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Abstract
In this study, we established a QSAR model for studying the antiviral activity of substituted thienopyrimidines derivatives 
as HCV NS3/4A protease inhibitors. We engaged in random analysis to split the datasets. Statistically, a robust model was 
generated with  R2,  Q2, and  R2

pred values of 0.738, 0.637, and 0.692 respectively. The dependability of these models was 
verified by appropriate testing limits, and this model also met the Golbraikh and Tropsha standard model conditions. The 
data derived from the established model was employed in suggesting some promising inhibitors of HCV NS3/4A protease 
and the designed ligand were found to be excellently fixed when anchored with the target and it has the least binding energy 
of − 197.8 kcal/mol compared to the binding energy of reference ligand (Voxilaprevir) which is − 159.4 kcal/mol. Our 
analysis indicates that the designed molecules possess the required drug-likeness, bioavailability, synthetic accessibility, 
and ADMET features.
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1 Introduction

Hepatitis C virus (HCV) pathogen remains a serious health 
issue with a projected 71 million people chronically infected 
worldwide [1]. HCV is a typical reason for cirrhosis of the 
liver and liver transplantation in many countries, which is 
a growing public health concern [2, 3]. In 2015, the World 
Health Organization (WHO) reported that 71 million people 
were infected with HCV, accounting for 1% of the global 
population [4, 5].

HCV is a member of the Flaviviridae family of viruses, 
comprised of a positive single-strand ribonucleic acid 
(RNA) that codes for a polyprotein. This polyprotein is 
cleaved into structural and non-structural (NS) proteins by 
both host and viral proteolytic proteins. There are 7 HCV 
genotypes (GTs) and 67 subtypes that have been reported 
[6, 7]. The geographical distribution of the HCV genotype 
varies depending on where you live. HCV GT1 is perhaps 

the most familiar form of HCV in the entire globe, with 
a geographically diverse distribution and a higher per-
centage (46%) of HCV cases worldwide. HCV GT3 is the 
second most common genotype, accounting for 30% of all 
tract infections (GT). Infections with HCV GT2 and GT4 
accounted for 9–13% for most infections, with a narrow dis-
tribution pattern [8, 9].

While vaccines exist for some hepatitis viruses, none exist 
for HCV [2]. Standard interferon (IFN)-free therapeutic regi-
mens also with ribavirin have become widely accepted as 
a template for antiviral therapy in recent years [10]. How-
ever, thyroid deficiency, neurological disorders, stomach 
problems, and other unpleasant reactions are some of the 
potential side effects. In recent years, direct-acting antiviral 
agents have become the mainstay of treatment, with HCV 
NS protease being the primary focus for designing anti-viral 
inhibitors [2]. As per Liu et al., ‘‘In 2011, telaprevir and 
boceprevir were recognized as first-generation direct-act-
ing antiviral agents (DAAs) used as HCV NS3/4A protease 
inhibitors, initiating progress in the treatment of HCV,” 
[10–12]. When compared to the conventional HCV infec-
tion treatment regimen, DAAs have greatly improved toler-
ability and efficacy [12]. Like antibiotics, the development 
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of resistance mechanisms promotes the quest for new com-
pounds or the modification of current ones [2].

Pyrimidines are 6-membered heterocyclic aromatic ben-
zene and pyridine-like molecules with nitrogens at positions 
1 and 3. Heterocycles with pyrimidine substituents are of 
particular importance since they encompass a diverse range 
of natural and synthetic products including many that have 
beneficial bioactivities and medicinal applications. The pres-
ence of pyrimidine components in thymine, cytosine, and 
uracil, the essential components of DNA and RNA nucleic 
acids, may explain their therapeutic utility [13].

In drug discovery, virtual screening (VS) has proven as 
an efficient computational technique for testing various data-
bases of organic molecules for specific hits with improved 
characteristics that could be scientifically verified. VS is 
commonly used to accelerate the discovery of new organic 
molecules by reducing the number of options to verify scien-
tifically before justifying their choice. Typically, such meth-
ods are used to find targets that are much more essential to 
obtain successful clinical prospects [14, 15].

The initial phases of the drug development process, which is 
costly in terms of resources, time, and energy, are preceded by 
guesswork. Nonetheless, by using computer-aided techniques, 
the process can be achieved quickly and cost-effectively [16]. 
The ligand-based strategy has outperformed the random screen-
ing of established chemical libraries [17]. It provides a theoreti-
cal method for predicting the behavior of known and hypotheti-
cal drug molecules. Therese et al. looked at ligand-based and 
3D-QSAR methods for discovering special and efficient NS5B 
inhibitors [18]. In this paper, statistical measures were employed 
to form a dependable QSAR model, which was then used to 
design substituted thienopyrimidines derivatives with improved 
efficacy as NS3/4A protease inhibitors, as well as to examine 
the binding energy of modeled molecules in reference to Voxil-
aprevir (a third-generation DAA) via docking studies. Also, the 
new compounds were screened for drug-likeness, Pharmacoki-
netic and toxicity properties.

2  Materials and Methods

2.1  Dataset

The dataset used was substituted thienopyrimidines deriva-
tives, which were collected from a dataset repository (https:// 
pubch em. ncbi. nlm. nih. gov/). The datasets are presented in 
Supplementary material Table S1.

2.1.1  Descriptors Computed

PaDEL-Descriptors software were used to compute the 
molecular descriptors (structural properties) for each mol-
ecule [19].

2.1.2  Dataset Division

The entire dataset was divided into 80% model building set 
and 20% validation set [20].

2.2  Model Generation

To construct the QSAR model, Genetic Function Approxi-
mation (GFA) was used. GFA is a technique that uses the 
evolution method to produce models. GFA provides differ-
ent templates for the end-user, as with most extrapolation 
approaches [21].

2.3  Assessment of the generated model

The following mathematical equations were used to test the 
defined model;

q2
CV

 Is the cross-validated correlation coefficient, yobs,ypred 
and y denotes the observed, predicted, and mean data point 
of observed activity respectively [20].

r2
pred

 is the external explained variance, the observed and 
predicted responses for the validation set molecules are rep-
resented by yobs(Test) and the mean observed biological 
response of the model building set is represented by yTraining 
[20].

cR2
p
 is the random  R2 value, R, R2 , and R

2

r
 denote correla-

tion coefficient, coefficient of determination, and the average 
of the randomized coefficient of determination respectively 
[20, 22, 23].

2.4  Applicability Domain (AD)

The following mathematical equations were employed to 
establish the QSAR model’s AD.
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hi is the actual reference space of the molecule, h∗ the 
threshold value, X represents the row-matrix descriptor of 
the query item, n is the total number of query objects, q 
is the total number of descriptors in the model, Y is the 
observed response value (model building or testing data-
sets), Y  is the estimated value and SDR is the standardized 
residual [24, 25].

2.5  Screening of the New Chemical Entities

To ascertain the dependability of these new chemical enti-
ties, they were screened by estimation of the drug-likeness 
and pharmacokinetics properties using online tools Swis-
sADME (www. swiss adme. ch/) and PreADMET (https:// 
pread met. bmdrc. kr/).

2.6  Docking Studies

2.6.1  Preparation of Ligands

ChemBio Ultra 12.0 was used to draw 2D ligand structures 
[26, 27]. The energy of the query compounds was reduced 
using Spartan 14’s density functional theory (DFT), which 
was then inputted into Molegro Virtual Docker software 
[28].

2.6.2  Preparation of the Target Receptor

The model of HCV NS3/4a protease was accessed from 
the Protein Data Bank, with the structural PDB ID 4A92, 
the resolution 2.73 Å, the R-value free 0.231, the residue 
count 1278, and unique protein chains 1. The co-crystallized 
molecule was removed, hydrogen atoms were added, minor 
residue structures were removed, and incomplete side chains 
were substituted with the aid of discovery studio. The struc-
ture is saved in PDB format once more for use in the Mole-
gro Virtual Docker tools.

2.6.3  Docking Procedure and Evaluation

The HCV NS3/4a protease enzyme’s possible ligand-binding 
cavity was estimated, and the binding chamber was located 
within a confined domain of X: 0.13, Y: 11.21, Z: − 35.34 
with a radius of 15 and a grid resolution of 0.30 Å. The tem-
plate, designed and reference molecules prepared according 
to Sect. 2.6.1 were then introduced into the Molegro Vir-
tual Docker version 6.0 and its bond versatility was posi-
tioned along with the amino acid residue, which was also 

SDR =
Y − Y

�

∑n

i=1

�

Y−Y
�2

n

positioned within the confined domain. With a power of 0.90 
and an acceptance of 1.10, the versatility was positioned. For 
the many clusters poses with 100.00 energy consequence 
measurements, the RMSD cutoff was set to 2.00. The dock-
ing algorithm was set up with a 1500 iteration threshold and 
a simplex conversion magnitude of 50. For the 10 poses, 
the docking method was evaluated at least 50 times, and the 
optimal poses were selected depending on defined scoring 
tasks [28].

3  Results and Discussion

A QSAR technique for studying the structure–activity rela-
tionship of 71 substituted thienopyrimidines compounds 
as active hepatitis-C virus NS3/4a protease blockers 
was applied in the current study and the QSAR model is 
described as:

Ntrain = 56 , R2
train

= 0.738 , K = 7, Q2
LOO(train)

= 0.637 , 
cR2

p
= 0.679,

Ntest = 15 , r2
test

= 0.692 , Outliers > ± 3.0 = 1, Influential 
molecules > h* = 4.

Where Ntrain and Ntest t are the data quantities in the model 
building and testing datasets, R2

train
 and r2

test
 are the internal 

and external measurement parameters, Q2
LOO

 is the squared 
cross-measurement parameters, and K represents predictor 
parameters (descriptors) present in the models. The pub-
cem CID, chemical structure, experimental  pEC50, predicted 
 pEC50, and the residual of the dataset used in this research 
are reported in supplementary file Table S1.

The established model explicates 74% and estimates 
69% of the variances of the substituted thienopyrimidines 
derivatives with antiviral activity against the target recep-
tor (see Table 1). The model parameters defined in Table 1 
follow the OECD’s requirements for confirming a QSAR 
model [17, 24]. The internal evaluation of the model yielded 
 R2 and  Q2 values of 0.738 and 0.637, respectively. The  R2 
and  Q2 for the model’s internal evaluation have been deter-
mined to be 0.738 and 0.637, respectively. It shows that 
the models accurately inferred the data when regressed 
and that the model can predict the fitted building set for 
the model, as the model correctly predicted roughly 69% of 
the dataset, exceeding the necessary limit of 60%. [24]. The 
y-randomization check shows that the model’s random  R2 
 (cR2

p = 0.679) is significantly higher than the fundamental 
expectation of 0.50, indicating that it is not the product of 

pEC50 = −14.05027 + 191.46988VE2_Dzm

− 0.22843VE3_Dzp + 0.13222SM1_Dzs

+ 7.87486 SpMin2_Bhv − 0.02488ZMIC1

+ 0.42968 MDEN − 22 + 42.812 JGI3
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pure chance [16, 22, 23]. Table 2 lists the descriptors used 
in the model and their descriptions.

The model AD was defined by the square area in Fig. 1. 
The model cautioning leverage is defined as  h* (0.43) bound-
ary, and the standardized residual of the models is defined 
as SDR. The results show that 93% of the molecules studied 
were within the AD of the model, while 1.4% represented 
the Outliers, which is compound 10 in Table S1 as shown 
in Fig. 1 with an SDR of 4.4, and 5.6% of the studied mol-
ecules made the influential molecule which is compound 1, 

3, 15 and 28 in Table S1 as shown in Fig. 1 with leverage 
values of 0.75, 0.53, 0.44, and 0.45 respectively, which are 
greater than cautioning leverage (i.e. 0.75, 0.53, 0.44, and 
0.45 >  h* = 0.43). In conclusion, the proposed models have 
a lot of potentials and are very effective. As a result, it can 
be used to improve the activities of any of the compounds 
under consideration.

Figure 2 presented a graph of predicted against observed 
response for the entire dataset and it shows that there 
is a strong correlation between the models observed and 

Table 1  Model statistical parameters and scores

a = 22; b = 17

Symbol Name Threshold value Model value Comments Source

R2 Coefficient of determination ≥ 0.6 0.738 Passed a
Q2 Cross-validation coefficient > 0.5 0.637 Passed a
R2

ext
Coefficient of determination for external test set ≥ 0.6 0.692 Passed a

cR2

p
y-randomization test value > 0.5 0.679 Passed b

N
test set

Minimum number of external test set ≥ 5 15 Passed a
P(95%) Confidence interval at 95% confidence level < 0.05 0.005 Passed a

Table 2  Description of the descriptor used in the model

S/N Descriptor Description Class

1 VE2_Dzm Average coefficient sum of the last eigenvector from Barysz matrix / weighted by mass 2D
2 VE3_Dzp Logarithmic coefficient sum of the last eigenvector from Barysz matrix / weighted by polarizabilities 2D
3 SM1_Dzs Spectral moment of order 1 from Barysz matrix / weighted by I-state 2D
4 SpMin2_Bhv Smallest absolute eigenvalue of Burden modified matrix–n 2/weighted by relative van der Waals volumes 2D
5 ZMIC1 Z-modified information content index (neighborhood symmetry of 1-order) 2D
6 MDEN-22 Molecular distance edge between all secondary nitroqens 2D
7 JGI3 Mean topological charge index of order 3 2D

Fig. 1  The model applicable 
domain
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expected activity figures as well as distribution of the models 
residual along the line standardized residual equal zero in 
Fig. 3. As a result of these findings, the models were found 
to have high internal and external statistical capacity, as well 
as being structurally bias-free. As a result, they can be used 
to predict known molecules that aren’t active if the molecule 
is within the AD of the models.

3.1  New Molecule Proposed and Activity Estimated

Molecule 67 in Table S1 (see Fig. 4) was used as a stand-
ard to define the molecule based on the established and 
evaluated QSAR model. Since it was carefully selected 

from Fig. 1, identifying the dataset as more active, low 
SDR, and discovered within the current model’s AD, Mol-
ecule 67 was used as a basis for creating new molecules. 
Using the initially proven QSAR model, the response of 
the precursor compound, newly developed molecules, and 
Voxilaprevir was estimated. According to the findings, all 
modified versions and Voxilaprevir have a higher  pEC50 
value than the prototype (see Table 3). D3 also has the 
highest activity across them, much more than Voxilaprevir, 
as shown in Table 3. Table 3 displays the template struc-
ture, newly modified molecules, and licensed molecule 
(Voxilaprevir), along with their predicted response and 
Leverages. The leveraging results were rational and lower 
than the leveraging cut of point  (h* = 0.43), meaning the 

Fig. 2  Plot of the model 
predicted against experimental 
anti-hepatitis C activity values
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Fig. 3  Plot of standardized 
residual against predicted  pEC50 
values for the entire dataset
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modified molecules, and Voxilaprevir, passed the test and 
were within the model’s application limits.

3.2  Docking Results and Breakdown

The highest predicted  pEC50 value of 8.553 was found in 
molecule D3, which was verified by a molecular dock-
ing analysis using Molegro Virtual Docker version 6.0. 
The results of the molecular docking study were stated in 
Table 4. The findings suggest that the designed molecule 
D3 which is bold in Table 4 has better scores compared to 
the reference molecule as well as the template molecule. 
Discovery Studio software was used for virtual evaluation 
which shed more light on the interaction of molecule 67, 
D3, and R with the target receptor (HCV NS3/4a protease 
with PDB ID: 4A92). The virtual image of molecules 67, 
D3, and R is presented in Figs. 5, 6, and 7 respectively, 
while the detailed analysis of the interaction is reported in 
Table 5. Figure 5 shows that ASP454, GLN460, THR287, 
THR295, CYS431, VAL456, and MET415 residues of 
the selected macromolecule are implicated in the bonding 
with the template molecule. Figure 6 shows that HIS293, 
SER294, GLN460, GLU291, ASP296, THR295, CYS431, 
and VAL456 are the residues of the selected macromol-
ecule are implicated in the bonding with a designed mol-
ecule, while Fig. 7 shows that GLN434, THR433, THR295, 
ARG393, ASP296, CYS431, and PRO230 are the residues 
of the selected macromolecule are implicated in the bonding 
with reference molecule (Voxilaprevir). The main residues 
ASP, GLN, THR, and CYS are involved in the interaction 

with all of the docked molecules, according to the docking 
results shown in Table 5. This indicates that these residues 
are crucial in inhibiting HCV NS3/4a protease. When com-
pared to the reference molecule, molecule D3 has a higher 
degree of interaction with the target receptor.

3.3  Prediction of Drug‑Likeness 
and Pharmacokinetic Parameters

To ascertain the dependability of these new chemical enti-
ties are feasible drugs, the drug-like and pharmacokinetic 
features (ADMET) were assessed with Voxilaprevir as the 
standard. The online tool SwissADME was first used to esti-
mate the drug-likeness features as reported in Table 6, and 
the PreADMET package was implemented to estimate the 
ADMET features mentioned in Table 7. The key criterion 
utilized during drug candidates at the preliminary stages of 
the design process is drug-likeness features [29]. This tech-
nique is also defined as the process of correlating physico-
chemical characteristics of a molecule with the biopharma-
ceutical feature of the molecule in a human body, especially 
its effect on oral bioavailability [28]. The concept of five 
by Lipinski is one of the most common and useful direc-
tions at the early clinical phase of drug production, which 
guess that the molecule is presumed to be poorly absorbed 
if it violates more than two of these conditions (MW.˂500, 
HBD ≤ 5, HBA ≤ 10, Log p ≤ 5 and TPSA˂140 Å2) [29]. The 
targeted molecules are termed to pass on the basis of Lipin-
ski’s conditions since none breaches more than two, and so 
can be categorized as drug-like molecules. Furthermore, an 
assessment using the ABS requirements was also carried 
out, in which the template and all the designed molecules 
had 0.55 as the value obtained, while the reference molecule 
had a lower value [28]. This condition was established on the 
molecule’s probability value to have an optimal permeability 
and bioavailability outline, where 0.55 shows the total com-
pliance of the Lipinski concept of five and bioavailability 
value of the rat is 55%, which is a parameter value greater 
than 10%. The designated molecules were also evaluated on 
a level between 1 (very easy to synthesize) to 10 (very tough 
and complicated to synthesize) for their synthetic accessi-
bility [28]. The outcome of this research revealed that the 
entire molecules considered have synthetic accessibility 
in the range of 3.54 – 3.80, and hence, easy to synthesize 
except the reference molecule with synthetic accessibility 
of 8.83 (see Table 6).

Utilizing web-based SwissADME and preADET tools, 
the drug-likeness and ADMET features of identified mole-
cules and reference molecule were analyzed and presented in 
Tables 6 and 7 respectively. The values of BBB penetration 
offer an understanding of whether or not a substance will 
move through the blood–brain barrier (BBB). A molecule 
with a BBB score greater than 2.0 is believed to be extremely 

N

N

S

NHNN

N
Fig. 4  2-methyl-N-[(E)-1-pyrazin-2-ylethylideneamino]-5,6,7,8-tet-
rahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine (Compound 67, 
see Table 1)
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Table 3  The structure, estimated activity and Leverages of the template, newly designed molecules, and reference molecule (Voxilaprevir)

Molecule Structure Estimated  pEC50 Leverages

67 6.356 0.059

D1 6.558 0.216

D2 6.502 0.487

D3 8.553 0.230

D4 6.721 0.298

D5 6.553 0.286

D6 6.553 0.234
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permeable to the CNS (Central Nervous System), a molecule 
with a BBB score within the range 2.0–0.1 is assumed to be 
moderate permeability to CNS, and a score < 0.1 is consid-
ered as poor permeability to CNS [30]. The outcome of this 
research revealed that molecules D3 and R have high CNS 
permeability and that molecule 67, D1, D2, D4, D5, and D6 
have moderate CNS permeability and none has poor CNS 
permeability.

As a reliable in vitro model to estimate oral drug permea-
bility, Caco-2 cell absorption is recommended. If the Caco-2 
score is < 4, the molecule is poorly permeable, for moderate 
permeability the score is within the range 4–70, and 70 and 
above reflect high permeability [30]. The outcome of this 
research revealed that the entire molecules considered have 
mild cell absorption toward Caco-2 cells.

The HIA statistics is the measure of the permeability 
assessed through the total excretion and bioavailability pro-
portion. For poorly absorbed substances, the HIA score is 

around 0 to 20%, moderately absorbed substances are in the 
range of 20–70%, and for the well-absorbed substances is 
70% above [31]. The outcome of this research revealed that 
the entire molecules considered have very good HIA scores.

The maximum tolerated dose (MRDT) provides an esti-
mate of the toxic dose threshold of chemicals in humans. For 
a given compound, a MRTD of less than or equal to 0.477 
log(mg/kg/day) is consider low, and high if significantly 
larger than 0.477 log(mg/kg/day) [28, 30]. In this study, we 
observed 67, D1, D2, D5, and D6 are highly toxic, while D3, 
D4, and R have low toxicity.

4  Conclusion

The obtained statistically validated QSAR models offered 
rationales to describe the antiviral activities of the mol-
ecules studied. The models are statistically robust, with  R2 

R Reference Molecule, which is the third generation, approved direct-acting antiviral agents (Voxilaprevir)
67 Template molecule
D Designed molecules

Table 3  (continued)

Molecule Structure Estimated  pEC50 Leverages

R 7.897 0.413

Table 4  Molecular Docking 
results

The bold value signifies the most promising compound
R Reference Molecule, which is third generation, approved direct-acting antiviral agents (Voxilaprevir)
67 Template molecule
D Designed molecules

Designated MolDock score Rerank score interaction energy E–H bond

67 − 117.158 − 93.8842 − 118.299 − 1.59217
D1 − 117.121 − 91.8699 − 126.674 − 7.8548
D2 − 116.383 − 97.5983 − 120.645 − 5.27844
D3 − 196.310 − 135.744 − 197.846 − 8.40309
D4 − 126.824 − 105.145 − 136.453 − 4.6329
D5 − 111.136 − 86.335 − 115.727 − 5.90267
D6 − 119.707 − 91.3567 − 126.338 − 2.08325
R − 158.744 − 98.192 − 159.365 − 4.65803
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values of 0.738 and 0.692 for internal and external vali-
dation, respectively, and met the conditions for an effec-
tive QSAR model recommended by numerous groups. 
The binding affinity (− 197.846) of this newly discovered 
molecule docked into the binding pocket of the crystal 
structure of Hepatitis C Virus NS3/4A protease (PDB ID: 
4A92) were observed to be more significant than that of 
molecule 67 (− 118.299) in the datasets as well as Voxil-
aprevir which is -159.365. Our analysis indicates that the 

designed molecules possess the required drug-likeness and 
ADMET properties, and bind Hepatitis C Virus NS3/4A 
protease protein at the main active site effectively. Besides, 
the pharmacokinetic estimation of ADMET properties has 
shown that the identified molecules are possible biologi-
cally active molecules with specific scaffolds, and could 
have the potential to inhibit Hepatitis C Virus NS3/4A 
protease.

Fig. 5  A is the 3D virtual image of template molecule in the binding pocket of HCV NS3/4a protease; B is the 2D view of interaction of the 
template molecule with HCV NS3/4a protease

Fig. 6  A is the 3D virtual image of D3 molecule in the binding pocket of HCV NS3/4a protease; B is the 2D view of interaction of the D3 mol-
ecule with HCV NS3/4a protease
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Fig. 7  A is the 3D virtual image of reference molecule (Voxilaprevir) in the binding pocket of HCV NS3/4a protease; B is the 2D view of inter-
action of the reference molecule (Voxilaprevir) with HCV NS3/4a protease

Table 5  Docking results of template molecule, designed molecule with the highest activity and Voxilaprevir

Molecules from 
Table 4

Binding Energy 
kCal/mol

Residues interacting with ligand Types of interaction Bond length (Å)

67 − 118.299 ASP454, GLN460 Conventional hydrogen bond 2.50, 2.34
ASP454 Attractive charge 4.24
ASP454 Pi-Cation 3.81
THR287 Pi-Anion 4.49
THR295 Pi-Donor hydrogen bond 3.83
CYS431 Alkyl 4.71
VAL456, MET415 Pi- Alkyl 5.05, 4.83

D3 − 197.846 HIS293, SER294, GLN460, GLU291 Conventional hydrogen bond 2.33, 2.17, 2.74, 2.60
ASP296 Attractive charge 5.06
THR295 Unfavorable donor-donor 2.44
THR295 Pi-Donor hydrogen bond 3.83
CYS431 Pi-Sulfur 5.56
CYS431 Alkyl 5.08
VAL456 Pi-Alkyl 4.58

R − 159.365 GLN434, THR433, THR295 Conventional hydrogen bond 3.57, 3.02, 3.13, 3.59
ARG393 Carbon hydrogen bond 3.52
ASP296 Halogen (fluorine) 3.32
CYS431, PRO230 Alkyl 3.65, 4.06, 4.08
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