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Abstract
Renewable agricultural biomass derived chemicals, their modifications and uses have seen multiplicity in numerous appli-
cations and important processes with major impacts on the pursuit for eco-sustainability. Such applications range include 
the energy sector, chemistry, pharmacy, the textile industry, paints and coatings, plastic industry, to name but a few. This 
field of lignocellulosic derived chemicals interconnects several scientific disciplines ranging from agriculture, biochemistry, 
engineering, environmental sciences, forestry, pharmacy, medicine, etc. hence making it difficult to have a single expert 
view on these complicated interactions. Therefore, the idea to create a focused review, specifically, on FA (an important 
furanic compound) is the main objective of this article. FA and its resultant derivatives exhibits an array of capabilities and 
fascinating properties in various fields of applications. As a compound or with co-reactants, it finds interesting applications 
as base and/or intermediate chemical compound, hypergolic rocket fuels, in flame resistant composites and coatings used in 
aerospace, auto, and the built environment; it also finds application as mortars, cementitious grouts, impregnating materials, 
and sealants due to its exceptional resistance to common corrosive chemicals such as acids, alkalis and other solvents when 
it is cross-linked. Coupled with its environmental and economic benefits FA has proved to be a remarkable eco-sustainable 
bio-derived compound.

Keywords Lignocellulosic · Agricultural biomass · Hemicellulose · Furfural · Furfuryl alcohol · Eco-sustainability · Furan 
polymers

1 Introduction

Chemicals obtained from inedible lignocellulosic agricul-
tural biomass, has been noted to be one of the most prom-
ising environmentally benign, sustainable and industrially 
applicable alternatives to petroleum feedstock [1–5]. Hence, 
lignocellulosic biomass offers an enormous assortment of 
derivable chemical compounds capable of producing mate-
rials analogous to and even exceeding those derived from 
fossil chemicals [6–11]. Available data indicate that with 
commensurate policies and investments to promote the use 
of agricultural waste residues, there are associated benefits 
such as considerably reduction in the dependence on fossil 
derived chemicals [3, 4, 10, 11], increased job opportunities 
in the agricultural and allied sector [12], and consequent 

impact on energy security [2, 13]. Moreover, with the 
increasing concerns over the climatic impact of greenhouse 
effect coupled with the volatility in oil prices and attendant 
undesirable environmental issues of fossil hydrocarbons, 
many scientists agree that it is exigent and timely to consider 
the vast opportunities offered by non-edible agricultural lig-
nocellulosic biomass [14–16].

Advances in agriculture and biotechnology has made it 
feasible to produce lignocellulosic biomass at far lower costs 
(per barrel of oil energy equivalence) than crude oil [2, 4, 
17]. It is estimated that of the over 200-billion tons of lig-
nocellulosic biomass produced on Earth yearly only about 
3% is being harnessed by humans [1, 18]. Lignocellulosic 
is a complex hetero-matrix composition of about 75–85% 
cellulose, hemicellulose and lignin polymers; the remaining 
percentage comprises of proteins, pectin, lipids and other 
extractable non-structural materials [19, 20]. Although all its 
major constituents are of significant interest to many fields 
of science and technology, however, hemicellulose in par-
ticular has shown strides for further development towards 
more interesting applications. This is because it is a complex 
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polymeric carbohydrate that is a rich source of pentosan 
(xylan or polypentose) with the chemical structure given 
in Fig. 1 and is the main feedstock for furfural the precur-
sor chemical for furfuryl alcohol, FA, [21–23]. There are a 
variety of pre-treatment techniques for lignocellulosic agri-
cultural biomass which can be grouped into four main cat-
egories; physical, chemical, biological and physiochemical 
techniques all specifically developed to modify the physical 
and chemical structure of lignocellulosic biomass in order 
to efficiently extract hemicellulose from cellulose without 
promotion of sugar degradation. Subsequently, these pre-
treatment process remains the most expensive steps within 
the overall conversion process of lignocellulosic biomass to 
bio-based products [24].

FA is noted as the most important derivative of furfural. 
The first reported laboratory synthesis of FA was in 1864 
and was via the reduction of furfural with sodium or sodium 
amalgam [25–27]. However, it was Erdmann who described 
its properties and effects on laboratory animals in the intro-
ductory comment of his report in 1902, on the toxicity of 
FA as a constituent of coffee [28]. Its major industrial pro-
duction began in 1934 when the Quaker Oats Company, 
Cedar Rapids USA, achieved a 99% conversion of furfural 
to FA using a copper-catalyst supported  Na2O·xSiO2 system 
employed in the gas-phase hydrogenation of furfural [29, 
30]. Currently, over 60% of annual production of furfural is 
converted to FA which finds a wide range of applications in 
many industries such as pharmaceuticals and manufactur-
ing. Figure 2 shows a simplified an eco-sustainability chart 
showing how FA is derived from hemicellulose [23, 30, 31].

1.1  Physical Structure and Properties of FA

FA, is a mobile colourless or pale yellow liquid, however, 
upon exposure to prolonged daylight and air it becomes 
brown to dark-red. It has a characteristics mild odour remi-
niscent of almonds and will readily form an azeotrope 
with water at atmospheric pressure (80 wt% water, bp 98.5 
°C). It exhibits a good solubility in many organic solvents 
such as tetrahydrofuran, chloroform, ether, acetone, and 

dimethylformamide, and freezes at minus 14.63 °C at a pres-
sure of 1 atm, and boils at 170 °C. The chemical structure of 
FA is given in Fig. 3 [23, 25–29, 32–34].

Fig. 1  Chemical structure of 
pentosan (xylan or polypen-
tose) consisting principally of 
oxygen-linked (ether) bridges
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Fig. 2  A simple flow chart illustrating production of FA from non-
edible lignocellulosic agricultural biomass

Fig. 3  The chemical structure 
of FA
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2  FA Production

Industrially speaking, the two main commercial processes 
for the production of FA are the vapour-phase and liquid-
phase processes via the selective-catalytic reduction or 
hydrogenation of furfural [6, 21, 23, 34–38]. Scheme 1 gives 
an overview of the catalytic hydrogenation of furfural to FA 
using copper chromite as catalyst [23].

2.1  Vapour Phase Process

Figure 4 shows the schematic process employed widely in 
industry for FA production via the vapour phase process 
[23]. The furfural feedstock is fed into a packed column 
1 through an evaporator system by a dosed quantity of  H2 
introduced at the bottom of the reaction column 1 in a coun-
ter-current system of  H2 flowing upwards and liquid furfural 
flowing downwards, the hydrogen gets saturated with the 
vapour pressure of furfural at 120 °C, a controlled circula-
tion pump 2, and a heater 3 energised by steam maintains 
the furfural temperature at 120 °C. The resulting mixture of 
hydrogen and furfural vapour passes a demister pad 4 and 
a superheater 5 before it enters a tubular catalytic reactor 6 
maintained at a temperature in the order 135 °C by means 
of hot oil. The tubes are filled with copper chromite pellets 
catalysing the desired reaction of furfural with hydrogen to 
form FA.

The reaction being slightly exothermic, liberates about 
60.7 kJ/mol, hence the flowing oil acts as a cooling sys-
tem. The gaseous mixture of reaction products enters a 

Copper Chromite

Furfural FA
Hydrogen

Scheme 1  Catalytic reduction of furfural to FA

Fig. 4  Schematics of the Vapour Phase Process for FA production
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condensation system comprising a packed column 7, a pump 
8, and a cooler 9. The pump circulates unrefined FA through 
the cooler 9 and unto the packing of column 7 where it meets 
a countercurrent of the gaseous products. From the latter 
stream, most of the condensables are liquefied. The remain-
ing portion, consisting of unreacted hydrogen and the satura-
tion quantities of the condensables at the column tempera-
ture, is recompressed by a ROOTS pump 10 and added to the 
hydrogen feed to check losses. A small bleed stream prevents 
a build-up of impurities. The condensed portion is fed into a 
reboiler system consisting of tank 11, a circulation pump 12, 
and a heater 13 energised by steam. The vapour produced by 
this system enters a packed vacuum distillation column 14. 
The head vapour of this column is liquefied by a condenser 
15 maintained at reduced pressure by a vacuum pump 16. 
Most of the condensate is returned to the column as reflux, 
while the rest represents a small head fraction consisting of 
2-methyl furan, unreacted furfural, and reaction water from 
the 2-methyl furan formation and polymerisation effects. 
The sump fraction is the purified FA [23, 30].

2.2  Liquid Phase Process

First reported in 1928 by the Quaker Oats Company the 
schematics in Fig. 5 depicts an old-fashioned, less sophis-
ticated process for making FA via the Liquid-phase hydro-
genation of furfural [23, 30]. In this process, the catalyst is 
employed as a slurry, and the hydrogenation carried out at 
pressure of 200-ATM and at a temperature of 120 °C. Fur-
fural and a copper chromite catalyst are mixed in tank 1 by 
means of a circulation pump 2. Pump 3 feeds the slurry con-
tinuously through preheater 4 into a tubular bubble reactor 
5. Hydrogen, from a water electrolysis plant, is injected by 
compressor 6. The mixture leaving the reactor flows through 
a cooler 7 into cyclone 8 where excess hydrogen is separated 
from the slurry and reinjected into the reactor feed stream by 
means of compressor 9. The slurry is depressurised in tank 
10, a relatively small quantity of hydrogen thereby released 
vented into the ambient air. Pump 11 takes the depressurised 
slurry into an overflow sedimentation centrifuge 12 where 
most of the catalyst particles are separated from the liquid 

Fig. 5  Schematics of the Liquid Phase Process for FA production
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phase. Removal of the solids from the bowl is effected manu-
ally at appropriate intervals. The liquid phase flows into a 
still 13 topped by a rectification column 14.

The head vapours of the column are liquefied in con-
denser 15, the resulting distillate being partly returned to 
the column to effect rectification and partly collected in tank 
16. This distillate is pure FA. Vacuum pump 17 maintains 
a reduced pressure to permit distillation at moderate tem-
peratures [23, 30].

However, with the exception of producers in China, other 
large-scale commercial producers of FA such as Illovo 
(South Africa), and QO, Indo-Rama (Thailand), employ 
the vapour-phase process for the following reasons [23, 34].

1. FA conversion proceeds at much lower temperatures and 
pressures compared to the liquid phase

2. The lower temperatures give the added advantage of 
reducing the quantity of other by-products formed; 
hence yielding a higher crude grade of FA.

3. Since the lower temperature impacts reduction of other 
by-products, it also has the advantage of consuming less 
furfural feedstock per approximately 0.5-kg of FA pro-
duced.

4. Increased lifetime of catalyst employed.

Notwithstanding, the choice of FA synthesis method from 
furfural is largely dependent on the economics and envi-
ronmental concerns. However, both gas-phase and liquid-
phase catalytic processes have been successfully shown to 
have their respective advantages, inclusive of better yields 
and ease of obtaining refined FA in a single-continuous pro-
cess [5, 30, 39–43]. Furthermore, a life cycle assessment 
(LCA) and life cycle costing (LCC) on the environmental 
and economic impact of furfuryl alcohol production using 
corncobs as raw material showed that increasing electricity 
consumption efficiency and furfural product yield, decreas-
ing transportation distance from corncob buyers and suppli-
ers, choosing the suitable corncob compression technique, 
and optimising the wastewater reuse system were the key 
contributing factors that resulted in reducing the overall 
environmental and economic impacts of this process [44].

3  Nature and Chemistry of FA

FA is a predominant member of the heterocyclic furan fam-
ily [45, 46]. It is classified as a primary (1°) alcohol due to 
the typical characteristics of having one carbon-atom bonded 
to a carbon atom carrying the hydroxyl group. Although FA 
exhibits the chemical behaviour of primary alcohols however 
it exhibits an atypical chemical characteristics by readily 
reacting with strong acids to form a complex resinous mate-
rial [46–49]. This peculiar ability of a supposedly primary 

alcohol has intrigued chemists, technologists, and scientists 
for decades and subsequently various attempts have been 
made to explain this phenomena [50–53].

FA is a very reactive chemical compound; this reactiv-
ity has been attributed to the regiospecific-discrimination 
against the C2 and/or C5 carbon by the highly dienophillic 
nature of the furanic system compared to its well-known 
homologous series thiophene and pyrrole as shown in Fig. 6 
[54].

This prevailing dienic nature of the furanic ring is respon-
sible for the peculiar atypical chemical reactivity nature of 
FA, a furan-bearing compound that is hugely influenced by 
its molecular orbital resonance [55]. This makes it possible 
for regioselective substitution reactions to occur at the C2 
and/or C5 carbon positions when these are not substituted; 
thereby suggesting structure I in Fig. 7 as the dominant reso-
nance structure [54, 56, 57].

3.1  Polycondensation Reactions of FA

Dunlop et al. and others demonstrated that the properties 
of FA changes significantly when in contact with acidic 
mediums. They further showed that under these conditions 
FA resinified and finally cured into a black insoluble bio-
plastic [35, 49]. Pummerer et al. proposed that step-growth 
polymerisation is the predominant reaction pathway for acid 
catalysed FA via cationic active species, given in scheme 2, 
with resultant repeating units linked by methylene bridges 
as shown in Fig. 8 [58].

Furan

Pyrrole

Thiophene

Increasing dienic nature

Increasing aromatic characteristics

Fig. 6  Increasing dienophillic nature of furan compared to its well-
known homologous series: pyrrole and thiophene

Fig. 7  The molecular orbital resonance-contributing structures for the 
furan heterocycle
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3.1.1  Complex Chemistry of FA Polycondensates

The complexity in the mechanism and products of FA 
polycondensates is well-known [46, 59]. The isolation of 
varied polyfurfuryl alcohol resins confirmed to consist of 
combination species such as 2-oxymethyl-5-furfuryl furan, 
2-oxymethyl-5-(5ˊ-furfuryl)-furfuryl furan, di-furfuryl 
ether, di-2-furylmethane, formaldehyde, and levulinic acid, 
under acidic systems, are well documented [60–62]. Fur-
thermore, it has been shown that polymers of FA catalysed 
by acids, non-acids (such as γ-alumina) or heat alone differ 
uniquely in chemical properties and compositions [63, 64]. 
Over the years, works by Krishnan et al. [65], Dunlop et al. 
[49], Gandini et al. [66], Choura et al. [53], and others have 
employed both mechanistic, theoretical, computer simula-
tions, chemo-rheological, and kinetic studies in attempting 
to explain this puzzle, by either clear-cut evidences and/
or tentatively. Equations 1–6 summarises the schemes and 

structures hitherto proposed by various studies for the poly-
condensates of FA.

3.1.1.1 Equation 1: Intermolecular Water Loss Studies has 
shown that furan and its methylated homologues such as 
FA undergo cationic polymerisation which may be initiated 
either by a Brønsted or Lewis acid producing a complex, and 
sometimes irreproducible structures; and that the first-step 
in the polycondensation of FA involves the predomination 
of intermolecular dehydration from two monomeric units 
whereby the hydroxyl group of one monomer is attacked by 
the active α-hydrogen atom of another monomer eliminat-
ing water in the process subsequently linked by the meth-
ylene groups hence forming a dimer as shown in Scheme 3 
[49, 53, 67–69].

3.1.1.2 Equation  2: Furan Chain Linkage Preceding inter-
molecular dehydration is succeeded by further intermolecu-
lar dehydration leading to higher weight condensation prod-
ucts as shown in Fig. 9 (Scheme 4) [49, 67, 70, 71].

3.1.1.3 Equation 3: Ether Formation The formation of fur-
furyl ether has been posited to result from possible combi-
nation of the methylol group,  CH2OH, of two monomeric 

Scheme 2  Acid catalysed reaction of FA

Fig. 8  Resultant repeating units of polyfurfuryl alcohol oligomeric 
resin linked by methylene bridges

Equation 1: Intermolecular Water Loss.

FA Monomer FA Monomer

5 –Furfurylfurfuryl Alcohol Dimer
Water

Scheme 3  Intermolecular dehydration of furfuryl alcohol yielding a 
dimer of 5-furfurylfurfuryl alcohol

Equation 2: Furan Chain Linkage.

Fig. 9  The preceding structure of FA polycondensates after intermo-
lecular dehydration
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units instead of intermolecular dehydration proposed in 
Equation 1 thereby resulting in an ether linkage instead of a 
methylene bridge however still with the elimination of water 
(Scheme 5) [35, 67, 68, 72].

3.1.1.4 Equation  4: Hydrolytic Cleavage of  Furan 
Ring Hydrolytic cleavage of the furanic ring in the FA 
monomer has been shown to occur under certain conditions 
during the polycondensation process (Fig. 10) [72, 73].

3.1.1.5 Equation  5: Possible Crosslinking It has been sug-
gested that the crosslinking of FA polycondensates resins 
consists of a variant repeating-structural units and not a 
homogenous system as supposed. Furthermore, it was pos-
tulated that, possibly, formaldehyde is formed at certain 

stage which condenses with the intermediate products to 
form a complex polymer network [67, 71, 72].

3.1.1.6 Equation 6: Possible Crosslinking Gandini et al. in 
their related studies have shown that the cationic polymeri-
sation of furfuryl alcohol proceeded via the same pathway 
as the cationic polymerisation of 2-vinylfuran which stems 
from the ease of hydride abstraction associated with the 
C–H bond directly connected to the furan heterocycle. By 
using model compounds, it has been shown that the stabi-
lisation of the ensuing carbenium ion, and its possibility of 
inducing a proton abstraction impacts a neutrally unsatu-
rated moiety. It is the repetition of this sequences (repetitive 
cycles) that generates conjugated moieties, resulting in the 
growth of these unsaturated moieties and of the sites =CH– 
linking the furan to an unsaturated 2,5-dihydrofuran coun-
terpart which immediately results in the chain coupling, 
after multiple unsaturations are formed. These are due to 
derived interchain cycloaddition between furan rings and 
conjugated structures accompanying the step-growth (poly-
addition) mechanism, as shown in scheme 6 [53, 66, 74].

4  Selected Applications of FA

4.1  Rocket Fuels

Furfuryl Alcohol releases about 26  MJ/kg heat com-
bustion when it burns, hence its use as an alternative 
hypergolic propellant for rocket engines [23, 29, 52, 75]. 

Equation 3: Ether Formation.

Proton [H+]

Furfuryl Ether
Water

Scheme 4  Formation of ether linkage

Equation 4: Hydrolytic Cleavage of Furanic Ring.

Proton [H+]

Scheme  5  Furan-ring cleavage leading to carbonyl and hydroxyl 
functional groups formation

Equation 5: Possible Cross-Linking.

Fig. 10  Proposed crosslinking structure of the FA polycondensates



230 Chemistry Africa (2019) 2:223–239

1 3

Kulkarni et al. demonstrated that rocket fuel blends con-
sisting of 3-carene, norbornadiene, FA, ethylidene nor-
bornene, and kerosene in different weight proportions 
exhibited good synergistic hypergolic ignition with red 
fuming nitric acid as oxidiser with almost no ignition 
delays. They concluded that these fuel blends exhibited 

high combustion efficiency of over 95% with very good 
performance comparable to, and even exceeding existing 
rocket fuels; coupled with the advantages of nontoxic-
ity, eco-friendliness, safe handling and transporting [76]. 
Furthermore, Bhosale et al. showed that FA used in hyper-
golic ionic biofuel blend presented a low-cost, technologi-
cally promising, affordable, benign and high performance 
hypergolic fuel for applications in missile propulsions and 
satellite launch vehicles [77].

4.2  FA‑Phenolic Binders

FA constitutes the sizeable portion in the widely used 
FURAN1 foundry binders, abounding mostly in patent litera-
tures, consisting between 30–85% of total contents and gen-
erally used in three main variant combinations viz FA/UF 
(Urea formaldehyde), FA/PF (Phenol Formaldehyde) and 
FA/PF/UF system. With the added advantage of flexibility as 
FURAN foundry binders find applications in HOT-BOX, gas 
hardened processes and the traditional FURAN-NO-BAKE 
(FNB) system [29, 78].

4.2.1  FURAN NO‑BAKE (FNB) Process

This was introduced in 1958 is a self-setting metal-casting 
system employing no heat application (cold setting binder 
system) but rather an acid catalyst (such as sulphuric, sul-
fonic and phosphoric acids) to initiate the hardening of the 
mould shown in Fig. 11 [79] at room temperature, where 
the setting time is controlled by the nature and amount of 
catalyst used. It is an eco-friendly, energy saving and effi-
cient moulding and casting system, coupled with its superior 
shakeout characteristics and the ease for sand reclamation 
via thermal and/or mechanical reclamation procedure. Other 

Equation 6: Possible Cross-Linking.

Scheme  6  Posited mechanism and crosslinking of FA polyconden-
sates

Fig. 11  Metal casting moulds from FURAN NO-BAKE process

1 FURAN is a common terminology used to refer to binders contain-
ing furfuryl alcohol and either urea or phenol formaldehyde or mix-
tures of both.
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advantages of the FBN include its relative low-costs, dimen-
sional precision, rapid hardening rate, production compe-
tence, and abundance of the raw material needed and the 
ease of sustainability [29, 80]

4.2.2  FURAN HOT BOX Process

Developed by the Quaker Oats company unlike the FBN 
system involves the application of heat (usually between 180 
and 270 °C) and latent acid catalysts (such as the solutions 
of urea or ammonium salts of strong acids). It is usually 
employed in both light (such as Aluminium) and heavy (such 
as bronze) metal casting and is appropriate for mass produc-
tion. Generally speaking, the resins employed in this process 
are UF resins modified with about 20–50% FA copolymers 
and PF resins modified with urea with the addition of small 
amounts of corn flour and paraffin wax to facilitate a thor-
ough mixing of the resin with the sand (usually within the 
range of 1–2.5% based on sand quantity employed). The 
resins are properly mixed with the sand and proportionate 
catalyst, and then blown into a heated mould (core boxes) to 
initiate the curing reaction [78, 81].

4.2.3  FURAN Gas Hardened Process

Also referred to the Cold-Box process is well suited for mass 
moulding of small moulds and cores employing sulphur 
dioxide  (SO2) as catalyst in a closed-air system, at room 
temperature, which rapidly sets the FA-phenolic resin sand 
mix [82].

4.3  Wood Preservation

“Furfurylation” of wood is a chemical process by which 
commercial wood properties are improved using FA as a 
low-viscosity modifying agent to change the wood struc-
ture and chemistry so that it becomes less susceptible to 
biodegradation and resistant to chemical attack. The insitu 
complex polymerisation process within the wood system has 
been known as an eco-efficient “green” alternative for the 
previously employed toxic and hazardous compounds such 
as salts of copper, chromium and arsenic [83–86]. Furfu-
rylated woods are known to be non-toxic materials suitable 
for internal and external applications where a high demand 
for performance and aesthetic characteristics are required 
[87]. Lande et al. demonstrated that furfurylated wood was 
completely resistant to attack in areas of high termite activity 
[88]. Similarly, Esteves et al. concluded that furfurylation of 
wood imparted hardness and improved the durability of the 
wood. They observed that the moisture behaviour of furfu-
rylated wood decreased in relation to the wood equilibrium 
moisture content but had an increment in its dimensional 

stability; thereby enhancing reduction in anisotropy with no 
significant effect on the bending properties [89].

Dong et al. [90] in their work demonstrated a novel bio-
based wood polymer nanocomposites successfully prepared 
from fast-growing poplar wood employing FA and nano-
SiO2. They posited that SEM and FT-IR studies showed that 
the nano-SiO2 were incorporated in the wood and fixated on 
the wood cell via the effect of the polymerised FA this sig-
nificantly improved the modulus of elasticity (MOR) of the 
wood. Furthermore, they showed that the thermal stabilisa-
tion and flame retardancy of the wood improved remarkably 
at 2.0% nano-SiO2 incorporation. In another study Hazarika 
et al. [91] investigated the properties of wood impregnated 
with melamine-formaldehyde-FA (MFFA) copolymer and 
montmorillionite (MMT) concluding that the wood exhib-
ited improved higher dimensional stability, lower water 
uptake (%), enhanced resistance, and better mechanical 
properties such as flexural, tensile and hardness.

4.4  Pharmaceuticals

FA is a very vital pharmaceutical compound which finds use 
as a chemical intermediate compound such as for Vitamin C 
and Lysine production [92, 93]. The latter being an essential 
amino acids not synthesised biologically in the human body 
[42]. Once referred to as the “Herpes killer”, lysine is more 
biologically active in its L-configuration and is necessary 
for proper growth and development in children; it also helps 
adults to retain proper balance of nitrogen in the body. It is 
a well-known pharmaceutical drug useful in combating cold 
sores and virus infections; and has the chemical structure as 
shown in Fig. 12 [94, 95].

4.5  As an Industrial Solvent

Furfuryl Alcohol is a fine solvent which when used alone 
or in combination with other solvents finds application as 
a general cleaning solvent and paint softener. It also finds 
use as dispersant for dyes in the textile industry and finds 

Fig. 12  The chemical structure of l-lysine

Fig. 13  Chemical structure of 
levulinic acid
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application as solvents for many resinous materials [96–98]. 
Its solvent properties can easily be enhanced by slightly 
heating since its flashpoint is 75 °C [99].

4.6  Levulinic Acid

Levulinic acid (LA) is a versatile and valuable-building-
block industrial chemical that is derived from FA. It was first 
produced in 1870 and has a well-known chemical structure 
that is depicted in Fig. 13 [100]. The United States Depart-
ment of Energy ranked it amongst the top twelve value added 
chemicals derived from lignocellulosic biomass [101–103]. 
Pummerer and Gump suggested that the reaction leading to 
levulinic acid from FA proceeded by hydration and ring-
opening reactions in the presence of strong acids such as 
HCl [104].

Although several attempts were reported for the pro-
duction of LA from petroleum-based compounds, these 
approaches failed to be commercialised due to the high-cost 
and complex production processes involved [105]. Hence, 
the industrially cost-effective method employed commer-
cially remains the renewable lignocellulosic feedstock such 
as FA [106]. It has been shown that when the conversion 
reaction of FA to LA is carried out in water, 80% yield was 
achieved; when performed in ketones (such as acetone and 
2-butanone) a yield of 93% and above was achieved [101, 
107].

4.7  Flavouring and Fragrances

Conversion of FA to its sulphur or nitrogen containing 
compound makes is considered a new route for inexpensive 
starting material for fragrances [108] and in the production 
of flavourings [34]. There is a huge market potential for 
food flavouring agents, perfumes and fragrances and it is 
this driving force that has advanced research and develop-
ment into furan-based renewable chemical precursors and/
or intermediates such as FA in the fragrance, perfumes, and 
flavour industries [109]. For example, furfuryl mercaptan 

(2-furanmethanethiol) an essential flavourant of coffee and a 
constituent of many foods and beverages is made from FA by 
reaction with thiourea in the presence of hydrogen chloride 
as shown in scheme 7 [68, 110].

Ethyl Maltol (hydroxyl ethyl pyrone) is a complex alco-
holic heterocyclic compound which finds use as butter-
scotch, strawberry jammy, and brown sugar characteristic 
flavouring. It is another example of electrochemical reac-
tions of FA that has been successfully converted into a com-
mercial process for the production of flavours [111, 112].

4.8  Resins

FA resins (polymers and/or oligomers), alone or with co-
reactants, find interesting applications in fields such as 
aerospace, scientific laboratories, and the auto industries. 
Due to their exceptional resistance to corrosive chemicals 
(e.g. acids, alkalis and other solvents), they are also used 
in built environment as cementitious grouts, mortars, coat-
ing, impregnating materials, and sealants [61, 72, 113–115]. 
These resins are also used in hospital operating floor cover-
ings which demand low electrostatic resistivity to prevent 
electrostatic discharge from igniting flammable liquid sub-
stances often used in hospital environments [116]. When 
reinforced with fibre-glass, a material that is resistant to cor-
rosion and heat distortion (at elevated temperature) with low 
flame and smoke emission level is obtained. This material 
finds applications in reinforced tanks, pipes, reaction vessels, 
vats, and ducts [72, 117–119]. For example,  Lecite® mortar, 
an FA resin, developed by Electro Chemical Engineering & 
Manufacturing, Emmaus, Pa, United States, was used in the 
construction of the scrubbing tower [120].

FA resins also find wide-industrial applications as binder 
matrix in various fibre-reinforced composites in the auto, 
aerospace and construction industries, which exhibit almost 
the same corresponding physical properties as those manu-
factured from the dominant phenol resins [116]. Nu-Kast® 
pump, a product of Nukem Manufacturing United Sates, is 
an example of the outstanding versatility of FA resins. Cast 
entirely from FA monomer, this pump is light weight and 
compact, corrosion-proof inside and outside, great mechani-
cal strength and resistant to severe shock with the ability to 
resist practically all commercial acid solutions, salts, alka-
lis, and organic solvents [121]. FA resins form gap-filling 
glues when modified with urea yielding a material with 
exceptional strength. These adhesives exhibit good flexibil-
ity, resist cracking and deterioration upon aging. They also 
show good resistance to shrinkage under high pressure and 
temperature [115].

FA Thiourea

Ѕ -furfurylisothiouronium chloride
Furfuryl mercaptan

Scheme 7  The making of furfuryl mercaptan
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4.9  Polymer Concretes

FA is used to produce non-petroleum based high-quality 
polymer concrete with very good properties such as resist-
ance to acid, and alkali, heat stability, faster curing time, 
improved strength and bonding factors when compared to 
Portland cement concretes [122]. FA polymer concretes are 
usually employed in aggressive environments such as cor-
rosion resistant baths, chemical resistant floorings, channel 
pipes and structural materials in nonferrous metallurgical 
plants [123]. Muthukumar et al. demonstrated that low vis-
cosity of FA resin used in polymer concretes resulted to 
low binder content with cost effective formulations hence a 
competitive advantage over other conventional binders such 
as epoxy and polyesters resins employed in production of 
polymer concretes [124].

A demonstrated water-compatible polymer concrete 
materials developed from FA used in rapid repaid repair 
systems for airport runways, in all-weather conditions, has 
been reported. The resulting surfaced runway was reported 
to exhibit commensurate durability and compressive strength 
of the original surface. The formulation was shown to poly-
merise and cure within 20-min exhibiting a compressive 
strength of 20 MPa. It proved to be stable even under adverse 
chemical conditions and withstood temperatures of up to 
200 °C. Further tests on the rehabilitated road pothole slabs 
demonstrated that the concrete can resist high stresses under 
repeated loads successfully. These FA-polymer concrete 
could be installed in less than 30-min, under any weather 
condition, thereby reducing the cost of man-hours [125, 
126].

4.10  Wood Adhesives

FA also finds application as a resin for wood adhesive. It 
has been shown that composite boards were prepared using 
wood powder as matrix and FA or prepolymers of FA (oli-
gomeric systems) as binder with hydrogen peroxide/ferrous 
ion or nitric acid as an activator. The study demonstrated that 
the tensile strength and water resistance of the oligomeric 
systems were superior to that obtained with monomeric FA. 
Furthermore it was shown that the degree of polymerisation 
of the oligomeric FA influenced the properties of the wood 
composite and that the addition of the activator to the binder 
instead of the matrix system yielded better results, further 
suggesting that the activation proceeds primarily through the 
binder oxidation. The study further demonstrated that using 
of acetone-soluble fraction of pre-oxidised oligomeric FA 
as binder gave impressive results, and the boards exhibited a 
tensile strength over 50% above reference phenol/resorcinol/
formaldehyde (PRF) boards [127].

Abdullah et al. [128] in their work developed an eco-
friendly and formaldehyde-free wood adhesive from tannin-
FA renewable materials. A more recent work on FA-alde-
hyde plywood adhesive resins showed that comparatively 
FA-glyoxal (FAG) resin showed satisfactory results for ply-
wood composite boards. It was demonstrated that the dry 
strength, 24-h wet strength and 2-h boiled-water wet strength 
were 1.02 MPa, 1.36 MPa and 1.46 MPa respectively, which 
is significantly higher than the standard requirements (≥ 
0.7 MPa). Furthermore since the glyoxal is non-toxic and 
non-volatile it demonstrates that FAG resin can be consid-
ered a more eco-friendly and sustainable alternative to the 
FA-formaldehyde adhesives [129].

4.11  Carbon‑Carbon Materials

When FA resins are pyrolysed above 450 °C they yield 
glassy-porous carbons which has been used in mesoporous 
absorbent systems. At higher pyrolysis temperatures of 
up to 1000 °C, high-grade carbon materials are produced 
which are industrially employed in carbon-carbon compos-
ites materials such as brakes and clutches, rocket motors, 
heatshield, aero-engine components, high-grade military 
gears and hardware, as well as biomedical devices [70, 
130–132]. FA also finds application in the production of 
nano-porous membranes for desalination of brackish and 
seawater [133, 134].

4.12  Foams

Basso et al. in their studies have shown the possibility 
of producing a cheap and eco-friendly formaldehyde-free 
rigid foams with outstanding thermal performance from 
FA and tannin [135]. In a related work, Basso et al. suc-
cessfully developed mixed phenolic-polyurethane-type 
rigid foams using tannin-furfuryl alcohol natural materials 
co-reacted with polymeric isocyanate which the method 
can be adapted for industrial continuous lines production, 
thus, opening up new possibilities for large-scale manufac-
ture of these sustainable foams. The underlying technology 
for such tannin-based foams is on a self-blowing process 
with mild exothermic reaction due to the self-condensation 
reaction of the FA under acidic conditions thereby initi-
ating rapid evaporation, at ambient temperature, of the 
organic volatile during hardening [136]. Similarly, relative 
low cost furanic foams (consisting only of FA systems) 
exhibiting excellent thermal stability under high tempera-
tures has been investigated. These FA foams finds inter-
esting applications such as in foundries to bind the sand 
of moulds and/or cores for casting engine heads and other 
kind of steel tools [137]. Tondi et al. has demonstrated 
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the upscaling of eco-sustainable tannin foams. These bio-
derived tannin systems have similar reactivity than phenol 
and when co-reacted with FA produces polymers suitable 
for a wide range of applications such as in waste water 
remedial [138]. Similarly, carbon foams with improved 
thermal conductivity and mechanical properties were pre-
pared from tannin-based resin and exfoliated graphite used 
as filler. These organic-carbon foams were first prepared 
by suspending exfoliated graphite in an aqueous solution 
of tannin, FA, formaldehyde, diethyl ether and para-tou-
lene-4-sulphonic acid at room temperature. These carbon 
foams find varied applications ranging from templates for 
preparation of the metallic and ceramic foams currently 
used in industry to electrodes and insulating liners for high 
temperature applications up to 2500 °C [139].

Furthermore, Jinwoo et  al. has shown that low-cost 
mesocellular carbon foams from FA can be used in cata-
lysts supports, high performance adsorbent systems for 
bulky pollutants, and in highly efficient electrode mate-
rials [140]. FA has also been employed in the produc-
tion of environmentally benign polyols which have found 
applications as replacement for petroleum-based polyols 
in polyurethane foams [141].

4.13  Composites

TRB Lightweight Structures Ltd has developed a biocom-
posite resin based carbon reinforced polymer (CFRP) sand-
wich panel door leaf shown in Fig. 14 from the “prepreg” 
of FA oligomeric systems, which contains 100% recycled 
foam core. This is the first of its kind bi-composite railway 
carriage door to fully meet the most demanding fire, smoke 

and toxic fumes (FST) specifications in subterranean rail 
applications (overground and underground rail use). This 
biocomposite easily passed the BS 6853 and BS 476, as well 
as being EN 45545 HL3 compliant [142].

FA was employed in the materials used by the United 
States space agency in their space shuttle thermal protec-
tion systems (TPS). Reinforced carbon-carbon was produced 
from cured graphite fabric that was impregnated with phe-
nolic resin laid up in complex shaped moulds. After the parts 
were rough trimmed it was impregnated with FA and pyro-
lysed converting the resin polymer to carbon. The impreg-
nation and pyrolysis is done multiple times to increase den-
sity which also resulted in improved, mechanical and flame 
retardant properties of these parts [143].

Wang et  al. [144] reported a robust, environmental-
friendly method to synthesise polymer/clay aerogel nano-
composites materials from low density FA oligomeric 
systems and clay. Polymer/clay aerogels find applications 
ranging from catalyst supports, packaging, thermal insula-
tion, absorption and structural applications.

Graphene/titanium carbide composites were synthesised 
employing sol-gel infiltration and spark plasma sintering 
(SPS). FA was used as the polymerisable carbon source. 
The graphene used was casted into a sponge-like shape 
consisting of three-dimensional network of graphene sheet 
whilst the sol-gel infiltration synthesis method allowed for 
the formation of nano-structured ceramics inside the porous 
structure of the graphene networks, hence forming the com-
posites. Titanium-carbide (TiC) composites are ultra-high 
temperature ceramics (UHTC) with low thermal expansivity 
and density (4.93 g/cm3), high melting points (3067 °C), 
high Vickers hardness (28–35 GPa), high Young’s modulus 
(410–450 GPa) and high thermal and electrical conductiv-
ity. Their investigated applications includes usage as cutting 
tools, refractory components, super-computers, electronic 
elements, in aerospace engineering and so on [145, 146].

Ebrahimi et al. has reported the preparation of FA func-
tionalised carbon nanotube (CNT) and epoxide novolac resin 
composites with high char yield. The epoxidised novolac 
resin (ENR) composites exhibited high thermal stability and 
char residue. The study demonstrated that modification of 
oxidised CNTs with FA resulted in improved dispersion in 
the resin matrix [147].

4.14  Sundry Applications

Nobuo et al. described a process for producing diamond 
powder by a shock compressing method using FA as a car-
bon precursor [148]. FA has also been used in the production 
of bio-based nanocomposites, batteries and nuclear-grade 
graphitic rods for use in nuclear plants [71, 149, 150].

In their work Nanaji et al. [151] demonstrated that utiliz-
ing FA as an alternative source of carbon precursor (for the 

Fig. 14  TRB rated biocomposite rail carriage door leaf
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first time) a smart, efficient and cost-effective methodology 
employing a modified evaporation induced self-assembly 
(EISA), strategy was used to synthesise mesoporous car-
bon (MC), which exhibited excellent textural parameters, 
employed in super-capacitors. They showed that the result-
ing carbon synthesised with the modified EISA method 
exhibited a higher specific surface area with large pore 
volume and more ordered graphitic carbon. The wettabil-
ity studies demonstrated that the functionalised mesoporous 
carbon surface had superior hydrophilic properties as com-
pared against the non-functionalised mesoporous carbon 
film surface. In a related study Gao et al. [152] also has 
developed a boron-doped mesoporous carbons (BOMCs) for 
making of super-capacitors. Different boron contents were 
prepared by nano-casting using silica KIT-6, FA and boric 
acid as the template, carbon, and boron sources respectively.

Furfuryl Alcohol modified melamine sponge (MS) for 
high-efficient oil spill clean-up and recovery has been 
reported by Feng et al. The FA modified MS exhibited 
excellent hydrophobicity, improved thermal and mechani-
cal properties, and showed excellent oil sorption capacities 
(75–160 g/g for various oils or organic solvents) and better 
recyclability capabilities; thus proposing such FA modified 
MS as potential candidates for high efficient absorbents 
for oil-water separation. The further demonstrated that FA 
modified commercial MS can be synthesised using a simple 
non-toxic and expensive modifying agents or solution [153].

FA functionalised water-soluble graphene dispersions, 
fabricated by the exfoliation of graphite by Diels–Alder 
cycloaddition reaction has been reported by Zhang et al. 
The study demonstrated that the high-quality graphene-FA 
so produced exhibited no significant structural defects less 
than a few layers. Furthermore, positing that facile proce-
dure so reported could be used for the synthesis of versatile 
functional graphene with other organic group on the surface 
of graphene and the hydroxyl groups of FA for a variety 
of applications [154]. Furthermore, FA has been reportedly 
used in the manufacture of esters, synthetic fibres and rub-
bers [97, 107, 155].

5  Conclusion

Owing to the ever increasing call for eco-sustainable chemi-
cals and materials, FA derived from non-edible lignocellu-
losic biomass has continued to show increasing potential as 
a choice alternative to fossil-derived chemicals and materials 
in many industrial and materials applications as shown in 
this review article.

Non-edible lignocellulosic agricultural biomass offers us 
the bottomless opportunity for a cheaper, greener and eco-
sustainable abundant resources. Coupled with advances in 
science and technology this eco-sustainable resources can 

be harnessed cheaply and effectively thereby reducing the 
overdependence on depleting and comparatively expensive 
fossil derived chemicals, mitigate greenhouse gas emissions, 
improve local economies and ensure energy security.

FA has been used to present the vast opportunities that 
chemicals from non-edible lignocellulosic agricultural resi-
dues can offer mankind; coupled with the intriguing chem-
istry and nature of FA reactions with co-reactants or alone, 
it avails scientists and technologists the capability to modify, 
tailor and transform it into materials and chemicals to meet 
specific end-use and applications with interesting properties 
not obtainable in fossil derived chemicals and materials.
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