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Abstract
This study aims to explore innovative approaches for synthesizing ultra-fine ceria nanoparticles by employing diverse 
assisted-sol–gel syntheses such as microwave, sonochemical, reflux, and heating methods and a comparative property assess-
ment of the resultant nanoparticles. The physicochemical properties of the synthesized nanoparticles were analyzed including, 
crystallinity, crystallite size, bonding characteristics, reflectance, band gap, optical emission, nanoparticle size, morphology, 
and surface charge features. Highly crystalline, structurally pure, spherical-shaped, positively charged  CeO2 nanoparticles 
were obtained in all the synthesis methods. Among the four methods, notable outcomes were given by cerium dioxide  (CeO2) 
nanoparticles synthesized via a microwave-assisted sol–gel method. These nanoparticles feature nanocrystalline structures 
with additional monodisperse quantum dot formations of size 3 ± 1.5 nm, distinguished by a band gap of approximately 
3.05 eV, BET surface area of 76  m2/g and a prominent blue emission band at around 464 nm. Antibacterial assays unveiled 
the remarkable inhibitory effects of microwave-synthesized  CeO2 nanoparticles against gram-negative bacteria, including 
E. coli and P. aeruginosa. In the quest for targeted antibacterial agents, this narrow-spectrum bactericidal activity highlights 
the potential of these nanoparticles as targeted antibacterial agents, offering promising avenues for combating infections 
caused by Gram-negative bacterial strains.

Keywords Cerium dioxide · Assisted-sol–gel synthesis · Microwave · Sonochemical · Reflux · Antibacterial

1 Introduction

Cerium dioxide nanoparticles are considered one of the 
most manufactured nanoparticles globally, with an estimated 
annual production of roughly 1000 tons [1]. In recent years 
ceria-based materials have a great deal of interest from both 

scientific and commercial points of view (Kowsuki et al., 
2023). Cerium oxide nanoparticles  (CeO2 NPs) have been 
widely employed in catalysis [2], gas sensors [3], solid oxide 
fuel cells [4], solar cells [5], high refractive index materials 
[6], UV blockers [7], polishing materials [8]. Besides, it has 
application in commercial three-way catalysts (TWCs) for 
the purification of motor exhaust gases, and it acts as an oxy-
gen partial-pressure regulator, keeping the reductant/oxidant 
ratio in the exhaust close to the stoichiometric value [9]. One 
of the most important rare earth elements, cerium is the sec-
ond element in the lanthanide series and has unique proper-
ties due to its low reduction potential and sudden oscillation 
between  Ce+3 and  Ce+4 oxidation states [10]. Furthermore, it 
has a face-centered cubic fluorite structure [11] with the unit 
cell containing four cerium and eight oxygen atoms [12].

There are several methods to synthesize  CeO2 NPs such 
as Hydrothermal [13], Solvothermal [14], Thermal hydroly-
sis [15], Precipitation [16], Flame spray methods [17], Ther-
mal decomposition [18], Reversed micelles [19], Inverse 
microemulsion [20], Sonochemical [21], Pulsed laser abla-
tion [22, 23], High energy ball milling [24], Electrochemical 
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synthesis [25], and so on. Sol–gel method [26–29] has 
received much attention for synthesizing metal oxide nano-
particles which involve the hydrolysis and subsequent poly-
condensation reaction of metal alkoxide precursors to form 
a sol and finally to a network-like structure called gel. How-
ever, the traditional sol–gel method has certain drawbacks, 
such as the need for expensive precursors, clustered and dif-
fused particles, and amorphous end products. Generally, cal-
cination is needed in most cases, resulting in nano to micron-
sized aggregated particles. Being a simple, economical, and 
low-temperature modified form of this, the assisted sol–gel 
method involves the preparation of ultrafine nano-sized par-
ticles with high homogeneity, reliability, reproducibility, and 
controllability.

In addition to the industrial applications,  CeO2 nanopar-
ticles emerged as a promising material having fascinating 
applications in the biomedical field as therapeutic agents 
[30] such as in the treatment of oxidative stress diseases 
[31], neuroprotection, Alzheimer’s disease [32], bioscaf-
folding [33], rheumatoid arthritis [34], inflammatory bowel 
disease [35], chronic wounds, diabetics, retinitis [36], etc. 
Recent progress of ceria in nanomedicine helps in treating 
viral, genetic, and cancerous diseases [22, 23]. They show 
excellent antioxidant properties [37] at physiological pH val-
ues and have shown protection from reactive oxygen species 
[38] in several animal model systems. Gram-negative bac-
terial infections are becoming more and more common all 
over the world. Drug-resistant bacteria have simultaneously 
emerged as a result of overuse of traditional antibiotics, 
which are harder to treat. Thus, there is an urgent need for 
novel, efficient therapeutic approaches with little potential 
to generate drug-resistant bacteria.

So, in the present study, we have attempted to prepare 
ultra-fine ceria nanoparticles through novel two-tier sol–gel-
based synthesis methods, namely assisted-sol–gel meth-
ods. By carefully manipulating the reaction conditions and 
parameters, we have successfully synthesized four different 
cerium dioxide nanoparticles using distinct assisted-sol–gel 
methods, including microwave, sonochemical, reflux, and 
conventional heating methods. The samples synthesized 
were characterized using an X-ray Diffractometer (XRD), 
Fourier Transform Infrared Spectrometer (FTIR), UV–Vis. 
Diffused Reflectance Spectroscopy (DRS), Dynamic Light 
Scattering Analyser (DLS), Surface area analyzer (BET), 
Transmission Electron Microscope (TEM), Scanning Elec-
tron Microscope (SEM), and Photoluminescence Spec-
trophotometer (PL). After assessing the physicochemical 
properties of the samples using crystallographic, spectro-
scopic, and microscopic characterization tools, antibacterial 
studies of the prepared cerium dioxide nanoparticles were 
subsequently conducted. The prepared nanoparticles' effi-
cacy against gram-positive and gram-negative bacteria was 
analyzed. The results obtained were compared and discussed 

and a possible mechanism for the antibacterial activity is 
also presented.

2  Experimental

2.1  Materials

The Cerium nitrate hexahydrate (Ce(NO3)3.6H2O), Rankem 
Chemicals Ltd, 99%) was taken as the starting material for 
the preparation of  CeO2 nanoparticles. For the prepara-
tion of sol, 10%  NH3 (Nice, 99%), and 10%  HNO3 (Nice, 
99%) were used. Double-distilled water was used for all the 
preparations.

2.2  Preparation of sol

A precise quantity of 2.1711 g (5 mM) Cerium nitrate 
hexahydrate (Ce(NO3)3.6H2O) was accurately weighed and 
dissolved in 1000 ml double-distilled water. The prepared 
solution was saturated with 10%  NH3 under stirring condi-
tions until a Ce(OH)4 precipitate was obtained. This was 
centrifuged and the precipitate was washed with warm dou-
ble distilled water and centrifuged for 10 min at a speed of 
3000 rpm. Then the residue was re-dissolved in 500 ml dou-
ble distilled water. After the precipitate re-dissolving step, 
the pH of the solution was adjusted to the acidic range by 
adding 10%  HNO3 dropwise till a stable sol was obtained. A 
pH reading of 1.8 was finally obtained for the stable sol. The 
yellow sol was stirred for 1 h and then subjected to different 
assisted-sol–gel methods. The  CeO2 NPs synthesized from 
a 5 mM precursor solution of cerium nitrate were taken as 
the standard for all the characterization studies.

2.3  Synthesis of cerium oxide nanoparticles 
by assisted‑sol–gel methods

The conditions adopted for the nanoceria synthesis by 
different assisted-sol–gel methods are summarized in 
Table 1. A schematic diagram showing the step-by-step 
process involved is provided in Fig. 1 and Fig. S1. The 
synthesis of cerium dioxide nanoparticles was carried out 
by treating the sol under different experimental conditions 

Table 1  Method of preparation and synthesis conditions for preparing 
Cerium Oxide nanoparticles by assisted-sol–gel methods

Sample Code Method of Preparation Conditions

Sample 1 (MS) Microwave 1200W, 30Min
Sample 2 (SS) Sonochemical 40 kHz, 1Hr
Sample 3 (RS) Reflux 100 °C, 1Hr
Sample 4 (CS) Conventional Heating 300 °C, 8Hrs
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comprising of, refluxing the sol at 100 °C for 1 h, ultra-
sonicating sol for 1 h at 40 kHz, microwave irradiation 
of sol at 1200 W for 30 min in a kitchen microwave, and 
conventional heating of the sol in a hot plate at 300 °C, 
8Hrs. As detailed in Fig. 1, yellow-colored cerium oxide 
nanoparticles were finally obtained.

2.4  Characterization of  CeO2 nanoparticles

The crystallinity of the synthesized yellow-colored Ceria 
nanoparticles was studied using an X-ray diffractometer 
(XRD Rigaku MiniFlex, Japan) using CuKα radiation. 
The X-ray diffraction data was collected over the 2θ range 
20–80° and the analysis was done at medium scan speed. 
Scherrer's equation was used to calculate the crystal-
lite size. The specific surface area and porosity of ceria 
nanoparticles were calculated using XRD. FT-IR spectra 
were recorded in the range of 4000–400  cm−1 via an FTIR 
spectrometer (Shimadzu IR Affinity, Japan). The UV–Vis. 
Diffused reflectance spectra of  CeO2 NPs were recorded 
between 200 and 800 nm with the help of a UV–Vis. Spec-
trophotometer (Shimadzu, Japan). Size distribution analy-
sis was performed with a dynamic light scattering analyzer 
(DLS, Anton Paar, Lifesizer 500). The morphology and 
average size of the nanoparticles were analyzed using 
TEM (JEOL JEM 1200 EX II, Japan). The bulk morpholo-
gies were also studied using an SEM (JSM-5610, Japan). 
The surface area of the samples was analyzed using BET 
(micromeritics Tristar II). The Photoluminescence (PL) 
spectra of prepared  CeO2 nanoparticles are measured and 
recorded using a Photoluminescence spectrophotometer 
(Varian, Cary).

2.5  Antibacterial activity studies

The  CeO2 NPs obtained from different sol-assisted methods 
were subjected to the present study. Antibacterial studies 
were performed by the disc diffusion method. The bacterial 
strains were purchased from the Cashew Export Promotion 
Council of India (CEPCI). A 10 ml suspension of nanopar-
ticles (4 g/L) was sonicated and filtered. It was kept at room 
temperature in a desiccator. Using a sterile L-shaped glass 
rod, the bacterial suspension (E. coli, P. aeruginosa, S. pyo-
genes, S. aureus) was evenly applied to the surface of a nutri-
ent agar plate. The surface of each agar plate was covered 
with filter paper soaked in nanoceria. Antibiotic (Amoxicil-
lin) laden disks were placed on the nutrient agar plate. The 
plates were incubated at 35 °C for 24 h. The diameter of the 
inhibition zone was measured after the incubation period. To 
determine antibacterial activity, each sample was tested in 
triplicate, and the average values were computed.

3  Results and discussion

3.1  X‑ray diffraction

The X-ray diffractograms of  CeO2 nanoparticles synthesized 
through different assisted sol–gel methods were provided in 
Fig. 2. The crystallographic studies revealed that all the diffrac-
tograms match well with the International Centre of Diffrac-
tion Data (ICDD) peaks of pure  CeO2 nanocrystals. Notably, 
the diffraction peaks were sharp, corresponding to the crystal 
planes (111), (200), (220), and (311) at 2θ values 28°, 33°, 
47° and 56°, respectively. This indicates the highly crystal-
line nature of the samples with a cubic fluorite structure. The 

Fig. 1  Schematic diagram for the synthesis of cerium dioxide nanoparticles
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broadness of the diffraction peaks affirms the nano-size regime 
of the prepared  CeO2 particles. From the diffraction analyses, 
the average crystallite size D of the samples was calculated, 
using the Debye–Scherrer's formula [39],

where, k = 0.94, called Scherer's constant, ‘λ’ is the wavelength 
of the X-ray used (1.5405 Angstrom), ‘β’ is the angular peak 
width at half maximum in radians, and ‘θ’ is the diffraction 
angle. The diffraction studies confirmed that nanocrystalline 
cerium oxide nanoparticles were formed across all assisted 
sol–gel synthesis methods, with sizes falling within 5.01- 
5.82 nm. The average crystallite size of the prepared particles 
was, MS = 5.34, SS = 5.82, RS = 5.38, and CS = 5.01 nm, respec-
tively. The specific surface area and porosity of ceria nanopar-
ticles from XRD data were determined (Table S1). The specific 
surface area calculated from XRD data was also compared with 
the surface area measured using a BET analyzer (Table S2).

3.2  Fourier transform infrared spectroscopy

The FTIR spectra of the synthesized  CeO2 NPs were taken 
and provided in Fig.  3. All the samples showed three 
intense peaks in three ranges at 450–413  cm−1, 2380- 2300, 

D = k�∕�cos�

and 1592–1504. The intense band at 450–413  cm−1 corre-
sponds to the Ce–O stretching vibration. From the analysis, 
the absorption peak at around 1592–1504  cm−1 is ascribed 
to the bending vibration of C-H units. The bands located at 
around 2380–2300  cm−1 can be attributed to the  CO2 asym-
metric stretching vibration and C-O stretching vibration 
[40]. The FTIR analyses further affirm the presence and 
formation of cerium oxide nanoparticles through various 
synthesis methods.

3.3  Transmission electron microscopy (TEM)

The morphology and particle size of the prepared samples 
were analyzed using transmission electron microscopy 
(TEM). Figure 4(a-d) displays TEM micrographs of four 
different nanoceria samples. Notably, all the employed tech-
niques displayed spherical  CeO2 nanoparticles, but with 
varying size regimes. The samples exhibited a narrow size 
distribution. The particle size, as measured using ImageJ 
software, for samples MS, SS, RS, and CS were 3 ± 1.5 nm, 
7 ± 0.6 nm, 5 ± 0.6 nm, and 15 ± 3 nm, respectively. Only 
the MS sample displayed monodisperse quantum dot-sized 
particles, while other samples SS, RS, and CS showed fine 
aggregated particles. This observation is further supported 
by the FESEM images (Fig. S2).

Fig. 2  Powder X-ray diffraction patterns of  CeO2 NPs prepared from 
5 mM cerium nitrate precursor solution using different assisted sol–
gel methods (a) Microwave (b) Sonochemical (c) Reflux (d) Conven-
tional heating

Fig. 3  FTIR spectra of  CeO2 nanoparticles prepared from cerium 
nitrate by different assisted sol–gel methods (a) Microwave (b) Sono-
chemical (c) Reflux (d) Conventional
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3.4  Diffuse reflectance spectra and bandgap 
measurement

The diffuse reflectance spectra of the prepared  CeO2 NPs by 
different assisted sol–gel methods are provided in Fig. S3. 
The reflectance data was used for processing the band gap 
energy of the samples using the Tauc model equation [41],

where ‘α’ is the absorption coefficient, ‘h’ is the plank’s 
constant, ‘ν’ is the photon’s frequency, ‘A’ is a proportion-
ality constant, ‘Eg’ is the band gap energy, and ‘γ’ denotes 
the nature of the electronic transition. The value of ‘γ’ is 
taken as ‘2’ for direct allowed transitions and as ‘1/2’ for 
indirect allowed transitions. The bandgap values were esti-
mated by plotting (αhν)2 on the Y-axis and the energy of the 
photon on the X-axis, the intercept of the straight line in the 
X-axis provided the bandgap value. Based on the Tauc plot 
analysis, as shown in Fig. 5, the optical band gap energies 

(�h�)∧� = A (h� − Eg)

of ceria nanoparticles synthesized using microwave, reflux, 
sonochemical, and conventional heating-assisted sol–gel 
methods were determined to be 3.05 eV, 3.10 eV, 3.16 eV, 
and 3.15 eV, respectively. Among all the synthesis methods, 
microwave-assisted sol–gel synthesis exhibited the smallest 
band gap energy when compared to other samples.

3.5  Photoluminescence

A photoluminescence spectrophotometer is used to explore 
the optical properties of prepared samples. Figure 6. depicts 
the photoluminescence spectra of ceria nanoparticles pre-
pared through different assisted sol–gel methods. The spec-
tra show a prominent and broad emission peak in the visible 
region, accompanied by minor secondary peaks. Especially, 
a distinct band appears consistently around 464 nm across 
all samples, indicative of the characteristic luminescence of 
 CeO2 nanoparticles. The analysis revealed that the emission 
band for  CeO2 samples ranging from 400–500 nm is related 
to doping from different defect levels of the range Cerium 

Fig. 4  TEM images of ceria 
nanoparticles obtained by (a) 
microwave (MS), (b) sono-
chemical (SS), (c) reflux (RS), 
and (d) conventional (CS) 
heating-assisted sol–gel meth-
ods. Insets are the size range of 
the nanoparticles
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4f to Oxygen 2p band [42]. The low-intensity green emis-
sion band may be due to the low-density oxygen vacancies 
present in the  CeO2 NPs. The visible emission is induced by 
the radiative recombination of a photogenerated hole and an 
electron that fills the oxygen vacancy.

3.6  Zeta potential measurements

The zeta potential of the nanoparticles was meticulously 
assessed using a zeta potential analyzer and the correspond-
ing plots are provided in Fig. 7. Remarkably, all samples 
exhibited a positive charge, emphasizing the robustness of 
the synthesis methods employed. Table 2 provides infor-
mation about the zeta potential values and electrophoretic 
mobility of the prepared nanoparticles. The zeta potential 
values and electrophoretic mobility for ceria nanoparticles 
from different sol-assisted methods followed the order: 
Conventional > Sonochemical > Microwave > Reflux.

Of particular interest, the highest zeta potential value 
of + 47.71  mV was observed for the ceria nanoparti-
cles synthesized via the conventional heating-assisted 
sol–gel method, followed by + 47.43 mV for sonochemi-
cal and + 45.09 mV for microwave samples. This high 
zeta potential value signifies the exceptional stability of 
nanoparticles in a medium, attributed to the heightened 

electrostatic repulsion that exists between the nanopar-
ticles. This may further indicate the reduced aggregation 
and minimal agglomeration of nanoparticles. In contrast, 
the lowest zeta potential (+ 10.7 mV) was recorded for 
ceria nanoparticles obtained through the reflux-assisted 
sol–gel method. This lower value suggests the possibility 
of eventual aggregation due to Van der Waals inter-particle 
attractions [43].

3.7  Antibacterial studies

The antibacterial properties of the prepared Ceria nanoparti-
cles from different assisted-sol–gel methods were evaluated 
against certain gram-positive and gram-negative bacteria. 
Notably, gram-negative bacteria such as Escherichia coli and 
Pseudomonas aeruginosa, alongside gram-positive coun-
terparts Streptococcus aureus and Streptococcus pyogenes, 
were scrutinized. The photographic images of the antibacte-
rial studies performed using  CeO2 NPs prepared using differ-
ent assisted sol–gel methods against E. coli, P. aeruginosa, 
S. pyogenes, and S. aureus bacteria are presented in Fig. 8. 
A comparative property evaluation of  CeO2 nanoparticles 
synthesized using different assisted sol–gel methods is also 
provided in Table 3.

Fig. 5  [F(R∞)hν]1/2 versus hν/
eV plots of  CeO2 nanoparticles 
obtained through (a) Microwave 
(MS), (b) Sonochemical (SS), 
(c) Reflux (RS), and (d) Con-
ventional methods (CS)
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The antibacterial studies indicate that the  CeO2 NPs 
synthesized through different assisted sol–gel methods 
do not exert any inhibitory effects on S. pyogenes and S. 
aureus, contrary to microwave-synthesized counterparts, 
which effectively inhibit E. coli and Pseudomonas aer-
uginosa. The inhibition Zone against different types of 
bacteria is mentioned in Table S3. The diameter of the 
inhibition zone (DIZ) indicates the magnitude of suscep-
tibility of the microorganism. DIZ was measured on agar 
plates using a ruler with a 1 mm resolution and Image J 
Software (Fig S4). None of the prepared samples exhib-
ited antibacterial activity against Gram-positive bacteria. 
This is attributed to Gram-positive bacteria's robust and 
dense cell walls, comprising thick layers of peptidoglycan 
and phosphoric acid (20–80 nm), rendering them more 
resilient to the antimicrobial effects of positively charged 
 CeO2 nanoparticles [44–47]. In contrast, the  CeO2 NPs 
obtained by the microwave-assisted method exhibited 

a maximum of 18 mm and 16 mm DIZ against Gram-
negative bacteria, E.coli, and P. aeruginosa, respectively. 
This specific activity can be attributed to the synergistic 
interplay between the factors affected. Firstly, Gram-
negative bacteria are surrounded by a thin (< 10 nm) 
peptidoglycan cell wall, which is surrounded by an outer 
membrane containing anionic lipopolysaccharide which 
makes their surface more negative charge [48]. This facil-
itates strong electrostatic attraction between positively 
charged  CeO2 NPs and bacterial outer membranes, ulti-
mately leading to bacterial cell death. Secondly, when 
compared to the other synthesizing methods, the  CeO2 
nanoparticles synthesized through the microwave-assisted 
method have the least particle size and larger surface-
to-volume ratio. This provides more active sites and a 
greater ability to inhibit the growth of bacteria, resulting 
in the spontaneous production of reactive oxygen species. 
Thus, MW-synthesized nanoparticles exhibited stronger 

Fig. 6  PL spectra of  CeO2 nanoparticles synthesized through (a) Microwave (MS), (b) sonochemical (SS), (c) reflux, and (d) conventional (CS) 
methods
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antimicrobial activity than other synthesized nanoparti-
cles. The microwave-synthesized  CeO2 NPs exhibited a 
switchable antibacterial property, highlighting its poten-
tial for tailored antibacterial interventions.

It is also clear from Table 3 that, microwave and reflux-
assisted synthesized  CeO2 nanoparticles have comparable 
particle sizes. However, the Zeta potential analysis revealed 
that the  CeO2 nanoparticles obtained from the reflux method 
showed the property of agglomeration (Fig. 7). This aggre-
gation phenomenon may reduce their effectiveness in com-
bating Gram-positive bacteria. Regarding ROS generation, 

 CeO2 NPs act as a semiconductor with a bandgap falling in 
the 3.05–3.15 eV range. When it is exposed to light hav-
ing energy greater than or equal to its bandgap energy, it 
will absorb the photons, and an electron–hole pair is formed 
by exciting an electron from filled VB to empty CB. These 
electrons and holes react with oxygen and water to form 
superoxide radicals and hydroxyl radicals respectively. The 
expected bactericidal mechanism is shown in Fig. 9. It is 
expected that the reactive oxygen species (ROS) penetrates 
the bacterial cell wall causing damage to the membrane 
releasing an abundant amount of cytosol from the cell and 
effective cell death. Gram-negative bacteria are generally 
more susceptible to mechanical lysis and osmotic rupture 
than gram-positive cells due to their peptidoglycan cell wall 
being thinner than those of gram-positive bacteria [49–51].

Thus, the antibacterial investigations from the present 
study affirm that ultra-fine  CeO2 nanoparticles can be treated 
as a narrow-spectrum antibiotic against gram-negative bac-
teria. This study shows that ultra-fine  CeO2 nanoparticles 
from microwave methods are viable candidates for a biocidal 
impact, which shows superior antibacterial activity on Gram-
negative bacteria making them act as excellent antibacterial 
agents in the elimination of numerous harmful pathogens.

Fig. 7  Zeta potential distribu-
tion curves of ceria nanoparti-
cles obtained by (a) microwave 
(MS), (b) sonochemical (SS), 
(c) reflux, and (d) conventional 
(CS) methods

Table 2  Zeta potential and electrophoretic mobility values of ceria 
nanoparticles prepared by (a) Microwave (MS), (b) Sonochemical 
(SS), (c) Reflux (RS), and (d) Conventional heating (CS) methods

Sl. No: Sample Code Zeta Potential (mV) Electro-
phoretic 
mobility

1. Microwave (MS)  + 45.09 3.5555
2. Sonochemical (SS)  + 47.43 3.6971
3. Reflux (RS)  + 10.7 0.8361
4. Conventional (CS)  + 47.71 3.7189
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Fig. 8  Representative images 
of agar plates containing  CeO2 
nanoparticle-impregnated disks 
in E. coli, P. aeruginosa, S. pyo-
genes, and S. aureus bacteria

Table 3  Comparative property 
analysis of  CeO2 nanoparticles 
synthesized using assisted-sol–
gel methods

Sl No Sample Crystallite 
Size
(nm)

Particle
Size (nm)

Band Gap
(eV)

Zeta
Potential

Escherichia coli
G (-ve)

Pseu-
domonas 
aeruginosa
G (-ve)

1 Microwave 5.34 3 ± 1.5 3.05  + 45.09 18 mm 16 mm
2 Sonochemical 5.82 7 ± 0.6 3.16  + 47.43 Nil Nil
3 Reflux 5.38 5 ± 0.6 3.10  + 10.7 Nil Nil
4 Conventional 5.01 15 ± 3 3.15  + 47.71 Nil Nil

Fig. 9  The ROS-mediated 
antibacterial property of  CeO2 
nanoparticles synthesized by 
microwave-assisted sol–gel 
synthesis
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4  Conclusions

The versatility of the assisted-sol–gel method is addressed in 
the present investigation through comparative property assess-
ment studies of ultra-fine cerium dioxide nanoparticles derived 
from different assisted-sol–gel methods, namely microwave, 
sonochemical, reflux, and conventional heating. The com-
parative physicochemical property assessment revealed that 
all the assisted-sol–gel synthesized  CeO2 nanoparticles exhib-
ited cubic fluorite structures with comparable crystallite sizes, 
ranging from 5.01–5.82 nm. An intense FTIR band at 450–413 
 cm−1 corresponds to the Ce–O stretching vibration observed by 
all the samples. The samples displayed nanosphere morpholo-
gies and exhibited high specific surface area values. Among the 
spherically shaped particles, the microwave-synthesized  CeO2 
nanoparticles exhibited unique monodisperse characteristics. 
Except for the sol-dried conventionally prepared sample, all 
other samples exhibited nanoparticles in the quantum dot size 
regime. The samples were identified as semiconductors with 
good reflectance properties and their band gap values ranged 
from 3.05 eV to 3.16 eV. A pronounced blue emission band 
around 464 nm was observed for all the samples which is sig-
nificant for the ultra-fine  CeO2 nanoparticles. All the prepared 
 CeO2 nanoparticles exhibited positive charges with high elec-
trophoretic mobility values. The antibacterial studies disclosed 
the remarkable inhibitory effects of  CeO2 nanoparticles synthe-
sized via the microwave-assisted sol–gel method against gram-
negative bacteria such as E. coli and P. aeruginosa, highlighting 
their specificity towards Gram-negative strains. The current 
study thus put forth a few novel assisted-sol–gel methods hav-
ing remarkable physicochemical properties, offering exciting 
prospects for the development of next-generation antibacterial 
agents with narrow-spectrum bactericidal capabilities.
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