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Abstract
This study illustrates the inconsistencies that may result from using different background values and conservative elements 
in the calculation of enrichment factors. By using 75 soil samples collected from agricultural lands adjacent to Mau and 
Aberdare forests, Zn and Cu enrichments was assessed using enrichment factor. The geochemical background values used 
for this study were concentrations of the upper continental crust (UCC), logarithmized UCC concentrations and concentra‑
tions of elements in soils from the forested lands as the local background values. Calcium, Mn, and Fe were used as the 
conservative elements. In addition, Cu and Zn geoaccumulation index was determined for comparison purpose. When UCC 
values were applied, the average Cu enrichment was 0.24, 1.42 and 15.3 when Mn, Ca and Fe were used as the conservative 
elements, respectively. The average Zn enrichment was 0.6 when Mn was used, and increased to 4.53 and 31.3 Ca and Fe 
was used, respectively. Compared to Mn and Ca, Fe resulted to higher enrichments. Application of local background values 
significantly reduced variation in Zn and Cu enrichments, as the average Zn and Cu enrichments were relatively similar 
regardless of the conservative element used. Based on this, Zn enrichment ranged from minimal to extreme while Cu enrich‑
ment ranged from minimal to high. Cu Igeo ranged from − 1.96 to 2.49 while Zn Igeo ranged from − 2.74 to 2.11, implying 
that the soils ranged from not polluted to moderately polluted. Zn and Cu contamination levels in the agricultural soils was 
best evaluated using local geochemical baselines.
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1 Introduction

Enrichment factor (EF) is a common tool used to identify 
geogenic versus anthropogenic element sources in the envi‑
ronment, and its application in environmental studies dates 
back to 1980s [1, 2]. The enrichment factor was initially 
developed to detect metals in the atmosphere, precipitation, 
or seawater [3], but it was gradually extended to include 

different environmental media, including soils and sediments 
[4–6]. EF is defined as the factor by which the concentra‑
tion of a metal in an environmental media is greater than 
the average concentration of that metal in the earth’s crust 
[7]. Apart from being a relatively simple to use method [8], 
enrichment factor is considered superior to other such indi‑
ces [9], as it evaluates the concentration of metal of interest 
in relation to the concentration of lithogenic element with 
no significant anthropogenic source [10].

However, despite being extensively used to assess metal 
contamination, several studies have raised credible concerns 
regarding its suitability due to a number of shortcomings 
[5, 6, 11, 12]. For instance, there has been discrepancies 
in deciding what values to use as the background or geo‑
chemical reference values [9]. While some countries have 
already established geochemical background values, e.g. 
China [13], researchers mainly from countries lacking estab‑
lished geochemical background values may choose to use the 
established values of a different country, background values 
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derived from other researchers, or the average concentrations 
of elements in the earth’s crust [9]. This can systematically 
distort EF values, as the background values may not be a 
true representative of the study area due to spatial variability 
[14]. There is also evidence that geochemical baselines from 
the earth’s crust are not uniform in all regions [15–17]. To 
circumvent this problem, other researchers choose to use the 
measured concentration of elements in a deeper soil hori‑
zon as the local background values [4, 12, 18]. While this 
may correctly represent metal enrichment of the study area, 
many of such studies fail to account for metal weathering, 
volatilization and vertical transport (leaching) into the deep 
soil horizons [11]. The discrepancies regarding geochemi‑
cal baselines not only affect EF but other pollution indices 
as well, including geoaccumulation index (Igeo) [19]. As a 
result, selecting proper reference values is requisite to accu‑
rately determine metals contamination.

Another intrinsic flaw of using enrichment factor is the 
difficulty of choosing the conservative element [18]. Though 
a major flaw, little attention is given regarding the composi‑
tional differences of conservative elements [14]. Generally, 
the metal that is naturally available at high concentrations 
originating almost exclusively from the earth’s crust is used 
as the conservative element [20–22]. The elements include 
aluminum (Al), zirconium (Zr), iron (Fe), scandium (Sc), 
titanium (Ti), manganese (Mn) and calcium (Ca) [5, 7, 10, 
23]. Application of different conservative elements results 
to large variations in EF results. For instance, a study by Poh 
and Tahir [5] demonstrated that the choice of conservative 
element could easily alter EF results by more than fourfolds. 
In a similar study, Bern et al.[9] noted that using Fe as the 
conservative elements gave 84% higher EFs than when using 
Al. In addition, Reimann and Caritat [6] also noted that use 
of certain conservative elements led to high enrichment of 
the metals under investigation, regardless of where the sam‑
ples were taken. Clearly, these studies suggest that the choice 
of conservative element is important in finding the correct 
enrichment of a metal, and a poor choice could lead to seri‑
ous misinterpretation of assessment results.

Although not common, EF results may also be misin‑
terpreted due to different classifications of EFs available 
today. Sinex and Helz [1] identified five contamination 
categories on the basis of the enrichment factor. The low‑
est category entails EF values < 2, which denotes deple‑
tion to minimal enrichment. This lowest category is often 
misinterpreted. For instance, several studies have come 
up with their own classification, suggesting that EF value 
of < 1 may at times indicate depletion of that metal in soils 
[7, 11], while EFs > 1.5 may show significant portion of 
metals originating from anthropogenic activities [4]. Fur‑
ther, the impact of biogeochemical processes or natural 
sources is often neglected in the above classifications 
[5]. In attempt to account for natural sources of metals, 

Bacardit and Camarero [24] suggests that enrichment fac‑
tors < 10 should indicate crustal or natural sources, while 
those > 10 are an indication of anthropogenic sources. This 
clearly shows that misinterpretation of results may occur, 
and as such, care should be taken when interpreting EF 
results [22]. Due to these shortcomings, several studies 
are of the opinion that application of EF in environmental 
studies should be avoided [12]. However, this study set to 
find out how some of the shortcomings can be reduced.

Here, copper (Cu) and zinc (Zn) enrichment in agri‑
cultural lands adjacent to Mau and Aberdare forests in 
Kenya was investigated. Although Cu and Zn deficiency is 
common in agricultural soils [25, 26], their enrichment in 
agricultural soils due to human activities has been reported 
in various studies [27–32]. Copper, for instance, is spe‑
cifically related to long‑term application of commercial 
fertilizers, copper‑based pesticides and fungicides [27, 
33]. As for Zn, its variability in agricultural soils is con‑
trolled mainly by the application of both mineral fertiliz‑
ers and animal manure [34]. The two metals are included 
in the list of potentially toxic elements [35]. Considering 
the fact that agricultural activities are the major sources 
of water pollution [36], metal accumulation in cultivated 
lands should be monitored regularly to prevent possible 
adverse effects on aquatic ecosystems and the dependent 
human population.

The principal objective of the study was to determine 
how application of three different conservative elements 
and different geochemical baselines may affect EF results 
for metals. In this particular study, Fe, Mn and Ca were 
used as the conservative elements, while the concentra‑
tions of elements in the upper continental crust (UCC) 
by Wedepohl [37], and the concentration of elements in 
forest soils were used as the geochemical baselines. In 
addition, logarithmized UCC values were also used in 
attempt to reduce variability that might occur when dif‑
ferent conservative elements are applied [8]. Moreover, 
Cu and Zn geoaccumulation index in the agricultural 
soils was determined in order to compare with EF results. 
The agricultural lands adjacent to Mau and Aberdare for‑
ests were transformed nearly 40 years ago from the for‑
est lands. Converted forest soils usually undergo several 
changes, the common one being reduced soil fertility due 
to nutrient mining [38–40]. Without proper soil manage‑
ment practices, parameters such as soil organic carbon 
(SOC), total nitrogen (TN), soil pH and phosphorous (P) 
have been reported to decline over time [40, 41]. For the 
metals however, particularly Zn and Cu, accumulation due 
to addition of fertilizers, pesticides, herbicides, animal 
manure and fungicides often occurs [7, 42]. Application 
of EF was thus important to determine the extent of Zn 
and Cu contamination as a result of extensive agriculture 
in these areas.
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2  Materials and Methods

2.1  Study Areas

Figure 1 shows the location of study area and study sites. 
Mau Forest  is found between 0° 36′ 35″ S and 35° 44′ 
08″ E. It is part of the largest montane forest ecosystem 
in Eastern Africa, having an area of 400,000 ha [43]. 
Mau forest serves as the largest drainage basin in the 
country and origin of several major rivers [43, 44]. On 
the other hand, the Aberdare Forest is located in central 
Kenya between 0° 37′ 40″ S and 36° 42′ 30″ E. The forest 
stretches over 125 km from Nyahururu in the North to 
Limuru in the South. It also hosts the third highest moun‑
tain in Kenya, with two main peaks, Oldonyo Lesatima 
(also known as Sattima) and Kinangop, which reach alti‑
tudes of 4001 and 3906 m, respectively [45]. The Aberdare 
Forest is the main catchment for Sasumua and Ndakaini 
dams, and contributes towards the largest river in Kenya, 
the Tana River [45]. According to Geological Map of 
Kenya (Fig. 2), the Mau and Aberdare forests are majorly 

composed of tertiary volcanic deposits (pyroclastics and 
sediments), although quaternary volcanic deposits can also 
be found in Narok and Nakuru areas. In general, volcanic 
soils have lower bulk density, higher ability of retaining 
water, and form strong associations between minerals and 
organic matter [46]. This makes the soils fertile and desir‑
able for crop cultivation. Unfortunately, the two forests 
are increasingly being exploited for cattle grazing, human 
settlement, agriculture and charcoal burning [47, 48]. In 
the Mau Forest, for instance, significant land use changes 
have occurred in less than 40 years. Specifically, 25.5% of 
forest land was lost in the period 1973–2013, with much 
of it lost to smallholder and commercial agriculture, and 
only 273,300 ha currently remain as a closed‑canopy for‑
est [49]. 

For the Aberdare forest, most of it is mostly lost to tea 
plantations, where it is estimated that 1.4% of the forest land 
is lost annually [50]. As aforementioned, forest conversion 
may lead to accumulation of metals, particularly Zn and Cu 
in the agricultural lands, primarily due to extensive agricul‑
tural practices [7]. If not properly monitored, accumulated 
metals in the agricultural lands can be transported to aquatic 

Fig. 1  Location of the study area and sites



872 Chemistry Africa (2021) 4:869–880

1 3

ecosystems through soil erosion, where they are capable of 
bioaccumulating and biomagnifying.

2.2  Soil Sampling

A total of 75 surface soil samples (0–15 cm depth) were col‑
lected in farms adjacent to Mau and Aberdare Forests. The 

sampling points were carefully selected to cover large geo‑
graphical area and different agricultural lands with varying 
agricultural techniques, and the lands sampled included tea, 
maize, wheat and mixed farms. In addition, three undis‑
turbed forest soil samples were collected from both Mau and 
Aberdare forests to act as background values in the calcula‑
tion of enrichment factors. From each study site, information 

Fig. 2  Geological map of kenya obtained from National Atlas of Kenya
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regarding the global positioning system (GPS) was recorded. 
The collected samples were put in polythene bags and taken 
to Crop Nutrition Laboratory Services Ltd, Nairobi‑Kenya for 
elemental analysis. The soils were then oven dried to remove 
moisture, grinded and passed through a < 2 mm sieve for 
homogeneity.

2.3  Sample Extraction and Analysis

The metals Fe, Mn, Cu, Zn and Ca were extracted using aqua 
regia digestion method. This was achieved by using con‑
centrated HCl and  HNO3 in an open vessel in a temperature 
controlled block according to ISO 11466 [51]. The extracted 
metals were then analyzed simultaneously using emission 
spectroscopy (ICP‑OES Perkin Elmer Inc). An elaborate qual‑
ity control procedure incorporating both internal and external 
quality control was employed. Blanks, 1 control sample and 
2 reference samples at the beginning and after every 15 sam‑
ples were run. To monitor equipment drift, initial and con‑
tinuous verification at intervals of 10 runs were used. For the 
calibration standards, the solutions were National Institute 
of Standards and Technology (NIST) traceable and obtained 
from Inorganic Ventures Company, USA. Water for dilution 
was deionised and during analysis had a conductivity of 2 µS/
cm. All acids were acquired from Sigma Aldrich. The limit 
of detection for Cu and Zn was 0.2 mg/kg, while that of Ca, 
Mn and Fe was 0.5 mg/kg. The rate of recovery of all the 
metals was above 99%. In addition, soil pH and total organic 
carbon (TOC) were also analyzed to explore any relationships 
between them and the metals. Walkley–Black chromic acid 
wet oxidation method was used to determine the available total 
organic carbon (TOC) in soils. Oxidizable matter in the soil 
was oxidized by 1 N potassium dichromate  (K2Cr2O7) solu‑
tion, and the reaction was assisted by the heat generated when 
two volumes of sulfuric acid  (H2SO4) were mixed with one 
volume of the dichromate. The dichromate was then titrated 
with ferrous sulphate, where the titer was inversely related 
to the amount of organic carbon present in the soil sample. 
Alternatively, the amount of chromic acid  (Cr3+) produced was 
determined colorimetry at 600 nm. For Soil pH, soil samples 
were mixed with deionized water in a ratio of 1:2 soil–water, 
and the pH then measured using a high impedance voltmeter 
(Inolab WTW 9430), which measures the potential between 
two electrodes on a soil suspension.

2.4  Calculating Enrichment Factors

Zn and Cu enrichment was calculated using a formula pro‑
posed by Sinex and Helz [1].

EF = (CM∕CX)sample∕ (CM∕CX)background

where CM is the content of studied element and CX is the 
content of the conservative element used for normalization 
purposes. In the first case, the concentrations of elements 
in the upper continental crust (UCC) by Wedepohl [37] 
were used as the geochemical baseline values. These were 
14.3 mg/kg, 527 mg/kg, 52 mg/kg and 3.09% and 2.95% 
for Cu, Mn, Zn, Fe and Ca respectively. These values have 
been extensively used worldwide to evaluate metal enrich‑
ment [23], including in several studies in Kenya [52, 53]. In 
the second case, same reference values of elements in the 
UCC were used, only that this time they were logarithmized. 
This is a modified formula meant to reduce variability that 
might occur when different conservative elements are used 
[8]. In the third case, local baseline values were applied, 
which were the average concentrations of elements obtained 
from forests soils: Ca = 2987.33 mg/kg, Fe = 202.80 mg/
kg, Mn = 208.67 mg/kg, Cu = 0.520 mg/kg, Zn = 4.81 mg/
kg. This was under the assumptions that forests soils were 
not enriched since there was no human interference inside 
the forests, and that all the agricultural soils were once the 
forest soils before being converted. Notably, our local geo‑
chemical baselines varied from those determined by Wede‑
pohl [37], Kabata‑Pendias and Mukherjee [54] (Fe = 4.5%, 
Mn = 437 mg/kg, Cu = 25 mg/kg and Zn = 52 mg/kg), and 
Rudnick et al. [55] (Mn = 438.59 mg/kg, Zn = 67 mg/kg, 
Cu = 28 mg/kg). As mentioned before, geochemical back‑
ground values are not uniform but they vary within a region 
and between regions [15], and deviation from local back‑
grounds was therefore expected [18]. In all the three cases, 
Fe, Mn and Ca were used as conservative elements as they 
are considered to have little anthropogenic influences, and 
are generally found at high concentrations in soils [5, 10, 
56, 57]. Five degrees of contamination were recognized on 
the basis of the enrichment factor: < 2 as minimal, 2–5 as 
moderate, 5–20 as significant, 20–40 as very high and > 40 
as extremely enriched [1].

2.5  Geoaccumulation Index

The geoaccumulation index (Igeo) was also applied to deter‑
mine the level of pollution. Igeo was calculated using the 
formular proposed by Muller [58].

where CM is the content of studied element and Bn is the 
background value. Similar to EF, UCC values and local 
baselines were both applied. A factor of 1.5 is usually intro‑
duced to reduces possible variation due to lithogenic effects 
[19]. Igeo values were classified into seven classes: Not pol‑
luted (≤ 0), slight pollution (0–1), moderate pollution (1–2), 
moderate to high pollution (2–3), high pollution (3–4), high 

Igeo = log2(CM∕1.5 × Bn)
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to very high pollution (4–5), and extreme pollution (≥ 5) 
[58].

All data was analyzed using SPSS Version 24 while maps 
were drawn using ArcMap 10.5.

3  Results

3.1  Descriptive Statistics

Results for the concentration of elements and soil pH are 
delineated in Table 1. The median concentration of Ca, Mn, 
Fe, Zn, TOC and Cu were 2190 mg/kg, 193 mg/kg, 170 mg/
kg, 7.13 mg/kg, 5.49% and 0.66 mg/kg respectively arranged 
in decreasing order. The concentrations of Ca, Fe and Mn in 
the soils was higher compared to Cu and Zn, and possibly 
originating explicitly from natural sources. This made Ca, 
Mn and Fe be considered as good conservative elements to 
be used in the calculation of enrichment factors. Ca, Cu, 
and Mn were more distributed in the North Eastern parts 
of Aberdare Forest, but Fe distribution was similar to that 
of Zn, and were found in relatively higher concentrations in 
the southern parts of Mau Forest (Fig. 3). Cu was highest 
in site 25 (4.37 mg/kg), and this was a vegetable cultivated 
land near a river, therefore there were high chances of Cu 
contamination in water. On the other hand, Zn was highest 
in site 53 (31.2 mg/kg), which was a small maize cultivated 
farm in Elburgon, and animal manure may be the probable 
reason for the relatively high Zn. Soil pH ranged from 3.78 
to 7.88, and its median was 5.51. Notably, 94.6% of the study 
sites had a pH < 7, thus most agricultural lands adjacent to 
Mau and Aberdare forests were considered to have acidic 
soils. This was attributed to high annual precipitation in 
the tropical area [59], as well as addition of nitrogen‑based 
fertilizers that have been linked to increased soil acidity in 
agricultural soils [60–62]. The concentrations of TOC were 
lower than the recommended levels in Kenyan agricultural 
soils [63], probably due to removal of organic matter in 
terms of produce (organic matter mining). 

In comparison with other studies in Kenya, the average 
Zn (8.86 mg/kg) and Cu (1.02 mg/kg) concentrations in our 
study area were lower than those recorded in Mai Mahiu and 
Juja area in Kenya by Mungai et al. [64] (Zn = 247.4 mg/kg, 

Cu = 88.59 mg/kg), and in West Pokot by Wanjala et al. [65] 
(Zn = 73.49 mg/kg, Cu = 46.91 mg/kg). This was attributed 
to longer time of exposure to the metals due to agricultural 
activities in Juja, Mai Mahiu and West Pokot. Soils from 
central part of Kenya had relatively similar Zn and Cu con‑
centrations with our study (Zn = 12.7 mg/kg, Cu = 2.734 mg/
kg) [66], while those from Kapsabet and Eldoret had even 
lower Zn and Cu concentrations that averaged to 0.87 
and 2.3 for Zn, and 0.04 and 0.34 for Cu in Kapsabet and 
Eldoret, respectively [66, 67]. However, Zn and Cu recorded 
in agricultural soils in Europe were higher [68], possibly 
due to more intensive agriculture in Europe. Nevertheless, 
Zn and Cu concentrations in our study were below the set 
guidelines by World Health Organization guidelines for 
agricultural soils (Zn = 300 mg/kg, Cu = 100 mg/kg) [69], 
and the Canadian Council of Ministers of the Environment, 
soil quality guidelines for agricultural soils (Zn = 250 mg/
kg, Cu = 63 mg/kg) [70].

To identify significant relationships between and among 
the soil variables, that is soil pH, Ca, TOC and the metals, 
Pearson’s correlation analysis was conducted. Data skew‑
ness ranged between + 2/− 2 for all the parameters (Table 1), 
and Shapiro–Wilk and Kolmogorov–Smirnov normality 
tests found that Ca, Fe, Cu, and Zn were normally distrib‑
uted, but Mn, pH and TOC were not normally distributed. 
Therefore, data was normalized through log transformation 
before correlation analysis was conducted as recommended 
by Reimann et al. [71]. As shown in Table 2, soil pH corre‑
lated strongly and positively with Ca and Cu (r = 0.866 and 
0.659 at p < 0.01 respectively), meaning that soil pH may 
have influenced Cu and Ca concentration through sorption 
and desorption reactions [72]. Mn–Fe, Fe–Zn, Mn–Cu cor‑
relations were significant but weak, to indicate that the three 
metals had some comparable characteristics.

3.2  Zn and Cu Enrichment Factors

Results for Cu and Zn enrichment using UCC concentrations 
as the background values are given in Table 3. When Mn 
was used as the conservative element, the EF values of Cu 
ranged from 0.03 to 1.10 with a mean of 0. 24. According to 
Sinex and Helz [1], this translated to all the study sites being 
classified as depleted or minimal enriched. Specifically, only 

Table 1  Descriptive statistics 
for soil pH, TOC, Ca and metal 
concentration in agricultural 
lands adjacent to Mau and 
Aberdare forests

pH Ca (mg/kg) Fe (mg/kg) Mn (mg/kg) Cu (mg/kg) Zn (mg/kg) TOC (%)

Minimum 3.78 56.0 56.5 19.5 0.20 1.08 2.51
Maximum 7.88 9530 375.0 511.0 4.37 31.20 9.67
Median 5.58 2190 170.0 193.0 0.66 7.13 5.49
MAD 0.78 1430.4 58.9 74.8 0.64 5.46 0.96
Skewness 0.38 1.45 0.76 0.78 1.46 1.11 0.32
Kurtosis − 0.18 2.54 0.17 0.64 2.95 0.73 1.11
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one study site, site 13, had an EF > 1. The site was located 
in an agricultural land close to a tarmac road, and vehicu‑
lar emission, especially particles from car brakes, could 

have contributed to the Cu enrichment [73]. Thus, based on 
enrichment classifications by Desaules [11] and Loska [7], 
98.7% of the study sites were categorized as depleted. In 

Fig. 3  Metals distribution in the agricultural lands near Mau and Aberdare forests
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comparison, Cu EF ranged from 0.23 to 8.19 with a mean 
of 1.42 when Ca was used as the conservative element, 
meaning that the average Cu EF had increased by almost a 
sixfold. The sites were categorized to vary from minimal to 
significantly enriched. A similar case was observed when 
Fe was used as the conservative element, where the mean 
enrichment for Cu increased significantly by a larger margin 
of 63‑fold in relation to Mn. Based on these results, Cu EF 
ranged from moderate to extreme enrichment. 20% of the 
sites were moderately enriched, 59% significantly enriched, 
16% highly enriched and 5% as extremely enriched.

For Zn metal, its enrichment in the agricultural soils 
ranged from 0.06 to 2.41, with a mean of 0.6 when Mn was 
used as the conservative element. This was categorized to 
range from depletion to moderate enrichment. Zn enrich‑
ment also ranged from 0.23 to 49.0 when using Ca and from 
4.47 to 182.4 when using Fe. It was apparent that average 
enrichment of Zn was 7.5 times higher when Ca was used 
and 52 times higher when Fe was used. In a similar study 
conducted in cultivated lands of Southern Poland, extremely 
high enrichment for arsenic was recorded when Ca was used 
as the conservative element. When chromium was used how‑
ever, arsenic enrichment in soils were all < 20, indicating 

significant enrichment [8]. Notably, using Fe as the con‑
servative element led to even higher Cu and Zn enrichments 
compared to using Mn and Ca. This was similar to a study by 
Abrahim and Parker [18], which showed that using Fe as a 
conservative element gave higher enrichment values for Cu, 
Zn, cadmium (Cd) and lead (Pb). In Nigeria, Cu and Zr were 
highly enriched in all sites when Fe was used as the refer‑
ence element but poorly enriched in all the locations when 
Ti was used instead [74]. Our results also agrees with a study 
by Bern et al. [9], which noted that using Fe as the conserva‑
tive elements gave 84% higher EFs than when using Al.

When concentrations of the upper continental crust were 
standardized by log transformation, very low Zn and Cu 
EFs were recorded, all < 1. The maximum recorded Cu EFs 
were 0.07, 0.015 and 0.301, while the maximum Zn EFs 
were 0.378, 0.225 and 0.806 when Mn, Ca and Fe were 
used as the conservative elements, respectively (Table 3). 
All the study sites were therefore classified as minimal or 
depleted. Mean Cu enrichment was lowest when using Ca, 
and increased by fivefold and tenfold when using Mn and Fe 
as the conservative elements, respectively. Similarly, mean 
Zn was lowest when Ca was used as the conservative ele‑
ment, and increased by fourfold and sixfold when Mn and 

Table 2  Pearson’s correlations 
between soil pH, TOC, Ca and 
heavy metals in agricultural 
lands adjacent to Mau and 
Aberdare forests

*Correlation is significant at the 0.05 level (2‑tailed)
**Correlation is significant at the 0.01 level (2‑tailed)

pH TOC Ca Fe Mn Cu Zn

pH 1 − 0.181 0.866** − 0.061 0.241* 0.659** 0.141
TOC 1 − 0.010 − 0.139 − 0.398** − 0.082 0.311**
Ca 1 0.155 0.183 0.660** 0.271*
Fe 1 − 0.235* − 0.049 0.244*
Mn 1 0.275* 0.080
Cu 1 0.028
Zn 1

Table 3  Zn and Cu enrichments using different background values and Mn, Ca and Fe as the conservative elements

a Concentration of the upper continental crust by Wedepohl [37]
b Logarithmized upper continental crust values
c Background values from Mau and Aberdare forests

Background values UCC a Log UCC b Forestc

Conservative element Min Max Mean ± Sd Min Max Mean ± Sd Min Max Mean ± Sd

Cu enrichment Cu enrichment
 Mn 0.03 1.10 0.24 ± 0.22 0.002 0.07 0.015 ± 0.014 0.281 12.0 2.58 ± 2.37
 Ca 0.23 8.19 1.42 ± 1.53 0.0004 0.015 0.0027 ± 0.003 0.640 22.9 3.95 ± 4.26
 Fe 2.54 166.7 15.3 ± 21.5 0.005 0.301 0.0275 ± 0.039 0.459 30.2 2.76 ± 3.89

Zn enrichment
 Mn 0.06 2.41 0.60 ± 0.57 0.01 0.378 0.094 ± 0.090 0.276 10.3 2.59 ± 2.45
 Ca 0.23 49.0 4.53 ± 6.94 0.001 0.225 0.021 ± 0.032 0.249 53.7 4.97 ± 7.60
 Fe 4.47 182.4 31.3 ± 27.1 0.02 0.806 0.138 ± 0.120 0.318 13.0 2.23 ± 1.93
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Fe were used, respectively. It was apparent that using stand‑
ardized background values reduced the variations by large 
margins, especially the variation caused by Fe. Our results 
are in agreement with Loska et al. [8], noting that appli‑
cation of logarithmized geochemical baselines rather than 
unlogarithmized values reduced vast differences in EFs, thus 
enabling a normal distribution of results. However, logarith‑
mized background values led to extremely low EFs, which 
may not be a true reflection of our study site.

When forest soils were used as the baseline values, Cu 
and Zn enrichments were relatively similar, regardless the 
element used as a conservative element. The mean enrich‑
ment of Cu was 2.58, 3.95 and 2.76 while mean enrichment 
factor for Zn was 2.58, 4.97 and 2.23 when Mn, Ca and 
Fe were used as the conservative elements, respectively. Cu 
enrichment ranged from 0.281 to 30.19, representing mini‑
mal/depletion to high enrichment. On the other hand, Zn 
EF ranged from 0.249 to 53.7, also representing minimal/
depletion to extreme enrichment. Application of local or 
study‑specific background values significantly reduced the 
variation caused by the use of different conservative ele‑
ments. Cu registered highest enrichment when Fe was used, 
a value of 30.2, while Zn reported highest enrichment when 
Ca was used as the conservative element.

3.3  Zn and Cu Igeo Index

Results from geoaccumulation index are given in Table 4. 
When UCC values were used, the geoaccumulation index 
for Zn and Cu in all the study sites was < 0, and therefore 
all the sites were classified as not polluted. However, when 
local baselines were used, Cu Igeo ranged from − 1.96 to 
2.49 while Zn Igeo ranged from − 2.74 to 2.11. Accordingly, 
53.3% of the study sites were categorized as not polluted 
with Cu, 18.7% as slightly polluted, 26.7% as moderately 
polluted and only 1.3% as moderately to highly polluted with 
Cu. On the other hand, 50.7% of the sites were categorized 
as not polluted with Zn, 32% as slightly polluted, 16% as 
moderately polluted and 1.3% as moderately to highly pol‑
luted with Zn. Although the 1.5 factor was meant to reduce 
variation caused by lithogenic effects, we still recorded dif‑
ferent results when two geochemical baselines were used. 
This was expected, especially because application of differ‑
ent geochemical baselines leads to varying geoaccumulation 
index results [18, 19].

3.4  Comparing EF and Igeo Indices

Here, only results obtained when local baselines were 
applied were compared. Cu Igeo correlated positively with 
Cu EF when Mn and Fe were used as the conservative ele‑
ments; r = 0.574 and 0.643 at p < 0.01, respectively. Similar 
results were found for Zn, where Zn Igeo correlated posi‑
tively with Zn EF when Mn and Fe were used as the con‑
servative elements; r = 0.682 and 0.728 at p < 0.01, respec‑
tively. Cu and Zn Igeo correlation with Cu and Zn EF when 
using Ca was low and insignificant. These results imply 
that Ca was not a good conservative element as the results 
did not correlate with Igeo values. Notably, Zn and Cu Igeo 
had stronger relationship with Cu and Zn EF when Fe was 
used as the conservative element compared to Mn. Among 
the three conservative elements, it may be suggested that 
application of Fe might result to more accurate Cu and Zn 
enrichments. However, more research on this is needed to 
make a solid conclusion.

As seen from this study, deciding on which geochemical 
background values to use is very important in the applica‑
tion of enrichment factor and geoaccumulation index. Our 
results indicate that application of local baselines may be 
the best approach, and this finding has been echoed by other 
studies as well [18]. Using the average concentrations of the 
upper continental crust disregards natural geochemical vari‑
ation, and as noted by past researchers, background values 
of elements in soils are subject to variations [14, 15]. Local 
background values may be derived from regions suspected 
to have minimal human interference, such as deep soil hori‑
zons, mountain soils and forest soils [56, 75]. When done 
correctly, more precise enrichment factors in a region can 
be determined. However, care should also be taken, as in 
some cases, metal contamination has been recorded in such 
places, mainly due to atmospheric deposition and downward 
leaching of metals [22, 76].

4  Conclusion

Current study revealed that there was significant variation 
in Zn and Cu enrichments when Fe, Mn and Ca were used 
as conservative elements. Notably, use of Fe gave higher 
enrichments compared to Mn and Ca. Similarly, using 
different geochemical background values also resulted to 

Table 4  Zn and Cu 
geoaccumulation index (Igeo) 
using UCC values and Local 
geochemical baselines

GB geochemical baseline, UCC  upper continental crust concentrations by Wedepohl [37]

Applied GB Cu geoaccumulation index Zn geoaccumulation index

Min Max Mean ± SD Min Max Mean ± SD

UCC baselines − 6.74 − 2.30 − 4.79 ± 1.1 − 6.17 − 1.32 − 3.60 ± 1.2
Local basslines − 1.96 2.49 − 0.01 ± 1.1 − 2.74 2.11 − 0.17 ± 1.2
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varying Zn and Cu enrichments. Concentrations of upper 
continental crust gave highest enrichments while logarith‑
mized background values gave the lowest EFs. However, 
application of study‑specific or local background values was 
recommended, as they resulted to less variation in Cu and 
Zn enrichment regardless of the conservative element used. 
Based on average EF values when local baselines were used, 
Cu enrichment in the agricultural soils ranged from mini‑
mal to high enrichment, while Zn ranged from minimal to 
extreme enrichment. On the other hand, geoaccumulation 
index concluded that the soils ranged from not polluted to 
highly polluted with Cu and Zn. When Igeo and EF results 
were compared, a stronger relationship was observed when 
Fe was used as the conservative element. This study was 
able to demonstrate the major flaws of using enrichment 
factors, and noted that use of local geochemical baselines 
may be a more realistic approach towards the correct use of 
enrichment factor and the geoaccumulation index.
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