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Abstract
The present study aimed to synthesize Copper oxide-Zinc oxide nanocomposites (CuO-ZnO NCs) based on the sol−gel 
method, which was further used as a novel platform for the elimination of Pb (II) from aqueous solution. The crystallite 
structure, elemental composition, and surface morphology of the synthesized NCs were confirmed by utilizing different 
spectroscopic techniques. The obtained results revealed that the average size of CuO-ZnO NCs was 27.2 nm with a uniform 
distribution of spherical particles. According to batch experiments, the maximum removal percentage of Pb (II) ions (95.68%) 
was observed within 60 min at pH 5, adsorbate dose of 50 mg/L, and an adsorbent dose of 0.01 g. Isotherm modeling and 
kinetics studies showed that the adsorption of Pb (II) ions perfectly followed the Freundlich isotherm and pseudo-second-
order kinetics. Overall, the CuO-ZnO NCs could be used as an effective adsorbent for the removal of Pb (II) ions from an 
aqueous solution due to their high adsorption capacity.
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1  Introduction

Recently, environmental issues about heavy metals have 
increased dramatically [1]. In societies where industrializa-
tion is developing, heavy metals such as the highly toxic lead 
(Pb) are discharged into natural rivers [2]. The main causes 
of lead (Pb) pollution are the release of industrial wastewater 
such as metallurgy, metal pleating, and paper printing to the 
environment without treatment [3]. The concentration of lead 
in wastewater that exceeds the permissible levels can pose a 
serious threat to the environment, human health, and animals, 
leading to brain damage, behavioral problems, anemia, and 
mental disability [4]. Thus, lead (Pb) removal from surface 
waters or wastewaters is mandatory.

Today, numerous well-known techniques have been used 
extensively, such as chemical precipitation [5], membrane 

filtration [6, 7], electrochemical separation [8, 9], coagula-
tion [10], reverse osmosis [11, 12], ion exchange [13–15], 
solvent extraction [16], and adsorption [17] for ion removal. 
The adsorption technique has drawn much attention due 
to its low cost and simplicity [18–20]. Numerous types 
of adsorbents, such as plant wastes [21], activated carbon 
[22, 23], microorganisms [24], nano-graphite encapsulated 
alginate beads [25], fly ash [26], industrial and agricultural 
by-products [27], clay minerals [28] and carbon nanotubes 
[29] have been used for the sequestration of heavy metals 
from sewage.

Today, nanoparticles (NP)/nanocomposites (NC) devel-
oped with the development of nanotechnology are used as 
a good adsorbent in the removal of heavy metals and dyes 
[30, 31]. Nanocomposites (NC) are formed heterogeneously 
in multiple stages from multicomponent materials with at 
least one phase on the nanometer scale. The resulting NCs 
are used in a variety of applications such as the energy 
industry, food packaging, soil fertility improvement, waste-
water treatment, and drug distribution [32, 33]. NCs have 
distinctive chemical properties, high surface areas, active 
functional groups, and high electron mobility in polyphase 
materials since at least one of their phases has a nanom-
eter size [32]. As a result, nanocomposites illustrate better 
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selectivity, adsorption capacity, and stability against toxic 
pollutants than nanoparticles. These features can be devel-
oped in three different ways (i) by surface modification of 
the nanocomposites by some reagents like CTAB, SDS, etc. 
(ii) nanoparticles or nanocomposites loaded on biochar/gra-
phene/activated carbon product, and (iii) by using graphene 
product/polymer material/biomass/chemicals in synthesis 
pathways [34–36].

Metal oxides are an extensively applied material for 
multiple industrial applications. Among numerous metal 
oxides, ZnO is known as a multifunctional material as it can 
be used in numerous fields such as electronics, converters, 
biomedicine, energy generator, optoelectronics, pro-
ecological systems, or photocatalysts in hydrogen production 
and sensors [37, 38]. Among metal oxides, ZnO-based 
composites are one of the most preferred oxides and have 
wide applications in adsorption and photocatalysis [39, 40]. 
The ZnO is high mechanical and thermal stability at room 
temperature, high chemical stability, rigidity, hardness, 
and piezoelectric constant while its hybrid property is 
low toxicity, biodegradability, and biocompatibility [41]. 
In addition, the morphological, structural, electrical, and 
optical characteristics of the nanoscale ZnO can also be 
easily modified or enhanced for numerous applications [42]. 
ZnO-Tetrapod (ZnO-T) based nanocomposites synthesized 
by Sharma et al. showed high efficiency in the removal 
of heavy metal ions and organic dyes by adsorption and 
photocatalytic processes. Therefore, 3-dimensional nano- 
and micro-structured ZnO-Tetrapods (ZnO-T) show an 
important potential in adsorption/photocatalytic applications 
thanks to their large surface areas, high mechanical strength, 
high porosity and durability under harsh conditions [43, 44]. 
In addition, the study by Chowdhury et al. on the adsorption 
of organic dye and toxic metal ions using Ni − Co − S/
SDS composites gave good results [45]. We combine the 
bifunctional activity of ZnO and CuO nanoparticles to 
elimine lead (Pb) (II) ions from the aqueous solution.

The sol−gel process is known to be widely utilized 
in ceramics engineering and materials science, where a 
colloidal solution (sol) is converted into an integrated 
network (gel) of network polymers or discrete particles [46]. 
By using this method, stable composites with high efficiency 
and performance can be synthesized under ambient 
conditions [47]. The nanoparticles used in these hybrids are: 
TiO2 [48, 49], SiO2 [50], Fe3O4 [51], Al2O3 [52], ZrO2 [53], 
ZnO [54, 55] and CuO [54, 56, 57]. Numerous studies have 
been conducted on the production of nanocomposites by the 
sol−gel method. For instance, Wang et al. [58] prepared a 
Chitosan-silica composite for the removal of Congo red from 
wastewater. Wu et al. [59] studied the removal of cadmium 
(II) with a thiocyanate-functionalized silica gel they had 
prepared. In another study, mercaptopropyl coated cobalt 
ferrite (CoFe2O4) magnetic nanoparticles were prepared 

by Viltuznik et al. [60] and utilized as an adsorbent in the 
elimination of Hg2+ ions.

According to the literature research, ZnO/CuO 
composites, which were previously used in sensor 
construction [61, 62], hydrogen production [63] or 
photocatalytic studies [64, 65] were used for the first time 
in lead (Pb) removal by adsorption process in this study. This 
study is very important in order to see the synergistic effects 
of ZnO and CuO in the removal of Pb by the adsorption 
process. In addition, the high adsorption capacity (50 mg/g) 
of the obtained composites shows that it is more effective 
in lead (Pb) removal than other adsorbents in the literature.

In this study, copper oxide (CuO)-zinc oxide (ZnO) was 
produced by the sol−gel method and utilized as an adsorbent 
to eliminate lead (Pb) from wastewater. The physicochemical 
characteristics of the manufactured adsorbent were 
characterized by XRD, FTIR, SEM, and EDX analysis. The 
operating parameters comprising contact time, solution pH, 
adsorbate dosage, and the adsorbent dose were studied to 
understand the adsorption process, and also isothermal and 
kinetics parameters were determined.

2 � Materials and Methods

2.1 � Reagents and Instruments

In this experiment, analytical reagent-grade chemicals such 
as Lead nitrate, Zinc acetate, copper chloride, Ethanol, 
Citric acid, Hydrochloric acid, and Sodium hydroxide were 
purchased from Merck, India, and Loba Chemie, India, and 
used without any further pretreatment. For preparing the 
stock solution, deionized water (RCI Labscan, Thailand) 
was used. The metal pH and concentration in the studied 
samples were determined by using a pH meter (model 
HI96107, Hanna Instruments, USA) and atomic absorption 
spectrophotometer (AA-7000, Shimadzu), respectively. 
The surface morphology and elemental composition of 
synthesized NCs were investigated by relying on a Field 
emission scanning electron microscope (FESEM) coupled 
with an energy dispersive X-ray analyzer (EDS) (JEOL JSM-
6390LA). To get an insight into the crystal structure of NCs, 
X-ray diffraction (XRD) instrument (Empyrean, PAnalytical-
Netherlands) was used. The presence of different functional 
groups on the surface of newly synthesized CuO-ZnO 
NCs was identified by Fourier Transform Infrared (FT-IR) 
Spectroscopy (Shimadzu IRAffinity-1, Japan).

2.2 � Synthesis of CuO‑ZnO Nanocomposites

The synthesis of CuO-ZnO NCs was carried out based 
on the well-known sol−gel method [66]. Initially, 25 mL 
of ethanol retaining 5.3247 g of zinc acetate, and 25 mL 
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of distilled water containing 6.3 g of citric acid were 
mixed in four separated beakers with vigorous stirring 
for an hour. Thereafter, 0.4244 g, 0.6741 g, 0.9488 g, 
and 1.2733 g of copper chloride were separately added 
to the above suspension at 60 °C with continuous stir-
ring for 3 h. The final mixture containing beakers was 
kept in a dark place for 48 h. To avoid any kinds of 
contamination and interference of metallic impurities, 
the reagent mixtures were washed several times using 
deionized water. The obtained gel particles were dried 
at 120 °C and calcined at 500 °C for 4 h to get desired 
CuO-ZnO NCs.

2.3 � Batch Adsorption Experiments

Initially, 1000 mg/L stock solution of Pb (II) ions was 
made from lead nitrate salt, which was obtained from the 
aforementioned suppliers. After that, the stock solution 
was further diluted to obtain various concentrations of Pb 
(II) solution for further studies. The pH of the solution was 
maintained by adding freshly prepared 0.1 M NaOH and 
0.1 M HCl solution. The overall adsorption process of Pb (II) 
was performed in batch mode. To investigate the adsorption 
behavior of CuO-ZnO NCs, about 0.01 g of the synthesized 
NCs was taken into a reagent bottle containing 25 mL of 
experimental lead (II) solution, and the mixture was shaken 
at 160 rpm on a mechanical shaker at room temperature. The 
concentration of Pb (II) ions was determined using an atomic 
absorption spectrophotometer at a regular interval of time. 
The sequestration percentage of lead (II) ions (% R) and the 
adsorption efficacies (qe) of CuO-ZnO NCs (mg/g) can be 
estimated based on Eq. 1 and Eq. 2, respectively.

 where, Ci and Cf indicated initial and final concentrations 
of lead (II) ions, respectively; V represented the volume of 
the metallic solution (L); M denoted the amount of dose of 
CuO-ZnO NCs (g).

2.4 � Error Functions

The error functions are an important statistical param-
eter used to measure the deviation of theoretically pre-
dicted isotherm parameters for evaluating the suitability 
of the isotherm and Kinetics model onto experimental 
results [67]. In this study, five different error functions 
include Residual Sum of Squares Error (ERRSQ/SSE), 
Chi-square (χ2), Coefficient of determination (R2), Aver-
age Relative Error (ARE), Hybrid Fractional Error Func-
tion (HYBRID), Marquardt’s Percent Standard Deviation 
(MPSD)were examined and in each case the isotherm and 
kinetics parameters were determined [67–69].

3 � Results and Discussion

3.1 � Characterization of Nanocomposites

Figure 1 shows the XRD pattern of CuO-ZnO NCs for 
different planes. The diffraction peaks (2θ) at 31.8°, 

(1)%R =
Ci − Cf

Ci

× 100

(2)qe =
Ci − Cf

M
× V

Fig. 1   The XRD pattern of 
CuO-ZnO NCs.
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34.5°, 36.3°, 47.6°, 56.6°, 62.9°, 66.4°, and 69.1° were 
corresponding to the crystal planes of (100), (002), (101), 
(110), (103), (112), (201), and (200), respectively. These 
XRD peaks fairly matched with the reported XRD data 
for ZnO particle (JCPDS card No. 01-075-9742) with a 
Wurtzite structure. Apart from these, a new diffraction peak 
was noticed at 38.7° which was indexed to the (111) for CuO 
[70]. The appearance of a new peak was probably due to 
the incorporation of CuO into ZnO. Therefore, the obtained 
results from the XRD pattern revealed the successful 
impregnation of CuO particles onto the surface of the ZnO 
matrix resulting in the formation of CuO-ZnO NCs.

The size of the CuO-ZnO NCs was calculated based on 
the Debye−Scherrer Eq. 3.

 where, δ represented the full width at half-maximum 
(FWHM) in radian, θ indicated Bragg’s angle in radian, λ 
denoted the wavelength of the incident X-rays, ρ is a con-
stant (0.9), and D was the diameter of NCs [71]. The particle 
size at all crystal planes was separately calculated and the 
average crystallite size of CuO-ZnO NCs was estimated at 
~ 27.2 nm.

The FTIR spectrum of CuO-ZnO NCs is represented in 
Fig. 2. This spectrum exhibited a characteristic band in the 
3000–3500 cm− 1 region, which indicated the presence of 
the O − H group. The band near 1550 cm− 1 was attributed 
to the carbonyl functional group (C=O), which possibly 
came due to the decomposition of ZnO from the precur-
sor of Zn(CH3COO)2.2H2O. The strong additional peak in 
the lower frequency range (500–700 cm− 1) ascertained the 

(3)D =
p�

�cos�

stretching vibration of metal-oxygen, which might be due to 
the presence of ZnO and CuO in the synthesized ZnO-CuO 
NCs [72, 73].

The detailed information regarding the structure and 
morphology of CuO-ZnO NCs was inspected by the 
FESEM and are shown in Fig. 3a, b. The surface morphol-
ogy of CuO-ZnO NCs was uniform spherical. From these 
images, it was revealed that the size of synthesized NCs 
was in the nanometer range that supported the obtained 
result of XRD. The elemental composition of CuO-ZnO 
NCs is shown in Fig. 3e. The intense peak for Zinc (Zn), 
Copper (Cu), and Oxygen (O) was found in the EDS 
spectrum at different line-scanning values. Besides, the 
absence of other peaks within the detection limit indicated 
the purity of CuO-ZnO NCs, and the NCs were composed 
of Zn, Cu, and O elements only.

SEM analysis was also carried out to observe the mor-
phology of the fabricated after the sorption of CuO-ZnO 
Nanocomposite (Fig. 3c, d). After adsorption the surface 
of the adsorbent remain as aggregates with the increas-
ing of size. This might be due to the incorporation of the 
pb onto the nanocomposite surface. This observation was 
reconfirmed by EDX analysis after the sorption (Fig. 3f) 
which indicate the presence of pb atom as evidence of pb 
adsorption onto nanocomposite.

3.2 � Effect of pH

The adsorption behavior of adsorbents is strongly 
influenced by the pH of the solution. Besides, the value 
of pH or the concentration of hydronium ions plays a 
pivotal role during the adsorption of heavy metals. The 
hydronium ion has a tendency to be adsorbed onto the 

Fig. 2   Infra-red (FTIR) spectra 
of CuO-ZnO NCs
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surface of NCs which arises a competition between the 
metal and hydronium ions. Such property of hydronium 
ion remarkably affects the adsorption capacity of the NCs 
towards the metal ions. To investigate the effect of pH on 
the adsorption behavior of NCs, the initial pH values of 

the studied aqueous solution were adjusted from 2.0 to 
7.0 by using freshly prepared 0.1 M HCl and 0.1 M NaOH 
solution. In this study, the batch experiments over pH 7 
were not carried out because the precipitation of metal 

Fig. 3   a, b  FESEM image before adsorption. c, d  FESEM image after adsorption. e  EDS mapping before adsorption. f  EDS mapping after 
adsorption of CuO-ZnO Nanocomposite
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complexes occurs that hindered the heavy metal removal 
process [74].

While screening the optimum pH value, all the other 
variables such as initial concentration of Pb (II) ions 
(50  mg L− 1), adsorbent dose (0.01  mg/25 mL), and 
contact time (1 h) were kept constant. From Fig. 4a, it can 
be seen that the elimination percentages of Pb (II) ions 
from an aqueous system by the CuO-ZnO NCs adsorbents 
varied at different pHs. The removal of Pb (II) ions 
sharply increased up to pH 5 where the highest removal 
(95.68%) of Pb (II) ions was observed. After this point, 
the removal percentage gradually decreased. At lower pH, 
the active sites of the adsorbents became protonated due 
to the greater availability of protons, hence, the adsorption 
capacity of adsorbents was reduced [75]. On the other 
hand, increasing the pH values after pH 5, the adsorption 
percentage also decreased possibly due to the formation 
of hydroxyl complexes such as Pb(OH)2, PbOH+, aqueous 
Pb(OH)2, and Pb(OH)3− [76–79].

3.3 � Effect of Contact Time

The contact time between the Pb (II) ions and CuO-ZnO 
NCs has a significant influence in batch adsorption studies. 

In this experiment, the removal percentages of Pb (II) ions 
(50 mg/L) were monitored at room temperature, optimum 
pH 5, and different contact times (15, 30, 45, 60, 75, and 
90 min). Figure 4b showed that the adsorption of metal 
ions dramatically increased to attain optimum contact 
time, and after 60 min a downward trend was noticed. This 
phenomenon indicated the surface of the CuO-ZnO NCs 
was saturated with the Pb (II) ions so that it experienced 
desorption or the metal ions being released into solution 
because there was insufficient active site capable of binding 
to Pb (II) metal ions on the surface of the adsorbent [80].

3.4 � Effect of Concentration

The initial concentration of metal ions in an aqueous 
solution controls the metal ion adsorption. The effect of 
Pb (II) ions concentration on removal percentages was 
investigated by varying the metal ion concentration from 10 
to 60 mg/L by keeping other parameters constant (contact 
time 1 h, optimum pH 5, dose 0.01 g). Figure 4c showed 
that increasing the initial concentration of Pb (II) ions 
enhances the removal percentage, which was similar to the 
previously reported findings [81, 82]. This phenomenon can 
be explained by the fact that improving the specific area of 

Fig. 4   a  Influence of pH. b  Influence of contact time. c  Influence of initial concentration of metal ions. d Influence of adsorbent dose on the 
removal percentage of Pb (II) ions using CuO-ZnO Nanocomposites 
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the adsorbent increases the possibility of collision between 
the metal ions and adsorbent particles [83].

3.5 � Effect of CuO‑ZnO NCs Dose

The effect of the adsorbent dose on the removal percentage 
of Pb (II) ions was performed by adding different amounts 
of CuO-ZnO NCs (0.01 to 0.04 g) having initial concentra-
tion of Pb (II) ions (50 mg/L), contact time 1 h and optimum 
pH 5. From Fig. 4d it can be noticed that by increasing the 
concentration of CuO-ZnO NCs the removal percentage was 
decreased and after the addition of 0.02 to 0.04 g of adsor-
bents, the removal of Pb (II) ion remained almost constant. 
At lower concentrations, greater removal of Pb (II) ions was 
observed, which was possibly due to the large surface area 
of adsorbents or the availability of exchangeable active sites 
of CuO-ZnO NCs on which the metal ions can get adsorbed 
[76]. Contrarily, by increasing the dose of NCs, the total 
number of active sites on the adsorbents gradually increases, 
thus the aggregation or overlapping of active sites occurs 
which significantly reduces the sequestration percentage of 
Pb (II) ions [84].

3.6 � Equilibrium Studies and Isotherm Modeling

For equilibrium and isothermal modeling studies, the well-
known Freundlich and Langmuir equations were used. 

These equations generally describe the co-relation between 
equilibrium metal biosorption and final concentrations at 
equilibrium. Langmuir’s equation was derived based on the 
principle that the maximum sorption occurs corresponding 
to the saturated monolayer formation of sorbate ions on the 
adsorbent surface. On the other hand, the Freundlich iso-
therm equation is basically used to determine the adsorption 
capacity of the sorbent toward the adsorbents. The Lang-
muir and Freundlich equations were expressed by the Eqs. 4 
and  5 [85, 86].

 where, Qm, b, Ce, Qe, Kf, and n indicated the Langmuir con-
stant, adsorption energy, the equilibrium concentration of Pb 
(II) (in mg/L), the amount of metal adsorbed per unit weight 
of adsorbent (in mg/g), the relative adsorption capacity of 
CuO-ZnO NCs, and the deviation for the adsorption system, 
respectively.

The adsorption isotherm curves were constructed based 
on the Langmuir and Freundlich models, which are depicted 
in Fig. 5a, b. The calculated value of Langmuir’s and Freun-
dlich’s constants are represented in Table 1. The linear plots 

(4)
Ce

Qe

=
Ce

Qm

+
1

bQm

(5)logQe = logKf +
1

n
logCe

Fig. 5   The linear plots of a the Langmuir and b the Freundlich adsorption isotherm model

Table 1   Parameter values of 
the isotherms adsorption of 
Pb (II) ion onto CuO-ZnO 
nanocomposite

Metal Adsorbent Langmuir constant Freundlich 
constant

1/b Qmax (mg/g)
(cal.)

Qmax (mg/g)
(expt.)

k n

Pb2+ CuO-ZnO Nanocomposites 3.2679 50.50 119.60 21.0474 0.4847
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of isotherm modeling showed that the Freundlich isotherm 
was best fitted for explaining the adsorption of Pb (II) ions 
onto the surface of CuO-ZnO NCs. The R2 value of the Fre-
undlich isotherm was 0.852, which was close to unity (1.0) 
as compared to the value of Langmuir’s constant (0.5431). 
This finding revealed that Pb (II) ions were adsorbed on the 
uneven surface by multilayer formation and there was an 
uneven energy distribution among the surface-active sites 
of the NCs [87].

However, the degree of nonlinearity between adsorbents 
and the concentrations of metal ion solution is denoted by 
the symbol “n”. Depending on the value of n, the adsorp-
tion process can be classified into three categories such as 
(i) chemical (ii) physical, and (iii) linear adsorption process. 
For explaining physical, chemical, and linear processes, the 
value of n should be n > 1, n < 1, and n = 1, respectively. 
In this study, the value of n in Freundlich isotherms was 
observed less than one, which revealed the removal of Pb (II) 
ions by CuO-ZnO NCs proceeded via the chemical adsorp-
tion. It is noteworthy that the value of 1/n was observed 
grater than 1.0, which indicates co-operative process 
between the adsorbate-adsorbent interactions [88]. How-
ever, the maximum adsorption capacity (qm) was found to 
be 50.50 mg/g, which was obtained from Langmuir’s model.

3.7 � Adsorption Kinetics

The adsorption phenomenon between adsorbates and 
adsorbents could be explained by chemical reactions, 
diffusion control, mass transfer, and particle diffusion 
mechanisms. For well understanding of the adsorption 
process, Lagergren’s pseudo-first-order, and pseudo-second-
order kinetic models were considered and fitted with the 
experimental data by using Eq. 6 and Eq. 7, respectively. 

These models have a pivotal role in explaining the adsorption 
behavior of liquid or solid systems [89].

 where qe and qt indicated the amounts (mg/g) of Pb (II) ions 
adsorbed at equilibrium and at time t (min), respectively; 
k1 (min− 1) and k2 (g/mg.min) denoted the rate coefficients 
for the pseudo-first-order and pseudo-second-order kinetic 
model, respectively. The value of k1 and qe was calculated 
from the slope and intercept of the linear plot of ln(qe−qt) vs. 
t, whereas, the value of qe and k2 was obtained from the plot 
of t/qt against t, as presented in Fig. 6a, b, respectively [90].

The value of kinetic parameters and coefficient of correla-
tion (R2) for the pseudo-first-order and pseudo-second-order 
kinetic models are summarized in Table 2. The value of R2 
for the pseudo-first-order reaction model (0.330) was much 
lower than that of the pseudo-second-order kinetic model 
(0.994), which was very close to 1.00. This finding revealed 
that the adsorption of Pb (II) ions by CuO-ZnO NCs in an 

(6)
(

lnqe − lnqt
)

= lnqe − K1t

(7)
t

qt
=

t

qe
+

1

K2q
2
e

Fig. 6   The linear plots, a pseudo-first-order and b pseudo-second-order kinetic models for the adsorption of Pb (II) ions onto CuO-ZnO NCs.

Table 2   Parameter values of the kinetic studies of the adsorption of 
Pb (II) ion onto CuO-ZnO NCs

Metal qe (mg/g)
(cal.)

qe(mg/g)
(expt.)

R2 k 

Pseudo-first 
order 
kinetics

Pb 15.73 119.60 0.330 0.0092

Pseudo-
second 
order 
kinetics

113.63 119.60 0.994 0.0087
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aqueous solution solely followed the pseudo-second-order 
kinetics. Besides, the difference between qe (experiment.) 
and qe (calculated) was less, which indicated that the adsorp-
tion process of Pb (II) ions onto the surface of CuO-ZnO 
NCs took place via the chemical interaction. The findings 
of our study comply with the previously published similar 
articles related to the adsorption of Pb2+ions from aqueous 
solutions by different adsorbents [74, 91, 92].

Numerous researchers have developed different types of 
nanomaterials for studying the adsorption of Pb (II) ions 
from an aqueous solution. The findings of the present study 
showed that CuO-ZnO NCs have comparatively better per-
formance in the elimination of Pb (II) ions than the previ-
ously reported adsorbents as given in Table 3.

3.8 � Error Functions

In this study, the best-fitting isotherm was selected based on 
the error functions, which had the lowest error distribution 
between the experimental and predicted isotherms [67, 68]. 

The obtained results for the optimization of Freundlich and 
Langmuir isotherms by error function analysis are presented 
in Table 4. A comparison between the isotherm parameters 
showed that the Freundlich isotherm fitted the experimental 
sorption data much better than that of the Langmuir model 
as its R2-value was higher than those for the respective ion 
for the Langmuir isotherm. On the other hand, the values 
of ARE, Hybrid, χ2 and MPSD for the Freundlich model 
were comparatively lower than those of the Langmuir model 
[67, 69].

However, the error function analysis was also performed 
for two kinetic models and the obtained results are sum-
marized in Table 5. From this table it can be seen that the 
R2-value for pseudo-second-order kinetic (0.9941) was much 
higher than that of pseudo-first-order kinetic (0.4236). In 
addition to this, analysis of five error functions for the two 
kinetic models revealed that uptake of Pb(II) ion onto the 
surface of CuO-ZnO NCs was mostly favored by the pseudo-
second-order kinetic model having comparatively lower 
RSS, ARE, Hybrid, Chi-square (χ2) and MPSD values.

Table 3   Comparison of efficacy of CuO-ZnO NCs with other similar studies

Adsorbent pH Contact Time (min) Adsorption 
Capacity (mg/g)

Kinetics Isotherm Refs

Iron oxide nanoparticles 5.5 30 36.00 – Langmuir
Freundlich

[93]

magnesium oxide nanoparticles 9 280 16.44 – Langmuir
Freundlich

[94]

(ZnO) nanoparticle 4 – 26.11 – Langmuir
Freundlich

[95]

SiOH 3.7–8.5 46.30 Pseudo second order - [96]
CuO nanoparticle 6 120–180 14.20 Pseudo second order Freundlich [97]
Al2O3 nanoparticle 5 20 47.08 – Freundlich [98]
crosslinked
Chitosan-clay beads

4.5 80 7.93 – Langmuir [99]

Anatase Nanoparticles 6 750 31.25 Pseudo second order Langmuir [100]
CuO-ZnO nanocomposites 6 60 min. 50.00 Pseudo second order Freundlich This work

Table 4   Error functions for 
optimization of equilibrium 
isotherms

Error functions R2 ERRSQ/
RSS

ARE HYBRID Chi-square (χ2) MPSD

Freundlich Isotherm 0.8498 88.16706 -7.1243 -10.6865 3.01 33.2372
Langmuir Isotherm 0.5431 68.75373 6.2913 9.436962 3.12 70.8844

Table 5   Error functions for 
optimization of adsorption 
kinetics

Error functions R2 ERRSQ/
RSS

ARE HYBRID Chi-square (χ2) MPSD

Pseudo-first-order kinetic 0.4236 4951.26 12.1296 18.19449 51.21 52.9663
Pseudo-second-order kinetic 0.9941 50.4115 1.2239 1.83589 0.5214 3.3559
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3.9 � Thermodynamics Studies

Temperature is a major consideration in many adsorption 
processes, thus studying its thermodynamics is essential. 
Adsorption-related energy changes were quantified by alter-
ing the equilibrium constants with temperature and calcu-
lating the Gibbs free energy (ΔG°), enthalpy (ΔH°), and 
entropy (ΔS°). The formula for determining the Kd distri-
bution coefficient is given by Eq. 8, which is followed by 
Eq. 9 [101]

 where,R is the universal gas constant (8.314 J mol− 1 K− 1), 
T is the temperature (K)

 where, qe and Ce are the equilibrium concentration of Pb (II) 
on ZnO-CuO (mg L− 1) and in the solution (mg L− 1), respec-
tively. The following equations can also be written using 
ΔG, ΔH, and ΔS as the variables in the relationship [102].

(8)�G = −RTlnKd

(9)Kd =
qe

Ce

In a straight line plot of ln Kd vs. 1/T, both ΔH and Δ 
may be determined from the slope and the intersection. 
Values for ΔG, ΔH, and ΔS were determined and are 
shown in Table 6. Figure 7 illustrates a plot of ln Kd vs. 
1/T for Pb (II) adsorption on ZnO-CuO. Furthermore, 
the high enthalpy values (ΔH > 20 kJ mol− 1 ) suggest 
that chemisorption plays a role in the adsorption process 
through an ion exchange mechanism. The adsorption 
process introduces an excessive amount of randomness at 
the solid-liquid interface, which is reflected by the positive 
values for entropy [101, 103]. The fact that the Gibbs 
energy has negative values suggests that the process is 
spontaneous, and the fact that these values are increasing 
suggests that the spontaneity is growing as the temperature 
rises [102–104].

4 � Conclusion

Safe drinking water is essential for maintaining sound health. 
In this current study, CuO-ZnO NCs were synthesized and 
characterized by using XRD, FTIR, FESEM, and EDX 
spectroscopic techniques, which were successfully used as 
an adsorbent for the removal of Pb (II) ions from aqueous 
solution. Batch adsorption experiments revealed that a 

(10)�G = �H − T�S

(11)lnKd =
�S

R
−

�H

RT

Table 6   Thermodynamic parameters for Pb (II) removal by ZnO-CuO

Temperature 
(K)

ΔG (kJ mol− 1) ΔH (kJ mol− 1) ΔS (J mol− 1 K− 1)

300 – 3.813 70.617 248.671
308 – 6.283
318 – 8.326
328 – 10.935

Fig. 7   ln Kd versus 1/T graph 
for the determination of thermo-
dynamic parameters for Pb (II) 
on adsorption on ZnO-CuO.
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maximum of 95.68% removal were observed within one 
hour which was comparatively better than other similar 
studies. Therefore, the newly synthesized CuO-ZnO NCs 
could be used as a novel platform for the sequestration of Pb 
(II) ions from an aqueous solution.
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