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Abstract
In furtherance of our previous study on some dengue virus (DENV) NS-5 protease inhibitors, which provided us with a lead 
compound exhibiting high potency against DENV NS-5 protease. This study aimed to design more potent derivatives of the 
lead inhibitor with good pharmacokinetic properties and non-toxic utilizing a computationally based process that is precise 
and less expensive. By substituting the quinoline of the sulfonamide and the core phenyl ring of the lead compound identified 
in our previous study, eight more potent derivatives were discovered, which were docked with the DENV NS-5 receptor and 
then tested for drug-likeness, bioavailability, and toxicity. Quantum chemical calculations were performed on the designed 
compounds using density function theory (DFT) to obtain their global reactivity parameters. The docking scores of the 
newly designed DENV NS-5 protease inhibitors obtained using Vina-pyrx software ranged between − 8.40 and − 10.40 kcal/
mol, outperforming both the lead and reported referenced inhibitors (Fenretinide and S-adenosyl-l-homocysteine), which 
had docking scores of − 8.3 and − 6.0 kcal/mol, respectively. Compounds 29J, 29N, and 29P had the best docking scores 
of − 10.00, − 10.40, and − 10.30 kcal/mol, respectively, with a good drug-likeness, oral bioavailability, and no probable 
toxicity. The band energy gap obtained for the design compound is in the order of 29i (2.85 eV) < Lead (3.03 eV) < 29O 
(3.38 eV) < 29P (3.6 eV) < 29G (3.7 eV) < 26i (3.94 eV) (eV) = 29N (3.94 eV) < 29K (3.95 eV) < 29H (3.98 eV) < 29b 
(4 eV) < (4.05 eV). According to this study, the proposed compounds could be useful in the development of more effective 
DENV treatments and as a suitable alternative to existing DENV protease inhibitors.
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1  Introduction

DENV disease is one of the arthropod-borne diseases which 
could lead to dengue fever and the likelihood of progress-
ing to a fatal stage of bleeding, having undesirable health 
impacts on children and previously infected persons [1].

DENV infection has been spreading rapidly in recent 
times, evident by its recurrent outbreak in various regions 
around the world, thereby putting a large population at 
greater risk with no treatment for such a disease. Recent out-
breaks of DENV infection in tropical and subtropical regions 
around the world, as well as a reported annual infection rate 
of 390 million, are cause for great concern [2, 3].

An important promising target for its pharmacological 
treatment, the non-structural protein 5 (NS-5) is reported 
to be involved in the replication of the virus, hence consti-
tuting a druggable target [4–7]. Effective treatment strate-
gies are urgently required to battle the growing rate of 
dengue fever cases. Among the ten known proteases of 
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the DENV, NS5 is among the proteases identified as one 
of the ideal targets for drug discovery [2–7].

Advances in the computational field have paved the way 
for drug development approaches to become more efficient 
and cost-effective, through a variety of commonly used 
approaches such as structure and ligand-based. In the last 
3 years, in-silico models, as well as the virtual screening 
of lead compounds utilizing computational-based tools 
with promising outcomes, have been reported in the lit-
erature [8–15]. Recent studies, including molecular dock-
ing and QSAR, have identified DENV NS5 and NS2B/
NS3 inhibitors with high therapeutic potential for treating 
DENV-related infections [8, 12–15].

Molecular docking is the most extensively utilized com-
puter tool in structure-based drug design. The basic goal of 
structure-based drug development is to design novel lead 
compounds that bind to their therapeutic targets as firmly 
as possible [16, 17]. Factual errors in scoring functions, 
which frequently ignore solvation effects and entropy, 
as well as problems estimating certain interactions, like 
water-mediated interactions, can lead to incorrect predic-
tions. Although approaches to improving binding mode 
prediction have emerged, such as molecular dynamics 
(MD) simulations of the complex to confirm that the pre-
dicted binding mode is stable [18], the Molecular Mechan-
ics/Generalized Born Surface Area (MM/GBSA) method 
which calculates binding free energies for the ligand–pro-
tease complex by combining molecular mechanics calcula-
tions and continuum solvation models [19].

However, because of the inherent constraints of the 
typical generalized Born (GB) model used in MM/GBSA, 
reliable prediction of protease–ligand binding affinity 
remains difficult. Though, MD simulations with an explicit 
solvent model are frequently used to construct structural 
ensembles for binding free energy calculations [16, 20].

As a result, the search for new DENV inhibitors should 
be facilitated by employing a computational-based strategy 
that is precise, less expensive, and quick in obtaining new 
drugs with improved anti-DENV potential to overcome the 
aforementioned health concern given by DENV infection.

In this study, a structure-based design of potential 
DENV NS-5 protease inhibitors of DENV has been devel-
oped using a computational approach. This study targeted 
the design of more potent derivatives of lead compounds 
earlier identified in our previous work [14].

To circumvent likely drawbacks at the advanced stage 
of drug development, bioavailability [21], and ADMET 
(absorption, distribution, metabolism, excretion, and toxic-
ity) [22] predictions were further targeted on our designed 
compounds, utilizing these proficient computational tools 
to design less toxic and potent DENV inhibitors, thus 
avoiding drug development failure.

2 � Materials and Methods

2.1 � Data

Based on findings from our previous work [14], some potent 
inhibitors of dengue were identified through virtual screen-
ing from sets of leads reported by Yokokawa and co-workers 
[6]. Compound 29 was identified as the lead owing to its 
binding score as well as good biological activity. During our 
screening compound, 29 was also found within our devel-
oped domain of applicability for the QSAR model [14]. 
Other derivatives of the leads not involved in our previous 
study reported by Lim and co-researchers [7] in one of their 
articles were also included in this study to provide a basis 
for the outcome of our findings. The lead compound was 
reported to have better pharmacological activity in cell cul-
ture assays at every concentration [6] (Fig. 1) .

2.2 � Insilco Design of Hypothetical Compounds

The high expense of lead identification for subsequent devel-
opment of other derivatives utilizing the classic drug discov-
ery approach has been a major source of concern for scien-
tists. Progress in drug development computation tools has 
assisted many stages of drug development at a reduced cost 
[8–15]. The approach of structure-based design was adopted 
for the design of the novel derivatives of lead based on the 
information obtained from our previous report on the inter-
action of the lead compound with the target of interest [14].

Hereafter, a systematic substitution of the quinoline at 
the terminal of the sulfonamide moiety and on the central 
phenyl ring resulted in the derivatives with modifications 
at the terminal of the sulfonamide and central phenyl ring. 
As described earlier regarding the selection of compound 
29 from our previous work [14], towards this end, about 
eight derivatives of compound 29 [6], were designed. The 
2-dimensional chemical structures (2D) of the compounds 
were drawn by the use of Chemdraw [23], which are pre-
sented in Table 1.

2.3 � Target and Ligand Preparation for Docking

The 2D drawn chemical structures of the designed com-
pounds were subjected to energy minimization to obtain 
their best conformation as well as convert them into recog-
nisable files utilised by the docking algorithm. The energy 
minimization was accomplished using density functional 
theory (DFT) [24].

The DENV NS-5 protease crystal structure was taken 
from the protein data bank (PDB) (http://​www.​rcsb.​org/​
pdb) [25], with the identification code (PDB ID: 6KR3). 

http://www.rcsb.org/pdb
http://www.rcsb.org/pdb
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Table 1   Designed compounds' chemical structure and binding affinities

ID Structure Binding score (kcal/mol) Reference 
26i − 9.8 [7]

29i − 8.7 [7]

29B − 8.4 Current work

29G − 9.7 Current work

29H − 9.5 Current work

29J − 10.0 Current work

29K − 8.7 Current work

29N − 10.4 Current work

29O − 8.8 Current work

29P − 10.3 Current work
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The protease was obtained in a complex with other ligands 
and water molecules, which was subsequently prepared into 
the required docking format using a standard protocol and 
the use of Discovery Studio Software [26].

2.4 � Molecular Docking

To obtain the putative binding score of the interaction 
between the designed compounds and the protease, molecu-
lar docking calculations were accomplished using Vina-pyrx 
[27]. The top models with the most negative docking scores 
(binding energy in kcal/mol) and low root mean square devi-
ation were selected to investigate the binding interactions 
using Discovery Studio Visualizer [26].

2.5 � In Silico ADMET Predictions of the Designed 
DENV Inhibitors

The ADMET parameters of the designed compounds 
were assessed with the use of the Swiss-ADME [28] and 
pkCSM—pharmacokinetics [29] free online tools. Flops 
in various drug designs and development have long been 
ascribed to poor pharmacokinetics and bioavailability quali-
ties as well as weak efficacy. The method involved using 
the SwissADME and pkCS pharmacokinetics (http://​biosig.​
unime​lb.​edu.​au/​pkcsm/), which have been described [28, 
29].

2.6 � Quantum Chemical Reactivity Analysis 
of the Design Compounds

Some quantum chemical properties from the geometri-
cally optimized designed compounds using the DFT with 
a 6-31G* basis set, such as the energy of the highest occu-
pied (εHOMO) and the lowest unoccupied molecular orbital 
(εLUMO), were obtained. The εHOMO and εLUMO of each 
compound were used to compute other properties such as 
chemical hardness (η), chemical potential (μ), electronega-
tivity (χ), softness (S), and electrophilicity index (ω) using 
Eqs. 1–5, respectively [30]. The 3D chemical structure of 
the geometrically optimized lead compound is presented in 
Fig. 2.

Using Eq. 1, researcher [31, 32] have described the prin-
ciple of absolute maximum for a system with N electrons 
and total energy E.

(1)η =

(

�
2ϵ

�N2

)

v(r)

≡
1

2
(IE − ϵA) ≡

1

2

(

ϵLUMO − ϵHOMO

)

(2)μ =
(

�ϵ

�N

)

v(r)

In Eq. 1 and A have been estimated in terms of the εLUMO) 
and (εLUMO) according to Koopman’s approximation [32]. 
Also, the global softness can be expressed as using Eq. 3 as 
the inverse of chemical hardness.

The electron affinity can also be used alongside the ioniza-
tion energy to obtain electronic chemical potential, μ as shown 
in Eq. (2). The negative of electron affinity (− χ) was defined 
[31], as the characteristic of electronegativity of chemical 
compound:

The electrophilicity index (ω), introduced by Parr and co-
researchers [32–34]; this can be obtained from the electronic 
chemical hardness, η, and chemical potential, μ, as presented 
in Eq. 5

3 � Results

3.1 � Molecular Docking Calculation 
and Visualisation

Following the docking of the designed compounds using the 
Vina-pyrx software, the binding affinity score of each docked 
compound was obtained (Tables 1 and 2). The binding score 
indicates how tightly bound the interaction of the compounds 
with the therapeutic target is. The binding affinity score is 
expressed in the unit of kcal/mol and the higher the value, the 
better the interaction (Tables 1 and 2).

The interaction of the various amino acid residues of the 
active and allosteric sites of the protease and the compounds 
(Fig. 3A–J), as well as the nature and the types of interactions 
(Table 2), were viewed using the Discovery Studio.

3.2 � In silico ADMET predictions

The designed compounds, after successful docking screening, 
were further evaluated for drug-likeness and pharmacokinetics 
worthiness, as well as toxicity prediction. The results of the 
ADMET are presented in Tables 3 and 4.

(3)S = (η)−1

(4)

χ = −μ =
(

�ϵ

�N

)

v(r)
≡

1

2
(Iϵ − ϵA) ≡ −

1

2
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)

(5)ω =
μ2

2η

http://biosig.unimelb.edu.au/pkcsm/
http://biosig.unimelb.edu.au/pkcsm/
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Table 2   Molecular docking 
interactions of designed 
compounds with the therapeutic 
target (6KR3)

Compound ID Distance (Å) Types of interaction Amino acid residue Binding 
score (kcal/
mol)

26i 2.382 C H-bond LYS95 − 9.8
2.618 C H-bond ASN96
2.068 C H-bond ASP257
3.600 C–H bond PRO73
3.471 C–H bond ASN69
3.746 C–H bond GLU67
3.666 Alkyl LYS356
4.596 Alkyl PRO299
5.159 Pi-Alkyl LYS356

29i 2.84856 C H-bond GLY148 − 8.7
2.6592 C H-bond ASP79
4.99903 Pi-Anion GLU111
3.47432 Pi-Sigma ILE147
3.87709 Pi-Sigma TRP87
5.80066 Pi-Pi T-shaped HIS110
5.41623 Pi-Alky LYS105

29B 2.019 C H-bond THR361 − 8.4
2.723 C H-bond THR540
2.472 C H-bond ARG541
2.454 C H-bond ARG541
2.079 C H-bond ARG599
3.020 C H-bond ALA536
2.731 C H-bond GLY537
2.263 C H-bond UNK1:H-o
3.375 C–H bond LYS358
3.654 C–H bond ASP539
3.552 Pi-Sigma LYS358
5.877 Pi-Sulfur HIS52
4.785 Amide-Pi Stacked ALA536, GLY537
5.430 Alkyl VAL359
4.774 Alkyl ALA473
4.376 Alkyl ALA536
4.652 Alkyl LYS358

29G 2.357 C H-bond LYS95 − 9.7
2.996 C H-bond ASN96
2.039 C H-bond HIS298
2.256 C H-bond ASP257
3.467 C–H bond GLU67
5.378 Alkyl ARG63
3.858 Alkyl LYS356
4.168 Alkyl PRO299
5.394 Pi-Alkyl TYR90
5.335 Pi-Alkyl PRO299
5.029 Pi-Alkyl LYS356
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Table 2   (continued) Compound ID Distance (Å) Types of interaction Amino acid residue Binding 
score (kcal/
mol)

29H 2.432 C H-bond VAL66 − 9.5

2.468 C H-bond PRO73

3.377 C–H bond PRO73

3.338 C–H bond GLU67

5.015 Alkyl ARG63

4.104 Alkyl LYS356

4.354 Alkyl PRO299

5.288 Pi-Alkyl TYR90

5.478 Pi-Alkyl PRO299

5.240 Pi-Alkyl LYS356
29J 3.416 C–H bond PRO299 − 10.0

3.227 C–H bond GLU67
3.425 C–H bond PHE349
3.533 Halogen (Fluorine) PRO73
2.562 Halogen (Fluorine) PRO73
5.091 Alkyl ARG63
3.904 Alkyl LYS356
4.271 Alkyl PRO299
5.173 Pi-Alkyl PRO299
5.353 Pi-Alkyl LYS356
4.713 Pi-Alkyl LEU94

29K 4.408 Pi-Pi Stacked TYR607 − 8.7
4.026 Pi-Pi Stacked TYR607
4.480 Alkyl LEU512
5.028 Pi-Alkyl HIS711
4.931 Pi-Alkyl CYS709

29N 2.208 C H-bond GLY93 − 10.4
3.063 C–H bond LEU258
2.791 Halogen (Fluorine) GLU67
3.236 Halogen (Fluorine) GLU67
2.938 Halogen (Fluorine) GLN352
4.796 Alkyl LYS356
4.317 Alkyl ARG353
4.703 Pi-Alkyl TYR90
3.831 Pi-Alkyl LYS356
5.462 Pi-Alkyl LEU94

29O 2.564 C H-bond SER601 − 8.8
2.117 C H-bond THR606
2.459 C H-bond ASP539
3.694 C–H bond GLY600
3.843 Pi-Anion ASP539
4.547 Pi-Pi Stacked TRP475
4.801 Alkyl ALA473
4.929 Pi-Alkyl TRP475
4.599 Pi-Alkyl TRP475
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4 � Discussion

4.1 � Molecular Docking of the Designed Potent 
Compounds with the Target

Hereto, our previous study on some derivatives of sulfona-
mide was conducted to identify potent inhibitors of DENV. 
This screening hinted at an outstanding lead compound 29 
(Fig. 1), which turned out to be highly potent with a good 
binding score of − 8.3 kcal/mol with the target (PDB ID: 
6KR3) [14].

Hereafter, a systematic substitution of the quinoline at the 
terminal of the sulfonamide moiety and the central phenyl 
ring was accomplished, with modifications at the terminal 
of the sulfonamide and central phenyl ring. These modifica-
tions resulted in eight derivatives of the lead with enhanced 
anti-DENV inhibitory properties through their molecular 
docking binding scores (Table 2) and favourable interac-
tions with the target (Fig. 3A–J).

After this, DENV NS-5 protease was docked with the 
eight designed compounds (29B, 29G, 29H, 29J, 29K, 29N, 
29O, and 29P), and also, 26i and 29i [14] (Table 1) were 
considered. The docking was done using Vina-pyrx software 
using the standard protocol earlier described in our previous 
work [14, 35].

The compounds with the best scores (compound 29N) 
had a binding energy score of − 10.40 kcal/mol, whereas 
the remaining designed derivatives gave binding affinity 
values in the range of − 8.70, − 10.10 kcal/mol (Table 2). 
Based on the binding scores obtained for the designed 
compounds (Table 2) and those for the standards (Fenreti-
nide and S-adenosyl-l-homocysteine) [14], with reported 
binding score values of − 8.3 and − 6.0 kcal/mol, respec-
tively, it could be concluded that the designed compounds 

have better activity than the selected standard inhibitor of 
DENV and hence are more potent.

The 2D interactions for the compounds are shown in 
Fig. 2A–J. None of the compounds, including the stand-
ards, showed unfavourable bonds except compound 29G, 
as such unfavourable bonds affect the stability of ligand-
protease complexes due to repulsive forces within the 
complex.

Compound 26i interacted with Lys-95, Asn-96, and Asp-
257 (2.382, 2.618, and 2.068 Å) protease's amino acid resi-
dues by forming favourable conventional hydrogen bonds 
(C–H-bonds) and carbon-hydrogen bonds (C–H bonds) with 
Pro-73, Asn-69, and Glu-67, whereas hydrophobic interac-
tions were observed with Lys-356, Pro-299, and Lys-356 
amino acid residues. This could explain the complexes' sta-
bility, as indicated by the lack of unfavorable interactions.

Compound 29i, which is regarded as derivative of the 
designed compounds reported by Lim et al. [7], was dis-
covered to interact with Gly-148 and Asp-79 (2.84856 and 
2.6592 Å) residues via C H-bond and hydrophobic interac-
tion with Glu-111, Ile-147, Trp-87, His-110, and Lys-105 
through Pi-Anion, Pi-Sigma, Pi-Sigma, Pi-Pi T-shaped and 
Pi-Alky respectively.

Among the designed compounds, compound 29B had the 
highest number of C–H-bond interactions of seven involv-
ing Thr-361, Thr-540, Arg-541, Arg-541, Arg-599, Ala-
536 and Gly-537 (2.019, 2.723, 2.472, 2.454, 2.079, 3.020, 
and 2.731 Å), with two carbon–hydrogen bonds involving 
Lys-358 and Asp-539 amino acid residues of the protease. 
Additionally, hydrophobic interaction through Pi-Sigma 
and Pi-Sulfur, (Amide-Pi Stacked), Alkyl, Alkyl, Alkyl and 
Alkyl involving Lys-358, His-52, (Ala-536, Gly-537), Val-
359, Ala-473, Ala-536, Lys-358, and Lys-95 residues were 
observed, respectively.

Table 2   (continued) Compound ID Distance (Å) Types of interaction Amino acid residue Binding 
score (kcal/
mol)

29P 2.463 C H-bond GLY93 − 10.3

5.308 Alkyl ARG63

3.993 Alkyl LYS356

4.841 Alkyl ARG582

4.620 Alkyl PRO583

3.718 Alkyl ARG353

4.933 Pi-Alkyl PHE349

4.844 Pi-Alkyl PHE349

5.164 Pi-Alkyl PRO299

Conventional hydrogen bond = C H-bond
Carbon hydrogen bond = C–H bond
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The quinoline of the sulfonamide was replaced by the 
1, 3, 4-oxadiazole and 1, 2, 4-oxadiazole moiety to obtain 
compounds 29G and 29H.

Compound 29G formed four C H bonds (Lys-95, Asn-96, 
His-298, and Asp-257/2.357, 2.996, 2.039, and 2.256 Å), 
one C–H bond (Glu-67), and six hydrophobic contacts (Arg-
63, Lys-356, Pro-299, Tyr-90, Pro-299, and Lys-356) via 
alkyl and pi-alkyl groups.

In compound 29H, only two conventional hydrogen bonds 
were observed with Val-66 and Pro-73 (2.432 and 2.468 Å) 
amino acid residues and two carbon–hydrogen bonds with 
Pro-73 and Glu-67, while the remaining interactions involv-
ing Arg-63, Lys-356, Pro-299, Tyr-90, Pro-299, and Lys-356 
residues are hydrophobic. Despite its high binding score, 
compound 29H has an unfavorable bond interaction that 
could lead to complex instability due to repulsive force.

In contrast, only three C–H bonds involving Pro-299, 
Glu-67, and Phe-349 were observed in compound 29J, in 
which a halogen (Fluorine) interacting with two Pro-73 was 
observed, as well as Arg-63, Lys-356, Pro-299, Pro-299, 
Lys-356, and Leu-94 residues involved in the hydrophobic 
interaction. Despite the lack of a C H-bond, compound 29J 
had a higher binding score of 10.0 kcal/mol, which could be 
attributable to the presence of halogen [35].

Compound 29K, like compound 29J, did not create any 
C H-bonds with any amino acid residue, instead opting for 
hydrophobic interactions with two Tyr-607 residues by Pi-Pi 
Stacked, one involving Leu-512 via Alkyl, and His-711 and 
Cys-709 via Pi-Alkyl. Compound 29K's low binding score 
could be explained by the lack of a hydrogen bond acceptor 
on the phenyl ring of sulfonamide.

Compound 29N, with the best binding score 
(− 10.40 kcal/mol) among all the designed compounds, 
formed only one convention and carbon-hydrogen bonds 
with Gly-93 (2.208 Å) and Leu-258 respectively, whereas 
Glu-67, Glu-67, and Gln-352 residues were involved in the 
three halogen interactions and Lys-356, Arg-353, Tyr-90, 
Lys-356, and Leu-94 accounted for the five hydrophobic 
interactions through Alkyl and Pi-alkyl. The good binding 
energy score of compounds 29N is due to the presence of 
fluorine, hence it could be regarded as the most potent of the 
designed compounds.

Moreover, C H-bond interactions involving Ser-601, Thr-
606, and Asp-539 (2.564, 2.117, and 2.459 Å) residues for 
compound 29O were seen, as well as a carbon-hydrogen 
bond with Gly-600 residue. Interestingly, compound 29O 
formed electrostatic interaction with the Asp-539 residue 
through P-Anion, whereas hydrophobic interaction was 
formed involving Trp-475, Ala-473, Trp-475, and Trp-475.

Compound 29P, despite having a better binding score, 
formed only one conventional hydrogen with Gly-93 
(2.463 Å) and eight hydrophobic bond interactions (Arg-
63, Lys-356, Arg-582, Pro-583, Arg-353, Phe-349, Phe-349, Ta
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and Pro-299), through Alkyl, Alkyl, Alkyl, Alkyl, Alkyl, 
Pi-Alkyl, Pi-Alkyl, and Pi-Alkyl, respectively.

The stabilization of the complexes of the designed com-
pound-protease was mostly through conventional hydrogen 
bond and hydrophobic bond interactions involving residues 
at the allosteric sites of the protease.

The designed compounds in this study all outperformed 
the selected conventional inhibitors (Fenretinide and S-aden-
osyl-l-homocysteine) [14] and some had better docking 
scores than the inhibitors reported by Lim and co-research-
ers [7] (26i and 29i) in terms of binding affinity with the 
targeted protease. The template from which the compounds 
were designed has been tested in vitro in DENV inhibitory 
experiments [6, 7]. This research established that the devel-
oped compounds are DENV antagonists.

4.2 � Drug‑Likeness, Pharmacokinetics, and ADME 
Prediction of the Designed Compounds

Chemical compounds with observed pharmacological or 
therapeutic activities are required to possess some desirable 
features such as good ADMET and drug-likeness proper-
ties to be identified as good drug candidates. The properties 
depend on some of their physicochemical properties, such 
as molecular weight of not less than 500, logP value of not 
greater than 5, hydrogen-bond donors of not greater than 5, 
hydrogen-bond acceptors of not greater than 10, and topo-
logical polar surface area (TPSA) of less than 140, as rec-
ommended by Lipinski [21]. The SwissADME and pkCSM 
online tool programs were used to assess the ADMET and 
drug-likeness features of the designed compounds.

The predicted ADME properties are presented in Table 3, 
from which it can be seen that our designed compounds 
passed Lipinski’s rule of five, which also suggested an orally 
active drug be a non-violator of not more than one of the 
criteria.

The effects of the designed compounds on some impor-
tant enzymes involved in drug metabolism, such as CYP1A2, 
CYP2C9, and CYP2D6, were considered (Table 3). Except 
for compounds 29G and 26i, which appeared to inhibit 
CYP1A2 and CYP2D6, all of the designed compounds were 
found to be non-inhibitors of CYP1A2 and CYP2D6. Con-
versely, all the compounds were predicted to inhibit CYP2C9 
except for compounds 29B, 29G, and 29H. Additionally, the 
compounds were revealed to be non-Pgp substrates [36].

Table 4   Predicted toxicity, excretion, and intestinal absorption of the designed compounds

Compound ID Some newly designed inhibitors of DENV NS-5

26i 29i 29B 29G 29H 29J 29K 29N 29O 29P

AMES toxicity No No No No No No No No No No
hERG I inhibitor No No No No No No No No No No
Carcinogenicity No No No No No No No No No No
Hepatotoxicity No Yes Yes Yes Yes Yes Yes Yes Yes Yes
Skin Sensitization No No No No No No No No No No
Oral rat acute toxicity (LD50) (mol/kg) 2.24 2.33 2.29 2.22 2.23 2.24 2.40 2.72 2.45 2.30
Renal OCTS substrate No No No No No No No No No No
Intestinal adsorption (% Absorbed) 76.3 82.33 65.45 57.15 62.22 83.47 86.90 89.93 86.26 89.58

Fig. 1   The lead compound (29) 5-(5-(3-Hydroxyprop-1-yn-1-yl) thio-
phen-2-yl)-4-methoxy-2-methyl-N-(quinolin-8-ylsulfonyl) benzamide 
as a template for the design [6]

Fig. 2   Geometrically optimized structure of the lead compound (29) 
[6]
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The pan-assay interference compounds (PAINS) analy-
sis was also performed, which finds compounds with false 
positive biological activity in assays. A compound that has a 
positive PAINS alert could be considered to have misleading 
biological activity. Table 3 shows the findings of the PAINS 

alert. No compound was found to have a positive PAINS 
alert, which means it would have positive biological activi-
ties if examined in a biological activity assay [37].

The bioavailability score of all the designed compounds 
reported in Table  3 was found to be 0.55 which is an 

Fig. 3   2-dimensional interactions of the designed compounds with the target protease (6KR3)
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Fig. 3   (continued)
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indication of how active the compounds are. It has been sug-
gested that when the score is greater than 0, the compound 
is recommended to be active, while a score between − 5.0 
and 0.00 is regarded moderately active, and less than − 5.0 
is considered inactive [38, 39]. All the designed compounds 
demonstrated excellent bioactive scores and good synthetic 
accessibility [40] (Table 3).

The gastrointestinal absorption of the designed com-
pounds presented in Table 4 lies within the range of 57.15 
to 89.90% (Table 4); however, the designed compounds have 
better and higher gastrointestinal adsorption, since com-
pounds with percentage absorption of lower than 30% have 
been regarded as as poorly absorbed [29].

The toxicity evaluation of the designed compounds was 
accomplished with the aid of the pkCSM online tool to gain 
insight into the toxicity of the designed compounds, which 
could lead to the potential failure of the compounds as drug 
candidates. Because of their good drug-like properties, the 
toxicity study of all the designed compounds was carried 
out to ensure their safety.AMES toxicity, hERG (human 
ether-a-go-go gene) I inhibitor, Hepatotoxicity, Skin Sen-
sitization, Oral Rat Acute Toxicity, Renal OCTS (Organic 
Cation Transporter 2) substrate are among the toxicity fac-
tors evaluated (Table 4).

The result of the Ames toxicity test, presented in Table 4, 
which assesses a compound's mutagenic potential, reveals a 
negative test for all the designed compounds. A positive test 
indicates that the substance is mutagenic and could cause 
cancer [29].

The inhibition of potassium channels encoded by hERG 
(human ether-a-go-go gene) is the primary cause of the 
established long QT syndrome, which leads to severe ven-
tricular arrhythmia. The result of the test on the designed 
compounds to determine whether they are hERG I inhibitors 
is presented in Table 4. All of the designed compounds were 
found to be non-hERG I inhibitors [29].

If a chemical substance causes a pathological liver event 
associated with a disruption in normal liver function, it is 
considered hepatotoxic. All of the designed compounds 
(Table 4), except compound 26, demonstrated positive hepa-
totoxicity. Such compounds with positive hepatotoxicity can 
lead to a disruption in the liver's normal function [29].

None of the designed compounds had skin sensitization 
as seen in Table 4. Such a test reveals the tendency of chemi-
cal compounds to produce allergic reactions when they come 
into contact with the skin [29].

The results of the oral rat acute toxicity in lethal dos-
age (LD50) (Table 4) revealed the LD50 of the designed 
compounds in the range of 2.22 to 2.75 mol/kg. Such a test 
shows the amount of a substance given all at once that kills 
half of a set of test animals.

Renal OCTS is a drug-clearing renal uptake transporter. 
With co-administered OCTS inhibitors, OCTS substrate has 

the potential to cause an undesirable reaction. As observed in 
Table 4, no compound was seen to be Renal OCTS substrate.

Due to their shown negative values for the toxicity assess-
ment criteria studied, it is possible to conclude that the pro-
posed compounds are non-toxic based on their toxicity pro-
files (Table 4). In addition to their remarkable drug-likeness, 
all of the proposed compounds may be regarded as relatively 
safe based on their toxicity profiles [38].

4.3 � Frontier Molecular Orbital Analysis

According to the frontier molecular orbital theory of chemi-
cal reactivity, the transition of an electron is due to interac-
tion between the εHOMO and εLUMO of reacting species. 
The εHOMO is a measurement of a molecule's tendency to 
donate electrons. As a result, larger εHOMO values suggest 
a greater proclivity for electron donation [30].

In this work, εHOMO and εLUMO and several quan-
tum chemical descriptors such as the global reactivity fac-
tors were calculated (Tables 5). As expected, the εHOMO 
and εLUMO energies, along with the band gap energies of 
the designed compounds (Table 5), played an essential role 
in binding the molecular compounds to the protease [32, 
34]. High values of εHOMO energy are an indication of 
the enhanced ability of the ligand to donate electrons to the 
neighboring compounds [41], whereas, the lower values of 
εLUMO energy imply that the studied molecular compounds 
have the ability to receive electrons from the neighboring 
compounds which has the ability to donate electrons [41].

The obtained energy band gab for the designed 
compounds presented in Table  5 is in the order of 29i 
(2.85  eV) < Lead (3.03  eV) < 29O (3.38  eV) < 29P 
(3.6  eV) < 29G (3.7  eV) < 26i (3.94  eV) (eV) = 29N 
(3.94  eV) < 29K (3.95  eV) < 29H (3.98  eV) < 29b 
(4  eV) < (4.05  eV) (Table  5), while their respective 
HOMO–LUMO energy diagrams are presented in Supple-
mentary Fig. (SF) a–k. Because a lower energy band gap 
necessitates a higher probability for the compound to con-
tribute electrons to the next compound, compound 29i was 
found to have the lowest energy gap and hence be more reac-
tive than the others. The importance of the energy band gap 
in protease–ligand interactions is highlighted by this. Other 
compounds, such as those with a slightly wider gab than 
compound 29i, were shown to have a higher docking score, 
which could be due to their electron accepting capacity.

The energy gap (Δε) describes charge transfer interaction 
within a molecule, such that a region of the molecule with 
higher εHOMO contributes electrons to that region with 
higher εLUMO. This is a reflection of the chemical activity 
of the molecule [42].

Moreso, the localization of εHOMO and εLUMO at the 
same site has been reported to be associated with reduced 
reactivity of chemical compounds [43]. However, the lower 
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binding scores observed for some of the compounds can be 
attributed to the localization of their εHOMO and εLUMO 
at the same sites (Fig. SF a–k).

The computed values of χ, S, η, ω, and μ of the global 
reactivity factors for the designed compounds [41], are pre-
sented in Table 5. The high value of μ entails that a com-
pound is nucleophilic, whereas the low value of χ suggests 
that a compound is electrophilic and vice versa. The values 
of S and η of molecules can be described by their energy 
gaps. The molecules with large energy gaps are considered 
hard and hence less polarizable, whereas those with small 
energy gaps are regarded as soft, hence more polarizable.

The high value of ω defines the tendency to attract more 
electrons from a donor molecule. From Table 5, it can be 
seen that compound 29O has the highest value of ω, which 
means it attracts more electrons from the donor than the 
rest. It also measured the tendency of a species to accept 
electrons. Moreover, a highly reactive nucleophile is defined 
by a lower value of μ and ω, whereas a good electrophile is 
defined by a high value of μ and ω [32].

5 � Conclusion

Based on the 5-(5-(3-Hydroxyprop-1-yn-1-yl) thiophen-
2-yl)-4-methoxy-2-methyl-N-(quinolin-8-ylsulfonyl) benza-
mide hit identified in our previous study, we accomplished 
structure-based design of some series of DENV NS-5 
inhibitor. Through structural modification of this lead, eight 
derivatives were designed to obtain a more potent deriva-
tive of the lead against DENV NS-5 as a therapeutic target. 
Through molecular docking studies of the designed deriva-
tive with the biological target for the inhibition of DENV 
NS-5 protease, the potency of the eight designed deriva-
tives in terms of their binding scores and interactions with 
the amino acid residues of the protease through hydrogen 

bonding, hydrophobic and electrostatic interactions was bet-
ter than the template, making them more active than the 
template as well as considered standard target inhibitors. The 
ADMET and drug-likeness studies using the Swiss-ADME 
webtool recommended the designed compounds as orally 
bioavailable, with good gastrointestinal absorption and bet-
ter pharmacokinetic properties with low toxicity. Among the 
designed compounds, compounds 29J, 29N, and 29P were 
found to be promising in terms of docking score and drug-
likeness, among others. This study proved that the designed 
derivative of lead could serve as a potent DENV inhibitor. 
It has been demonstrated that all the designed compounds 
show better pharmacological activity than the template and 
are not toxic. According to the reactivity analysis, the energy 
band gap plays a critical role in the ligand-protease inter-
action. As a result, it's reasonable to draw the conclusion 
that the developed compounds could be interesting thera-
peutic candidates for the treatment of DENV infection. This 
study highlighted the value of structure-based drug design 
in obtaining more effective pharmaceutical candidates at a 
lower cost and less time. In vivo studies is needed to under-
stand the mechanism of action of the proposed compounds 
as well as their synthesis.
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Table 5   Computed εHOMO, εLUMO, energy band gap Δε (eV) (εL–εH), chemical potential (μ), electronegativity (χ), global hardness(η), soft-
ness (S), electrophilicity index (ω), for the designed compounds using DFT (B3LYP-6-311*)

S/N εHOMO (eV) εLUMO (eV) Δε (eV) η (eV) S (eV) µ µ2 Χ (eV) ω

26i − 5.58 − 1.64 3.94 1.97 0.507614 − 3.61 13.0321 3.61 3.30764
29i − 5.12 − 2.27 2.85 1.425 0.701754 − 3.695 13.65303 3.695 4.790535
29B − 5.77 − 1.77 4 2 0.5 − 3.77 14.2129 3.77 3.553225
29G − 5.58 − 1.88 3.7 1.85 0.540541 − 3.73 13.9129 3.73 3.760243
29H − 5.97 − 1.99 3.98 1.99 0.502513 − 3.98 15.8404 3.98 3.98
29J − 5.86 − 1.81 4.05 2.025 0.493827 − 3.835 14.70723 3.835 3.631414
29K − 5.59 − 1.64 3.95 1.975 0.506329 − 3.615 13.06823 3.615 3.308411
29N − 6.05 − 2.11 3.94 1.97 0.507614 − 4.08 16.6464 4.08 4.224975
29O − 6.23 − 2.85 3.38 1.69 0.591716 − 4.54 20.6116 4.54 6.098107
29P − 5.87 − 2.27 3.6 1.8 0.555556 − 4.07 16.5649 4.07 4.601361
LEAD [6] − 5.34 − 2.31 3.03 1.515 0.660066 − 3.825 14.63063 3.825 4.828589
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