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Abstract
Concentrations of organochlorine pesticides (OCPs) residues in six different popularly consumed evaporated milk samples 
available in Nigeria (coded A, B, C, D, E and F) were analysed. This was done in order to determine the extent of exposure 
of consumers to OCPs through regular consumption of the milk samples. The OCPs content of the milk samples, obtained 
using liquid–liquid extraction (LLE) technique, were qualitatively and quantitatively analyzed using Gas Chromatography-
Mass Spectrometry (GC–MS). Eighteen OCPs congeners detected included α-HCH, β-HCH, γ-HCH, δ-HCH, Heptachlor, 
Heptachlor epoxide, Aldrin, Dieldrin, Endosulfan I, Endosulfan II, Endosulfan sulphate, p,p′-DDD, p,p′-DDE, p,p′-DDT, 
Endrin, Endrin aldehyde, Endrin ketone and Methoxychlor at levels ranging from total OCPs concentrations of 21.632 µg/
mL in B to 39.010 µg/mL in C. Most of the milk samples had various OCPs contents above the stipulated WHO/FAO aver-
age daily intake (ADI) threshold. The highest cumulative HRI and HR value for non-carcinogenic and carcinogenic health 
risks for both adults and children were found in sample C suggesting that long-term non-carcinogenic health problems could 
emanate from the unguarded consumption of this particular milk product over a long period of time.
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1  Introduction

Consumable milk is one of the main forms of animal protein 
often obtained from animals such as buffalo, cow and goat. 
Milk production is a distinctive feature of the female ani-
mals and human being because they possess the udder and 
the breast, respectively which contains the mammary gland 
[1]. Milk is highly consumed by human beings at all stages 

of life because it serves as a reliable source of energy, fat, 
minerals, vitamins and proteins [2].

A good number of evaporated milk products are available 
in Nigeria markets with the raw milk coming from the dairy 
farm. The primary source of such milk products (the cows) 
are often allowed to graze over a wide expanse of land such 
as the farm lands and the forest since open grazing is more 
economical. More often than not, these cows have direct 
contact with agricultural products and sometimes feed on 
farm produce during such open grazing. Beyond this, the 
cows are fed from streams and rivers which are sometimes 
not too distant from the grazing region.

Between 1948 and 1949, synthesized chemicals were 
of great relevance starting with the use of dichlorodiphe-
nyltrichloroethane (DDT) for malaria control and hexa-
chlorocyclohexane (HCH) for locust control. Dichlorodi-
phenyltrichloroethane was effective for malaria control in 
the 1940s. It showed a decisive role in the eradication of 
malaria from Europe and the United States. Within a short 
time, DDT got a unique position by saving millions of lives 
and by preventing disease outbreaks much more than any 
other man-made chemicals in history [3]. A huge success 
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was recorded in the use of these organochlorine pesticides 
(OCPs) up to 1980 when suggestions were made for con-
trolled usage of OCPs because of the serious health risks 
such as cancers, endocrine disruption, immune system dis-
order, reproductive problems among other chronic diseases 
that could emanate from their persistence or high resistance 
under ambient environmental conditions [4]. Increase in 
agricultural productivity and the affordable price of these 
pesticides were the major considerations of farmers. Hence, 
the drastic increase in the application of these substances to 
agricultural produce all over the developing world despite 
the public health risks and outcries that have led to their 
being banned in developed countries [5]. Unfortunately, less 
than one percent of the applied pesticides in agriculture usu-
ally reach the target pest while the remainder is stored in the 
various compartments of the environment [6]. For example, 
upon application, most part of the pesticides volatilize from 
the soil are transported to non-target components [7], pen-
etrate into the soil through percolation-related phenomena, 
get to aquatic bodies through run-off [8, 9], and aerial fall-
out especially as a result of wet precipitation [7, 8].

The main entry points of pesticides into biotic factors 
include contaminated feed, water and udder. Quite a num-
ber of studies have confirmed the presence of these OCPs 
in water bodies in various countries of the world such as 
Nigeria [10–13], Ghana [14], South Africa [15] and China 
[16]. Pesticides find their way into meat and milk as a result 
of open grazing of animals on contaminated feedstock prior 
to milking and thus may enter the upper echelon of the food 
chain where they bioaccumulate as a result of their lipo-
philicity [17]. Contamination of milk with organochlorines 
such as Hexachlorocyclohexane (HCH) isomers, Dichlo-
rodiphenyltrichloroethane (DDT) and isomers, Heptachlor, 
Chlordane, Aldrin, Dieldrin and so on (Fig. 1) may cause 
neurodevelopment delay [18], reproductive defects, preterm 
and immune toxicity [19, 20].

Evidently, awareness about the levels, health impacts 
and reduction or total removal of xenobiotics such as OCPs 
from human consumables is both a matter of necessity and 
urgency. A number of methods have been employed for the 
quantitative detection of OCPs in water and other consuma-
bles [9, 21]. The bulk of these methods are chromatographic 
techniques coupled to suitable detectors such as the elec-
tron capture, thermal conductivity and mass spectrometry 
[21–23]. Selectivity and specificity for analytes [24], ability 
to characterize such analytes [25], availability and cost of 
instrumentation are the major factors considered for select-
ing a suitable chromatographic technique for the quantifica-
tion and identification of OCPs in various matrices. These 
factors, coupled with the high vapour pressure of OCPs have 
made the use of Gas Chromatography (GC) coupled to Mass 

Spectrometry (GC–MS) a highly preferred technique for 
OCPs determination [26]. Although, the more expensive GC 
coupled to a tandem Mass Spectrophotometer (GC–MS-MS) 
is considered more sensitive [23], meticulous sample prepa-
ration processes involving LLE technique followed by clean-
up that reduces matrix effect prior to quantification helps to 
mitigate the lower sensitivity of the GC–MS [27, 28] and 
bridge the gap in effectiveness between the liquid–liquid 
extraction and microextraction.

The present study was aimed at investigating the con-
tent of OCPs in six popularly consumed evaporated milk 
products in Nigeria. This was done to provide reliable sci-
entific data bothering on the possible carcinogenic and non-
carcinogenic health risks associated with their long-term 
consumption. The novelty of this work is that most of the 
previous studies were based on evaluation of OCPs in ran-
domly selected milk brands. However, a preliminary survey 
based on respondents randomly interviewed prior to sample 
collection to determine the consumers’ choice as regards 
commonly consumed evaporated milk were used for the 
choice of the samples used for this study.

2 � Methodology

2.1 � Sample Collection

The response of 210 respondents randomly interviewed prior 
to sample collection to determine the consumers’ choice as 
regards commonly consumed evaporated milk samples in 
Nigeria informed the selection of the six types of evaporated 
milk samples eventually used for this study. The milk sam-
ples (coded A–F) were purchased from sales outlets within 
Ile-Ife environment and kept in a refrigerator prior to the 
extraction to achieve a storage temperature of about 4οC.

2.2 � Reagents Used and Their Sources

Reagents such as ethanol, acetone, dichloromethane (DCM) 
and sodium chloride used for this procedure were supplied 
by GFS Chemicals, Columbus. Silica gel was supplied by 
Labtech chemicals while the anhydrous sodium sulphate 
was supplied by Merc, Germany. They were all of analyti-
cal grade.

2.3 � Extraction of OCP Residues from Samples

Five millilitres (5 mL) of each sample was transferred into 
500 mL volumetric flask and thoroughly mixed with about 
100 mL distilled water. One spatula of sodium chloride was 
then added to make OCPs less soluble in the aqueous layer 
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Fig. 1   Structure of common organochlorine pesticides
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and more readily available for DCM extraction. The mix-
ture was diluted up to 500 mL in the flask and subjected 
to thorough mixing. Each component of the solvent extrac-
tion setup was washed and rinsed properly with the solvent 
mixture (1:2:2 of Acetone-Dichloromethane-Ethanol). A 
500 mL separating funnel was used to carry out the LLE of 
the diluted milk sample in which case half of the separating 
funnel was filled with the diluted sample and extracted with 
about 20 mL DCM in triplicates. This process was carried 
out for the other half of the diluted milk sample. The extracts 
were transferred into an amber coloured vial and stored at 
4 °C in readiness for clean-up.

2.4 � Clean‑Up Procedure

The clean-up stage is essential to remove or reduce all forms 
of impurities which might be associated with the eluate. A 
column was packed with glass wool followed by the addi-
tion of activated silica gel earlier prepared in a slurry form. 
Anhydrous sodium sulphate was then added to the top of 
the silica gel in order to absorb the water in the sample 
and the solvent. Dichloromethane was first introduced into 
the packed column to prevent any interference by organic 
contaminants. The recovered eluate was left to dry com-
pletely under ambient air and then reconstituted with 1 mL 
of n-hexane in the amber coloured vials prior to GC–MS 
determination.

2.5 � Instrumental Analysis, Quality Assurance 
and Quality Control

The qualitative identification and quantification of the OCPs 
was carried out using the GC–MS at CTX-ION Analytical 
Limited, Ikeja, Lagos, Nigeria. The efficiency of this ana-
lytical procedure was validated by recovery analysis since 

Table 1   Percentage recovery of OCPs

OCPs Amount used for 
spiking (µg/mL)

Amount recovered 
from spiking (µg/
mL)

Percentage 
recovery 
(%R)

Heptachlor 25.62 23.04 89.92
Endrin 19.72 18.23 92.45
Endosulfan 21.57 20.78 96.34
4,4′-DDT 21.81 20.78 95.28

Table 2   Concentrations (µg/mL) of OCPs in analysed evaporated milk samples

OCPs EU MRL ADI (µg/g/day) Samples

A B C D E F

Aldrin 0.05 0.0001 0.414 1.102 2.468 0.520 0.832 1.026
Dieldrin 0.02 0.0001 1.882 4.584 2.860 3.812 5.742 8.330
Endosulfan I 0.10 0.006 0.758 0.620 1.486 4.230 4.028 1.920
Endosulfan II 0.10 0.006 1.536 1.100 1.420 1.084 0.432 1.786
Endosulfan sulphate 0.006 1.054 BDL BDL 0.028 0.042 0.302
Endrin 0.01 0.0002 0.176 0.170 0.164 0.000 0.174 0.000
Endrin aldehyde 0.01 0.0002 5.188 4.120 4.486 10.412 3.114 5.150
Endrin ketone 0.0002 1.358 0.842 10.020 7.604 1.766 2.240
Heptachlor 0.02 0.0001 7.832 5.228 7.100 2.750 5.064 3.626
Heptachlor epoxide 0.02 0.00013 BDL BDL BDL 0.346 BDL 0.374
Methoxychlor 0.01 0.1 2.100 0.950 2.836 1.082 3.414 1.506
p,p′- DDD 0.05 0.01 4.718 1.326 0.632 0.220 0.532 0.444
p,p′- DDE 0.05 0.01 0.278 0.170 0.732 0.382 0.106 0.196
p,p′- DDT 0.05 0.01 0.306 0.066 0.434 0.336 0.220 0.214
α- HCH 0.05 0.005 0.750 0.344 1.970 0.854 1.142 0.944
β- HCH 0.05 0.005 0.358 0.282 0.774 0.342 0.860 1.044
γ- HCH 0.05 0.005 0.312 0.292 0.884 0.346 0.192 0.464
δ- HCH 0.05 0.005 1.270 0.436 0.744 0.664 1.134 0.732
Total 30.290 21.632 39.010 35.012 28.794 30.298
Mean ± SD 1.683 ± 2.057 1.272 ± 1.618 2.295 ± 2.600 1.945 ± 2.814 1.600 ± 1.793 1.683 ± 2.062
Variance 4.231 2.618 6.760 7.920 3.215 4.251
Coefficient of Vari-

ation
1.22222 1.27201 1.1329 1.44679 1.12063 1.22519
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a certified reference material was unavailable. A standard 
solution of mixture of Heptachlor, Endrin, Endosulfan and 
p,p′-DDT was prepared and 10 mL of this solution was used 
to spike the measured value of milk sample (5 mL) while the 
equivalent milk volume (5 mL) was kept unspiked. These 
two milk samples were taken through the extraction, clean-
up and reconstitution procedures as enumerated earlier. The 
samples were subjected to GC–MS analysis and percentage 
recovery (% R) was evaluated using Eq. 1.

where A and B are the amounts of OCPs recovered from 
spiked and unspiked samples respectively; and C represents 
the amount of OCPs used for spiking. In order to achieve 
reliable results, the quality assurance of the analytical pro-
cedures was given special attention. All materials for sam-
ple preparation were thoroughly washed and rinsed with 
acetone. Blank determination was equally carried out. All 
reagents used were of analytical grade.

(1)% R =
(A − B)

C
× 100

2.6 � Health Risk Assessment

Carrying out the health risk assessment is important to assess 
the health risks associated with dietary exposure of consum-
ers to pesticides content of the milk samples. This was done 
by investigating the carcinogenic and non-carcinogenic health 
risks through the Estimated Average Daily Intake (EADI), 
Cancer Benchmark Concentrations (CBC) and the Health 
Risk Index (HRI). Estimated Average Daily Intake of the pes-
ticides was used to obtain the long term health risk associated 
with contaminated food consumption, HRI was used for the 
assessment of the carcinogenic and non-carcinogenic health 
risk with an assumption of body weights of 60 kg and 16.7 kg 
for adults and children, respectively [21]. The carcinogenic 
effect of each of the OCPs was obtained from the Hazard Ratio 
(HR) calculated using CBC.

Estimated Average Daily Intake was determined by multiply-
ing the Residual pesticide concentrations of each OCP (µg/g) 
by the food consumption rate (kg/day) and dividing by body 

Fig. 2   OCP contents of evaporated milk sample
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weight. Calculations were performed for adults and children 
who were considered to have average weight of 60 kg and 
16.7 kg, respectively at a consumption rate of 0.00983 kg/day 
of milk [29].

where F = food consumption data and Cr is the concentration 
of the residue in the food sample. Samples with HRI > 1 are 
classified toxic and unsafe for consumption [29].

where ADI is an estimate (with uncertainty spanning per-
haps an order of magnitude) of a daily exposure to the 
human population (including sensitive subgroups) that is 
likely to be without an appreciable risk of deleterious effects 
during a lifetime [30].

The Cancer Benchmark Concentration (CBC) was calculated 
using the formula of [31] stated as:

 where RL is the maximum acceptable risk level (1 × 10–6), 
OSF is the Oral Slope Factor (mg/kg/day), Bw is the body 
weight (kg) and CR is the consumption rate (kg/day). The 
CBC for carcinogenic effect is derived by setting the risk to 
one in one million due to lifetime exposure. The OSFs for 
the pesticides were obtained from [32]. The Hazard Ratio 
(HR) was determined to evaluate the carcinogenic potency 
of each sample with respect to each OCP using Eq. 5.

3 � Results and Discussion

The reliability of the analytical procedures adopted was 
tested in terms of percentage recovery (%R) and the values 
obtained are as shown in Table 1 With percentage recovery 
values of 89.92% of Hepachlor to 96.34% of Endosulfan, 
the analytical procedure was believed to be efficient to 
produce reliable results since the %R values of the OCPs 
fell within the [33] acceptable range of 70–110%. 

The concentrations of organochlorine pesticides (OCPs) 
in the six (6) different milk samples obtained using Gas 
Chromatography–Mass Spectrometry (GC–MS) are sum-
marized in Table 2.

(2)EADI =
F × Cr

Mean body weight

(3)HRI =
EADI

ADI

(4)CBC =
(RL∕OSF) × Bw

CR

(5)HR =
EADI

CBC

The results obtained from the study indicated that three 
major classes of OCPs (Hexachlorocyclohexane, HCH; 
Dichlorodiphenylethanes; and Cyclodienes) were detected. 
The highest total concentrations of OCPs (39.010 µg/mL) 
were recorded in sample C in which OCPs levels fell within 
the range of below detection limit (BDL) of Endosulfan sul-
phate and Heptachlor epoxide to 10.020 µg/mL of Endrin 
ketone, while the lowest total concentrations of OCPs 
(21.632 µg/mL) were found in Sample B with individual 
OCPs concentrations also ranging from BDL of Endosulfan 
sulphate and Heptachlor epoxide to 5.228 µg/mL of Hep-
tachlor. The level of OCPs in the milk samples have been 
pictorially demonstrated in Fig. 2.

Aldrin levels in the samples ranged from 0.414 µg/mL 
in sample A to 2.468 µg/mL in sample C. The International 
Agency for Research and Cancer (IARC) classified Aldrin 
as a Class 2B Carcinogen [34]. All the milk samples con-
tained levels of Aldrin exceeding the designated ADI value 
(0.0001 µg/g/day) for Aldrin in food [35]. Dieldrin occured 
at levels that ranged between 1.882 µg/mL in sample A to 
8.330 µg/mL in Sample F. Aldrin is readily converted to 
Dieldrin under ambient environmental conditions and in the 
body system [9]. Thus, the levels of Dieldrin detected in 
the samples might be as a result degradation of Aldrin to 
Dieldrin. Also, all the milk samples contained amounts of 
Dieldrin exceeding the designated ADI value (0.0001 µg/g/
day) for Dieldrin in food [35]. Hence, consumption of these 
milk samples should not be too regular. The maximum 
amount of Dieldrin and Aldrin reported in this study are 
much lower than the values of 10.4 mg/kg and 59.9 mg/
kg, respectively, reported by [36] for the leaf samples of 
cabbage from selected agricultural area in northern Nigeria 
but higher than the values reported by Adeleye et al. [21] 
for Amaranths (0.205 and 0.509 mg/kg, respectively) and 
Fluted pumpkin (1.465 and 0.391 mg/kg, respectively) leaf 
samples obtained from south-western Nigeria.

Endosulfan is a mixture of two stereoisomers, 
ɑ-Endosulfan (Endosulfan I) and β-Endosulfan (Endosul-
fan II) in ratio 70:30, respectively with the former being 
the most toxic [37]. Endosulfan I showed levels ranging 
from 0.620 µg/mL in sample B to 4.230 µg/mL in sample 
D. The recommended ADI value for Endosulfan I in foods is 
0.006 µg/g/day [38]. In some studies in animals, Endosulfan 
induced alterations in the testes and reduced the amount and 
quality of sperm [39]. It is equally implicated in the reduc-
tion of the level of testosterone in the blood [40]. Animal 
studies have shown that swallowing Endosulfan in contami-
nated food over long periods affects mainly the kidneys [41]. 
The milk samples investigated contained levels of Endosul-
fan I exceeding the designated ADI value (0.006 µg/g/day) 
for Endosulfan in food [38]. Compared to the level of Endo-
sulfan I in cocoa bean samples (ND—12.11 µg/g) collected 
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by Oyekunle et  al. [9] from south-western Nigeria, the 
Endosulfan I content in sample D can be considered much 
lower. Similarly, Endosulfan II showed levels with a range of 
0.432 µg/mL in sample E to 1.786 µg/mL in sample F. These 
values were equally beyond the recommended ADI value for 
Endosulfan in food but much lower than the values obtained 
by Oyekunle et al. [9] from cocoa beans (ND—49.29 µg/g) 
collected from Ondo State in South-western Nigeria. Peo-
ple exposed to high levels of Endosulfan in contaminated 
food or exposed during field spraying suffered tremors and 
seizures while some died [41]. Endosulfan sulfate is a prod-
uct of oxidation and the major metabolite of Endosulfan. 
Compared to the stereoisomers of endosulfan, endosulfan 
sulphate is the most persistent. Endosulfan sulphate showed 
levels with a range of BDL in sample B and C to 1.056 µg/
mL in sample A. This Endosulfan sulfate level is much 
higher than the ADI value (0.006 µg/g/day) for Endosulfan 
sulphate in foods but much lower than the values reported 
by Oyekunle et al. [9] for cocoa beans (0.48–48.04 µg/g) 
collected from Osun State, Nigeria. Tremors and seizures, 
including systemic effects which may be secondary to the 
seizures have been reported for acute Endosulfan exposure 
[41].

It has been established that exposure to Endrin can cause 
various harmful effects including headache, dizziness, nerv-
ousness, nausea, vomiting, convulsions, severe CNS injury 
or damage and death [42]. In the milk samples, levels of 
Endrin ranged from BDL in samples D and F to 0.176 µg/
mL in sample A. The assigned threshold value for daily 
intake for Endrin (ADI value) is 0.0002 µg/g/day [35]. Lev-
els beyond the designated ADI values were observed for 
samples A, B, C and E. The level of Endrin in sample A 
was very close to that obtained from green algae (0.18 µg/
mL) of a riverine ecosystem of South-South part of Nigeria 
in a study carried out by [43]. Levels of Endrin aldehyde 
ranged between 3.114 µg/mL in sample E to 10.412 µg/mL 
in sample D. The stipulated ADI value for Endrin aldehyde 
residues in food is 0.0002 µg/g/day [44]. This ADI value is 
much lower than the Endrin aldehyde content of the milk 
samples. Also, the Endrin aldehyde content of the milk sam-
ples is much higher than the values reported by [43] for 
sediment (0.0005 µg/g), green algae (0.6 µg/mL), daphnid 
(0.74 µg/mL) and fresh water fish (1.06 µg/mL) of a riverine 
area of Edo state, South-south, Nigeria. Furthermore, Endrin 
and Endrin aldehyde were found to be 0.045 and 0.208 mg/
kg, respectively in kolanuts obtained from Osun state, Nige-
ria [45]. The values reported in this study were much higher 
than the maximum values obtained for these two OCPs in 
the kolanut sample. Adeleye et al. [21] reported values of 
0.351 and 3.491 mg/kg for Endrin and Endrin aldehyde, 
respectively in fluted pumpkin leaves sourced from South-
western Nigeria. Endrin ketone showed levels ranging from 
0.842 µg/mL in sample B to 10.020 µg/mL in sample C (the Ta
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highest OCP concentration observed). It is observed to have 
a proportional relationship to Endrin and Endrin aldehyde. 
The stipulated ADI value for Endrin ketone residues in food 
is 0.0002 µg/g/day [44]. A study on rodents suggests that 
exposure to Endrin aldehyde or Endrin ketone may cause 
liver disease [46]. All the milk samples (A, B, C, D, E and F) 
contained levels of Endrin ketone exceeding the designated 
ADI value in food as well as the level of Endrin ketone in 
the gill (78.8 ng/g) and muscle (11.2 ng/g) of fish (Poma-
dasys commersonnil) sourced by Olisah et al. [47] from the 
Swartkops estuary in South Africa.

Heptachlor levels in the samples ranged between 
2.750 µg/mL in Sample D and 7.832 µg/mL in sample A. 
Acute inhalation exposure of Heptachlor by humans has 
been associated with nervous system effects in a few case 
studies [48]. Also, gastrointestinal effects such as nau-
sea and vomiting have been reported to occur following 
accidental ingestion of Heptachlor [49]. All the samples 
showed elevated levels of Heptachlor much higher than the 
ADI value (0.0001 µg/g/day) for Heptachlor in food [35] 
and also higher than the heptachlor residue level in maize 
(0.005 mg/kg) and cowpea (0.01 mg/kg) obtained from 
Ghana in a study carried out by Akoto et al. [50]. Hepta-
chlor epoxide showed levels ranging from BDL in Sam-
ple A, B, C and E to 0.374 µg/mL in sample F. The ADI 
value for heptachlor epoxide in food is 0.000013 µg/g/day 
[35]. Some studies in animals suggest that young animals 
exposed during gestation and infancy may be very sensi-
tive to Heptachlor and Heptachlor epoxide. Changes in 
nervous system and immune function were found in these 
animals [51]. Levels below the designated ADI values 
were observed for four of the samples while samples D 
and F had values higher than the stipulated ADI value.

Methoxychlor levels in the samples ranged between 
0.950 µg/mL in Sample B to 3.414 µg/mL in Sample E. 
The ADI value for Methoxychlor is 0.1 µg/g/day [35]. 
Studies in animals show that exposure to Methoxychlor 
adversely affects the ovaries, uterus, and mating cycle in 
females, and the testes and prostate in males. Fertility is 
decreased in both female and male animals [52]. All the 
samples showed elevated levels of Methoxychlor which 
are much higher than the expected designated ADI value. 
DDD levels in the samples ranged from 0.220 µg/mL in 
Sample D to 4.718 µg/mL in Sample E. These concentra-
tions are much higher than the ADI value (0.01 µg/g/day) 
for DDD [53]. Tests in animals also suggest that short-
term exposure to DDT and metabolites in food may have 
a harmful effect on reproduction. In addition, products 
of DDT metabolism such as DDD and DDE can cause 
harmful effects on the adrenal gland [52]. DDE level in 
the samples ranged between 0.170 µg/mL in Sample B 
to 0.732 µg/mL in Sample C. The ADI value for DDE 
is 0.01 µg/g/day [53]. A study in humans showed that Ta
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increasing concentrations of p,p′-DDE in human breast 
milk were associated with reductions in the duration of 
lactation. An additional study in humans found that as the 
DDE levels in the blood of pregnant women increased, 
the chances of having a pre-term baby also increased [52]. 
DDT levels in the samples ranged between 0.214 µg/mL 
in Sample F to 0.434 µg/mL in Sample C. International 
Agency for Research on Cancer (IARC) classified DDT 
as a Class 2B (possibly carcinogenic to humans) residue 
[34]. The ADI value for DDT is 0.01 µg/g/day [53]. People 
who swallowed large amounts of DDT became excitable 
and had tremors and seizures; they also experienced sweat-
ing, headache, nausea, vomiting, and dizziness [52]. All 
the samples showed elevated levels of DDD, DDE and 
DDT which were much higher than the expected desig-
nated ADI value. These results are comparable with the 
levels of DDD (0.128 mg/kg), DDE (0.053 mg/kg) and 
DDT (0.247 mg/kg) obtained by Olutona and Livingstone 
[54] in a study carried out on the OCPs content of some 
selected malt drinks in Nigeria where the concentration of 
the DDE exceeded the ADI value.

α- HCH levels in the samples ranged between 0.344 µg/
mL in Sample B to 1.970 µg/mL in Sample C. The ADI 
value for α- HCH is 0.005 µg/g/day [55]. Long-term oral 
administration of α-HCH, β-HCH, γ-HCH, or technical-
grade HCH to laboratory rodents has been reported to result 
in liver cancer [56]. β-HCH levels in the samples ranged 
between 0.282 µg/mL in Sample B to 1.044 µg/mL in Sam-
ple E. The ADI value for β- HCH is 0.005 µg/g/day [55]. 
All the samples had levels exceeding the stipulated ADI 
value for α-HCH andβ-HCH. γ- HCH levels in the samples 
ranged between 0.192 µg/mL in Sample E to 0.884 µg/mL 
in Sample C. The ADI value for γ-HCH is 0.005 µg/g/day 
[55]. In humans, breathing toxic amounts of γ-HCH and/
or α-, β-, and δ-HCH can result in dizziness, headaches, 
and possible changes in the levels of sex hormones in the 
blood [56]. All the samples (except sample F) had levels 
exceeding the stipulated ADI value for γ- HCH.δ- HCH lev-
els in the samples ranged between 0.436 µg/mL in sample 
B to 1.270 µg/mL in sample A. The ADI value for δ- HCH 
is 0.005 µg/g/day [55]. All the samples had levels exceed-
ing the stipulated ADI value. These results are similar to 
the concentrations of α-HCH (0.10–3.10 µg/g), β-HCH 
(0.32–1.87  µg/g), γ-HCH(0.30–1.3  µg/g) and δ- HCH 
(0.06–3.37 µg/g) detected by Oyekunle et al. [9] in cocoa 
beans obtained from Ondo State, South-western Nigeria, 
based on the fact that they are all greater than their respec-
tive ADI values. The concentrations of the OCPs were above 
the respective European Union set maximum residue lim-
its (EU MRLs) for different classes of OCPs. The presence 
of these pesticides in these evaporated milk samples is an 
indication that farmers in Nigeria still use these pesticides 
for crop production despite their prohibition. These crops Ta
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are capable of contaminating the udder of cows as well as 
their water and feed during open grazing. Coupled with this, 
unsafe and careless farming practice could as well lead to 
direct contamination of the milk samples with the OCPs 
while milking. The results obtained in this study are con-
sistent with the values earlier reported for OCPs in various 
samples where the OCP contents are greater than the EU/
MRLs standards. For instance, Adeleye et al. [21] reported 
that the OCPs in amaranths and fluted pumpkin obtained 
in South-western Nigeria exceeded the EU MRLs. In the 
same vein, Olutona and Livingstone [54] reported that the 
OCPs (except γ- HCH) content of five different malt drinks 
are greater than the EU MRLs. Similar trend was observed 
by Akan et al. [36] when the OCPs contents of spinach, let-
tuce, cabbage, onions and tomatoes were compared to that 
of EU MRLs.

The non-carcinogenic health risks of the OCPs in the 
evaporated milk samples for adults, as seen in Table 3, 
revealed that Aldrin, Dieldrin, Endrin, Endrin aldehyde, 
Endrin ketone, Heptachlor and all the HCHs have HRI > 1 
in sample A. Similar trend was observed in sample B (except 
for β-HCH and γ-HCH having HRI < 1) and C. In sample 
D, Aldrin, Dieldrin, Endosulfan I, Endrin aldehyde, Endrin 
ketone, Heptachlor, Heptachlor epoxide and all the HCH 
have HRI > 1. Except for Endrin and Heptachlor epoxide, 
sample E showed a similar trend to D. Aldrin, Dieldrin, 
Endrin aldehyde, Endrin ketone, Heptachlor, Heptachlor 
epoxide and the HCH OCPs had HRI > 1 in sample F. Con-
sequently, it can be inferred that in all the milk samples, 
Aldrin, Dieldrin, Endrin aldehyde, Endrin ketone and Hepta-
chlor had HRI > 1 which implies that the adult consumers of 
these evaporated milk samples might be prone to long-term 
potential non-carcinogenic health risk from these OCPs. 
However, all the milk samples showed no potential non-
carcinogenic health risk in adults with respect to Endosulfan 
sulphate, Methoxychlor, p,p′-DDD, p,p′-DDE and p,p′-DDT.

In children, the milk samples showed potential non-
carcinogenic health risk with respect to Aldin, Dieldrin, 
Endrin aldehyde, Endrin ketone and Heptachlor. No poten-
tial non-carcinogenic health risk was obtained for children 
with respect to Methoxychlor, p,p′-DDE and p,p′-DDT. This 
results (as seen on Table 4) is similar to the values reported 
by Adeleye et al. [21] for fluted pumpkin where Aldrin, Diel-
drin, Endrin aldehyde and Heptachlor were found to equally 
have HRI values > 1 in the children category. The highest 
non-carcinogenic health risk index for children (490.32) was 
obtained from Dieldrin found in sample F while the lowest 
(0.03885) was found in p,p′-DDT obtained from sample B.

As seen in Table 5, all the samples showed carcinogenic 
potencies in adult consumers with respect to Aldrin, Diel-
drin, Heptachlor, α-HCH, β-HCH and δ-HCH. Also, they 
all showed no carcinogenic potency with respect to DDE 
and DDT. The highest carcinogenic potency value was Ta
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observed for sample E as 246.667 (Dieldrin) while the low-
est was obtained in sample D as 0.142 (DDD). In children, 
the milk samples showed potential carcinogenic health risk 
in terms of Aldrin, Dieldrin, Heptachlor, p,p′-DDD, p,p′-
DDE and the HCHs while none of the samples showed no 
carcinogenic potency in terms of any of the OCPs as seen 
in Table 6. Just like what obtains in the non-carcinogenic 
health risk assessment, the highest carcinogenic potency in 
children (4617.816) was obtained from Dieldrin in sample 
F while the lowest (0.776) was detected in p,p′-DDT from 
sample B. This result implies that children are at greater 
risk of carcinogenic exposure from the consumption of these 
milk samples compared to adults. Hence, need to control 
the rate of consumption by children. Furthermore, samples 
F and B having very high and low cumulative health risk 
indices, respectively confirmed the respective high cumula-
tive OCPs load in both samples (as seen in Table 1) and this 
further suggests that the continuous consumption of these 
milk samples could put consumers at greater risk of both 
carcinogenic and non-carcinogenic health risks compared to 
other milk samples. Precisely, the risk of exposure to cancer 
from the consumption of these products is about four times 
higher than the set benchmark HRI (HRI = 1) by the Euro-
pean Commission Regulation (EC) in 1999 [33]. 

The correlation coefficients of the OCPs in Table 7 indi-
cated that out of 153 possible pairs of different congeners, 
17 pairs (11.1%) were very strongly positively correlated, 18 
pairs (11.8%) were moderately positively correlated while 
60 (39.2%) were weakly positively correlated. Also, 2 pairs 
(1.3%) were strongly negatively correlated, 9 pairs (5.9%) 
were moderately negatively correlated while 47 (30.7) were 
weakly negatively correlated. It could therefore be inferred 
that OCPs in the evaporated milk drinks were contributed by 
different factors. The r value of 0.80 obtained from α-HCH 
and γ-HCH pair suggests that both OCP residues are basi-
cally from the same source. The same deductions can also 
be made for the γ-HCH & p,p′-DDE (r = 0.91) and endrin 
ketone and p,p′-DDE (r = 0.91) pairs.

4 � Conclusion

In this study, varying concentrations of OCPs were observed 
in the evaporated milk samples with the highest OCP load 
was detected in sample E. The study concluded that the high-
est estimated cumulative carcinogenic and non-carcinogenic 
potencies of the OCPs in children were found in samples F 
and C, respectively, and this could lead to serious health 
issues with constant consumption of these milk samples. In 
adults, the highest cumulative non-carcinogenic and carcino-
genic health risks were found to come from sample C. Con-
sidering the consumption rate of these products in Nigeria, 

the regular consumption of these products (especially sam-
ple C) could possibly pose a long term non-carcinogenic 
and carcinogenic health risks to regular consumers due to 
the possible accumulation of the studied OCPs in the body.
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