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Abstract
Bacterial multidrug resistance against front-line antibiotics has been widely observed by scientists and epidemiologists. Mul-
tidrug and toxic extrusion proteins are active transporters and play a vital role in the efflux system. Their main generalized 
function is the exclusion of various antibiotics and xenobiotics out of their host cells. Despite their wide presence in all living 
kingdoms, the structure–function relationship is not well understood. Protein characterization and structural analysis may 
help to figure out the important aspects of structure–function relationships. In the present study, multidrug and toxic extrusion 
protein sequences of P. auruginosa and S. aureus were characterized and comprehensive analysis of their structural levels 
was done. Residue interaction network algorithm further insight into amino acid residues has been designed. These proteins 
were also analyzed for hydrophilic and hydrophobic amino acid residues which indicated the predominance of hydrophobic 
amino acids in bacterial multidrug and toxic extrusion proteins primarily existing in the transmembrane region of the host 
cell. The residues involved in tertiary structure formation and the analysis of the network that emerges due to the interacting 
residues may reveal additional information about the structure–function relationship in a protein. The residue interaction 
networks were generated for these bacterial homologs of multidrug and toxic extrusion proteins has revealed the scale-free 
degree distribution and hydrophobic amino acids to be the major actors among these networks.
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1 Introduction

Pathogenic bacteria because of indiscriminate use of antibi-
otics have developed marked antibiotics, xenobiotics resist-
ance and widely spread all over the world. Efflux pump 
systems are one of the major causes responsible for bac-
terial drug resistance, sustaining their survival [1]. Efflux 
pumps are transporter proteins localized in the cytoplasmic 
membrane and are active transporters requiring a source of 
chemical energy to perform their function [2]. These efflux 
pumps extrude a wide variety of structurally unrelated com-
pounds and basically belong to five different families such 
as small multidrug resistance (SMR), resistance-nodulation-
division (RND), ATP binding cassette (ABC), major facilita-
tor superfamily (MFS) and multidrug and toxic compound 
extrusion (MATE).

MATE transporters facilitate the active efflux of a wide 
range of chemically and structurally diverse substances, 
including antimicrobials and chemotherapeutics, contrib-
uting to multidrug resistance in pathogenic bacteria and 
malignancies [3]. MATE proteins are present in all living 
kingdoms [4] and are secondary active transport systems 
which have a 12-membrane helix topology [5] driven 
by either  Na+ or  H+ [6, 7]. MATE efflux family proteins 
can range from ~ 400 to ~ 700 amino acids (aa)in length 
[8] whose toxic exclusion is important to maintain cell 
equilibrium [9]. The helices in MATE protein structure 
are arranged within two lobes which forms the cavities 
leading to the binding of substrates [10]. Multidrug efflux 
pumps work at the frontline to shield bacteria against anti-
microbials by lowering drug intracellular concentrations 
[11].Their transporter function mostly energized by  Na+ 
confers multidrug resistance against bacterial pathogens 
and cancer cells [9]. Plants protect themselves against 
microbial pathogens by producing secondary metabolites 
through MATE transporters [4]. Whereas in human liver 
and kidney, they extrude xenobiotic cations [11]. MATE 
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family proteins pursue a mechanism as same as MFS trans-
porter, i.e. rocker-switch mechanism [9]. MATE efflux 
proteins function as antiporters, causing the transporter 
to alter shape from outward to inward facing. A chemical 
substance (drug) attaches to the protein in the inward-fac-
ing conformation, causing a switch to the opposite shape 
and the drug to be extruded [12]. MATE has a substrate 
binding pocket at either the N-lobe or the C-lobe, and the 
substrate is extruded by bending the surrounding helix 
[13].

Protein characterization involves the depiction of a pro-
tein molecule's biological, chemical and physical properties. 
Protein computational characterization is the first necessary 
step to figure out the biological role of a protein [14] and is 
therefore important to determine the protein's current state. 
It also plays an important role in the study of the protein 
characteristics such as domains, oligomeric state, post-
translational modifications, protein–protein interactions and 
protein–ligand interactions [15]. The early stage stability 
comparison of proteins should be based on computational 
followed by biophysical characterization [16]. A protein may 
also be visualized as a network of interacting residues and 
analysis of such a network that emerges due to interacting 
residues provides additional information about the structural 
and functional roles of the residues [17]. The protein interac-
tion networks map depicts which proteins physically inter-
act with one another [18]. The interface residue prediction 
can improve the understanding of molecular mechanisms of 
related process and functions [19]. Therefore, in the present 
study, an algorithm for residue interaction network (RIN) 
generation has been designed and comprehensive structural 
analysis has been used to reveal the important aa in MATE 
efflux transporter proteins.

2  Methodology

2.1  Dataset Retrieval and MATE Efflux Proteins 
Characterization

Dataset for MATE proteins of P. aeruginosa and S. aureus 
were retrieved from NCBI database [20]. These sequences 
were then exposed to the sorting and filtering in order to 
attain the non redundant sequences. The unique sequences 
were extracted on the basis of aspects such as removal of 
partial and uncultured sequences from the dataset, extraction 
out of the sequences having 400–700 aa length, grouping 
and sorting out of most similar sequences from the data-
set were multiple alignment tool Multalin [21]. Multalin 
is a tool for multiple sequence alignment either proteins 

or nucleic acids and based on the dynamic programming 
approach.

2.2  Physicochemical Parameters Characterization

The physical parameters of MATE efflux proteins in P. aerugi-
nosa and S. aureus were analyzed on the basis of number of 
aa and composition, molecular weight, instability index (II), 
theoretical pI, grand average hydrophobicity (GRAVY) and 
aliphatic index (AI)using ExPASy–ProtParam tool (http:// web. 
expasy. org/ protp aram).

2.3  Primary Structure Analysis

The primary structure analysis of the polypeptide sequence 
for each MATE protein sequence was performed using 
ExPASy–ProtParam tool [22]. The number of hydrophilic aa, 
hydrophobic aa and their ratio was calculated for each MATE 
protein sequence using the Eqs. 1, 2 and 3 where  nhydrophob, 
 nhydrophil and  Ratiohydrophob_hydrophil correspond to the number 
of hydrophilic aa, hydrophobic aa and their ratio. The aver-
age number of hydrophilic and hydrophobic aa in each protein 
sequence was also calculated.

*n is the total number of aain a protein sequence,  nG is the 
number of glycine aa,  nA is the number of alanine aa,  nV is 
the number of valine aa,  nL is the number of leucine  aa,  nI 
is the number of isoleucine aa,  nM is the number of methio-
nine aa,  nP is the number of proline aa,  nF is the number of 
phenylalanine aa,  nQ is the number of glutamine aa,  nN is the 
number of asparagine aa,  nS is the number of serine aa,  nH is 
the number of histidine aa,  nT is the number of threonine aa, 
 nY is the number of tyrosine aa,  nC is the number of cysteine 
aa,  nW is the number of tryptophan aa.

Furthermore, the helix topologies and number of transmem-
brane helices for MATE protein sequences were identified 
using web-based tools TMHM [23] and HMMTOP [24, 25]. 
TMHMM is a method of prediction of a number of transmem-
brane helices based on Hidden Markov model. HMMTOP is 
the web-based server for prediction of the topology of trans-
membrane membrane proteins and localization of helical trans-
membrane segments as well.

(1)

nhydrophob =

n
∑

i=1

(nG + nA + nV + nL + nI + nM + nP + nF)

(2)

nhydrophil =

n
∑

i=1

(nQ + nN + nS + nH + nT + nY + nC + nW)

(3)Ratiohydrophob_hydrophil = nhydrophob∕nhydrophil

http://web.expasy.org/protparam
http://web.expasy.org/protparam
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2.4  Secondary Structure Analysis

The secondary structure of characterized MATE efflux 
proteins in P. aeruginosa and S. aureus includes number 
of a-helices, b-turn, extended strand, b-sheet, coils. These 
secondary structure features were analyzed by ExPASy SIB 
Bioinformatics SOPMA tool. (https:// npsap rabi. ibcp. fr/ cgi- 
bin/ npsa_ autom at. pl? page= npsa_ sopma. html).

2.5  Tertiary Structure Analysis

The tertiary structures for MATE protein sequences were 
predicted using Modeller 9.21 [26]. Modeller provides a 
homology modeling-based approach for three-dimensional 
protein structure prediction. The protein identity was consid-
ered as > 25% for each protein. The observed PDB files for 
the tertiary structure of proteins were energy minimized with 
Swiss-Pdb viewer [27] in order to attain the protein model 
in an energetically favorable state. These tertiary modeled 
structures were verified as well as Ramachandran plots were 
constructed using PROCHECK tool [28] which helped in the 
visualization of energetically allowed and favorable regions 
for phi and psi backbone dihedral angles.

2.6  Molecular Dynamic Simulations and structure 
Optimization

Molecular dynamic simulations was performed using 
Gromacs 5.0 (http:// www. groma cs. org/) to test the best 
model's stability. Structures of the predicted tertiary protein 
structures were optimized with the GROMACS 5.0 (GROn-
ingen MAchine for Chemical Simulations) package using the 
GROMOS96 53a6 force field for 1000 ns. The protein ter-
tiary structures were subjected to a steepest descent energy 
minimization for 50,000 steps. The topology parameters for 
proteins were created using the GROMACS program.

2.7  RIN Generation

Residue interaction network has been generated for these 
energy minimized proteins. Cytoscape [29] was used to cre-
ate a network. The C-αatoms of aa residue were considered 
as nodes and the distance between them we reconsidered 
as edges. The distances for all aa residues were calculated 
computationally. RIN provides the analysis of network cen-
trality parameters such as degree centrality, closeness, and 
betweenness which indicate that the network characteristics 
of residues in quaternary interactions are differentiable from 
those of other residues. Centrality quantifies the topological 
importance of a node or edge in a network. The distance 
threshold for interacting residues was taken 4.0 to 8.5 Ang-
strom for each interaction of  Cα atoms in aa residues.

Algorithm Design for RIN
The protein tertiary structure data constitute the three-

dimensional coordinates for each atom throughout the pro-
tein structure. Assume the coordinates in protein structure 
data be  xi,  yi,  zi. A and B be considered as the first and 
second C-α atom.

Choose;
if  xi,  yi,  zi ∈ C-α atoms: for each structural coordinates.
The input function includes the three dimensional coor-

dinates  (xi,  yi,  zi) belonging t = to either A or B such that:

where {x1,  y1,  z1 ∈ A;  x2,  y2,  z2 ∈ B.
Distances between any two C-α atom coordinates may 

provide the information about the bond formation among 
them at an optimal distance measure. The distances were 
calculated by the Euclidian distance calculation approach 
and a threshold for optimal distance corresponds to the 
bond-forming C-α atom.

Distance between two C-α atoms, d = √(x1 −  x2)2 +  (y1 −  
y2)2 +  (z1 −  z2)2

In this equation  x1,  y1,  z1 corresponds to structural coor-
dinates of first C-α of atom A, and  x2,  y2,  z2 corresponds to 
structural coordinates of the second C-α of atom B.

This algorithm is based on the RIN generation through 
the extraction of C-α atom coordinates from three-dimen-
sional structure coordinates and Euclidian distance calcu-
lation.The distances calculated were then exposed to RIN 
generation and various centrality parameters analysis.

Degree centrality, Cd(V)
In a network graph, degree centrality is determined by 

the total number of direct linkages between nodes [30]. 
Nodes with a large number of neighbors (i.e. edges) have 
high degree centrality.

Closeness centrality, CC(V)
The term closeness centrality refers to the cumulative dis-

tances between two nodes [31]. It specifies which vertices 
have the shortest path to all others. The greater value of 
distance signifies lesser closeness.

Eccentricity centrality, Ce(V)
The length of the largest shortest path beginning at a node 

in a graph is defined as its eccentricity i.e. maximum short-
est path length from node u to all other nodes u in v [32]. 
The reciprocal of a node's eccentricity is defined as eccen-
tricity centrality,  Ce(V).

(

x1, x2
)

,
(

y1, y2
)

,
(

z1, z2
)

Cd(V) = deg(V)

CC(V) = 1∕
∑

dist(u, v); u ∈ v

https://npsaprabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
https://npsaprabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
http://www.gromacs.org/
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The lower value of  Ecc corresponds to higher  Ce.

Betweenness centrality, Cb(V)
Betweenness centrality is used to quantify one node's 

position as a mediator in a network. If one node locates in 
the sole channel that other nodes must travel through, then 
this node is likely to be essential and has a high between-
ness centrality [33]. It measures how often a vertex or edge 
is present in the set of all shortest paths.

σst represents the number of shortest paths from s to t which 
may or may not pass through the node v and σst(V) rep-
resents the number of shortest paths from s to t that pass 
through v.

3  Results and Discussion

3.1  Characterization and Sequence Analysis 
of MATE Proteins

Based on the various global features such as amino acid resi-
due length, the number of transmembrane helices, a total of 
16 MATE protein sequences were selected after sorting and 
filtering of data for P. aeruginosa and S. aureus.

Ecc(V) = max dist(u, v) ; u ∈ v

Ce(V) = 1∕Ecc(V)

Cb(V) =
∑

(�st(v)∕�st) ; s ≠ t, s ≠ v, v ≠ t

3.2  Physicochemical Characterization

The physicochemical characterization of MATE proteins 
has provided the overview about the various characteristics 
and behavioral nature of MATE proteins of P. aeruginosa 
and S. aureus (Table 1). MATE proteins consists of 400 to 
700 amino acids exhibiting 40% amino acid similarity in 
their protein sequences [34] with molecular mass ~ 54 kDa 
[35]. The selected dataset for MATE protein sequences were 
found to be comprised of 440 to 550 amino acid residues 
and of ~ 50,000 Da molecular weight and the amino acid 
residues were chiefly of hydrophobic nature. The instability 
index value in the range of less than 40 corresponded to the 
stability of these proteins as the proteins having value above 
40 may be unstable. The higher value of aliphatic index cor-
responded to the higher thermal stability of MATE proteins. 
The isoelectric point for the MATE proteins was observed 
in the range of 8 to 10. Moreover, positive value of GRAVY 
confirmed the hydrophobic character of most amino acids 
in MATE protein sequences.

3.3  Primary Structure Analysis

The primary structure analysis of MATE proteins has 
revealed the amino acid residues Ala, Gly and Ile to be most 
occurring with the varied composition of these amino acids 
varied in each protein sequence (Fig. 1). However, the amino 
acid residues such as Lys, Cys and Trp were found to be 
lowest in the MATE protein sequences. The hydrophobic 
and hydrophilic amino acids analysis has shown ~ 60–70% 
amino acids to be of hydrophobic nature in each MATE 
protein sequence (Fig. 2). MATE transporters typically 
constitutes 12 transmembrane helices [36]. The predicted 

Table 1  Physicochemical 
features of MATE protein 
sequences of P. aeruginosa and 
S. aureus 

Accession AA number MW (Da) pI II AI GRAVY

 > WP_061201177.1 477 50,858.25 9.75 29.66 114.23 0.61
 > WP_078465331.1 466 49,764.01 9.66 27.55 115.04 0.64
 > WP_034038516.1 453 48,652.41 10.69 32.13 127.44 0.67
 > RAL80500.1 430 45,933.25 10.38 32.55 129.72 0.72
 > PPB15020.1 445 47,771.53 10.07 33.13 129.51 0.75
 > WP_050480324.1 467 50,641.22 9.46 42.69 118.82 0.46
 > SQG59012.1 450 47,997.46 9.62 33 121.8 0.82
 > WP_058160294.1 488 50,745.09 8.94 38.06 114.77 0.78
 > WP_006191797.1 451 48,816.01 6.96 26.78 133.44 1.10
 > SCS97867.1 423 45,556.08 7.68 24.57 132.58 1.06
 > WP_075108090.1 451 48,921.8 8.67 22.25 133.81 1.05
 > SUL88672.1 455 49,336.92 9.88 20.04 126.73 0.88
 > WP_070046250.1 444 48,753.28 9.67 26.92 128.63 0.96
 > WP_031905678.1 447 48,635.7 9.75 27.83 137.07 0.89
 > BBD12010.1 489 54,582.54 9.87 42.11 131.17 0.88
 > CXT95697.1 401 42,970.02 8.36 23.09 136.93 1.16
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transmembrane helices were found to be ranging from 10 
to 12 transmembrane helices which confirmed the topologi-
cal similarity of these protein sequences to already existing 
MATE protein sequences. The presence of transmembrane 
helices and hydrophobic nature of these proteins has con-
firmed the occurrence of MATE proteins in transmembrane 
region of cell.

3.4  Secondary Structure Analysis

The analysis using ExPASy tool has shown the occurrence 
of alpha helices, beta turns, extended strands and random 
coils in secondary structure of these proteins. The higher 
number of alpha helices has signified the thermal stability in 
MATE proteins of both P. aeruginosa and S. aureus (Fig. 3).

Fig. 1  Major contributing 
amino acids in MATE protein 
sequences

Fig. 2  Hydrophobic and hydro-
philic composition in MATE 
protein sequences

Fig. 3  Secondary structure 
composition of MATE protein 
sequences
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3.5  Tertiary Structure Analysis

The predicted structures for bacterial homologs of MATE 
proteins have shown resemblance to the existing struc-
tures of MATE transporter proteins. The 12 transmem-
brane helices are arranged symmetrically with 6TMHs 
forming a bundle each named as N- and C-bundle [37]. 

The observed protein sequences have shown two lobes, 
i.e. N-lobe and C-lobe in their topology and pseudo two 
fold symmetry. The PDB files for the energy minimized 
tertiary structures have been analyzed for their structural 
coordinates. The homology modeled structures followed 
by energy minimization were validated by the Ramachan-
dran plot. The Ramachandran plot analysis for P. aerugi-
nosa (> WP_078465331.1)has shown that 80.4% residues 
were observed in most favored regions, 15.2% residues 

Fig. 4  Homology modeled structures, Ramachandran plot for MATE protein sequences a P. aeruginosa (> WP_078465331.1) and b S. 
aureus(> WP_006191797.1)
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in additional allowed regions, 3.4% residues in gener-
ously allowed regions and 1% residues were observed in 
disallowed regions. However, the analysis results for S. 
aureus (> WP_006191797.1) has shown 88.7%, 9.3% and 
1.3% residues in most favored regions, additional allowed 
regions, and generously allowed regions respectively. The 
residues in disallowed regions were observed to be 0.8% 
(Fig. 4).

3.6  Molecular Dynamic Simulations and Optimized 
Structure

The  t e r t i a r y  s t r uc tu re s  fo r  P.  aer ug inosa 
(> WP_078465331.1) and S. aureus(> WP_006191797.1)
MATE protein sequences were exposed to molecular 
dynamic simulations using GROMACS 5.0 using 53a6 force 
field. These optimized structures showed resemblance to 
already existing protein structures to their respective pro-
tein families in membrane and shown in Figs. 5, 6.In these 
figures; (a) part shows the side view of protein in membrane 
which shows their topological resemblance to their respec-
tive protein families and (b) part shows the top view which 
shows the cavity formation for substrate extrusion purposes 
in the respective protein.

The uniqueness of homology modeled structures was 
validated using RCSB-PDB pairwise structure alignment 
tool (https:// www. rcsb. org/ align ment). Struc ture alignment 
is the technique of comparing the molecular structures of 
two or more biomolecules to determine three-dimensional 

form equivalences. The homology-modeled structures 
of P. aeruginosa (> WP_078465331.1) and S. aureus 
(> WP_006191797.1) were compared to the crystal struc-
ture of the E. coli cation-bound Multidrug and Toxin Com-
pound Extrusion (MATE) transporter (PDB id: 3MKT) 
using rigid body alignment and superimposed structures 
(Fig. 7) were viewed using BIOVIA-Discovery studio 
4.0 [38]. The relative orientations and locations of atoms 
inside each structure stay fixed during the alignment pro-
cess in a rigid body alignment. Only the general forms of 
the structures are aligned in the resultant superposition. 
Rigid body alignments are ideal for identifying structural 
equivalences between proteins that are closely related evo-
lutionarily and so have comparable forms.

The parameters root mean square deviation (RMSD), 
template modeling score (TM- Score), Score, sequence 
identity percentage (SI%), sequence similarity percent-
age (SS%) and length (Table 2) were used to describe the 
extent of overlap or similarity between the Cation-bound 
Multidrug and Toxin Compound Extrusion (MATE) trans-
porter of E. coli (PDB id: 3MKT) and with P. aeruginosa 
(> WP_078465331.1), S. aureus (> WP_006191797.1). In 
superposed structures, the RMSD is calculated between 
aligned pairs of backbone C-alpha atoms. The smaller the 
RMSD, the better the alignment of the structures. The 
topological similarity between the template and model 
structures is measured by the TM-score. The TM-score 
goes from 0 to 1, with 1 indicating a perfect match and 0 
indicating no match between the two structures. Scores of 

Fig. 5  Energy minimized and membrane embedded structure of P. aeruginosa (> WP_078465331.1) MATE protein; Template PDB ID: 3MKT 
(Cation-bound Multidrug and Toxin Compound Extrusion (MATE) transporter of E. coli)

https://www.rcsb.org/alignment).Structure
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0.2 normally suggest that the proteins are unrelated, but 
scores of > 0.5 usually indicate that the proteins share the 
same protein fold. Score is a structural similarity metric 

that is unique to the alignment method utilized. SI % is 
the percentage of sequence-identical paired residues in 
an alignment. SS% is the percentage of paired residues 

Fig. 6  Energy minimized structure of S. aureus (> WP_006191797.1) MATE protein; Template PDB ID: 7SP5 (Eukaryotic phosphate trans-
porter protein)

Fig. 7  Superimposed structure 
of Cation-bound Multidrug 
and Toxin Compound Extru-
sion (MATE) transporter of 
E. coli, PDB id: 3MKT(cyan) 
with a P. aeruginosa 
(> WP_078465331.1), b S. 
aureus (> WP_006191797.1)
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in the alignment that are sequencely similar. Length is 
the number of structurally equivalent residue pairs in the 
alignment.

The parameter values revealed a strong three-dimensional 
structural similarity between the E. coli Cation-bound Mul-
tidrug and Toxin Compound Extrusion (MATE) transporter, 
PDB id: 3MKT, and P. aeruginosa (> WP 078,465,331.1). 
When comparing two structures, the most usually reported 
statistic is RMSD, however it is susceptible to local struc-
tural variation. Even if the remainder of the structure is per-
fectly aligned, the RMSD value is high if a few residues in 
a loop are poorly aligned. The alignment of the S. aureus 
(> WP 006,191,797.1) with the E.coli Cation-bound Multi-
drug and Toxin Compound Extrusion (MATE) transporter, 
PDB id: 3MKT, reveals that both proteins are structurally 
comparable with RMSD 3.09, TM-Score 0.8 despite the low 
sequence identity (16%).

3.7  RIN Analysis and Actor Residues Identification

The observed residue interaction networks has revealed 
the scale-free degree distribution which correspond 
MATE proteins to be a scale-free ideal network. The resi-
due interaction network and various centrality parameters 
for P. aeruginosa (> WP_078465331.1) and S. aureus 
(> WP_006191797.1)were computed (Fig. 8). The majorly 
contributing nodes has been presented. The results for cen-
trality values (Table 3) have shown the maximum between-
ness centrality for LEU282, Ile244, MET27, ALA293 and 
GLN21 in P. aeruginosa and GLN395, LEU253, MET25, 
ALA247 and ILE273 in S. aureus, which suggested that 
these residues have control to pass over the information 
to other residues and their removal may disrupt the con-
nection between the residues in the protein structure. The 
nodes GLY183, PHE182, ALA351, ASP42, LEU115 and 
LEU409, ASN219, ALA408, PHE190, and GLY411 were 
found to have the maximum degree to which network tends 
to cluster together. The residues LEU65, ILE244, ALA368, 
GLY191 and VAL296 in P. aeruginosa and ALA302, 
LEU293, ILE80, VAL74, and GLY75 were found to have 
maximum degree centrality values which measure the maxi-
mum number of nodes connected to these residues (nodes). 

These nodes carrying the maximum degree centrality values 
may be responsible for steric bulk which corresponds to the 
steric hindrance in the protein structure. The RIN analysis 
for MATE protein sequences have shown the hydrophobic 
amino acids to have maximum centrality values, correspond-
ing the hydrophobic amino acids as the major acting amino 
acids within networks which may be because of the predomi-
nance of hydrophobic amino acids throughout the networks 
for MATE protein sequences.

Protein network representations offer a systems approach 
to topological study of complicated three-dimensional 
structures and may contribute to a better understanding 
on structure–function links. There are a variety of online 
and stand-alone tools for constructing RINs from protein 
structures, such as NAPS [39], WebPSN [40], RINalyzer 
[41–43], NeEMO [44], Ring 2.0 [45], RIP-MD [46], PSN 
Ensemble [47], pyInteraph, [48], INTAA [49] and gRINN 
[50, 51]. These tools/software have relatively sophisticated 
user requirements, and some of them deliver protein network 
information in a more complicated manner. PSN-Ensemble, 
pyInteraph and INTAA, online web servers which require 
MATLAB installation and process results from Interaction 
Energy matrices only. gRINN is a standalone tool which 
requires topology/ trajectory files and also provide the 
results in the form of energy networks. RINalyzer provides 
the simultaneous, interactive 2D visualization and explora-
tion of a RIN together with the corresponding molecular 
3D structure having compatibility with Cytoscape only and 
as well as require JAVA plugin. However, NAPS, RIP-MD, 
WebPSN and RING 2.0 are web servers providing the results 
based on user specified residues but not available in stan-
dalone versions. The present approach may be used as a 
standalone method for RIN based on user specified residues. 
In this specific case, the centrality parameters were calcu-
lated based distance topology from the amino acid residue 
co-ordinates of PDB files observed after MD simulation. 
The Euclidian distances between the  Cα atoms of amino acid 
residues were calculated followed by a distance threshold. 
The residue interaction network visualization and centrality 
calculations can be done directly by any residue interaction 
viewing programme, in the present specific case Cytoscape 
was used. The technique is broad in scope, and it can inspire 
and suggest strategies for developing standalone RIN analyz-
ers for user specific residues.

The major findings of this study has provided the gener-
alization of key features and computational physicochemical 
characteristics for MATE efflux proteins in P. aeruginosa 
and S. aureus. The primary, secondary and tertiary structure 
analysis provided a better understanding and comparative 
analysis of features, aa residues and protein folds for both 
the bacterial species. RIN analysis showed the major actor aa 
residues which are necessary for the specific folds with the 
protein structures based on their centrality parameters. The 

Table 2  Pairwise structure alignment characterization parameters

Parameters P. aeruginosa S. aureus

RMSD 0.35 3.09
TM-Score 0.97 0.80
Score 1236.52 868.23
SI% 42 16
SS% 62 35
SS% 455 418
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algorithm design provided a standalone approach for RIN 
analysis for the user specified residues. The detailed findings 
showed that after sorting and filtering data for P. aerugi-
nosa and S. aureus, a total of 16 MATE protein sequences 
were chosen. MATE protein physicochemical characteriza-
tion has provided an overview of the diverse properties and 
behavioural nature of MATE proteins. The chosen dataset 
for MATE protein sequences was found to be made up of 
440 to 550 amino acid residues with a molecular weight 

of 50,000 Da, and the amino acid residues were mostly 
hydrophobic. Proteins with an instability index value less 
than 40 were stable, but proteins with a value more than 40 
were potentially unstable. The higher the value of the ali-
phatic index, the greater the thermal stability of MATE pro-
teins. The MATE proteins isoelectric point was found to be 
between 8 and 10. GRAVY result validated the hydrophobic 
nature of most amino acids in MATE protein sequences. The 
amino acid residues Ala, Gly, and Ile were shown to be the 

Fig. 8  RIN, Degree centrality graph and betweenness centrality graph (degree centrality: blue, betweenness centrality: red, clustering coefficient: 
green) a P. aeruginosa (> WP_078465331.1) and b S. aureus (> WP_006191797.1)
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most often present in MATE proteins, with the proportion 
of these amino acids varying in each protein sequence. The 
amino acid residues Lys, Cys, and Trp were discovered to 
be the least abundant in the MATE protein sequences. The 
hydrophobic and hydrophilic amino acid study revealed that 
60–70% of the amino acids in each MATE protein sequence 
are hydrophobic. The predicted transmembrane helices 
ranged from 10 to 12 transmembrane helices, confirming 
the topological closeness of these protein sequences to pre-
viously identified MATE protein sequences. The presence 
of transmembrane helices and the hydrophobic nature of 
these proteins confirms the existence of MATE proteins in 
the cell's transmembrane region. ExPASy analysis revealed 
the presence of alpha helices, beta twists, extended strands, 
and random coils in the secondary structure of these pro-
teins. The greater the number of alpha helices, the greater 
the heat stability in P. aeruginosa and S. aureus MATE pro-
teins. The anticipated structures of bacterial homologs of 
MATE proteins resemble the known structures of MATE 
transporter proteins. The reported protein sequences fea-
ture two lobes, namely N-lobe and C-lobe, and pseudo two 
fold symmetry. The structural coordinates of the energy-
minimized tertiary structures were determined using PDB 
data. The Ramachandran plot validation for P. aeruginosa 
(> WP 078,465,331.1) revealed that 80.4% of residues 
were found in the most preferred areas, 15.2% in further 
permitted regions, 3.4% in generously allowed regions, and 
1% in banned regions. The analysis results for S. aureus 
(> WP_006191797.1) has shown 88.7%, 9.3% and 1.3% resi-
dues in most favored regions, additional allowed regions, 

and generously allowed regions respectively. The residues 
in disallowed regions were observed to be 0.8% (Fig. 4). The 
optimized structures for P. aeruginosa (> WP_078465331.1) 
and S. aureus (> WP_006191797.1) showed resemblance to 
already existing protein structures to their respective protein 
families in membrane and the cavity formation for substrate 
extrusion purposes in the respective protein. The parameter 
values revealed a strong three-dimensional structural simi-
larity between the E. coli Cation-bound Multidrug and Toxin 
Compound Extrusion (MATE) transporter, PDB id: 3MKT, 
and P. aeruginosa (> WP 078,465,331.1). The alignment of 
the S. aureus (> WP 006,191,797.1) with the E.coli Cation-
bound Multidrug and Toxin Compound Extrusion (MATE) 
transporter, PDB id: 3MKT, reveals that both proteins are 
structurally comparable with RMSD 3.09, TM- Score 0.8 
despite the low sequence identity (16%). The observed 
residue interaction networks revealed the scale-free degree 
distribution, indicating that MATE proteins are a scale-free 
perfect network. The results for centrality values showed 
that LEU282, Ile244, MET27, ALA293 and GLN21 have 
the highest betweenness centrality in P. aeruginosa and 
GLN395, LEU253, MET25, ALA247, and ILE273 in S. 
aureus, implying that these residues have control over pass-
ing information to other residues and that their removal may 
disrupt the connection between the residues in the protein 
structure. The nodes GLY183, PHE182, ALA351, ASP42, 
LEU115 and LEU409, ASN219, ALA408, PHE190, and 
GLY411 were found to have the highest degree of network 
clustering. The P. aeruginosa residues LEU65, ILE244, 
ALA368, GLY191 and VAL296 and ALA302, LEU293, 
ILE80, VAL74, and GLY75 were discovered to have the 
highest degree centrality values, which quantify the number 
of nodes associated to these residues (nodes). These nodes 
with the highest degree centrality values might be in charge 
of steric bulk, which translates to steric hindrance in the pro-
tein structure. The RIN analysis for MATE protein sequences 
revealed that hydrophobic amino acids had the highest cen-
trality values, corresponding to hydrophobic amino acids as 
the major acting amino acids within networks, which could 
be attributed to the predominance of hydrophobic amino 
acids throughout the networks for MATE protein sequences. 
NAPS, WebPSN, RINalyzer, NeEMO, Ring 2.0, RIP-MD, 
PSN Ensemble, pyInteraph, INTAA, and gRINN are some 
online and standalone tools for building RINs from protein 
structures. These tools/software have relatively advanced 
user requirements, and some give protein network informa-
tion in a more intricate way. Some of them, however, are web 
servers that provide results based on user-specified residues 
but are not available in standalone versions. The current 
approach may be utilised as a stand-alone RIN method based 
on user-specified residues.

Table 3  Centrality parameters for RIN in P. aeruginosa 
(> WP_078465331.1) and S. aureus(> WP_006191797.1)

P. aeruginosa 
(> WP_078465331.1)

S. aureus 
(> WP_006191797.1)

Degree centrality LEU65 20 ALA302 20
ILE244 19 LEU293 18
ALA368 19 ILE80 18
GLY191 19 VAL74 17
VAL296 17 GLY75 17

Betweenness central-
ity

LEU282 0.084 GLN395 0.047
ILE244 0.067 LEU253 0.044
MET27 0.034 MET25 0.042
ALA293 0.031 ALA247 0.031
GLN21 0.03 ILE273 0.029

Clustering coefficient GLY183 0.70 LEU409 0.70
PHE182 0.70 ASN219 0.70
ALA351 0.60 ALA408 0.60
ASP42 0.57 PHE190 0.57
LEU115 0.50 GLY411 0.52
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4  Conclusion

MATE antiporters in bacteria reduce the effective cellular 
concentration of a drug inside the cell(s) rendering them 
resistant to the toxic effect(s) of an antibiotic. A sound 
understanding of the structure, molecular mechanism and 
the residues involved in the functioning of these efflux 
transporter proteins is lacking in the literature. In this study, 
a comparative structural and RIN analysis of MATE pro-
tein sequences of P. aeruginosa and S. aureus has been 
observed. The physicochemical properties analysis have 
confirmed the major contributing global features of MATE 
protein sequences. The analysis of various structural levels 
of MATE protein sequences have shown the hydrophobic 
aa to be majorly contributing throughout MATE protein 
sequences and Ala, Gly and Ile to be majorly contributing 
aa. The secondary structure analysis have shown the pre-
dominating alpha helices and tertiary structure modeling and 
validation have shown the resemblance to the already exist-
ing MATE protein sequences. An algorithm is developed 
for RIN generation which has been followed by the analysis 
of important residues in MATE protein tertiary structure 
formation. The important residues in the MATE protein’s 
structure formation have been looked into and analyzed on 
the basis of different centrality parameters through RIN 
analysis. The structural and RIN analysis of MATE protein 
sequences have shown the important aa in MATE proteins 
which might be helpful in new drug target site identification. 
The algorithm designed for RIN generation uses the bond 
formation within the C-α atoms in MATE protein structure 
and may be used for bond formation analysis for other atoms 
in MATE protein structure. Despite of online web servers 
and tools, this algorithm provides a standalone approach 
for RIN analysis. This algorithm may be applied for RIN 
generation in efflux transporter proteins and for other stud-
ies including protein tertiary structure analysis as well. The 
actor residues observed from RIN provided the major struc-
tural insight towards the MATE protein structure analysis.
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