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Abstract
Ceramic membranes are gaining rapid traction in water and wastewater treatment applications due to their inherent advan-
tages, such as chemical/thermal stability, low fouling propensity, and extended lifespan. This review paper provides a 
comprehensive overview of ceramic membranes, exploring their composition, fabrication techniques, filtration principles, 
and diverse applications. Various types of ceramic membranes, including alumina, zirconia, titania, silica, and zeolite, are 
discussed. As global challenges related to water scarcity and pollution intensify, the implementation of ceramic membranes 
offers a sustainable and effective approach for water and wastewater treatment and safeguarding vital water resources. Despite 
the dominance of polymeric membranes in the field, the constant pursuit of reduced production costs and the apparent 
benefits of ceramic membrane are fueling their rapid growth. The review also examines applications that demonstrate the 
effectiveness of pressure-driven ceramic membrane technology for treating industrial wastewaters from diverse industries, 
including textile, pharmaceutical, and petrochemical. While the technology shows efficiency in various wastewater treatment 
scenarios, future research should focus on optimizing investment costs through new fabrication technologies, improving 
selectivity, permeability, and packing densities, minimizing fouling, and proposing scale-up strategies based on experimental 
research results. The collective findings reveal the potential of ceramic membranes to revolutionize wastewater treatment 
and environmental remediation.

Keywords  Ceramic membranes · Wastewater treatment · Environmental remediation · Membrane fouling · Ceramic 
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1  Introduction

Environmental degradation is without a doubt one of the 
biggest issues that the civilization is now facing. Prioritizing 
environmental sustainability through wastewater treatment 
is one of the Sustainable Development Goals (SDG) of the 
UN. However, in recent years, global challenges related to 
water scarcity, water deficit, and industrial activity–related 
water pollution have grown in importance [1, 2]. In recent 
decades, there has been an increase in the need for clean 
water for domestic consumption. This need has been exac-
erbated by climate change, an expanding global population, 
and rapid urbanization [3]. The world population growth 
has led to the increase in water stress and the contamination 

of environmental waters [4]. People all over the world face 
major health hazards due to the rising number of organic 
contaminants being released into sources of drinking water. 
Due to growing waste discharge, population growth, indus-
trial advancements, and a lack of comparable water sup-
plies, water contamination has become a major concern [5]. 
Examples of some of the numerous alarming contaminants 
include particulate matter, heavy metals, pesticides, herbi-
cides, fertilizers, oil spills, poisonous gases, industrial efflu-
ents, sewage, and organic compounds [6]. Therefore, it is 
extremely desirable to use efficient, recyclable, economical, 
and ecologically friendly methods to remove these danger-
ous contaminants from effluents.

In recent years, the issue of environmental degradation 
and its impact on the planet have gained increasing atten-
tion from scientists. There is an increasing need to research 
and put into practice practical solutions to lessen the nega-
tive effects and restore ecological equilibrium since human 
activities continue to emit dangerous compounds into the 
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environment [7–10]. In this context, the significance of envi-
ronmental remediation becomes paramount as it assumes 
a crucial role. In order to safeguard living systems and the 
environment from further degradation and to ensure a sus-
tainable future, environmental remediation involves reduc-
ing or removing pollutants or contaminants from a variety 
of environmental media, including air, water, soil, and sedi-
ments. [11]. The objective of this review paper is to explore 
the current state of environmental remediation and highlight 
the latest advancements in this field, by presenting a compre-
hensive overview of the subject matter, providing valuable 
insights into the importance of environmental remediation 
and its potential to mitigate environmental pollution and pro-
mote a sustainable future.

Traditional methods of wastewater treatment involve 
a combination of physical, chemical, and biological pro-
cesses and operations to remove solids, organic matter, 
and sometimes nutrients from wastewater [10]. Each 
process serves a distinct purpose, with the physical treat-
ment focusing on the elimination of impurities through 
diverse mechanical approaches. An example of this is 
adsorption, a process in which contaminants attach to a 
solid surface, efficiently extracting them from the water 
[12]. Another efficient method is the advanced oxidation 
process (AOP), employing powerful oxidizing agents to 
degrade and remove both organic and inorganic pollut-
ants [13] Membrane separation, a commonly employed 
physical technique, utilizes semi-permeable barriers to 
selectively permit the passage of water molecules while 
hindering impurities [14]. This method encompasses 
various techniques including microfiltration, ultrafiltra-
tion, nanofiltration, and reverse osmosis. There are vari-
ous well-known chemical oxidation processes utilized 
in different catalytic applications. However, the AOP is 
regarded as a vital method in wastewater treatment. AOPs 
encompass a range of techniques that share similar princi-
ples, generating oxidizing agents such as hydroxyl radicals 
(•OH) [13, 15]. Potential oxidation processes include elec-
trochemical oxidation, photo-electrochemical oxidation, 
UV-assisted Fenton oxidation, and ozonation [10, 16]. 
Biological wastewater treatment utilizes microorganisms 
to decompose organic pollutants through a range of tech-
niques, including the activated sludge process, trickling 
filters, and anaerobic digestion [10]. Although biological 
techniques are acknowledged for being environmentally 
friendly and effective, their selection depends upon the 
precise type and composition of wastewater to ensure opti-
mal performance and sustainability in water treatment. 
These wastewater treatment techniques present inherent 
limitations that require careful consideration during their 
application. Despite the effectiveness of membrane filtra-
tion in removing diverse contaminants, it can be exces-
sively costly due to the rapid clogging of membranes [17]. 

While coagulation and flocculation processes are effective, 
they present challenges in terms of sludge volume man-
agement, leading to elevated costs. Moreover, chemical 
techniques, although rapid and efficient, may not be eco-
nomically feasible for small enterprises, thus limiting their 
practicality [10]. Biological treatment, valued for its cost-
effectiveness, requires a substantial duration and depends 
on the ideal conditions for microbial growth [18].

These methods can be categorized into several stages, 
such as preliminary, primary, secondary, and tertiary treat-
ment. The preliminary treatment involves the elimination 
of coarse solids and other large materials that are found in 
raw wastewater including grit, oil, grease, large floating, 
and suspended solid matter [19]. The primary treatment 
marks the initial stage in the wastewater treatment plant, 
aiming to eliminate a substantial portion of the organic 
particulate matter present in the wastewater [20]. This pro-
cess entails the removal of settleable organic pollutants and 
inorganic solid particulate matter through a sedimentation 
process, accompanied by the elimination of floating materi-
als through skimming. Secondary treatment of wastewater 
removes colloidal organic matter by biological processes 
employing bacteria and other microorganisms and these 
microbial processes may be aerobic or anaerobic [21]. Its 
primary objective is to oxidize the readily biodegradable 
biochemical oxygen demand (BOD) that eludes primary 
treatment and to achieve additional removal of suspended 
solids [20]. Tertiary treatment, often referred to as the final 
“polishing” stage, is implemented to further enhance the 
quality of effluents from secondary treatment processes [22]. 
The primary goals of tertiary treatment include the removal 
of fine suspended solids and dissolved inorganic solids and 
eliminating the last traces of organics.

Different types of materials can be employed in envi-
ronmental remediation and therefore a wide variety of 
approaches can be exploited for this purpose. Because 
of the intricate combination of various substances, their 
tendency to evaporate easily, and their limited reactivity, 
tackling the containment and breakdown of environmen-
tal contaminants, is demanding. Therefore, recent research 
has concentrated on utilizing ceramics to create innovative 
solutions for environmental cleanup [23, 24]. Ceramics are 
pivotal in diverse environmental uses, encompassing tasks 
like detecting, observing, and measuring pollutants, as well 
as averting, managing, and rectifying their presence [25]. 
Many ceramics are being explored as catalysts for pollu-
tion prevention, control, and remediation applications [26]. 
Ceramic substances have become essential assets in the 
realm of environmental remediation because of their dis-
tinct characteristics and adaptable uses. Constructed from 
inorganic substances like oxides, carbides, and nitrides, 
these materials provide specific benefits in tackling a range 
of environmental difficulties [27].
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2 � Wastewater treatment

2.1 � Wastewater pretreatment

Pretreating wastewater helps break down the structure of 
macromolecules, increasing the availability of monomers 
for fermentation and improving biohydrogen production 
[28]. Several wastewater pretreatment methods are used 
to improve the availability of microbial-substrate inter-
actions and enhance the rate of biohydrogen produc-
tion. These techniques include mechanical treatments 
like ultrasonication, chemical treatments like alkaline 
and acidification, biological treatments like enzymatic 
and microbial treatments, and physical treatments like 
thermal and microwave treatments. [28, 29]. Physical 
pretreatment requires exposing the wastewater to high 
temperatures thermally and also radiation [30]. This 
encourages the larger organic components in the waste-
water to react and become soluble. The physical pretreat-
ment increases the substrate’s temperature exposure, 
which speeds up the breakdown of organic compounds 
and increases wastewater treatment efficiency overall 
[28]. Electromagnetic waves include microwaves, which 
have frequencies between 300 MHz and 600 GHz [28]. In 
the process of microwave pretreatment, a microwave oven 
produces high- and low-intensity electric field resonant 
patterns that produce hot spots. These hot spots change 
the structure of macromolecules by breaking their hydro-
gen bonds via the alternating microwave electric field, 
which causes these molecules to hydrolyze and increases 
process efficiency by producing high temperatures [31]. 
Chemical pretreatment encompasses the use of chem-
icals such as acids, bases, and oxidizing agents. Such 
chemicals react with the contaminants in the wastewater, 
breaking down the polymeric bonds and increasing the 
readiness of the substrate for anaerobic degradation [32]. 
Wastewater pretreatment using H2SO4 is found to be more 
effective than nitric and hydrochloric acid in enhancing 
glucose utilization and hydrogen production [33]. Addi-
tionally, studies have looked into alkaline pretreatment 
with NaOH, which breaks down organic compounds and 
has demonstrated increased efficiency in the production 
of hydrogen [34]. Strong oxidizing agent ozone is used in 
two stages of wastewater pretreatment: the direct phase 
involves ozone reacting with wastewater constituents, 
and the indirect phase creates free hydroxyl radicals by 
means of a chain reaction [28, 35, 36]. High-efficiency 
mechanical pretreatment technology increases hydrogen 
production while consuming energy. In pretreated waste-
water, ultrasonication produces cavitational effects that 
improve biodegradability, break down complex organic 
pollutants, and dramatically boost hydrogen production 

efficiency [29, 30]. Pretreatment involves treating the 
substrate with particular microorganisms prior to dark 
fermentation [37]. By releasing extracellular enzymes 
that break down complex organic molecules into soluble 
monomers, these microorganisms improve wastewater 
hydrolysis and produce more hydrogen. Examples of 
microorganisms used for pretreatment include white rot 
fungi like Pleurotus eryngii, Coriolopsis sp., and Penicil-
lium simplicissimum, which have been applied in textile 
industrial wastewater and achieved significant organic 
removal [38–40]. Numerous studies have used enzymatic 
pretreatment with enzyme pellets to treat various kinds 
of wastewater [28].

2.2 � Sources and types of wastewaters

Wastewater is water that has undergone changes in its physi-
cal, chemical, or biological attributes due to the introduction 
of certain substances, rendering it inappropriate for purposes 
like drinking, irrigation, industrial processes, or aquatic 
life support [41, 42]. Water holds immense value as one 
of the most invaluable resources globally. All forms of life, 
including plants and animals, rely on water for their survival. 
Given the finite nature of our available water resources, the 
processes of water treatment and wastewater treatment hold 
significant importance [43]. These water treatment processes 
aim to enhance water quality by eliminating a majority of 
pollutants from wastewater, thus addressing the issue of 
water scarcity [44].

Wastewater can be broadly categorized into two types: 
sewage wastewater and non-sewage wastewater [45]. 
Domestic sewage wastewater arises from everyday tasks 
within residences, educational institutions, and medical 
facilities. Conversely, non-sewage wastewater encompasses 
wastewater generated by industrial operations like factories 

Fig. 1   Types of wastewater
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and industrial facilities, along with stormwater and rain-
water produced by precipitation or flooding incidents [46]. 
According to Fig. 1, there exist four distinct categories of 
wastewater; the initial category is domestic wastewater, 
which comprises the wastewater generated from every-
day activities in residential dwellings, hotels, restaurants, 
schools, and shopping centers [47]. According to the illus-
tration, household wastewater is divided into three distinct 
subcategories: black, gray, and yellow waters [24]. The most 
polluted variant is black water, which includes waste from 
toilets and kitchen sinks. Gray water is less polluted and 
originates, for instance, from sources like washing machines 
[48, 49]. Given that it contains numerous detergents and 
liquid soaps, it is not regarded as pathogenic. Yellow water 
refers to urine devoid of the additional pollutants found in 
black water and gray water. Because of its simpler com-
position, less complex treatment approaches are utilized. 
The second categorization is industrial wastewater, which 
consists of liquids generated from human activities related 
to the handling of raw materials and the manufacturing pro-
cess [50]. Industrial wastewater constitutes one of numer-
ous severe sources of water pollution, significantly com-
promising the aquatic environment [47]. The third category 
involves stormwater runoff, which refers to the excess water 
that flows across the Earth’s surface during and following 
instances of precipitation, such as rain or melting snow. This 
runoff occurs when the soil’s natural ability to absorb water 
is exceeded, leading the water to move over the terrain and 
frequently collect in watercourses, rivers, lakes, or other 
water bodies [49, 51]. The final classification pertains to 
agricultural wastewater, which is a significant contributor 
to water pollution. Agricultural runoff signifies the surplus 
water that drains away from fields during surface irrigation 
processes [52]. This drainage transports sediments and nutri-
ents, resulting in the pollution of nearby water reservoirs. 
Furthermore, agricultural wastewater harbors pollutants like 
fertilizers, pesticides, and herbicides [53]. With the ongo-
ing advancement of the economy and the enhancement of 
people’s living conditions, there is a continuous rise in the 
quantity of wastewater requiring treatment [54].

2.3 � Importance of wastewater treatment

Wastewater treatment holds significant importance due to 
a multitude of reasons. Firstly, it serves as a critical means 
of environmental protection by effectively removing or 
reducing pollutants present in wastewater [55]. These pol-
lutants include various chemicals, pathogens, and nutrients. 
By eliminating them, wastewater treatment prevents water 
bodies from becoming contaminated and helps to preserve 
the balance of the aquatic ecosystems, thereby safeguard-
ing natural environments [56]. Additionally, environmental 
preservation is achieved through wastewater treatment as 

it curbs the detrimental impact of untreated wastewater on 
aquatic ecosystems, soil quality, and biodiversity [57]. The 
health of people and animals may be seriously endangered 
by untreated wastewater. This is because the wastewater con-
tains disease-causing germs. Wastewater treatment facilities 
successfully eradicate or neutralize these pathogens by the 
use of several treatment procedures, such as disinfection, 
hence limiting the spread of waterborne illnesses [58].

Wastewater treatment is essential to eliminate pollut-
ants, preventing the contamination of natural water sources. 
Through proficient removal of physical, chemical, and bio-
logical pollutants like suspended solids, organic substances, 
nutrients, heavy metals, and harmful microorganisms, treat-
ment procedures safeguard aquatic ecosystems and halt the 
accumulation of harmful substances [6, 59]. Furthermore, 
processed wastewater serves diverse purposes in sectors like 
municipal wastewater treatment, industry-specific industrial 
wastewater treatment, agricultural wastewater treatment 
for curbing chemical runoff, and stormwater management 
to avert flooding and the dissemination of pollutants amid 
intense rainfall [59–62]. Furthermore, water scarcity is 
addressed through safe wastewater reuse for non-potable 
purposes like irrigation and industrial processes [63]. One 
of the practical applications of wastewater treatment is the 
reuse of treated wastewater for agricultural purposes [64, 
65]. In areas where water is scarce or freshwater resources 
are restricted, treated wastewater can become a valuable irri-
gation water source for crops [65]. Through thorough treat-
ment procedures, the treated wastewater is purified, ensur-
ing its suitability for agricultural use while avoiding health 
hazards or adverse environmental effects [66].

3 � Membrane technology in wastewater 
treatment

3.1 � Types of membranes

A membrane refers to a barrier that effectively separates 
two phases by selectively limiting the movement of com-
ponents between them [67]. Membranes are generally 
classified as either isotropic or anisotropic [68]. Isotropic 
membranes exhibit a uniform composition throughout their 
volume, and as shown in Fig. 2, it can be further divided 
into microporous, nonporous dense films, and electrically 
charged membranes [69]. Isotropic membranes possess a 
consistent composition and physical structure. They may 
be microporous, enabling substantial permeation fluxes, or 
nonporous (dense), which restricts their applicability due to 
low permeation fluxes [70, 71]. Isotropic microporous mem-
branes find common use in microfiltration, while anisotropic 
membranes exhibit non-uniform structures with distinct lay-
ers [72, 73]. These membranes consist of a thin selective 
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layer on top of a thicker and highly permeable layer, making 
them well-suited for reverse osmosis (RO) processes [67].

Composite membranes and Loeb-Sourirajan membranes 
are two distinct types of anisotropic membranes [74]. Aniso-
tropic membranes, unlike isotropic ones, exhibit a non-uni-
form nature and composition [68]. Composite membranes 
and Loeb-Sourirajan membranes offer contrasting character-
istics in terms of their chemical composition and structure 
[75]. Loeb-Sourirajan membranes feature a uniform chemi-
cal composition but display heterogeneity in terms of pore 
size [76]. On the other hand, composite membranes exhibit 
an inhomogeneous chemical composition and structure [75]. 
In the realm of water purification and treatment, the avail-
ability of diverse membrane technologies with variations in 
type, configuration, material, and matrix provides effective 
solutions for addressing various challenges [68, 74, 77].

There are two main categories of membranes based on 
their composition: organic and inorganic [78]. Organic mem-
branes are predominantly composed of synthetic organic 
polymers and find extensive application in pressure-driven 
separation processes, including microfiltration, ultrafiltra-
tion, nanofiltration, and reverse osmosis [69]. Examples of 
synthetic organic polymers used in these membranes include 
polyethylene (PE), polytetrafluoroethylene (PTFE), polypro-
pylene, and cellulose acetate, among others [67]. Contrarily, 
inorganic membranes consist of materials such as ceramics, 
metals, zeolites, or silica. These membranes exhibit excel-
lent chemical and thermal stability, rendering them highly 
suitable for a range of industrial uses, including hydrogen 
separation, ultrafiltration, and microfiltration [79].

3.2 � Categories of wastewater treatment

Membrane technology plays a significant role, contribut-
ing to over 50% of the global water treatment volume. The 

process of water purification entails the elimination of vari-
ous pollutants, including organic, chemical, and biologi-
cal contaminants, along with suspended solids, to achieve 
water that is clean and meets sensory standards [80]. Based 
on the membrane’s pore size, pressure-driven technology 
encompasses four distinct processes: microfiltration (MF), 
ultrafiltration (UF), nanofiltration (NF), and reverse osmosis 
(RO). These processes strive to improve the effectiveness 
of wastewater treatment, leading to a more environmentally 
friendly production [81, 82]. Polymeric and ceramic mem-
branes, employed in a variety of filtration techniques, dem-
onstrate a spectrum of pore sizes, extending from compact to 
permeable membranes. These membranes can accommodate 
a range of filtration needs due to their diversity in pore sizes, 
providing possibilities for both fine and coarse filtration pro-
cesses. The range of pore sizes affects the membranes’ abil-
ity to separate substances according to their molecular sizes, 
which makes them effective tools in applications requiring 
exact control over filtration levels [83]. Pressure-induced 
membrane procedures employ the variance in pressure 
between the input and output sides as the primary impetus 
to propel the solvent (typically water) through the membrane 
[84]. These pressure-driven membrane processes can be cat-
egorized based on diverse factors, encompassing the size, 
form, and charge of the substances retained, as well as the 
pressure applied to the membrane [85]. This categorization 
identifies microfiltration, ultrafiltration, nanofiltration, and 
reverse osmosis, as depicted in Fig. 3.

Microfiltration is a low-pressure physical separation tech-
nique employing a semipermeable membrane to eliminate 
suspended solids from a liquid flow. The membranes typi-
cally have pore sizes ranging from 50 to 500 nm and operate 
at relatively low pressures, typically between 0.02 and 0.5 
MPa [86]. Widely utilized in integrated membrane reactors 
for desalination and heavy metals removal, microfiltration 

Fig. 2   Illustration of types of membranes
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enables the separation of large molecular weight com-
pounds, such as suspended or colloidal elements, at low-
pressure conditions [87, 88]. Microfiltration finds extensive 
application in wastewater treatment plants globally, demon-
strating an impressive efficiency of over 98% in removing 
organics from water.

Ultrafiltration (UF) is a membrane separation method that 
operates at a relatively low transmembrane pressure. Its pri-
mary objective is to remove dissolved and colloidal parti-
cles, such as proteins, polysaccharides, humic material, and 
various microbiological entities, including viruses [89]. The 
primary drawback of this pressure-driven process is attrib-
uted to the larger pore size. The pore size for UF typically 
ranges between 2 and 50 nm [81] and MWCO of approxi-
mately 1000–100,000 Da [90]. The pore sizes in ultrafiltra-
tion are larger than the hydrated forms of metal ions. The 
typical operating pressure for this process falls within the 
range of 1–8 bar [91]. Ultrafiltration (UF) finds application 
in various industries such as the dairy industry, biotechnol-
ogy, and pharmaceuticals (for tasks like endotoxin removal, 
antibiotic production, and blood plasma processing) [92]. 
Additionally, UF is utilized in the food and beverage indus-
try, industrial processes, and wastewater treatment (for tasks 
like oil removal and addressing dissolved natural organic 
matter). Moreover, UF serves as a pretreatment method for 
seawater before undergoing reverse osmosis [93].

Nanofiltration (NF) is the intermediate membrane pro-
cess between UF and RO. These membranes have a pore 
size in the 0.6–2-nm range [89]. This separation process 
usually operates at pressures in the 5–30-bar range [94]. 
Nanofiltration possesses properties between those of UF 
and Reverse osmosis (RO), and therefore, the pore size 
is usually less than 2 nm, corresponding to an MWCO of 
100–1000 Da [95]. NF can remove low molecular weight 
molecules like sugars, amino acids, and divalent ions, while 
some monovalent ions are still able to permeate through the 
membrane. NF is used in many industries such as dairy, 
food and beverage [96], textile, and dyes [97]. Nanofiltration 

(NF) membranes exhibit an asymmetric configuration and 
carry a negative charge [95]. This characteristic enables the 
exclusion of ions through the repulsion of anions from the 
membrane surface groups. This separation process, par-
ticularly effective for multivalent anions, complements the 
solution-diffusion mechanism underlying reverse osmosis 
(RO). Consequently, NF membranes can achieve ion rejec-
tions comparable to RO membranes while also allowing for 
higher water fluxes due to their open structure[95]. Never-
theless, the NF performance is much more sensitive than 
RO due to the ionic strength and pH of source water and it 
strongly depends on the bulk anion concentration [95].

RO stands out as the most efficient technology for eliminating 
inorganic contaminants, dissolved salts, and chemical constitu-
ents from water. The semi-permeable membrane primarily per-
mits the passage of water while effectively retaining a majority 
of pollutants. Notably, this technique contributes to over 20% 
of the global desalination capacity [98]. Membranes are dense 
with a pore size ranging between 0.3 and 0.6 nm and molecular-
weight cut-off about 100 Da [72]. RO finds application in diverse 
processes, encompassing selective separation, purification, con-
centration, and desalination. In the food industry, RO is employed 
for concentrating fruit and vegetable juices, de-alcoholizing 
alcoholic beverages, pre-concentrating milk or whey, and puri-
fying drinking water [99]. RO is also used in industrial processes 
(wastewater treatment, desalination of seawater), automotive 
manufacturing, or the treatment of landfill leachates [100]. One 
of the main disadvantages is the energy consumption, due to the 
high pressure needed, usually around 60 bar to overcome the 
osmotic pressure, affected also by the presence of components 
in water, such as hardness due to Ca2+ and SO4

2− anions [101].

4 � Ceramic membranes

Industrial applications have witnessed a rise in the utilization 
of ceramic membranes, showcasing their ability to rival the 
performance of polymer membranes while offering distinct 

Fig. 3   Schematic diagram of 
MF, UF, NF, and RO [51]
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advantages in specific scenarios [102]. Ceramic membranes 
have garnered increased attention due to their potential for 
reuse, superior resistance to contamination compared to pol-
ymer membranes, and the presence of functional properties, 
such as photocatalysis [71, 103]. This means that ceramic 
membranes can facilitate the degradation of organic pollut-
ants by activating photocatalytic reactions, thereby enhanc-
ing the wastewater treatment process [103, 104]. Polymeric 
and ceramic materials are widely employed for membrane 
production.

In the realm of water treatment and desalination, poly-
meric membranes have emerged as the primary choice in 
recent times. Nonetheless, these membranes possess certain 
limitations, including poor long-term stability, susceptibility 
to fouling, and relatively short lifespans [51]. The unique 
properties of ceramic membranes, including high porosity, 
narrow pore size distribution, and superior separation capa-
bilities, have acquired significant interest in the field of water 
and wastewater treatment [105–107]. As a result, ceramic 
membranes are increasingly recognized for their potential 
contributions in this domain. Ceramic membranes are use-
ful for treating wastewater containing corrosive chemicals 
because of their great chemical and thermal resistance [51]. 
Ceramic membranes have improved stability and a longer 
lifetime compared to polymeric membranes [108]. Due to 
its superior fouling resistance compared to polymeric mem-
branes, it is less likely to clog and may retain its filtration 
effectiveness for a longer length of time [109, 110]. Despite 
the numerous advantages that ceramic membranes bring 
to wastewater treatment, it is crucial to acknowledge their 
limitations. One notable constraint is their restricted use in 
full-scale applications, primarily attributable to their high 
capital cost. Ceramic membranes tend to be more expensive 
than polymeric membranes due to the requirement of high-
temperature sintering and specialized manufacturing tech-
niques [111]. However, the brittleness of these membranes 
presents a significant obstacle in terms of optimizing module 
packing density and minimizing the environmental footprint 
of ceramic membrane-based treatment facilities [112].

4.1 � Characterization of ceramic membranes

Ceramic membranes exhibit unique mechanical proper-
ties, including high strength, resistance to chemicals, and 
thermal stability [113, 114]. These aspects perform well 
for demanding conditions like high-pressure operations and 
applications involving high temperatures [114]. Ceramic 
membranes play a crucial role in diverse industrial appli-
cations, serving as an essential element in processes such 
as microfiltration, ultrafiltration, and nanofiltration [115]. 
This versatile application extends across industries such as 
textiles, pharmacy, chemicals, and leather, where ceramic 
membranes play a pivotal role in concentrating or separating 

compounds from liquids [114]. One of the key properties 
contributing to the efficiency of ceramic membranes is their 
high porosity [113]. This feature enables effective filtration 
and separation of substances. Additionally, these membranes 
exhibit high permeability, guaranteeing the efficient flow 
of fluids through the membrane. The defined pore size of 
ceramic membranes enables for precise control of the fil-
tration process, adding an additional layer of versatility to 
their application [116]. One notable quality of ceramic mem-
branes is their mechanical robustness, which makes them 
long-lasting and appropriate for high-pressure applications. 
Their optimal filtration performance is facilitated by their 
low surface roughness, which is frequently attained through 
a mesoporous intermediate layer [117, 118]. The integrated 
stability of ceramic membranes—which includes mechani-
cal, thermal, and chemical stability—makes them adaptable 
to a wide range of industrial uses.

4.2 � Economic viability of ceramic membranes

Ceramic membranes have various benefits such as high-tem-
perature stability, fouling resistance, and low maintenance 
requirements, making them a principle for water treatment 
applications [104, 119]. However, the high production cost 
of ceramic membranes has been a significant challenge, 
restricting their large-scale production and application 
[104, 120]. The high cost of ceramic membranes is due to 
the expensive raw materials, high energy use, and complex 
preparation processes [120, 121]. Addressing this concern is 
of utmost importance to facilitate the widespread adoption 
and acceptance of ceramic membranes across diverse appli-
cations [121]. Metawater, a Japanese company, showcased 
the application of ceramic membranes in diverse settings 
[122]. Ceramic membranes have been used for water rec-
lamation, demonstrating comparable performance to poly-
meric membranes but with higher capital costs. However, 
ceramic membranes offer cost savings in terms of operat-
ing and maintenance expenses, as well as a longer lifespan 
compared to polymeric membranes, although membrane 
replacement is required when fouling occurs [119]. Based 
on a cost analysis, a comparison between ceramic and poly-
meric membranes for water treatment plants (WTPs) showed 
that their life-cycle costs are comparable, with ceramic 
membranes costing around 0.28 USD per cubic meter and 
polymeric membranes costing around 0.27 USD per cubic 
meter [123]. Another study conducted a techno-economic 
analysis and found that ceramic membranes made of alumina 
and polymeric membranes made of polyethersulfone (PES) 
have similar performance in terms of cost [122]. While 
the initial cost of alumina ceramic membranes is higher, 
considering factors such as membrane lifespan and labor 
requirements, they become a cost competitive option [124]. 
Techno-economic analyses have also shown that ceramic 
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membrane plants have comparable costs to polymeric plants, 
with membrane replacement being a significant cost-saving 
factor [122].

4.3 � Composition and structure

Ceramic membranes predominantly consist of alumina, 
silica, titania, or zirconia [125]. The present studies pri-
marily concentrate on ceramic supports, particularly Al2O3 
and ZrO2, chosen for their robust chemical, thermal, and 
mechanical durability, cost-effectiveness, and resilience 
against corrosive substances [4]. Ceramic membranes used 
in water and wastewater treatment have asymmetrical struc-
tures [85, 102, 126–129]. The distinct asymmetric configura-
tion is achieved by placing progressively smaller particles 
and employing elevated sintering temperatures to create 
continuous and permeable layers [127]. It compromises a 
thin selective layer, an intermediate layer, and a permeable 
supporting layer as shown in Fig. 4 [122]. The intermediate 
and support layers contribute to selectivity, stability, and 
strength, while the thin selective layer’s main function is 

to facilitate separation [130]. The support layers can vary 
in terms of density, openings, and porosity. They can be 
composed of the same material (integral membrane) or dif-
ferent materials (composite membrane), chosen based on the 
intended molecular weight cut-off [130, 131]. As depicted 
in Fig. 5, the arrangement and shapes of these membranes 
are shaped by the supports, resulting in cylindrical, planar 
geometries, or hollow-fiber membranes with diverse pack-
ing densities [24, 132, 133]. Ceramic membranes in tabular 
and hollow-fiber forms are especially suitable for wastewater 
treatment due to their enhanced mechanical robustness and 
compactness [134]. When compared to flat-sheet ceramic 
membranes, they also show superior handling qualities 
against high crossflow velocities [4, 109, 134]. However, 
they can withstand high-turbidity feeds and are simple to 
replace when packaged in modules [134]. These mechani-
cally adaptable flat sheet membranes can tolerate backwash-
ing, air scrubbing, and high-pressure water jet cleaning 
[102]. Conversely, cylindrical membranes are more appro-
priate for the separation of feeds containing high levels 
of turbidity and a significant quantity of suspended solids 

Fig. 4   Microstructure of 
ceramic membrane in water 
and wastewater treatment. a 
Schematic diagram and b SEM 
image of cross section of alu-
mina membrane [108]
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[135]. Because of their greater diameters and durability, they 
are simpler to cleanse through mechanical means and can 
proficiently manage fouling even under elevated crossflow 
velocities [132].

4.4 � Ceramic membranes materials

Various ceramic membranes employed in water and waste-
water treatment include alumina, zirconia, titania, silica, 
and zeolite [136, 137]. The selection of a specific material 
for the ceramic membrane is a deliberate process, taking 

into account its distinct physical and chemical properties, 
such as hydrophilicity, microstructure, chemical and thermal 
stabilities, as well as mechanical strength [138]. Alumina 
specializes in microfiltration and ultrafiltration, showcas-
ing impressive resistance to fouling and enduring flow rates 
[137]. Zirconia stands out due to its high hydrophilicity 
and thermal endurance [139–141]. Titania’s proficiency 
in photocatalysis is invaluable for breaking down pollut-
ants under sunlight [142]. Silica, known for nanofiltration, 
selectively sieves ions and molecules, leveraging its nota-
ble permeability as illustrated in Fig. 6 [143]. Conversely, 

Fig. 5   Geometry of commer-
cially available ceramic mem-
branes. a Flat-sheet membrane 
b tubular ceramic membranes, c 
ceramic hollow-fiber membrane 
[132]

Fig. 6   Properties of commercially available ceramic materials [145]
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zeolite’s exceptional adsorption and molecular sieving capa-
bilities find applications in various separation processes 
[144]. Together, these materials cater to diverse treatment 
demands, contributing to cleaner water resources and more 
sustainable wastewater management. Ongoing considera-
tions include fabrication intricacy, cost-effectiveness, and 
operational challenges.

4.4.1 � Alumina membrane

The prevalent ceramic material utilized in membrane pro-
duction is alumina (Al2O3). This preference arises from its 
simple processing and inherent qualities, such as excellent 
chemical and thermal stability, as well as high strength 
[146]. Alumina can serve as a substrate, intermediate layer, 
and an active layer within the ceramic membrane [147–151]. 
Depending on the specific range of pore sizes, alumina 
membranes find application in microfiltration (MF), ultra-
filtration (UF), and nanofiltration (NF) [108]. Alumina mem-
branes, composed of aluminum oxide (Al2O3), are widely 
employed in the purification of polluted water. In an earlier 
investigation, the application of alumina UF membranes in 
the remediation of dye-contaminated wastewater was docu-
mented [149]. Bilayer α-alumina membranes were created 
employing a co-sintering procedure that involved precise 
control of the doping proportions within boehmite sols and 
alumina. This method led to the development of membranes 
with elevated performance levels [149]. Although alumina 
membranes offer benefits such as remarkable mechanical 
and chemical durability, they encounter obstacles related to 
costly production, the demand for enhanced permeability 
and selectivity performance, and the innate brittleness that 
complicates manufacturing and transport [137]. Further-
more, the issue of membrane fouling is of notable concern, 
given that pollutants have the potential to accumulate and 
obstruct membrane pores, resulting in a decline in filtra-
tion efficiency [152]. Alumina can take on different phases, 
commonly referred to as “transition alumina phases,” which 
include gamma (γ), delta (δ), theta (θ), eta (η), and kappa 
(κ), alongside the thermodynamically stable alpha (α) phase 

[153]. Despite having these various phases, the alpha phase 
is mainly preferred for practical uses. The decision to use the 
alpha phase in alumina is based on its stability and reliabil-
ity from a thermodynamic standpoint. This phase provides 
consistent and predictable material properties, ensuring a 
reliable performance across various membrane applica-
tions [154]. While other transition alumina phases may have 
distinct characteristics, their unstable nature and potential 
phase changes could introduce uncertainties in membrane 
behavior [155]. This makes the alpha phase the favored 
option for achieving the desired and consistent membrane 
performance.

4.4.2 � Zirconia membrane

Zirconia, commonly used in water and wastewater treatment 
membranes, exhibits three crystal phases—cubic, tetragonal, 
and monoclinic—within specific temperature ranges under 
normal air conditions, as depicted in Fig. 7 [102, 156, 157]. 
The monoclinic phase remains stable up to 1100 °C, the 
tetragonal phase persists in the 1100–2370 °C range, and the 
cubic phase is present at temperatures exceeding 2370 °C 
[141, 156]. Zirconia’s outstanding feature is its exceptional 
hydrophilicity, resulting in high water flow rates and mini-
mal fouling during water treatment [71]. Moreover, its high 
resistance to heat makes it suitable for liquid-phase appli-
cations under demanding conditions. As a result of these 
advantageous properties, zirconia is extensively employed 
as the top active layer in MF, UF, and NF processes for water 
and wastewater treatment [141]. One of the primary uses 
of zirconia membranes is acknowledged to be wastewater 
treatment. Zirconia membranes have demonstrated superior 
efficacy compared to alumina membranes for wastewater 
treatment, especially when it comes to oil–water separation 
for instance [102]. In a prior investigation, symmetric and 
asymmetric tubular zirconia membranes produced on alu-
mina supports both showed high permeance [141]. When 
compared to alumina membranes, the zirconia membrane 
performed better in terms of a greater and more steady flux 
as well as less fouling [158]. Zirconia membranes have 

Fig. 7   Zirconia phase transformation [158]
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significant applications in wastewater treatment, particularly 
in oil–water separation. Compared to alumina membranes, 
zirconia membranes exhibit higher flux, lower fouling, and 
better oil rejection. In a study [159], tubular zirconia mem-
branes achieved very high permeance, around 400 and 1500 
l/(m2 h bar), on symmetric and asymmetric supports, respec-
tively, demonstrating superior performance in oil–water sep-
aration due to their higher and more stable flux and reduced 
fouling.

4.4.3 � Titania membrane

Within its composition, titania (TiO2) consists of three 
minerals: rutile, anatase, and brookite [102]. Among vari-
ous ceramic materials, titania exhibits the highest level of 
chemical resistance [139]. In water and wastewater treat-
ment, it serves as a support in the intermediate and active 
layers for processes like UF and NF, leveraging its photo-
catalytic properties [160, 161]. The inclusion of titania in 
the membrane imparts multifunctional capabilities to the 
water treatment process. Specifically, it proves effective 
in treating water containing corrosive elements, as it dem-
onstrates remarkable chemical stability compared to other 
ceramic materials [139]. Titania (titanium dioxide) has been 
used in the treatment of water and wastewater as an active 
layer, intermediate layer, and support for UF and NF mem-
branes [160, 162–165]. These titania membranes’ distinc-
tive photocatalytic qualities enable their multipurpose use 
in the treatment of water. For instance, titania nanowire UF 
membranes with layered hierarchical structures were cre-
ated in a prior study and demonstrated good permeability as 
well as antifouling and antibacterial characteristics [142]. A 
study investigated the structure and performance of titania 
membranes (TM) produced using different vacuum exposure 
times for molecular weight cut-off and oil/water separation 
[166]. The membranes were synthesized using the sol–gel 
method and coated on macroporous alumina tubes, followed 
by exposure to varying vacuum times and calcination. The 
results showed that the size of titania particles increased 
with longer vacuum exposure, and the TM membranes had 
an average pore diameter of approximately 3.6 nm [166]. 
The membranes were effective in rejecting larger molecules 
but were unable to separate glucose and sucrose, indicat-
ing that the pore sizes were larger than the kinetic diameter 
of sucrose. Additionally, the water flux of the membrane 
decreases as the molecular weight of the tested substances 
increases, indicating the effectiveness of nanofiltration.

4.4.4 � Silica membrane

Silica (SiO2) membranes have been developed for water 
and wastewater treatment [167]. These membranes have the 
ability to control pore sizes, allowing them to purify water 

through desalination [71]. However, one drawback of silica 
membranes is their unstable structure when in contact with 
water, which requires improvement in their hydrostability 
[168]. Researchers have explored various strategies such 
as carbonized templating [169], hybrid organosilica [170] 
development, and metal doping [170] to modify the sur-
face properties of silica membranes, aiming to enhance their 
hydrostability. Furthermore, they harnessed the potential of 
sol–gel techniques to substantially diminish the presence of 
silanol groups. This strategy yielded enhanced hydrostabil-
ity and exceptional efficacy in desalination for the silica 
membrane, distinguishing it from alternative silica-based 
membranes [168].

Hollow fiber ceramic membranes are known for their 
unique properties, such as thermal, chemical, and mechani-
cal stabilities. However, their high cost of raw materials 
hinders their commercialization. Researchers developed a 
low-cost silica sand-based hollow fiber ceramic membrane 
(SS-HFCM) using a combined phase inversion/sinter-
ing technique as illustrated in Fig. 8 [171]. The fabricated 
SS-HFCM exhibited satisfactory morphological structure, 
mechanical strength, and enhanced oil–water separation 
performance, making it suitable for various water treatment 
applications. This study successfully produced a ceramic 
membrane called HFCM using low-cost silica sand through 
phase inversion/sintering. The evaluation of the fabricated 
membrane showed that an optimal configuration of the 
HFCM can be achieved with 55 wt% silica sand content, 
sintered at 1300 °C, a bore fluid flow rate of 10 mL/min, 
and a suspension extrusion rate of 6 mL/min [171]. The 
fabricated membranes demonstrated promising potential for 
various applications in oil–water separation and wastewater 
treatment. The findings suggest that silica sand has potential 
applications in water treatment processes, including indus-
trial seawater desalination.

Fig. 8   Phase inversion extrusion diagram [171]
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4.4.5 � Zeolite membrane

Zeolites are aluminosilicates with a crystalline structure 
and hydrated state, containing cations. These membranes 
possess distinctive pore structures, comprising uniform sub-
nanometer zeolitic pores and inter-crystal micropores with a 
specific size distribution [172]. As a result, water is antici-
pated to be transported through both the inter-particle and 
intra-particle pores. Moreover, their inherent hydrophilicity 
aids in mitigating fouling [173]. Zeolite membranes find 
applications in water and wastewater treatment and can be 
utilized for desalination through microfiltration (MF), ultra-
filtration (UF), and reverse osmosis (RO) processes [108]. 
Zeolite membranes have promising potential for desalination 
of complex mixtures, as demonstrated by their high rejection 
rate in RO of concentrated solutions with different cations 
[174]. However, achieving defect-free zeolite membranes 
with the desired thickness remains a challenge.

The exceptional ion-exchange characteristics of natu-
ral zeolite make it highly promising for utilization as an 
adsorptive ceramic membrane designed for the removal of 
ammonia from water [175]. In a study, the successful pro-
duction of an adsorptive ceramic membrane using natural 
zeolite has been achieved through the implementation of 
phase inversion and sintering techniques [176]. The response 
surface methodology (RSM) approach was applied to iden-
tify the optimal conditions, specifically the feed pH, initial 
feed concentration, and dosage of the adsorptive membrane, 
aiming to enhance both membrane water permeability and 
ammonia removal efficiency [175]. This method proves 
particularly advantageous when numerous factors impact 
the yield, production, or removal efficiency within a given 
process or system. The experimental phase involved creat-
ing an adsorptive hollow fiber ceramic membrane (HFCM) 
from clinoptilolite (a natural zeolite) through a combina-
tion of phase inversion and sintering techniques [175]. The 
membrane’s ability to remove ammonia was assessed using 
a crossflow membrane setup. Subsequently, the effectiveness 
of the adsorptive HFCM was examined through a designed 
experiment using RSM to assess the relevant influencing fac-
tors. The study successfully fabricated and utilized a hollow 
fiber ceramic membrane (HFCM) for ammonia removal in 
water. The results indicated that under optimal conditions 
(feed pH of 7.04, feed concentration of 75 mg/L, and HFCM 
dosage of 0.35 g), high levels of water permeability and 
ammonia removal were achieved with small average errors 
in confirmatory tests [175]. HFCM demonstrated excellent 
ammonia removal performance of 96.5%, indicating its 
potential as a synergized system for water adsorption and 
filtration and showed an effective ammonia uptake due to 
the compact alignment of natural zeolite particles within its 
structure. Overall, these findings suggest that the developed 
adsorptive HFCMs have great potential for use in synergized 

systems combining water adsorption and filtration processes 
for efficient ammonia removal from contaminated water 
sources. As illustrated in Fig. 9, the correlation analysis 
shows that the optimal ammonia removal occurs at pH 7.50 
with a median concentration of the ammonia feed solution. 
The adsorption of ammonia is more favorable at neutral pH 
due to the high negative charge on the surface of the adsor-
bent (HFCM) and the intensified adsorption competitiveness 
between H + ions and ammonia at lower pH.

4.5 � Advantages and limitation of ceramic 
membranes

Ceramic membranes have garnered significant attention 
in separation techniques owing to their exceptional attrib-
utes, although their real-world application is influenced 
by both unique benefits and intrinsic restrictions. Ceramic 
membranes, in general, exhibit excellent chemical stability 
and can withstand exposure to acids, alkalis, and organic 
solvents, while also demonstrating resistance to oxidation 
[122]. As a result, they may provide consistent performance 
throughout a lengthy service life, which has been demon-
strated in several industrial installations [177]. They pos-
sess a high mechanical strength, remaining undamaged even 
under high-pressure conditions [178]. They have a great 
mechanical strength and can withstand tremendous pres-
sure without breaking [179]. Their pore size distribution is 
narrow and precise, which results in a separation efficiency 
that is noticeably high, enabling for the efficient removal of 
particles like virus pathogens in drinking water or emulsified 
oils in wastewaters [180]. Additionally, ceramic membranes 
have a high degree of material stability in abrasive environ-
ments, allowing for the efficient removal of suspended or 
dissolved solids from industrial solvents. Additionally, they 
can be cleaned with abrasive chemicals to maintain mem-
brane performance stability, which is essential for dealing 
with waste streams that are prone to fouling [181, 182].

These ceramic membranes do, however, have some draw-
backs. Due to their fragility and vulnerability to mechani-
cal stress, handling and operation may compromise their 
structural integrity, necessitating cautious installation and 
maintenance methods [109, 112, 182, 183]. The manufac-
turing complexity of these membranes often leads to higher 
production costs compared to polymeric alternatives [184]. 
Recent developments have solved the difficulties of cost and 
packing density, putting ceramic membranes on scale with 
polymeric membranes and increasing their acceptance in 
a variety of applications. Their relatively low porosity and 
permeability might necessitate higher operating pressures, 
consequently increasing energy consumption [185]. Addi-
tionally, the narrow pore size distribution can constrain their 
suitability for certain separation tasks, potentially limiting 
their versatility [186, 187]. In addressing these challenges, 
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ongoing research is focused on refining fabrication tech-
niques, optimizing pore structures, and exploring hybrid 
membrane designs to harness the full potential of ceramic 
membranes in various industrial applications. Another 
main limitation of ceramic membranes that have concerned 
researchers is membrane fouling, which greatly lowers its 
effectiveness. This is caused by organics, inorganic sub-
stances, and microorganisms clogging the pores and pollut-
ing the membrane surface [102].

4.6 � Membrane fouling

Membrane fouling occurs when a liquid solution contain-
ing different pollutants passes through a ceramic mem-
brane; the pollutants can accumulate either in the pores of 
the membrane or on its surface due to various physical and 
chemical effects [110, 112, 188, 189]. To ensure the efficient 
and stable operation of ceramic membranes for water treat-
ment, it is crucial to control membrane fouling. Address-
ing membrane fouling requires understanding its formation 
and underlying drivers. As shown in Fig. 10, the accumu-
lation of pollutants leads to membrane fouling, which can 
be classified into different mechanisms such as complete 

blocking (when pollutants are larger than the pores), stand-
ard blocking (when pollutants are smaller and accumulate 
through adsorption), and intermediate blocking (when only 
some pores are sealed) [109, 112, 188, 190]. Fouling often 
arises from the physical and chemical interactions of parti-
cles, colloidal particles, or large solute molecules present in 
the feed liquid that come into contact with the membrane 
[191]. Moreover, the fouling rate is directly influenced by the 
hydrophobic nature, electrical charge, and pore dimensions 
of the membrane, as exemplified by hydrophilic membranes 
such as alumina membranes [112, 192]. A comprehensive 
understanding of these membrane characteristics enables 
the development of effective strategies to mitigate fouling, 
thereby ensuring the optimal performance of ceramic mem-
branes in water treatment applications [122].

As summarized in Fig. 11, fouling mitigation methods 
include pretreatment techniques (such as filtration, water 
softening, and acidification) to minimize fouling formation, 
as well as cleaning methods (such as flushing, backwashing, 
and air bubbling) to remove foulants from the membrane 
surface [110, 189, 194–196]. Pretreatment methods are more 
suitable for inorganic fouling, while cleaning methods are 
effective for removing organic fouling [197]. Pretreatment 

Fig. 9   Ammonia removal by adsorptive HFCM 3D plot, (a) The interaction between the feed pH and feed concentration, (b) The interaction 
between the feed pH and HFCM dosage, (c) The interaction between the feed concentration and HFCM dosage [175]
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methods are used in membrane-based processes to prevent 
fouling. These methods employ various strategies to mini-
mize the presence of foulants in the feed solution, reducing 
the likelihood of fouling. While pretreatment is more crucial 
in pressure-driven treatment processes, it has been proven 
effective in membrane distillation (MD) as well, playing 
a vital role in reducing fouling, improving water quality, 
enhancing MD performance, and extending membrane lifes-
pan, particularly when dealing with real feed water contain-
ing a mixture of different foulants. Pretreatment methods, 
such as coagulation/flocculation, water softening, anti-scal-
ing, membrane filtration, thermal water softening, and pH 
adjustment, can be categorized into mechanical, chemical, or 
thermal methods, or a combination of these [110, 198–201]. 
On the other hand, membrane cleaning methods serve not 
only to remove accumulated particles from the membrane 

surface but also to restore the membrane’s original condi-
tion [110, 196]. Cleaning methods can be categorized into 
two ways both chemical and physical [110, 202]. Membrane 
surface fouling is removed physically through membrane 
filtration by applying hydraulic and mechanical forces [203]. 
Additionally, chemical cleaning methods involve the use of 
various chemical agents such as acids, alkalis, oxidants, 
enzymes, and surfactants [204]. By lowering the cohesive 
forces between the membrane surface and the contaminants, 
these agents facilitate the removal of the contaminants [205].

4.6.1 � Causes of membrane fouling

In nearly all membrane processes, membrane fouling 
results from the precipitation and deposition of molecules 
or particles on the membrane surface or pores [181]. 

Fig. 10   Ceramic membrane 
fouling mechanism [193]

Fig. 11   Fouling mitigation 
strategies [110]
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Particulate fouling is a significant contributor, wherein 
suspended solids, colloids, or fine particles in the feed 
water deposit on the membrane surface, leading to fouling 
[206]. These particles may vary in size and can be organic 
or inorganic in nature [207]. Another contributing factor is 
scaling, which occurs when dissolved inorganic salts like 
calcium carbonate, calcium sulfate, or silica exceed their 
solubility limits and form deposits on the membrane sur-
face [181, 208]. Scaling is often influenced by the concen-
tration and pH of the feed water [209]. Moreover, organic 
compounds such as oils, greases, proteins, carbohydrates, 
and humic substances can accumulate both on the mem-
brane surface and within its pores [110, 210]. These 
organic foulants may originate from sources like waste-
water, food processing, or natural organic matter present in 
water sources [211]. The reduction in the hydrophobicity 
of the membrane material over time and due to membrane 
damage is an additional factor that expedites the fouling 
of the membrane [110]. The degree of hydrophilicity or 
hydrophobicity in a membrane is established through the 
contact angle θ, wherein a greater angle signifies a surface 
with higher hydrophobicity [212]. This property has a sub-
stantial impact on the membrane’s resistance to fouling 
and is determined by the surface shape and pore size of the 
membrane [213]. Compared to hydrophobic membranes, 
hydrophilic membranes are less prone to adsorption, have 

faster flow rates, and have better anti-fouling capabilities 
[214].

4.6.2 � Types of membrane fouling

The types of membrane fouling fall under four categories: 
inorganic fouling, organic fouling, biological fouling, and 
colloidal fouling, as illustrated in Fig. 12 [110]. Inorganic 
fouling is the accumulation of solid inorganic compounds 
like calcium carbonate or calcium sulfate [110]. These inor-
ganic components come from the feed solution and undergo 
scale formation through complex mechanisms of crystal-
lization and transport processes [194]. Organic fouling is 
caused by the accumulation and deposition of relatively 
dense organic materials, such as polysaccharides, proteins, 
humic substances, nucleic acids, lipids, and amino acids 
[189]. Dissolved organic matter (DOM) is abundant in both 
surface water and wastewater and can be classified into 
natural organic matter (NOM), synthetic compounds, and 
soluble microbial products (SMPs) [191]. NOM consists 
of various substances such as humic acid, carbohydrates, 
proteins, lipids, and low molecular weight species [215]. 
These NOMs can exist as dissolved particles or colloidal 
materials and can attach to the membrane surface through 
mechanisms like hydrophobic interactions, chemical affin-
ity, and electrostatic forces [191]. Biological fouling, also 

Fig. 12   Types of membrane 
fouling
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known as biofouling, occurs when bacteria or microorgan-
isms multiply and accumulate on the surface of a membrane 
[216]. This biofilm formation reduces the permeability of the 
membrane, leading to decreased productivity and long-term 
operational issues [217]. Colloids are small, suspended par-
ticles that can cause fouling in water solutions—they range 
in size from nanometers to micrometers and can lead to sig-
nificant fouling issues [218, 219]. In the context of water 
treatment, colloidal fouling is classified as either inorganic 
or organic, with inorganic colloids like silica, aluminum 
silicate minerals, clay, silt, iron oxides/hydroxides, and 
debris being the predominant culprits found in natural water 
sources [220, 221].

4.6.3 � Correlation between pore size and fouling

The membrane’s surface characteristics and the relative size 
of its pores are critical factors influencing fouling mecha-
nisms and severity [220]. If the pore size is significantly 
larger than the particles or substances to be removed, foul-
ing may occur as contaminants can easily pass through and 
accumulate downstream [181, 212]. Conversely, excessively 
small pore sizes can lead to clogging or fouling due to par-
ticle build-up on the surface or within the pores, restricting 
flow and decreasing filtration efficiency [222]. Nevertheless, 
in certain cases, smaller pore sizes can mitigate fouling by 
physically preventing larger particles or microorganisms 
from passing through the filter [212, 223]. Furthermore, 
smaller pores can create more convoluted paths for fluid 
flow, increasing the likelihood of particle collision and 
removal [204]. Nonetheless, smaller pore sizes might also 
be more vulnerable to fouling caused by smaller contami-
nants adhering to the pore walls [224]. It was discovered in 
a treatment study of wastewater containing micropollutants 
[225] that the membrane’s pore size is the primary factor 

impacting the membrane flux and the wastewater’s rate of 
turbidity reduction [180]. Greater membrane pore size leads 
to increased membrane fouling, resulting in accelerated flux 
decay and a decrease in the removal rate [212, 226]. The 
performance of the membrane for separation is significantly 
impacted by the size of the membrane pores.

5 � Mechanism of ceramic membrane

5.1 � Fabrication of ceramic membrane

The exact handling of ceramic powders, binders, shaping 
methods, and controlled heat treatment are all necessary for 
the manufacture of ceramic membranes [227]. These mem-
branes, which are known for their dependability, chemical 
resistance, and effectiveness, are used in a variety of pro-
cesses, including fuel cells, nanofiltration, gas separation, 
and water purification [228]. Publishing research findings 
on the preparation of ceramic membranes is imperative as 
it contributes to the scientific knowledge, as depicted in 
Fig. 13, which illustrates the trend in publications over the 
past decade concerning the preparation of ceramic mem-
branes. As depicted in Fig. 14, choosing ceramic powders 
with the necessary membrane qualities in mind is the first 
step in the production of ceramic membranes [126]. Pow-
ders are combined with binders to create a paste, and it is 
essential to maintain the appropriate binder-to-powder ratio 
to ensure effective cohesion during shaping and handling 
processes [229]. Additionally, additives may be included 
to enhance properties like pore structure or mechanical 
strength. There are many methods for creating a single layer 
or multilayer ceramic membrane for the shaping method, 
including slip casting, extrusion, pressing, phase inversion, 
and sol–gel [71, 230–232]. The drying process then removes 

Fig. 13   Number of publications 
in 10 years on the preparation of 
ceramic membranes
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the solvent from the binder, and it must be controlled to 
prevent cracks or deformations. Sintering involves heating 
the membrane at high temperatures [233]. It is a critical step 
for densification and pore structure development. The sinter-
ing temperature and time are carefully controlled to achieve 
the desired membrane characteristics. The process removes 
residual organics and promotes particle bonding [234]. 

5.1.1 � Slip casting method

The slip casting process begins by pouring a slurry onto a 
microporous mold made of plaster of Paris (POP) [126]. 
The mold’s porous nature creates capillary suction pres-
sure, which draws the fluid from the slurry into the mold. 
As a result, a consolidated layer of solid (cast) forms on the 
mold’s walls. The mixing of particle suspension and pour-
ing it into a porous mold allow solvents to diffuse through 
the pores and form a particle layer on the mold’s internal 
surface [235]. Once the desired cast thickness is achieved, 
any excess slip is poured out, and the mold and cast are left 
to dry as illustrated in Fig. 15 [236]. During drying, the 
cast undergoes contraction from the mold and can be easily 
detached. Once completely dried, the cast is heated to elimi-
nate the binder and then sintered to yield the final product 
[230]. This technique has been utilized to produce ceramic 
membranes using economical resources such as kaolin [237] 

and fly ash [238], yielding membranes with exceptional per-
meation characteristics and reduced pore dimensions. For 
example, a porous tubular ceramic membrane constructed 
from mineral coal fly ash displayed a uniform surface, an 
approximate average pore size of 0.25 mm, and a hydraulic 
permeability of 475 L/(h m2 bar), making it suitable for the 
treatment of dyes in wastewater originating from the textile 
sector [235].

5.1.2 � Extrusion method

This technique has made considerable progress in recent 
years and has found widespread use in the molding of 
ceramic items, particularly in the creation of single-channel 
and multichannel supports [240]. Extrusion entails stirring 
as powder is combined with plasticizers, binders, and other 
ceramic additives. The mixture then undergoes a number of 
procedures, including vacuum pugging and aging, before 
being pushed under pressure (20–180 MPa) into the die noz-
zle to extrude the support into the desired shape [241]. The 
shaping method of the paste in the production of ceramic 
membranes depends on the geometry of the final membrane 
support. Figure 16 illustrates how the extrusion method’s 
preparation stages for a ceramic membrane support may 
often be broken down into six steps: mixing, vacuum pud-
dling, aging, extruding, straightening, drying, and sintering 

Preparation 
of materials

Shaping 
method 

selection
Drying Sintering

Fig. 14   Flowchart for the preparation of a single layer of ceramic membrane

Fig. 15   Schematic diagram of 
the slip casting process [239]
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[242]. This process is achieved by pushing the mixture 
through a nozzle using either a screw extruder or a piston 
extruder [231]. The piston extruder, consisting of a piston, 
tube, and die, as shown in Fig. 17, is known for its ease of 
use [235]. It is crucial for this extruder to ensure a homoge-
neous mixture of the powder and other additives while gen-
erating sufficient pressure to transfer the mixture to the die 
[240]. It involves a continuous deformation process where 
the paste is forced through a smaller die opening using the 
piston press. This process determines the shape, pore size 
distribution, and porosity of the final ceramic membrane 
product. The raw ceramic membranes are then dried at room 
temperature and treated under high-temperature conditions 
to avoid crack formation before reaching the sintering tem-
perature of the material. This particular method is chosen 
due to its ability to create a robust membrane structure. 
Yet, it involves a complex preparation process and requires 
the application of adequate pressure to facilitate the move-
ment of the mixture [243]. Compared to other methods like 
pressing, extrusion results in supports with lower porosity, 
better uniformity, smaller pore size, and higher mechanical 
strength, but it requires the mud material to have sufficient 
plasticity, flow characteristics, and uniformity to avoid defor-
mation and cracking during the extrusion process [241].

5.1.3 � Pressing method

The pressing method is a commonly used technique, and as 
shown in Fig. 18, it involves pressing a dry powder mixture, 
consisting of raw materials and pore-forming agents [235]. 
Once the powder is evenly blended (employing ratios of raw 
material to pore-forming agent), the resultant mixture is uni-
axially compressed under stress via a punch within a mold 
featuring stationary walls. This process yields the intended 
shape of the membrane support [244]. With this technique, 
ceramic membranes with constant physical qualities and uni-
form porosity can be produced at high rates [245]. Examples 
include the manufacturing of tubular porous and supported 
ceramic membranes for microfiltration and ultrafiltration 
applications, as well as the preparation of low-cost ceramic 
membrane supports utilizing natural zeolite powder [246]. 
Two common approaches for dry powder compaction (con-
taining < 2 wt% water) and semi-dry powder (holding ~ 5–20 
wt% water) are uniaxial die pressing and isostatic pressing 
[143]. In the uniaxial die compaction, the powder material 
experiences simultaneous compaction and shaping within a 
rigid die [247]. This process can be further classified into 
two methods: hot and cold compaction. For cold pressing, a 
die is filled with a powder mixture, and then, uniaxial pres-
sure is applied to form a green body (compacted powder). 
The hot compaction process is similar, but the green body is 

Fig. 16   Extrusion method 
process [240]

Fig. 17   Extrusion method illustration [235]

Fig. 18   Pressing method process [235]
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subjected to heating under a vacuum or inert gas atmosphere 
using induction [248].

5.1.4 � Phase inversion method

Porous ceramic membranes, especially those with hollow 
fiber structures, can be produced using the phase inversion 
method [249, 250]. It is a de-mixing procedure that carefully 
transforms a homogeneous polymer casting liquid solution 
into a solid film [251]. This technique has previously been 
used to create porous silicon nitride and alumina hollow 
fiber membranes with success [249, 252]. In this study, the 
authors created tubular porous alumina ceramic support 
membranes using a self-designed phase-inversion casting 
technique, resulting in high-porosity tubular alumina mem-
branes with a moderate flexural strength [253]. Alumina 
particles were combined with a polymer solution made of 
polysulfone (PSf) dissolved in N-methylpyrrolidone (NMP) 
[253]. As illustrated in Fig. 19, a homogeneous mixture was 
created by ball-milling the resultant suspension in order to 
create the tubular membranes [254]. This method involves 
pouring a degassed suspension into a casting device that is 
submerged in water, where it goes through a phase-inversion 
process and partially solidifies [253–255]. The green bodies 
are cut into circular pieces, heated to remove solvents and 
organic polymers, and then sintered at high temperatures 
to promote the formation of densely packed ceramic parti-
cles [254]. To create the final ceramic membrane, the green 
tubular membrane is then further solidified, dried, and fired 
in a furnace [253, 254]. Green tubular membranes’ heat-
ing and sintering capabilities were characterized, and the 
relationship between porosity, pore size distribution, gas 

permeability, and mechanical strength during sintering 
was studied [253]. The findings demonstrated that phase-
inversion casting generated membranes with better porosity, 
larger average pore size, and adequate mechanical strength 
when compared to membranes manufactured by cold press-
ing, demonstrating the viability of this manufacturing tech-
nique [253].

5.1.5 � Sol–gel method

The sol–gel process is a flexible method for producing 
materials, notably ceramic compounds, by changing a 
solution (sol) into a solid (gel), and then, through care-
fully regulated drying and heating, into the appropriate 
end material [256]. The sol–gel technique is a commonly 
used method for creating ceramic membranes with spe-
cific pore sizes in the top layer [257]. There are two main 
approaches: first is the colloidal approach, in which a 
metal salt is combined with water to create a sol that, when 
coated on a membrane support, transforms into a colloi-
dal gel. The second is the polymer approach, in which 
metal–organic precursors are combined with an organic 
solvent to create a sol that, when coated on a membrane 
support, transforms into a polymer gel [258]. The benefit 
of the sol–gel process is that, by varying the particle size 
in the sol, it is possible to manage the required pore diam-
eters, especially for small pores [256]. It can be used to 
create coatings that are applied to non-bioactive materials 
in order to alter their characteristics and improve their 
biocompatibility, biocorrosion protection, or antibacterial 
capabilities [161, 259, 260]. In the sol–gel synthesis pro-
cedure, illustrated in Fig. 20, when hydrolysis is triggered, 

Fig. 19   Ceramic microsheet 
production via phase inversion 
[254]
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partially hydrolyzed molecules engage in a condensation 
response. This leads to the creation of more extensive 
molecules through the process of polymerization [260]. 
The second stage of the sol–gel procedure is initiated 
when these bigger molecules begin to randomly interact 
with one another and create a three-dimensional structure 
[260]. This stage involves the formation of a gel, which 
is a stable porous solid submerged in a liquid medium 
that fills the gaps in the three-dimensional structure [260]. 
The transition from sol to gel, known as gelation, causes a 
rapid increase in the viscosity of the solution [260]. After 
the gel forms in the sol–gel synthesis, removing the liquid 
phases from the gel is necessary to get a solid material. 
This is done through drying, which leads to two possi-
ble outcomes. When the liquid phase is eliminated using 
supercritical drying, it yields an aerogel [261]—a material 
that is largely air but contains about 1% solid [260]. Con-
versely, if the liquid is allowed to slowly evaporate under 
regular conditions, it results in a delicate solid known as a 
xerogel [262]. To achieve a dense, uniform material with-
out pores, the xerogel undergoes sintering. For creating a 

coated surface, an extra step involves applying the sol–gel 
substance onto the substrate, followed by drying to acquire 
a xerogel coating [260, 262].

5.2 � Preparation of Al2O3 porous ceramic membrane 
tube (PCMT)

The proposed method for preparing the single-channel 
Al2O3-based PCMT involved a combination of extrusion 
molding and solid-phase sintering techniques [263]. As illus-
trated in Fig. 21, the process begins with mixing α-Al2O3 
powders of various grain sizes, carbon powders, SiO2-Yb2O3, 
and kaolin in a V-type mixer for 5 h [263]. To aid in mixing, 
dibutyl phthalate (DBP) was used as a dispersant, while car-
boxymethyl cellulose (CMC) was added to bind all the compo-
nents together [264]. Oleic acid served as a lubricating agent, 
and deionized water acted as both a solvent for mixing and 
to provide moisture. The ceramic paste obtained was further 
refined under vacuum conditions and then aged in a sealed 
container at 30 °C and 45% humidity for 3 days. Subsequently, 
a ceramic vacuum extrusion molding machine was used to 

Fig. 20   Sol–gel procedure [260]

Fig. 21   Illustration of the prepa-
ration process of single-channel 
Al2O3-based PCMT [263]
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form the single-channel ceramic tube embryo at a constant 
pressing speed [265]. After drying for 24 h at room tempera-
ture, the dried samples were sealed in an alumina crucible for 
protection in a lead atmosphere. The sintering process was 
then carried out at different temperatures, ranging from 1100 
to 1200 °C, for 3 h [263].

6 � Application of ceramic membranes 
in wastewater treatment

6.1 � Ceramic membrane technology 
for the treatment of textile wastewater

The textile industry is notorious for generating large quan-
tities of wastewater containing diverse pollutants, such as 
dyes, pigments, suspended solids, and organic compounds 
[266, 267]. Ceramic membrane separation has garnered sig-
nificant attention as a reliable method for treating textile 
effluents [267–271]. As shown in Table 1, researchers have 
explored the use of Al2O3/TiO2/ZrO2 ceramic membranes 
with different molecular weight cut-offs (MWCOs) ranging 
from 1 to 500 kDa, resulting in substantial reductions in 
BOD, COD, TDS, turbidity, SS, and effective removal of 
dyes during textile wastewater treatment [132]. The study 
revealed that operating pressure, rejection rate, and perme-
ate flux can be adjusted by selecting appropriate cross flow 
velocity (CFV), MWCO, and operational conditions [132]. 
Several cleaning methods were employed in the experiment, 
such as washing with tap water, deionized water, perme-
ate, alkaline, and acid solutions, leading to approximately 
90% recovery of membrane flux [271]. For instance, in a 
previous study, the effectiveness of ZrO2-TiO2 ceramic UF 
membranes in removing dye from a synthetic-colored feed 
solution was investigated, achieving a significant dye rejec-
tion of about 95% under optimal operating conditions [271]. 
Treating textile effluents is challenging due to the presence 
of persistent organic pollutants (POPs) and the varying com-
position of wastewater [272]. Advanced techniques, like 
using ceramic microfiltration (MF) and ultrafiltration (UF) 
as pretreatment before nanofiltration (NF) and reverse osmo-
sis (RO), are recommended for textile wastewaters with high 
concentrations of COD/BOD and TDS [269, 273]. Ceramic 
membranes are preferred for their excellent chemical stabil-
ity and resistance to harsh cleaning agents. However, their 
high initial cost hinders widespread application in large-
scale textile plants [274].

6.2 � Ceramic membranes for the treatment 
of petrochemical wastewater

Chemicals produced from gas and petroleum processes are 
referred to as petrochemicals. The petrochemical industry 
generates a considerable volume of wastewater containing 

diverse organic and inorganic substances, including oil 
compounds, dissolved minerals, and chemical compounds 
[283, 284]. Various research investigations have explored 
the utilization of ceramic membranes to treat petrochemi-
cal wastewaters. For instance, γ-Al2O3 ceramic membranes 
with a pore size of 0.2 μm were utilized to treat effluent 
contaminated with coke, achieving complete removal of 
coke and approximately 72% reduction in COD concentra-
tion [285]. Another study assessed the economic viability 
of employing γ-Al2O3 ceramic membranes for pretreating 
coke-contaminated wastewaters, showcasing their high 
efficacy in coke removal and potential as a cost-efficient 
approach for treating petrochemical wastewaters [285, 286]. 
Membrane technology offers advantages over conventional 
treatment methods in the petrochemical industry. However, 
there are challenges associated with membrane filtration, 
such as the accumulation of oil droplets on the membrane 
surface, leading to reduced permeation flux and membrane 
fouling due to complex fouling characteristics of petro-
chemical effluents [287]. In a previous study [288], ceramic 
α-Al2O3 membranes were tested for the removal of total 
organic carbon (TOC) from synthetic oil-in-water emulsion. 
The addition of powdered activated carbon (PAC) did not 
affect TOC removal, but it improved permeation flux and 
reduced fouling by providing a mechanical scouring effect 
[288]. Another experiment [289] involved the use of a kao-
lin/MnO2 bi-layer composite on ceramic Al2O3 membranes, 
which showed excellent oil separation performance under 
various operational conditions, achieving a high permeate 
flux and oil retention ratio of 99% as shown in Fig. 22, but 
only in neutral or alkaline conditions due to the vulnerability 
of MnO2 particles in acidic conditions [289].

6.3 � Ceramic membrane for pharmaceutical 
wastewater treatment

The role of water is of utmost importance in pharmaceutical 
manufacturing. However, the wastewater produced during 
this process contains a diverse array of organic and inorganic 
compounds, including pharmaceutically active compounds 
(PhACs) and endocrine disrupting compounds (EDCs) 
[132]. Therefore, proper treatment of pharmaceutical efflu-
ents is critical to avoid the release of these substances into 
the environment and their potential adverse effects on the 
human health. In the pharmaceutical industry, ceramic mem-
branes are gaining popularity due to their exceptional ability 
to endure repeated steam sterilization and harsh chemical 
cleaning, surpassing the capabilities of polymeric mem-
branes [290]. Their successful application includes antibi-
otic recovery, filtration of fermentation broth, and “water 
for injection” treatment [291]. Utilizing ceramic membranes 
offers several benefits, such as longer lifespan, energy effi-
ciency, and easier cleaning procedures [177]. These ceramic 
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membranes not only provide superior filtration performance 
but also inhibit the growth of microorganisms, guarantee-
ing the production of high-quality pharmaceutical products 
[235]. Utilizing ceramic membranes in the pharmaceutical 
sector presents several advantages, including inherent bio-
compatibility, resistance to bacterial growth, and the capac-
ity to endure repeated chemical and steam sterilization at 
elevated temperatures, a characteristic that poses challenges 
for polymer membranes [132]. The incorporation of ceramic 
ultrafiltration (UF) within a hybrid system for the production 
of ultrapure “water for injection” in medical applications 
serves as an effective measure to mitigate microbial prolif-
eration and contamination in the piping system, particularly 
in scenarios where polymeric membranes lack resilience to 
periodic steam sterilization [132].

6.4 � Ceramic membranes in pulp and paper industry

Ceramic membranes are being considered for treating waste-
water in the pulp and paper industry due to their exceptional 
stability in harsh conditions [292, 293]. Unlike polymeric 
membranes, ceramic membranes can be effectively cleaned 
with harsh agents to prevent fouling or scaling, and they 
offer reliable performance over extended periods of opera-
tion [292, 294–296]. Various studies have evaluated the 
use of α-Al2O3 ceramic membranes with selective sepa-
ration layers of TiO2 or ZrO2, which are readily available 
in the market with different pore sizes and MWCOs, for 
treating effluents from pulp and paper mills [297]. Ceramic 
membrane processes have been utilized to extract valuable 
materials, such as lignin, from pulp and paper wastewaters. 
Lignin, separated through ceramic membrane filtration, can 
be used for various purposes including biofuel, dispersant, 
blinder, emulsifier, and precursor for carbon fibers [298]. By 
adjusting the molecular weight cut-off (MWCO) of ceramic 
membranes, the fractionation of lignin can be controlled, Ta
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and applying ceramic ultrafiltration (UF) as a pretreatment 
step before polymeric nanofiltration (NF) can enhance the 
purity of the extracted lignin [299]. Comparative studies 
have shown that applying ceramic UF as a pretreatment 
before polymeric NF stages results in higher purity of lignin 
[300]. The paper and pulp industries generate substantial 
wastewater throughout various processing stages, including 
pulp production, bleaching, and deinking recycled paper. 
This wastewater is characterized by elevated levels of bio-
logical oxygen demand (BOD), chemical oxygen demand 
(COD), chlorinated compounds, absorbable organic hal-
ides, and total suspended solids [301]. Consequently, it is 
imperative to minimize these contaminants to meet envi-
ronmentally acceptable limits before disposal, necessitating 
suitable treatment methods [301]. In a recent study [302], 

an integrated approach involving biodegradation followed 
by microfiltration for the treatment of wastewater from the 
paper and pulp industry was proposed. The microfiltration 
process with an experimental setup, as illustrated in Fig. 23, 
utilized a cost-effective ceramic membrane with a pore size 
of 1.01 μm and a porosity of 44%. The integrated approach 
demonstrated notable effectiveness, achieving an 87.6% 
reduction in COD and a 94.5% decrease in toxicity [302].

6.5 � Full‑scale application of ceramic membranes

Membrane biological reactors (MBRs) offer an alternative 
approach to traditional wastewater treatment methods, pro-
viding improved water recovery, reuse, and recycling [303]. 
One advantage of using MBRs in wastewater treatment, 
especially in rural areas, is their ability to effectively remove 
microbial pollutants like Giardia cysts and Cryptosporid-
ium oocysts, which are considered reference pathogens for 
drinking water [303, 304]. However, MBR technology faces 
challenges such as membrane fouling, where the membrane 
surface and pores get clogged by microbial substances [305]. 
This study explores the use of low-cost ceramic membranes 
made from clay, calcium carbonate, potato starch, almond 
shell, and chamotte as a more affordable option compared 
to commercial ceramic membranes [303]. The researchers 
characterized the membranes, evaluated their performance 
in a laboratory-scale MBR [303, 306], and found that a 
membrane with a thin layer of TiO2 demonstrated the best 
resistance to fouling and effective retention of contami-
nants such as Escherichia coli, Cryptosporidium oocysts, 
and Giardia cysts characterization of low-cost ceramic 
membranes for MBRs [306]. Membranes with a selective 
layer showed lower permeance and pore size, with the use 
of potato starch resulting in a sharper decrease in permeance 

Fig. 23   Integrated biodegradation microfiltration experimental setup 
[302]

Fig. 24   Number of publications 
in ten years on the application 
of ceramic membrane in waste-
water treatment
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[303]. Membranes with a selective TiO2 layer exhibited the 
smallest pore sizes and achieved high removal efficiency for 
Giardia cysts and Cryptosporidium oocysts, making them a 
competitive alternative for wastewater treatment [303]. The 
application of ceramic membranes in wastewater treatment 
has witnessed a surge in research interest, as evidenced in 
Fig. 24.

7 � Future perspectives and concluding 
remarks

Ceramic membranes show immense promise in transform-
ing wastewater treatment and environmental remediation. 
As the field advances, there are crucial future prospects that 
researchers and industries should explore to maximize the 
effectiveness and versatility of ceramic membrane tech-
nology. The future of this technology hinges on ongoing 
advancements and innovations. While commercially avail-
able ceramic MF and UF membranes have found widespread 
use in industrial settings, there is a need for further research 
to enhance the ease of fabrication, increase packing density, 
and reduce costs while consistently maintaining the quality 
of membranes. Moreover, research studies have revealed that 
the combination of oxidation processes and ceramic mem-
branes holds great promise as an alternative to conventional 
water treatment methods, especially for the production of 
drinking water [227]. By integrating nanocomposites into 
ceramic membranes, these cohesive systems demonstrate 
enhanced performance in counteracting membrane fouling, 
streamlining system design, and supporting catalysis recov-
ery [122]. Additionally, ceramic membranes exhibit lower 
fouling susceptibility and irreversible fouling compared to 
polymeric membranes due to their more hydrophilic surfaces 
[180]. To ensure dependable and long-term operation, fur-
ther investigations are necessary to understand the influence 
of surface properties on membrane fouling and to analyze 
fouling agents. Furthermore, effective approaches for tack-
ling biofouling challenges in ceramic membrane filtration 
should be explored. The challenges facing the advance-
ment of ceramic membrane technology are comprehensive. 
Obstacles like the optimization of fabrication processes to 
simultaneously enhance simplicity, increase packing density, 
and reduce costs without compromising membrane quality 
are what cause the challenges with the use of ceramic mem-
branes. Membrane fouling is another challenge that results 
in operational challenges, including lower membrane perme-
ability that limits the overall plant capacity. Ceramic mem-
branes also face challenges regarding membrane materials 
for certain applications where the use of polymeric mem-
branes is not a viable option due to material limitations.

Ceramic membranes present a promising and versa-
tile technology that holds great potential for wastewater 

treatment and environmental remediation. This compre-
hensive review has covered various aspects of ceramic 
membranes, encompassing their composition, fabrication 
process, filtration principles, and diverse range of applica-
tions. With the world facing escalating challenges concern-
ing water scarcity and pollution, ceramic membranes offer a 
sustainable and efficient solution for wastewater treatment, 
safeguarding essential water resources. Moreover, the con-
tinual expansion of their applications, such as in removing 
emerging contaminants and recovering valuable resources, 
highlights the adaptability and relevance of ceramic mem-
branes in addressing evolving environmental issues. As 
ongoing research progresses, ceramic membrane technology 
is poised to play a pivotal role in shaping the future of waste-
water treatment and environmental remediation, leading us 
towards a cleaner and more sustainable world.
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