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Abstract
Time consumed and expenses in discovering and synthesizing new hypothetical drugs with improved biological activity have 
been a major challenge toward the treatment of multi-drug resistance strain Mycobacterium tuberculosis (TB). To solve the 
above problem, Quantitative structure activity relationship (QSAR) is a recent approach developed to discover a novel drug 
with a better biological against M. Tuberculosis. A validated QSAR model developed in this study to predict the biological 
activities of some anti-tubercular compounds and to design new hypothetical drugs is influenced with the molecular descrip-
tors; MATS2s, nHBint3, maxtsC, TDB9u, RDF90i and RDF110s. Molecular docking studies was as well carried for all the 
studied compounds in order to show the interactions and binding modes between the ligand and the receptor (DNA gyrase). 
The lead compound (compound 41) with higher anti-tubercular activity was observed with prominent binding affinity of 
− 21.9 kcal/mol compared to the recommended drugs; Isoniazid (− 14.6 kcal/mol). Therefore, compound 41 served as a 
template structure to designed compounds with more efficient activities. Among the compounds designed; compounds 41p 
was observed with better anti-tubercular activities with more prominent binding affinities of − 24.3 kcal/mol. The findings 
in the research will be valued to pharmacology, medicinal chemists and pharmacist to design and synthesis a novel drug can-
didate against the tuberculosis. Moreover, in vitro and in vivo test could be carried out to validate the computational results.
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1  Introduction

Multi-drug resistance strain Mycobacterium tuberculosis 
(TB) has pose a challenge toward the treatment of tubercu-
losis in the global community. World Health Organization in 
(2017), has reported 9.0 million people infected with tuber-
culosis, 360,000 HIV patient whom were leaving with tuber-
culosis, death of 230,000 children and death of 1.6 million 
people worldwide [1]. Some of the notable commercial sold 
drugs administered to people infected with tuberculosis are 
isoniazide (INH), pyrazinamide (PZA), rifampicin (RMP) 
and para-amino salicylic acid (PAS) [2]. The emergence of 
multi-drug resistance strain of M. tuberculosis toward the 

aforementioned drugs has led to advances in searching for 
new and better approach that is precise and fast in devel-
oping a novel compound with improved biological activity 
against M. tuberculosis [2, 3].

For the time being, QSAR is a theoretical approach 
with widely used computational method in predicting and 
designing new hypothetical drug candidate [2]. Multi-vari-
ant QSAR model is expressed mathematically to relates the 
biological activity of each compound with its respective 
molecular structures. Meanwhile, some prominent research-
ers [4–7] have successful established QSAR models to show 
the relationship between some anti-M. tuberculosis inhibi-
tor’s such as; chalcone, quinolone, 7-methyijuglone, pyr-
role and their respective biological activities using QSAR 
approach. However, QSAR alongside with molecular dock-
ing simulation study have not been fully established to relate 
the structures and activities of the inhibitory compounds 
as well as the interaction mode with the receptor (DNA 
gyrase). Hence, this research was aimed to build a robust 
QSAR model with high predictability, carry out a molecular 
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docking simulation and to design new potent hypothetical 
compounds with better anti-tubercular activities against 
M-tuberculosis.

2 � Materials and Methods

2.1 � Data Collection

Fifty (50) molecules comprising the derivatives of 1,2,4-Tri-
azole reported as anti-mycobacterium tuberculosis that were 
used in this study were obtained from the literature [3]. The 
biological activities of these compounds and the list of the 
compounds were presented in Table 1.

2.2 � Molecular Optimization

Spartan 14 software version 1.1.4 [https​://down.cd/10055​/
buy-WaveF​uncti​on-Spart​an-14-1.1.4-downl​oad] was used to 
optimize all the inhibitory compounds in order for the com-
pounds to attain stable conformation at a minimal energy. 
The strain energy from the molecules were removed by 
employing Molecular Mechanics Force Field (MMFF) and 
complete optimization was achieved with the aid of Density 
Functional Theory (DFT) by utilizing the (B3LYP/6-31G*) 
basic set [5].

2.3 � Generation of Molecular Descriptor

A descriptor is a mathematical logic that defines the proper-
ties of a molecule in a numeral term based on the connec-
tion between the biological activity of each molecule and 
its molecular structure. Descriptors for all the inhibitory 
molecules was calculated with the aid of PaDEL descriptor 
software version 2.20 [http://www.yapcw​soft.com/dd/padel​
descr​iptor​/] and a total of 1879 molecular descriptors were 
generated.

2.4 � Normalization and Pretreatment of Data

For each of the variable (descriptor) to have the same chance 
at the inception so as to influence the QSAR model, the 
descriptors values generated from PaDEL descriptor soft-
ware version 2.20 were subjected to normalization using 
Eq. 1 [2, 8].

where dmax and dmin are the maximum and minimum value 
for each descriptors column of D. d1 is the descriptor value 
for each of the molecule. Immediately after the data have 

(1)D =
d1 − dmin

dmax − dmin

been normalized, the normalized data were then subjected 
to pretreatment [http://teqip​.jdvu.ac.in/QSAR_Tools​/]. so as 
to remove redundant descriptors.

2.5 � Generation Training and Test Set

The whole compounds that made up the data set was divided 
into training and test set in proportion of 70 to 30% using 
Kennard and Stone’s algorithm which was incorporated in 
DTC lab software [http://teqip​.jdvu.ac.in/QSAR_Tools​/]. 
The development of the QSAR model and internal validation 
test were performed on the training set while the confirma-
tion of the developed model was performed on test set.

2.6 � Building of QSAR Models and Internal 
Validation Test

The QSAR models were built by adopting the Genetic Func-
tion Approximation (GFA) technique incorporated in the 
Material Studio software version 8.0 [https​://www.3dsbi​
ovia.com/produ​cts/colla​borat​ive-scien​ce/biovi​a-mater​ials-
studi​o/] to select the optimum descriptors for the training 
set. Meanwhile, Multi-linear regression Approach (MLR) 
was used as a modelling tool to develop the multi-variant 
equations by placing the activity data in the last column of 
Microsoft Excel 2013 spread sheet which was later imported 
into the Material Studio software version 8.0 to generate 
the QSAR model. The internal validation test to affirm the 
built model is robust and also have a high predictability was 
also performed in Material Studio software version 8.0 and 
reported.

2.7 � Evaluation of Leverage Values (Applicability 
Domain)

Influential and outlier molecule present in the both the train-
ing and test set were determined by employing the applica-
bility domain approach. The leverage hi approach as defined 
in Eq. 2 was used define applicability domain space ± 3 for 
outlier molecule [9, 10].

where Mi represent the matrix of i for the training set. M 
represent the n × d descriptor matrix for the training set and 
MT is the transpose of the training set (M). MT

i
 represent 

the transpose matrix Mi. Meanwhile, the warning leverage 
h* defined in Eq. 3 is the limit boundary to check for an 
influential molecule.

(2)hi = Mi

(

MTM
)−1

MT
i

(3)h∗ = 3
(d + 1)

N
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Table 1   Molecular structures of inhibitory compounds and their derivatives as anti-tubercular agents

S/N Molecules Experimental 
activity (pBA)

Predicted 
activity 
(pBA)

Residual Leverage

1 1-allyl-3-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 7.9432 7.9218 0.0214 0.46159
2a 1-allyl-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 7.4535 7.6812 − 0.2277 0.1122
3 1-allyl-3-methyl-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 7.9759 7.8435 0.1324 0.0475
4 1-allyl-3-ethyl-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 7.9759 7.1969 − 0.221 0.3967
5a 3,5-dibromo-1-(prop-2-yn-1-yl)-1H-1,2,4-triazole 7.9294 7.9274 0.002 0.3679
6a 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-(tert-butyl)-1H-1,2,4-

triazol-3-yl)thio)methyl)-1H-1,2,3-triazole
5.4543 5.6835 − 0.2292 0.3325

7 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-(4-methoxyphenyl)-1H-
1,2,4-triazol-3-yl)thio)methyl)-1H-1,2,3-triazole

4.7441 4.7913 − 0.0472 0.0739

8 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-(4-chlorophenyl)-1H-
1,2,4-triazol-3-yl)thio)methyl)-1H-1,2,3-triazole

6.1674 6.2865 − 0.1191 0.0855

9a 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1H-1,2,4-triazol-5-yl)thio)
methyl)-1H-1,2,3-triazole

6.3456 6.4919 − 0.1463 0.0565

10 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-3-methyl-1H-1,2,4-triazol-
5-yl)thio)methyl)-1H-1,2,3-triazole

7.4134 7.1414 0.272 0.0903

11 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-3-(tert-butyl)-1H-1,2,4-
triazol-5-yl)thio)methyl)-1H-1,2,3-triazole

5.7441 6.0728 − 0.3287 0.0799

12 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-3-(4-nitrophenyl)-1H-
1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3-triazole

5.9258 5.6249 0.3009 0.0689

13a 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-3-(4-methoxyphenyl)-1H-
1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3-triazole

5.6754 5.47 0.2054 0.0645

14 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-3-(4-chlorophenyl)-1H-
1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3-triazole

6.3793 6.3309 0.0484 0.1437

15 3-(allylthio)-1H-1,2,4-triazole 6.1667 6.5298 − 0.3631 0.0313
16a 5-(allylthio)-3-methyl-1H-1,2,4-triazole 5.8765 6.8631 − 0.9866 0.0488
17 5-(allylthio)-3-(tert-butyl)-1H-1,2,4-triazole 6.4171 6.122 0.2951 0.3531
18 5-(allylthio)-3-(4-nitrophenyl)-1H-1,2,4-triazole 5.9413 6.01177 − 0.07047 0.2506
19 3-(allylthio)-5-(4-methoxyphenyl)-1H-1,2,4-triazole 7.6397 7.5921 0.0476 0.4036
20 3-(allylthio)-5-(4-chlorophenyl)-1H-1,2,4-triazole 7.6899 7.8302 − 0.1403 0.2527
21 1-allyl-3-(allylthio)-1H-1,2,4-triazole 6.3981 6.196 0.2021 0.2443
22 1-allyl-3-(allylthio)-5-methyl-1H-1,2,4-triazole 5.8131 6.4174 − 0.6043 0.399
23 1-allyl-3,5-dimethyl-1H-1,2,4-triazole 6.1213 5.9031 0.2182 0.2461
24 3,5-dibromo-1-(2-methylallyl)-1H-1,2,4-triazole 5.4406 5.2561 0.1845 0.0449
25 1-benzyl-4-((3,5-dibromo-1H-1,2,4-triazol-1-yl)methyl)-1H-1,2,3-triazole 4.9074 4.8361 0.0713 0.43062
26a 1-allyl-3-(allylthio)-5-(4-chlorophenyl)-1H-1,2,4-triazole 7.0123 6.8337 0.1786 0.2386
27 1-allyl-5-(allylthio)-1H-1,2,4-triazole 6.5267 6.5716 − 0.0449 0.2085
28 1-allyl-5-(allylthio)-3-methyl-1H-1,2,4-triazole 5.7405 6.0828 − 0.3423 0.0858
29a 1-allyl-5-(allylthio)-3-(tert-butyl)-1H-1,2,4-triazole 5.6533 5.4662 0.8171 0.0623
30a 1-allyl-5-(allylthio)-3-(4-nitrophenyl)-1H-1,2,4-triazole 6.1923 6.0292 0.1631 0.1091
31 1-allyl-5-(allylthio)-3-(4-methoxyphenyl)-1H-1,2,4-triazole 7.3233 7.4961 − 0.1728 0.176
32 1-allyl-5-(allylthio)-3-(4-chlorophenyl)-1H-1,2,4-triazole 6.0097 6.3017 − 0.292 0.0616
33 3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 6.0928 5.9367 0.1561 0.1445
34 1-allyl-5-(tert-butyl)-3-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 7.8656 7.7939 0.0717 0.2079
35 5-(tert-butyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 6.8568 6.8627 − 0.0059 0.2036
36a 5-(4-nitrophenyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 6.2234 7.6353 − 2.4119 0.1921
37 5-(4-methoxyphenyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 7.3079 7.2271 0.0808 0.3495
38 5-(4-chlorophenyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 7.314 7.4916 − 0.1776 0.0444
39a 1-allyl-3-(tert-butyl)-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 7.7412 5.6835 2.0577 0.0742
40 1-allyl-5-(tert-butyl)-3-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 7.6615 7.0875 0.574 0.079
41 5-methyl-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 8.0214 8.0856 − 0.0642 0.3174
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where d is the total number of descriptors present in the built 
model and N is the total number of compounds that made 
up the training set.

2.8 � Y‑Randomization Validation Test

Y-Randomization test [http://teqip​.jdvu.ac.in/QSAR_
Tools​/] is one of the external validation criteria which has 
to be considered in order to ascertain that the developed 
model is not built by chance [10, 11]. Random shuffling of 
the data was performed on the training set following the 
principle laid by [10, 12]. The activity data (dependent 
variable) were shuffled while the descriptors (independent 
variables) were kept unchanged in order to generate the 
Multi-linear regression (MLR) model. For the developed 
QSAR to pass the Y-Randomization test, the R2 and Q2 
values for the model must be significantly low for numbers 
of trials while Y-randomization Coefficient (cR2

p
) shown 

in Eq. 4 must be ≥ 0.5 in order to establish the robustness 
of the model.

where c R2
p
 is Y-randomization Coefficient, R is correlation 

coefficient and Rr is average ‘R’ of random models.

2.9 � Affirmation of the Build Model

The internal and external validation criteria for both test 
and training set reported were compared with the generally 
accepted threshold value shown in Table 6 for any QSAR 
model [2, 10–13] in order to affirm the reliability, fitting, 

(4)cR2
p
= R ×

[

R2 −
(

Rr

)2
]2

stability, robustness and predictability of the developed 
models.

2.10 � Docking Studies

2.10.1 � Preparation of receptor

The crystal structure of DNA gyrase shown in Fig. 1 was 
obtained from protein data bank with PDB code 31FZ [15]. 
Crystal structure of DNA gyrase was prepared by remov-
ing all bound substances (ligands and cofactors) and sol-
vent molecules associated with the receptor. DNA gyrase 
preparation was done by launching the Discovery Studio 
Visualizer software; The prepared receptor was then saved 
in PDB file format which is the recommended input for-
mat in Pyrx and Discovery Studio Visualizer software. The 

Table 1   (continued)

S/N Molecules Experimental 
activity (pBA)

Predicted 
activity 
(pBA)

Residual Leverage

42a 3-(allylthio)-5-(tert-butyl)-1-(prop-2-yn-1-yl)-1H-1,2,4-triazole 6.8494 7.6612 1.1882 0.4217
43 1-benzyl-4-(((3-methyl-1H-1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3-triazole 4.925 4.8788 0.0462 0.0513
44a 4-(((1H-1,2,4-triazol-5-yl)thio)methyl)-1-benzyl-1H-1,2,3-triazole 5.0345 4.8582 0.1763 0.2688
45 1-benzyl-4-(((3-(tert-butyl)-1H-1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3-triazole 5.0064 5.0807 − 0.0743 0.3304
46 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1H-1,2,4-triazol-3-yl)thio)

methyl)-1H-1,2,3-triazole
5.7386 5.8174 − 0.0788 0.5099

47 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-methyl-1H-1,2,4-triazol-
3-yl)thio)methyl)-1H-1,2,3-triazole

5.5994 5.5669 0.0325 0.8062

48a 1-allyl-3-(allylthio)-5-(tert-butyl)-1H-1,2,4-triazole 6.2878 6.29117 − 0.00337 0.2564
49 1-allyl-3-(allylthio)-5-(4-nitrophenyl)-1H-1,2,4-triazole 5.7268 5.9799 − 0.2531 0.3462
50a 1-allyl-3-(allylthio)-5-(4-methoxyphenyl)-1H-1,2,4-triazole 7.366 7.531 − 0.165 0.1898

a Test set

Fig. 1   Crystal structure of DNA gyrase

http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
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prepared receptor was transported into the Pyrx software in 
order to make it a macro molecule. [13].

2.10.2 � Receptor (DNA Gyrase) Preparation

The crystal form of the target protein (DNA gyrase) was 
downloaded from protein data bank with PDB code 31FZ 
[14, 15]. All imported foreign substances such as solvent 
molecules, cofactors and ligands allied with the enzyme 
were disinterested using Discovery Studio Visualizer soft-
ware [https​://www.3dsbi​ovia.com/produ​cts/colla​borat​
ive-scien​ce/biovi​a-disco​very-studi​o/]. Later on, the target 
protein was saved format (PDB) which is the recommend 
format for Pyrx software and Discovery Studio Visual-
izer. Thereafter, the target protein saved in PDB format 
was imported in the Pyrx software and converted as macro 
molecules [5, 16].

2.10.3 � Ligand Preparation

The stable conformation of triazole derivatives at a minima 
energy were achieved with the aid of Spartan 14 software 
at Density Functional Theory (DFT) level which serve as 
an optimized tool. The optimized ligands were then saved 
as a PDB format which is the recommend format for the 
Pyrx software. Later on, the ligands saved in PDB format 
were imported in the Pyrx software and converted as micro 
molecules [5, 16].

2.10.4 � Docking of Receptor and Ligand

Ligand-receptor interactions between triazole derivatives 
and the receptor (DNA gyrase) was carried out using 
molecular docking technique by employing the PyRx vir-
tual screening software. The PyRx software [https​://pyrx.
sourc​eforg​e.io/], is an open source software for performing 
virtual screening. PyRx uses AutoDock Vina [http://vina.
scrip​ps.edu/] and AutoDock 4.2 [http://autod​ock.scrip​
ps.edu/] as docking softwares. Discovery Studio Visual-
izer software version 2016 [https​://www.3dsbi​ovia.com/
produ​cts/colla​borat​ive-scien​ce/biovi​a-disco​very-studi​o/] 
was used to visualized and analyzed the docked results. 
[5, 16].

3 � Results and Discussion

3.1 � QSAR Studies

Optimum QSAR model for predicting the derivatives 
of 1, 2, 4 Triazole against M. tuberculosis was success-
fully achieved by adopting the combination of computa-
tional and theoretical method. Data set comprises of 50 

compounds was partitioned into 35 training set and 15 test 
set using Kennard and Stone algorithm method. The 35 
training set compounds were used to derive QSAR model 
using Multi-linear regression technique which also served 
as data set for internal validation test while the external 
validation test for the derived model was conducted on 
the test set.

Model 1

Model 2

Model 3

The experimental activities reported in literature, the 
predicted activities calculated for all the anti-tubercular 
compounds, the leverage values and the residual values 
were presented in Table 1. The difference between the 
experimental activities and predicted activities is the resid-
ual values which were observed to be significant low. The 
low residual value indicates that the model built has a good 
predictive ability.

The optimum (2D and 3D) descriptors that efficiently 
describe the anti-tubercular compounds in relation to their 
biological activities were selected by GFA approach. The 
characterization and relative information on the molecu-
lar structure of the anti-tubercular agent illustrated by the 
descriptors were reported in numerical value as shown in 
Table 2. Meanwhile, for the purpose of reproducibility all 
the calculated descriptors for the both the training and test 
set in model 1 were presented in Table 3.

Various statistical analysis were conducted on the calcu-
lated descriptors in order to check the validity of the built 
model as reported in Table 4. Variance inflation factor (VIF) 
was evaluated for all the descriptors in order to determine 
the degree of correlation between each the descriptor. Gen-
erally, VIF value equal to 1 or falls with 1 and 5 signify 

pBA = − 3.927401745 ∗ MATS2s + 4.730973152

∗ nHBint3 + 1.1035920582 ∗ maxtsC

+ 0.310934301 ∗ TDB9u − 0.791306892

∗ RDF90i − 4.281096493 ∗ RDF110s

+ 8.840916286

pBA = − 2.418520845 ∗ MATS2s + 1.783195320

∗ nHBint3 + 1.310849563 ∗ maxtsC

+ 0.0280218642 ∗ TDB9u − 4.992450732

∗ RDF150p − 4.59209513 ∗ Ds + 9.702350851

pBA = − 6.934102832 ∗ MATS2s + 1.760023432

∗ nHBint3 + 4.803387356 ∗ maxtsC

+ 2.7934152560 ∗ TDB9u + 0.950439041

∗ RDF90i − 3.521095439 ∗ De

+ 7.4873028922

https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/
https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/
https://pyrx.sourceforge.io/
https://pyrx.sourceforge.io/
http://vina.scripps.edu/
http://vina.scripps.edu/
http://autodock.scripps.edu/
http://autodock.scripps.edu/
https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/
https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/
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non-existence of inter-correlation among the descriptors. 
However, if the VIF value is greater than 10, it signify that 
the model developed is unstable hence, the model should 
be re-checked if necessary. Regarding the VIF values for 
each the descriptors which were found to be less than 5 as 
reported in Table 4 affirm that the descriptors were signifi-
cantly orthogonal to each order since there is no inter-cor-
relation between them.

The degree of contribution that each descriptor plays in the 
built model was evaluated by determining the standard regres-
sion coefficient ( bs

j
) and mean effect (ME). The magnitude 

and signs for bs
j
 and ME values reported in Table 4 indicate 

strength and direction with which each descriptor influence 
the activity model. The relationship between the descriptors 
and biological activity of each compound was determined by 
one way Analysis of variance (ANOVA). The probability 
value of each of the descriptor at 95% confidence level were 
found to be (p < 0.05) as presented in Table 4. Therefore this 
signify that the alternative hypothesis that says there is a 
direct relationship between the biological activity of each 
compound and the descriptor swaying the built model is 
accepted thus; null hypothesis proposing no direct relation-
ship between biological activity of each compound and the 
descriptor swaying the built model is rejected. To further jus-
tify the validation of the descriptors in the activity model, 
Pearson correlation statistic was conducted to also check 
whether there is inter-correlation between each descriptors. 
The correlation coefficient between each descriptors reported 
in Table 5 were all < ±0.8 . Hence this implies that all the 
descriptors were void of multicollinearity.

Validation results for both the external and internal assess-
ment to assure that the built models are reliable and robust 
were presented in Table 6. These results were all in full agree-
ment with general validation criteria resented in Table 6 to 
truly indorse that the stability and robustness of the model is 
valid. Reference to these validation results obtained, model 
one was selected and established to be the prime model which 
was used to predict the biological activities of 1, 2, 4 Triazole 
against M. tuberculosis. 

The QSAR model generated in this research was compared 
with the models obtained in the literature [10] as shown below.

R2 = 0.9265, Radj = 0.9045, Qcv2 = 0.8324 and the exter-
nal validation for the test set was found to be R2pred = 0.8034 
[10].

The validation factors reported in this work and those 
reported in the literature were all in agreement with the vali-
dation parameters presented in Table 6 which really inveter-
ate that the model generated is predictive and robust.

The coefficient of Y- Randomization (c R2
p
) with signif-

icant value of 0.7849 greater than threshold value of 0.5 
reported in Table 7 provide a reasonable supports that the 
model built is robust and not just by chance.

The graphical representation to show the degree of cor-
relation between the predicted activities and experimental 
activities of the training and test set were shown in Fig. 2 
and 3. The correlation coefficient (R2) value of 0.9579 and 
0.8657 for both the training set and test set shows that there 
is a high correlation existing between the predicted activities 
and experimental activities of the training and test set which 
were also in agreement with the accepted QSAR threshold 
values reported in Table 6.

The residual plot shown in Fig. 4 signify that there is no 
indication of computational incompetency and inaccuracy in 
the QSAR model derived as all the standard residual values 
for both training and test set were found within the defined 
boundary of ± 2 on the standard residual activity axis [2, 
10, 17, 18].

The Williams plot to show the Applicability Domain 
space (AD) is shown in Fig. 5. It is observed that only 
compound 42 was found to exceed the warning leverage of 
(h* = 0.60). Therefore it can be infer that this compound is 
an influential molecule. Moreover, it is also observed that 
all the compounds fall within the defined space of ± 3 which 
indicates that no compound is said to be outlier.

pBA = −6.515153698 ∗ AATS5e + 0.056593117 ∗ VR1 Dzs

− 6.230058484 ∗ SpMin7 Bhe + 0.016884210 ∗ TDB7e

+ 0.09232054RDF90i + 43.764308643

Table 2   Name of selected descriptors used in the QSAR model 1

S/NO Descriptors symbols Name of descriptor Class

1 MATS2s Moran autocorrelation–lag 2/weighted by I-state 2D
2 nHBint3 Count of E-State descriptors of strength for potential Hydrogen Bonds of path length 3 2D
3 maxtsC Maximum atom-type E-State:#C− 2D
4 TDB9u 3D topological distance based autocorrelation - lag 9/unweighted 3D
5 RDF90i Radial distribution function - 090/weighted by relative first ionization potential 3D
6 RDF110s Radial distribution function - 110/weighted by relative I-state 3D
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Table 3   Predicted descriptors 
for training set in generating 
model 1

Compound ID Descriptors Predicted activity

AATS7s NHBINT3 MinHCsatu TDB9u RDF90i RDF110s

Training set
 1 2.7856 0 0 66.7723 9.7018 1.4484 7.9218
 3 2.5097 0 0 64.2822 14.7031 4.1443 7.8435
 4 2.5521 0 0 61.7102 25.6093 5.8516 7.1969
 7 2.7088 0 0 64.0155 29.9552 18.9220 4.7913
 8 2.5844 0 0 63.5719 39.8984 13.5634 6.2865
 10 2.7050 0 0 60.2370 38.3752 3.4893 7.1414
 11 2.4646 0 0 56.9890 27.4708 4.5612 6.0728
 12 3.3007 0 0 64.9270 37.3878 15.7905 5.6249
 14 2.6852 0 0.0142 63.8144 35.4093 9.1629 6.3309
 15 2.1371 1 0.4190 1.1330 1.1331 0.1201 6.5298
 17 2.0826 0 0.4133 58.5298 3.5705 0.3163 6.1220
 18 4.7247 0 0.4671 67.1607 7.6531 0.4786 6.0118
 19 2.8469 1 0.4570 69.1436 5.2474 3.2908 7.5921
 20 2.2622 1 0.4468 70.8652 5.4773 2.8170 7.8302
 21 1.9786 0 0.4280 64.9950 2.1000 0.2178 6.1960
 22 1.7518 0 0.4280 63.8383 5.1976 1.2078 6.4174
 23 2.0300 0 0.4280 59.1007 4.2923 0.1201 0.2182
 24 3.2326 0 0.4817 64.1520 7.9956 5.4128 0.1845
 25 2.4553 0 0.4660 60.5533 19.7357 1.8402 0.0713
 27 2.2621 0 0.4254 54.1164 2.5325 0.1201 6.5716
 28 2.1489 0 0.4254 57.2739 2.8150 0.1201 6.0828
 31 2.5525 0 0.4634 63.6313 7.8665 1.6895 7.4961
 32 2.3422 0 0.4532 62.2568 4.2688 0.5199 6.3017
 33 3.1371 0 0.7315 1.1330 1.1321 0.1201 5.9367
 41 2.3417 1 0.4374 58.2436 5.0760 0.3445 7.7939
 35 4.5038 0 0.7315 71.5465 3.4249 0.1201 6.8627
 37 4.9471 0 0.7695 74.0294 9.1915 2.0424 7.2271
 38 4.8209 0 0.7593 78.9183 9.4349 0.5006 7.4916
 40 2.1894 1 0.5183 61.3878 3.4046 0.1220 7.0875
 41 2.2942 0 0.7315 70.1844 1.9325 0.1201 8.0856
 43 2.3236 1 0.5183 65.6485 1.6593 0.4707 4.8788
 45 2.5329 1 0.5157 58.8727 2.4240 0.1201 7.8435
 46 1.9641 1 0.5183 65.0038 3.7744 0.6002 5.0807
 47 1.0769 1 0.6886 0 0 0 5.8174
 49 1.0769 0 0.4013 0 0 0 5.5669

Test set
 2 2.5473 0 0.0142 67.3958 10.1285 2.7705 7.6812
 5 2.4150 0 0.0142 62.4139 26.6485 9.5468 7.9274
 6 2.5570 0 0.0142 64.7532 33.3413 13.9776 5.6835
 9 2.7743 0 0.0142 57.7635 30.3393 2.2780 6.4919
 13 2.7782 0 0.0142 64.2698 32.3992 14.4761 5.4700
 16 1.8552 0 0.4133 59.9928 1.7205 0.1201 6.8631
 26 2.1783 0 0.4558 59.1556 10.3734 0.7431 6.8337
 29 2.0432 0 0.4254 57.4796 7.0129 0.3764 5.4662
 30 3.5854 0 0.4791 64.6347 6.5749 2.7407 6.0292
 36 6.7419 0 0.7852 79.9580 7.7638 6.3706 8.6353
 39 2.2351 1 0.5157 59.3441 10.1783 0.1238 5.6835
 42 2.5117 1 0.4370 61.0209 3.6973 0.3489 7.6612
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3.2 � Molecular Docking Studies

3.2.1 � Assessment of Binding Affinity

Binding affinity between the ligand and target enzyme 
is elucidated via docking studies. The outcomes of the 
docking studies evidently showed that the activity value 
of each docked ligand correlated with binding affinity 
which ranged from − 4.0 to − 21.9 kcal/mol presented in 
Table 8. Meanwhile, ligands 41 was observed with higher 
binding affinity of − 21.9 kcal/mol compared to the bind-
ing affinity of commended drugs; isoniazid (− 14.6 kcal/
mol) and other derivatives. Hence, this gives an indicating 
that ligands 41 could serve as a better compound against 
tuberculosis.

3.2.2 � Bond Type and Bond Length in the Ligand‑Receptor 
Complex of Compound 41

The prominent ligands (compound 41) with highest bind-
ing affinity was viewed examined using Discovery Stu-
dio Visualizer software. The interaction of ligand 41 with 
target enzyme ‘‘DNA gyrase’’ is presented in Fig.  6. 

The interaction was observed with five hydrogen bonds 
(2.6234, 2.1123, 2.1922, 2.6012 and 2.6302Å) with 
GLN385, THR77, GLN385, ALA167 and ALA167 of the 
enzyme. The ligand the S=O of acts as H-bond acceptor 
with formation of two hydrogen bonds with GLN385 and 
THR77 of the target. More also, the ligand N–H group acts 
as H-bond donor with formation of three hydrogen bonds 
with GLN385, ALA167, and ALA167 of the enzyme. 
Meanwhile, the hydrophobic interactions were detected 
with VAL78 and PHE168 of the enzyme. The region of the 
H-bond and hydrophobic interaction of the ligand-recep-
tor complex formed are presented shown in Figs. 7, 8. 
Therefore, the hydrophobic interactions and the H-bonds 
formation offer a significant evidence to proof that ligand 
41 among its co-ligand has the highest efficiency against 
DNA gyrase receptor.

3.2.3 � Bond Type and Bond Length in the Ligand‑Receptor 
Complex of Isoniazid

The binding interaction in 2-Dimension of the tar-
get enzyme with the commended drug ‘‘isoniazid’’ 

Table 3   (continued) Compound ID Descriptors Predicted activity

AATS7s NHBINT3 MinHCsatu TDB9u RDF90i RDF110s

 44 2.9239 1 0.5157 56.3073 2.3942 0 4.8582
 48 1.5835 0 0.6031 0 0 0 6.2878
 50 2.5807 0 0 65.0644 8.7086 1.3482 7.366

Table 4   Statistical parameters 
that influence the model 1

Descriptors Standard regression 
coefficient ( bj)

Mean effect (ME) P Value (confi-
dence interval)

VIF Standard error

MATS2s − 0.0427 − 0.2647 5.29E−5 2.3793 0.02107
nHBint3 1.2646 0.4817 6.52E−9 1.7641 0.03454
maxtsC 1.5752 0.9111 0.000148 2.1484 0.04119
TDB9u 0.9262 0.6805 0.000428 1.8355 0.01352
RDF90i 1.6853 0.6695 3.62E−6 3.583 0.03418
RDF110s − 0.0883 − 0.4643 0.000295 2.5137 0.02515

Table 5   Pearson’s correlation 
coefficient for the descriptor 
used in the QSAR model

Descriptors AATS7s NHBint3 MinHCsatu TDB9u RDF90i RDF110s

AATS7s 1
nHBint3 − 0.29825 1
minHCsatu 0.191253 0.271336 1
TDB9u 0.448447 − 0.19142 − 0.15015 1
RDF90i 0.16936 − 0.37299 − 0.77991 0.270029 1
RDF110s 0.119377 − 0.25277 − 0.67104 0.212725 0.081411 1
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is represented in Fig. 6. The amino acid; SER279 and 
ALA337 and ALA337 are the main binding site through 
which the target enzyme bonded with Isoniazid via the 
hydrogen bond length; 2.52954, 2.29943 and 2.24657Å. 
Meanwhile, the amino acid; CYS345 and PHE338 are the 
main binding site through which the target enzyme bonded 

with Isoniazid via the hydrophobic interactions. Based on 
the observations, increase in number of hydrogen bonds 
in ligand 41 of triazole derivatives provide a concrete evi-
dence to support the claim that ligand 41 binds efficiently 
with the binding pocket of the receptor when compared to 
the commended drug ‘‘isoniazid’’.

Table 6   Validation parameters for each model using multi-linear regression (MLR)

Key: SEE is the Standard error of estimation, w is the total number of terms present in the built model except the constant term, j is the number 
of descriptors confined in the built model, q is a user-defined factor and N is the number of compounds of training set. Yobs, Ȳtraining and Ypred are 
the observed activity, mean observed activity of the training compounds and the predicted activity respectively. r2 is correlation coefficients of 
the plot of observed activity against predicted activity values, ro

2 is the correlation coefficients of the plot of observed activity against predicted 
activity values at zero intercept, r′o2 is correlation coefficients of the plot of predicted activity against observed activity at zero intercept [2, 
10–13]

S/NO Validation Parameters Formula Threshold Model 1 Model 2 Model 3

Internal Validation
 1 Friedman Lack of fit (LOF) SEE

(

1−
w+q×j

N

)2
Significantly 

low
0.4232 0.4636 0.4671

 2 R-squared
1 −

�

∑

�

Yobs−Ypred

�2

∑

�

Yobs−Ȳtraining

�2

�

R2
> 0.6 0.9368 0.918 0.8849

 3 Adjusted R-squared R2−P(N−1)

N−p+1
R2
adj

> 0.6 0.896 0.8903 0.8635

 4 Cross validated R-squared ( Q2
cv
)

1 −

�

∑

�

Ypred−Yobs

�2

∑

�

Yobs−Ȳtraining

�2

�

Q2
> 0.6 0.855 0.7923 0.7544

 5 Significant Regression Yes Yes Yes
 6 Critical SOR F-value (95%) ∑

�

Ypred−Yobs

�2

p
∕

∑

�

Ypred−Yobs

�2

N−p−1 .

F(test) > 2.09 57.21 53.46 51.89

Model Randomization
 10 Average of the correlation coefficient 

for randomized data ( R̄r)
0.3634 0.3911 0.4018

 11 Average of determination coefficient 
for randomized data ( R̄2

r
)

R̄2
r
< 0.5 0.1831 0.2056 0.2319

 12 Average of leave one out cross-vali-
dated determination coefficient for 
randomized data ( Q̄2

r
)

Q̄2
r
< 0.5 − 0.2190 − 0.7395 − 1.8420

 13 Coefficient for Y-randomization (c 
R2
p
)

R2 ×

(

1 −

√

|

|

|

R2 − R̄
2

r

|

|

|

) c R2
p
> 0.6 0.6849 0.6312 0.6145

External validation
 14 Slope of the plot of observed activity 

against predicted activity values at 
zero intercept (K)

ΔYObs

ΔYpred

0.85 < k<1.15 0.9975 1.0046 1.0041

 15 Slope of the plot of predicted against 
observed activity at zero intercept 
(k′)

0.85 < k<1.15 0.9988 0.9251 0.8492

 16 ∕r2
0
− r′

2

0
∕

ΔYpred

ΔYObs

<0.3 0.2231 0.2994 0.3308

 17 r2−r2
0

r2
<0.1 0.0207 0.0535 0.1222

 18 r2−r′
2

0

r2

<0.1 0.036 0.0706 0.1093

 19 �
2
���� R2

test
= 1 −

∑

(Ypredtest−Yobstest )
2

∑

(Ypredtest−Ȳtraining)
2

> 0.6 0.7925 0.7204 0.6939
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3.3 � Discussion on Designed Compounds

3.3.1 � Computational Design of New Hypothetical 
Compound

Ligand based design approach was used to designed new 
hypothetical compounds with improved activities against 
tuberculosis. The best compounds among the derivative was 
used as template structure to design the new compounds. 
The modification was done by deletion, substitution and 
insertion of active substituent(s) into the structure template 
i.e. compound 41 as shown in Fig. 9. Compound 41 was 

selected as the template structure due to fact that the com-
pound falls within the defined Applicability Domain (AD) 
as presented in Fig. 5. The deletion, substitution and inser-
tion of the substituent(s) was successfully made around the 
triazole and acetylene of the template structure at position 
12 and 8 as presented in Fig. 9. The molecular descriptors; 
maxtsC, nHBint3, TDB9u and RDF90i in the built QSAR 
models designated that the activity of the compound is posi-
tively influenced. Modifications of the template structure at 
position 12 and 8 with alkyl group, H atom, and methoxy 
group result to derivation of sixteen new novel compounds 
with improved activities against tuberculosis as described 
in Table 9. In order to screen and ascertain the Applicabil-
ity Domain (AD) space of the designed, leverage value for 
each of the compound designed was calculated. Meanwhile, 
the leverage value reported for all the designed compounds 
as presented in Table 9 asserted that all the compound 
designed falls within the warning leverage h* = 0.60. There-
fore, this implied that each of the compound designed was 
within defined Model AD space. Based on the calculated 
activity for the compound in Table 9, it’s obviously seen 
that compounds 41p was observed with against tubercu-
losis. The prominent anti-tubercular observed in designed 
compound 41p was due to modification of the template at 
position 12 with alkyl group (CH3) which releases electron 
to ring system through positive inductive effect (+I) and 
modification at position 8 with 1H-triazole. The substituents 
with +I effect connected to the structure template rise the 
electron density which make the triazole pharmacophore of 
the compound 41p more basic. Hence, this gives reasonable 
explanation for its high activities toward Mycobacterium 
tuberculosis.

Table 7   Y-randomization parameters test for model 1

Model R R2 Q2

Original 0.9559 0.8949 0.9657
Random 1 0.5528 0.2353 − 0.16
Random 2 0.7 0.471 − 0.0322
Random 3 0.5227 0.2129 − 0.3133
Random 4 0.675 0.4449 0.0342
Random 5 0.3972 0.3389 − 0.4789
Random 6 0.3063 0.205 − 0.4926
Random 7 0.6787 0.5487 0.0126
Random 8 0.7135 0.4856 0.061
Random 9 0.5321 0.2197 − 0.133
Random 10 0.6709 0.4408 − 0.001
Random models parameters
 Average r 0.3634
 Average r2 0.1831
 Average Q2 − 0.2190
 cRp2 0.6925

Fig. 2   Plot of predicted activity 
against observed activity of 
training set
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Fig. 3   Plot of Predicted activity 
against Observed activity of 
test set

R² = 0.8657
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Fig. 4   Plot of standard-
ized residual activity versus 
observed activity
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Fig. 5   The Williams plot of the 
standardized residuals versus 
the leverage value
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Table 8   Molecular docking interactions between M. tuberculosis target (DNA gyrase) ligands (1,2,4-Triazole derivatives)

Ligand Binding affinity 
(BA) Kcal/mol

Hydrogen bond interactions Hydrophobic interaction

Amino acid Bond length (Å) Amino acid

1 − 15.5 PRO95
HIS344
ALA232

3.0623
2.1455
1.2566

GLN 322, CYS345, GLN385, PHE 168, ALA176, TRP182, 
ARG72, VAL78

2 − 7.2 ALA169 GLN381 3.7564
1.3565

PHE280, ALA167, ALA233, THR77

3 − 14.6 GLN389
ALA169
VAL78

2.1734
2.3561
1.4464

ALA167, VAL228, ALA281, ARG386, LEU164, TRP182

4 − 14.8 LEU133
GLN341
ARG148

2.3562
2.3355
1.2443

PRO169, VAL228, VAL178, LEU164

5 − 13.7 ARG161
GLN383
ARG380

2.0061
2.3554
2.4672

PHE185, ALA167, VAL228, ASN74, CYS134

6 − 6.1 ALA113 1.2354 LEU176, VAL228, CYS143, PHE248
7 − 4.0 – – ALA167, TRP182, VAL78, CYS145, SER247
8 − 7.5 ALA147 2.4344 ALA212, TRP182, CYS221, PRO165
9 − 6.2 GLN315 1.3455 TRP182, ALA143, PHE168
10 − 12.3 THR78 GLN365 2.4566

2.4344
ALA236, VAL78, VAL228, LEU164

11 − 6.1 ASN78 1.3466 ALA233, PRO134, LA167, VAL78
12 − 6.5 GLN315 1.6457 VAL83, VAL83, TRP, 182LEU76
13 − 12.7 LEU113

TRP192
2.3431
3.0340

PRO346, ALA213, ALA165

14 − 7.8 ASN78 2.76681 LEU154,VAL84, ALA167
16 − 15.7 ASP112 PHE119 ALA116 2.3515

2.1544
2.6868

TYR213, PRO182

17 − 8.7 GLN345
CYS315

2.7344
2.4345

ALA233, VAL78, TRP182, VAL76

18 − 7.5 GLN395 2.54451 VAL83, PHE163, PRO285, ALA167,PRO215,
19 − 14.6 VAL74 ALA213

LEU76
2.1334
2.4888
2.4529

VAL78, SER217, PHE161, PRO285, THR238, ALA117

20 − 14.7 GLN355
ARG126
GLN125

2.5696
2.4581
2.0499

PHE241, PRO94, PRO54, VAL178, PRO119, PHE93, CYS345

21 − 8.6 ASN79
ASP212

3.0181
2.2843

VAL76, LEU207, LEU73, PRO215, VAL128

22 − 7.6 THR78 2.45441 PHE128,, PHE168, VAL78, TRP182, ALA137, TRP112
23 − 6.9 THR65 1.43632 CYS110, GLN185, ALA243
24 − 6.2 GLN325 2.1313 GLN315, ARG165, GLN385, VAL127, CYS234
25 − 4.1 – – PHE205, LEU113, GLY196, LEU207, ARG101
26 − 14.8 GLN115

ALA127
VAL92

2.2312
2.2332
2.5776

PRO102, ALA238, PHE148, TRP112, PHE230, ALA101, 
VAL82, LYS123, VAL78

27 − 9.2 ASP79
GLN315

3.3618
2.4892

CYS245, ALA267, PHE118, PRO346, ALA233 TRP112

28 − 7.5 VAL79 2.4331 PRO185, TRP182, ALA167, TRP132, PRO34, VAL27
29 − 7.7 ASN78 3.4509 LEU161, VAL98, VAL122
30 − 7.9 GLN325

LEU113
2.1721
2.2282

VAL68, ALA233, TRP48, PHE158
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3.3.2 � Molecular Docking of Prominent Designed Ligands 
(Compound 41p)

The results of the docking studies affirmed the correlation 
between the activity values of ligand 41p and its binding 

affinity. The binding affinity value for ligand 41p was estab-
lished to be − 24.3 kcal/mol as presented in Table 10 which 
were higher than the binding affinity value of the template 
41 compound (− 21.9 kcal/mol) stated Table 8.

Table 8   (continued)

Ligand Binding affinity 
(BA) Kcal/mol

Hydrogen bond interactions Hydrophobic interaction

Amino acid Bond length (Å) Amino acid

31 − 14.3 GLN315 CYS130 2.0342
2.1743

MET86, PHE215, LEU207, VAL77, ALA127, PRO94

32 − 7.8 VAL94 2.6435 LEU207, TYR103, VAL78, PRO112
33 − 8.2 GLN115

ARG172
2.5498
2.1843

TRP112, PHE230, VAL128, PHE220, ALA127

41 − 15.2 ALA213
PRO95
GLN75

2.3029
2.2831
2.2188

LEU134, GLY232, PHE178, VAL218

35 − 10.6 THR72
ALA137
GLN315

2.1436
2.3419
2.1300

ALA233, GLY212, VAL228, TRP142, LYS185, PHE118

36 − 14.6 PHE114
CYS114
GLY212

2.2222
2.2034
2.3752

LYS126, PHE168, VAL78, ALA117, PRO169, TRP112

37 − 14.2 GLU88
PRO114
ALA147

2.0607
2.3915
2.5475

ALA167, LEU113, VAL78, PRO215, PHE148, ALA213

38 − 14 PRO74
ARG87
VAL95

2.4532
2.1064
2.5428

PRO265, TRP182, VAL112, TRP182, PHE148

39 − 10.7 VAL88
ASN76
GLN325

2.3683
2.0314
2.0280

PRO285, VAL218, LEU134,,ALA233, ALA233, VAL77

40 − 14.7 ALA137
GLN315
LEU127

2.2427
2.2374
2.5441

PHE138, VAL78, ALA167, VAL142, LEU143 CYS214

41 − 21.8 THR77
GLN385
ALA167
GLN385
ALA167

2.1123
2.6234
2.6012
2.1922
2.6302

ALA233, VAL78

42 − 15 GLN315 CYS134
ARG116

2.1512
2.2745
2.2572

VAL228, PHE168

43 − 4.1 – – ALA137, PHE213
44 − 6.2 VAL102 1.3493 PHE110, VAL71, ALA213
45 − 4.3 – VAL79, PHE125, VAL158, PRO232, SER217
46 − 6.4 THR97 1.4282 VAL128, ALA237, TRP113, LEU134,
47 − 6 THR88 1.2493 ALA117, LEU124, VAL228, VAL63, TRP152
48 − 8.1 GLN185

SER227
2.1241
2.2425

PHE138, VAL78, CYS345, ALA233, PRO225

49 − 6.8 TRP122 1.7295 ALA137, VAL182,VAL78, PRO285, VAL79
50 − 14.1 ASP182 LYS126 GLN185 2.1272

2.1488
2.2392

LEU123, TRP112, ALA147, PRO255, VAL79

Ethambutol − 5.7 ALA337 2.5983 –
Isoniazid − 14.5 SER279

ALA337
2.2994
2.5295, 2.2466

PHE338, CYS345
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The interaction of the ligand 41p with DNA gyrase 
formed eight H-bonds with the enzyme. Six H-bonds for-
mation was observed with of triazole (N–H group) of the 
ligand which acted as hydrogen donor with PRO B119, GLY 
B120, TRP B103 and VAL B278 of the target. Meanwhile, 
the ligand S=O group acted as hydrogen acceptor with for-
mation of two hydrogen bonds with TRP B103 and SER 
B104 of the enzyme as presented in Fig. 10.

Number of H-bonding and distance has been reported 
to be the key reason influencing the binding affinity of 
receptor-ligand interaction [5, 16, 19]. Therefore, this rea-
son provide structural insight to support the claim why 

designed compound 41p was able to binding efficiently in 
the binding pocket of the target enzyme Fig. 11.

4 � Conclusion

Triazole derivatives was study using a theoretical method 
to select molecular descriptors to relate the structure of 
the derivatives against M. tuberculosis. The internal and 
external assessment confirmed that the built QSAR model 
is substantial, reliable and robust. Molecular descrip-
tors; nHBint3, MATS2s, TDB9u, maxtsC, RDF110s and 

Fig. 6   a is the interactions between the ligand 41 and DNA gyrase. b is the interactions between Isoniazid and DNA gyrase

Fig. 7   Hydrophobic interac-
tions between DNA gyrase and 
ligand 41
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RDF90i from the results have shown to be prominent 
descriptor needed to predict the biological activities of 
the studied compound. Furthermore, docking study indi-
cates that compounds 41 of the derivatives with prom-
ising biological activity have the utmost binding energy 
of − 18.8 kcal/mol compared to the commended drugs; 
Isoniazid − 14.6 kcal/mol. Thereafter, compound 41 was 
used as a structure template to designed compounds with 

more efficient activities. Among hypothetical compounds 
designed; compounds 41p was experiential with highest 
activity against tuberculosis with more noticeable bind-
ing affinity of − 24.3 kcal/mol. The presumption of this 
research aid the medicinal chemists and pharmacist to 
design and synthesis a novel drug candidate against the 
tuberculosis. Moreover, in vitro and in vivo test could be 
carried out to validate the computational results.

Fig. 8   H-bond interactions 
existing between DNA gyrase 
and ligand 41

A B 

Fig. 9   a is the prime compound (41). b is the design template structure
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Table 9   Compound designed, calculated descriptors and predicted activities

Compound 
ID

R1 R2 MATS2s nHBint3 maxtsC TDB9u RDF90i RDF110s Predicted 
Activity 
(pBA)

Leverage

41a H 3.5625 1 0.6436 67.5009 11.1572 2.7440 8.4166 0.5242

41b CH3 3.8701 1 0.3579 65.9916 24.2281 0.5357 8.5671 0.1995

41c OCH3 3.5078 1 0.3557 66.2984 22.5787 1.0094 8.4762 0.3201

41d CH3CH2 4.2147 1 0.4277 67.0269 22.3770 0.8895 8.5522 0.3471

41e CH3CH2 3.604 1 0.3397 62.2581 25.4329 0.9194 8.5824 0.3486

41f CH3CH2 3.5081 1 0.4796 55.3564 21.4123 1.8581 8.5962 0.1411

41g CH3 3.4658 1 0.4066 55.3705 23.9847 0.9919 8.6421 0.4438

41h CH3CH2 3.8857 1 0.4423 58.1968 22.8238 1.0226 8.5938 0.196

41i OCH3 3.2464 1 0.3575 61.0521 22.6697 0.9989 8.4879 0.1463

41j H 3.8309 1 0.569 61.5988 28.2426 1.0205 8.5801 0.1449

41k 3.5883 1 0.5423 58.6879 21.7436 4.5788 8.6123 0.3584

41l 3.441 1 0.5782 60.9265 20.3561 5.5127 8.6122 0.3008

41m 3.5192 1 0.7376 56.5394 15.5796 6.5831 8.6091 0.4098

41n 3.5098 1 0.5598 60.7090 20.6710 4.9090 8.6073 0.4289

41o H 3.2235 1 0.311 57.9263 28.8626 3.0143 8.5964 0.1886

41p CH3 3.2417 1 0.6268 62.5529 17.9120 4.7569 8.7619 0.4405

Table 10   Molecular docking 
interactions between M. 
tuberculosis target (DNA 
gyrase) ligands 41p

Ligand Binding affinity 
(BA)
Kcal/mol

Target Hydrogen bond hydrophobic interaction

Amino acid Bond length (Å) Amino acid

41p − 24.3 DNA gyrase TRP B:103 2.31 TRP B:103
SER B:104 2.74
GLY B:120 2.36, 2.40
PRO B:119 2.22
VAL B:278 2.79, 2.79
TRP B:103 2.68



407Chemistry Africa (2020) 3:391–408	

1 3

Compliance with ethical standards 

Conflict of interest  On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

References

	 1.	 W.H. Organization, Others (2016) Tuberculosis Fact Sheet 
(No. 104) 2000, Site Accessed Www Who Intmediacentre-
factsheetswho104enindex Html

	 2.	 Adeniji SE, Uba S, Uzairu A (2020) Theoretical modeling for 
predicting the activities of some active compounds as potent 
inhibitors against Mycobacterium tuberculosis using GFA-MLR 
approach. J King Saud Univ Sci 32:575–586

	 3.	 https​://paten​ts.justi​a.com/paten​t/88659​10
	 4.	 Ogadimma AI, Adamu U (2016) Analysis of selected chalcone 

derivatives as Mycobacterium tuberculosis inhibitors. Open 
Access Libr J 3:1–13

	 5.	 Adeniji SE, Uba S, Uzairu A (2018) QSAR Modeling and 
Molecular Docking Analysis of Some Active Compounds 
against Mycobacterium tuberculosis Receptor (Mtb CYP121). 
J Pathog. Article ID 1018694

	 6.	 Adeniji SE, Uba S, Uzairu A (2018) A novel QSAR model for 
the evaluation and prediction of (E)-N’-benzylideneisonicotino-
hydrazide derivatives as the potent anti-mycobacterium tuber-
culosis antibodies using genetic function approach. Phys Chem 
Res 6:479–492

	 7.	 Eric GM, Uzairu A, Mamza PAA (2016) Quantitative structu-
reactivity relationship (QSAR) study of the anti-tuberculosis 
activity of some quinolones. J Sci Res Rep 10:1–15

	 8.	 Singh P (2013) Quantitative structure-activity relationship 
study of substituted-[1,2,4] oxadiazoles as S1P1 agonists. J Curr 
Chem Pharm Sci 3:64–79

	 9.	 Arthur DE, Uzairu A, Mamza P et al (2018) In silico modelling 
of quantitative structure–activity relationship of multi-target 
anticancer compounds on k-562 cell line. Netw Model Anal 
Health Inform Bioinforma 7:11

	10.	 Adeniji SE, Uba S, Uzairu A, ArthurDE (2019) A derived 
QSAR model for predicting some compounds as potent antago-
nist against mycobacterium tuberculosis: a theoretical approach. 
Adv Prev Med Article ID 5173786

	11.	 Tropsha A, Gramatica P, Gombar VK (2003) The importance of 
being earnest: validation is the absolute essential for successful 
application and interpretation of QSPR models. Mol Inform 
22:69–77

Fig. 10   a and b are the 2D and 3D interactions existing between ligand 41p and DNA gyrase

Fig. 11   a and b are the H-bond and hydrophobic interactions existing between ligand 41p and DNA gyrase

https://patents.justia.com/patent/8865910


408	 Chemistry Africa (2020) 3:391–408

1 3

	12.	 Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S, Das RN (2013) 
Some case studies on application of “rm2” metrics for judging 
quality of quantitative structure–activity relationship predic-
tions: emphasis on scaling of response data. J Comput Chem 
34:1071–1082

	13.	 Veerasamy R, Rajak H, Jain A, Sivadasan S, Varghese CP, 
Agrawal RK (2011) Validation of QSAR models-strategies and 
importance. Int J Drug Des Discov 3:511–519

	14.	 Piton J, Petrella S, Delarue M, Andre´-Leroux G, Jarlier V, Aubry 
A, Mayer C (2010) Structural insights into the quinolone resist-
ance mechanism of mycobacterium tuberculosis DNA gyrase. 
PLoS One 5:12245. https​://doi.org/10.1371/journ​al.pone.00122​45

	15.	 http://www.rcsb.org/pdb/explo​re/litVi​ew.do?struc​tureI​d=3IFZ
	16.	 Adeniji SE, Uba S, Uzairu A (2018) Theoretical modeling and 

molecular docking simulation for investigating and evaluating 
some active compounds as potent anti-tubercular agents against 
MTB CYP121 receptor. Future J Pharm Sci 4:284–295

	17.	 Ibrahim MT, Uzairu A, Shallangwa GA, Uba S (2020) In-silico 
activity prediction and docking studies of some 2, 9-disubstituted 
8-phenylthio/phenylsulfinyl-9 h-purine derivatives as Anti-prolif-
erative agents. Heliyon 6:e03158

	18.	 Abdullahi M, Shallangwa GA, Uzairu A (2020) In silico QSAR 
and molecular docking simulation of some novel aryl sulfonamide 
derivatives as inhibitors of H5N1 influenza A virus subtype. Beni-
Suef University. J Basic ApplSci 9:1–13

	19.	 Patil R, Das S, Ashley S, Yadav L, Sudhakar A, Ashok KV (2010) 
Optimized hydrophobic interactions and hydrogen bonding at 
the target-ligand interface leads the pathways of drug-designing. 
PLoS One 8:1–10

https://doi.org/10.1371/journal.pone.0012245
http://www.rcsb.org/pdb/explore/litView.do?structureId=3IFZ

	Quantitative Structure–Activity Relationship Model, Molecular Docking Simulation and Computational Design of Some Novel Compounds Against DNA Gyrase Receptor
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Data Collection
	2.2 Molecular Optimization
	2.3 Generation of Molecular Descriptor
	2.4 Normalization and Pretreatment of Data
	2.5 Generation Training and Test Set
	2.6 Building of QSAR Models and Internal Validation Test
	2.7 Evaluation of Leverage Values (Applicability Domain)
	2.8 Y-Randomization Validation Test
	2.9 Affirmation of the Build Model
	2.10 Docking Studies
	2.10.1 Preparation of receptor
	2.10.2 Receptor (DNA Gyrase) Preparation
	2.10.3 Ligand Preparation
	2.10.4 Docking of Receptor and Ligand


	3 Results and Discussion
	3.1 QSAR Studies
	3.2 Molecular Docking Studies
	3.2.1 Assessment of Binding Affinity
	3.2.2 Bond Type and Bond Length in the Ligand-Receptor Complex of Compound 41
	3.2.3 Bond Type and Bond Length in the Ligand-Receptor Complex of Isoniazid

	3.3 Discussion on Designed Compounds
	3.3.1 Computational Design of New Hypothetical Compound
	3.3.2 Molecular Docking of Prominent Designed Ligands (Compound 41p)


	4 Conclusion
	References




