
Complexes

The post-docking analysis, QSAR modeling and pharmacoki-
netic profiles of the lead compounds from Ilex kudingcha were 
carefully studied, kulactone and (+)(−)gallocatechin were 
observed as potent inhibitors of sterol-14-α-demethylase pro-
tease; therefore, to validate the ligands’ conformational sta-
bility at the binding pocket of the protein, the docked com-
plexes of kulactone, (+)(−)gallocatechin and standard drug 

Table 2   Prediction of drug 
likeness of lead compounds

a Molecular weight (> 500.0)
b Number of H-bond donors (> 6.0)
c Number of H-bond acceptors (> 10.0)
d PSA: (7.0–200.0)
e Number of Lipinski’s rule violation (> 1)

Compound ID Mol MW HB-acceptor HB-donor TPSA RO5 
viola-
tion

Kulactone 452.68 5 0 61.5 1
(+)(−)Gallocatechin 306.27 6.2 6 137.5 1
(−)(−)Epicatechin 290.27 5.5 5 114.0 0
Erythrodiol 442.72 3.4 2 39.5 1
Baicalein 270.24 3.7 2 96.5 0
Hesperetin 302.28 4.7 2 106.7 0
Luteolin 286.24 4 3 120.3 0
Phloretin 274.24 3 2 109.9 0
Quercetin 302.24 5.3 4 141.9 0
Benznidazole (standard) 260.25 5 1 94.5 0

Table 3   Pharmacokinetic 
prediction of lead compounds

Compounds QPlogHERG QPPCaco QplogBB QPPMDCK QPlogKhsa % Oral Ab

Kulactone − 4.439 1507.214 − 0.454 707.780 1.350 100
(+)(−)Gallocatechin − 4.703 18.657 − 2.414 6.689 − 5.66 35.404
(−)(−)Epicatechin − 4.619 58.241 − 1.815 22.893 − 0.423 61.197
Erythrodiol − 3.812 1905.837 − 0.290 993.321 1.565 100
Baicalein − 5.136 180.219 − 1.247 77.617 − 0.051 77.487
Hesperetin − 4.618 171.826 − 1.313 73.718 − 0.037 77.118
Luteolin − 5.022 45.023 − 1.910 17.333 − 0.205 62.050
Phloretin − 5.198 76.256 − 1.989 30.639 0.019 72.945
Quercetin − 5.035 20.000 − 2.352 7.210 − 0.354 52.348
Benznidazole (STD) − 3.665 341.442 − 0.958 232.305 − 5.576 79.370
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(benznidazole) with the target were used for 50 ns MD simu-
lation. The docked complex stability is an important factor in 
studying the inhibitory mechanism of protein from molecular 
docking protocol [33]. Each compound’s root-mean-square 
fluctuation (RMSF), root-mean-square deviation (RMSD) and 
hydrogen bond mapping were analyzed. RMSD gives details 
about the protein concerning its structural backbone [34]. Fig-
ure 5 showed the RMSD plot of the target (Cα) and ligands 
fit protein over 50 ns simulation trajectory for kulactone, gal-
locatechin and standard drug. The Cα atoms in sterol-14-α-
demethylase protease complexes with hit compounds exhib-
ited mean deviation range was observed to be less than 4.0 Å 
(< 4.0 Å) which is acceptable for small globular proteins. The 
RMSD of sterol-14-α-demethylase protease and gallocatechin 
complex showed initial fluctuation between 1.0 and 1.50 Å 
within the 20 ns of simulation. After 20 ns of simulation, the 
trajectory was showed to be stable to the end of the simulation 
time. The RMSD of kulactone and sterol-14-α-demethylase 
protease complex showed stability for the first 10 ns of simula-
tion with slight fluctuation of 1.5–2.1 Å differences. Between 
10 and 20 ns, there was significant large difference in the 
RMSD value of Cα and Lig fit protein which indicates that the 
ligand has diffused away from its original binding domain but 
stability was restored after 30–50 ns of simulation. The stand-
ard drug (benznidazole) showed large fluctuation and RMSD 
difference between the Cα and Lig fit Prot which was restored 
before the end of the simulation period (40–50 ns). The result 
of the RMSD plot (Fig. 5) revealed that the hit compounds 

Table 4   Auto-QSAR predicted activities vs observed activities

ID Set pIC50 (observed) pIC50 (predicted) Residue error

1 Train 6.9000 5.7334 − 1.166
2 Train 4.7000 5.2538 0.5537
3 Train 4.1000 4.8492 0.7492
4 Train 5.2000 4.4527 − 0.7473
5 Test 4.5000 4.6417 0.1417
6 Train 6.5000 5.4631 − 1.0369
7 Train 5.3000 4.5627 − 0.7373
8 Train 4.5000 5.0931 0.5931
9 Test 4.9000 4.4173 − 0.4827
10 Test 4.6000 4.0746 − 0.5254
11 Train 7.0000 6.6248 − 0.3752
12 Test 4.4000 4.7580 0.3580
13 Test 5.0000 4.7970 − 0.2030
14 Train 4.9000 4.7936 − 0.1064
15 Train 7.0000 6.4020 − 0.5980
16 Train 4.1000 5.1142 1.0142
17 Train 4.3000 4.9430 0.6430
18 Train 4.4000 4.6734 0.2739
19 Train 5.0000 4.7995 − 0.2005
20 Train 6.7000 6.0401 − 0.6599
21 Train 5.3000 4.7511 − 0.5489
22 Train 4.3000 4.7012 0.4012
23 Train 6.7000 5.9598 − 0.7402
24 Test 5.5000 5.3624 − 0.1376
25 Train 5.1000 5.2445 0.1445
26 Train 4.6000 4.4796 − 0.1204
27 Train 5.6000 5.4990 − 0.1010
28 Test 5.5000 5.4916 − 0.0084
29 Train 4.5000 4.9407 − 0.1010
30 Train 4.9000 5.9875 1.0875
31 Train 4.8000 5.5838 0.7838
32 Train 7.3000 6.1116 − 1.1884
33 Test 5.0000 4.8911 − 0.1089
34 Train 7.8000 6.4871 − 1.3129
35 Test 4.5000 5.2332 0.7332
36 Train 5.5000 4.5072 − 0.9928
37 Train 5.3000 5.1746 − 0.1254
38 Test 4.3000 5.2614 0.9614
39 Train 4.2000 5.2071 1.0071
40 Train 4.7000 5.1706 0.4706
41 Test 5.1000 5.4260 0.3246
42 Train 5.0000 5.0524 0.0524
43 Train 4.3000 5.3050 1.0050
44 Train 4.1000 4.4299 0.3299
45 Test 7.6000 6.5842 − 1.0158
46 Train 4.9000 4.8016 − 0.0984
47 Train 4.5000 4.7830 0.2830
48 Train 4.4000 4.8104 0.4140
49 Train 4.5000 5.1517 0.6517
50 Train 6.0000 5.2851 − 0.7149

Table 4   (continued)

ID Set pIC50 (observed) pIC50 (predicted) Residue error

51 Train 4.8000 5.0783 0.2783
52 Train 5.1000 5.5087 0.4087
53 Train 5.1000 4.7573 − 0.3427
54 Train 4.1000 4.9368 0.8368
55 Test 6.9000 5.7637 − 1.1363
56 Train 4.5000 4.9713 0.4713
57 Train 4.6000 4.5146 − 0.0854
58 Test 6.5000 5.1335 − 1.3665
59 Train 6.5000 5.5462 − 0.9538
60 Train 4.3000 5.1122 0.8122

Table 5   Parameters for the autoQSAR of the predictive model

Model code SD R2 RMSE Q2

kpls_linear_45 0.7123 0.5265 0.6855 0.5202
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(kulactone and gallocatechin)-sterol-14-α-demethylase pro-
tease complexes are more stable with sight fluctuation com-
pared with the benzidazole- sterol-14-α-demethylase protease 
complex.

3.6 � Analysis of the Root Mean Square Fluctuation 
(RMSF)

The dynamic behavior of the amino acid of the ligand–pro-
tein complexes were evaluated by computing the atomic 
positional fluctuation of the amino acid backbone of the 
protein. Hence, the local changes along the sterol-14-α-
demethylase residues were monitored by the RMSF value for 

Fig. 4   Analysis of the scatter 
plot for the predictive model

Table 6   pIC50 of lead ligands using predictive model

ID Compounds pIC50 (µM)

15560423 Kulactone 4.513
65084 (+)(−)Gallocatechin 4.686
72276 (−)(−)Epicatechin 4.898
101761 Erythrodiol 3.897
5281605 Baicalein 4.726
72281 Hesperetin 4.594
5280445 Luteolin 4.958
4788 Phloretin 4.737
5280343 Quercetin 4.703
31593 Benznidazole (standard) 5.817

Table 7   Molecular properties 
obtained via DFT at the 
B3LYP/6-31G (d) level of 
theory

Compounds EHOMO (eV) ELUMO (eV) Eg (eV) I (eV) A (eV) η (eV) δ (eV−1) χ (eV)

Kulactone − 6.22 − 0.43 5.79 6.22 0.43 2.895 0.3454 3.325
(−)-Gallocatechin − 5.65 0.02 5.67 5.65 − 0.02 2.835 0.3527 2.815
(−)-Epicatechin − 5.55 0.14 5.69 5.55 − 0.14 2.845 0.3515 2.705
Erythrodiol − 5.98 0.78 6.76 5.98 − 0.78 3.38 0.2959 2.6
Hesperetin − 5.76 − 1.38 4.38 5.76 1.38 2.19 0.4566 3.57
Luteolin 5.88 − 1.76 − 7.64 − 5.88 1.76 − 3.82 − 0.2617 − 2.06
Quercetin − 5.48 − 1.84 3.64 5.48 1.84 1.82 0.5494 3.66
Phloretin − 5.62 − 1.28 4.34 5.62 1.28 2.17 0.4608 3.45
Baicalein − 5.74 − 1.89 3.85 5.74 1.89 1.925 0.5194 3.815
Benznidazole − 6.69 − 2.76 3.93 6.69 2.76 1.695 0.5880 4.725
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50 ns simulation time. The α-helices and β-strands of sterol-
14-α-demethylase structure were shown to oscillate within 
1.0–2.5 Å for the hit compounds and standard ligand (ben-
zidazole) (Fig. 6). The secondary parameters like β-strands 
and α-helices are more stable than the unstructured portion 
of the protein, and thus show less fluctuation than the loop 
regions. The loop regions of the sterol-14-α-demethylase 
in all the complexes revealed high fluctuation above 4.5 Å.

3.7 � Interaction Mapping Between Protein–Ligand 
Complexes

The binding orientation of sterol-14-α-demethylase—ligand 
complexes established by docking model was further vali-
dated for stability of the intermolecular interaction, although 
simulation reveals the binding conformation by averaging 
all sterol-14-α-demethylase–ligand interactions obtained 
from individual frames of the trajectory and predicts the 
most favored contacts. From Fig. 7, all the docked com-
pounds showed better interactions with amino acid in the 
selected site of sterol-14-α-demethylase structure during 

Fig. 5   RMSD calculation for Cα atoms (blue) sterol 14-demethylase protease and Ligands fit Protein (red) at 50 ns simulation period
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the simulation time. Interestingly, the ligands interacted 
with residues of the binding site of sterol-14-α-demethylase 
with hydrophobic bond, hydrogen bond and water bridges. 
Gallocatechin was shown to exhibits high H-bond interac-
tions with vital amino acid residues in the binding site of 
sterol-14-α-demethylase at > 60% of the simulation interval 
compared to the standard drug. However, the hit compounds 
and benznidazole were observed to form H-bond interaction 

with ARG 361 with varying interaction fraction with kulac-
tone forming above 1.2, gallocatechin forming 0.6 which are 
comparable to benznidazole (0.6). The standard drug was 
observed to exhibit more hydrophobic interaction with the 
amino acid of sterol-14-α-demethylase binding site.

Fig. 6   Line representation of the evolution of root mean square fluctuation (RMSF) of sterol 14-demethylase protease Cα during 50  ns MD 
simulation
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4 � Conclusion

Sterol-14-α-demethylase is a key therapeutic target which 
has been identified in drug design and development against 
chagas disease. This study was performed to predict potent 
antagonists of sterol-14-α-demethylase from Ilex kuding-
cha compounds which can block the active site of the 
protein by employing computational models. Molecular 
docking, MM/GBSA calculation, quantum chemical cal-
culation and virtual ADME screening of the molecules 
were carried out followed by MD simulation studies of 
hit compounds-sterol-14-α-demethylase complexes. The 

analysis predicted nine (9) lead compounds from the post-
docking studies. Two top scored complexes were further 
validated by subjecting them to MD simulation study. 
Kulactone and gallocatechin satisfied all the parameters 
investigated including the MD simulation analysis. There-
fore, these two compounds (kulactone and gallocatechin) 
were predicted as inhibitors of sterol-14-α-demethylase. 
However, further validation of our findings experimental 
analysis is suggested to establish the efficacy of the pre-
dicted compounds as drug candidate in the management 
of chagas disease.

Fig. 7   Interaction of the protein–ligand mapping for sterol 14-demethylase protease
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Supplementary Information  The online version contains supplemen-
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able, it can be accessible on request from the authors.
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