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Abstract
The development of basic oxygen furnace (BOF) intelligent steelmaking model based on artificial intelligence and big data

is the focus of international research and development. In the view of the current situation that the BOF cannot contin-

uously detect the composition and molten steel temperature, combined with the monitoring results of the high-definition

and high-brightness camera at the converter mouth, an online BOF terminal temperature control model is established based

on big data learning case-based reasoning model and expert system model. The on-site online operation shows that the

model can effectively improve the ‘‘flying lance’’ phenomenon and the splashing condition, the stability and safety of

smelting process are better than that of artificial smelting, the ‘‘flying lance’’ rate decreases from 39.2% to 0, the early

splashing rate decreases from 21.4% to 13.3% and the late splashing rate decreases from 81.25% to 56.7%. When the

temperature fluctuation is controlled at ± 15 �C, the hit rate of the terminal temperature under the automatic control of the

model is 90.91%.
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List of symbols
Clh Latent heat of hot metal melting, J/K

Clq Liquid heat capacity of hot metal, J/K

Csl Solid heat capacity of hot metal, J/K

Csl0 Solid heat capacity of molten steel, J/K

Clh0 Latent heat of molten steel melting, J/K

Clq0 Liquid heat capacity of molten steel, J/K

Cj Solid heat capacity of auxiliary materials, J/K

fssCaO CaO content in limestone, %

fshCaO CaO content in lime, %

f Si Silicon content of sample hot metal, %

fSi Silicon content of hot metal, %

fC Carbon content of hot metal, %

Lss Limestone difference, kg

bLss
Adjusted value of limestone based on alkalinity,

kg

LSi Mass difference of hot metal silicon, kg

bLss
Dolomite adjustment value, kg

m Sample hot metal mass, kg

mFe Mass of hot metal, kg

msb Sample dolomite addition amount, kg

mst Mass of scrap steel, kg

mi Mass of auxiliary materials, kg

mj Mass of preheated auxiliary materials, kg

mk Added mass of ore, kg

mss dl Limestone adjustment amount, kg

msh Lime adjustment amount, kg

nCO Ratio of CO in carbon–oxygen reaction, %

nCO2
Ratio of CO2 in carbon–oxygen reaction, %

ptQFe
Physical thermal efficiency of hot metal, %

ptC Heat efficiency of carbon oxidation, %

ptSi Thermal efficiency of silicon oxidation, %

pti Cooling capacity coefficient of scrap steel, %

QFe Physical heat of hot metal, J

QC Heat of carbon oxidation, J

QSi Heat of silicon oxidation, J

Qst Scrap steel absorbs heat, J

Qfl Heat absorption of auxiliary materials, J

Qyr Preheating heat of auxiliary materials, J

Qsy Surplus heat, J
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QCO Thermal effect of CO, J/kg

QCO2
Thermal effect of CO2, J/kg

QSiO2
Thermal effect of SiO2, J/kg

Qi Thermal effect of excipients, J/kg

QK Thermal effect of ore, J/kg

Qss Thermal effect of limestone, J/kg

Qsh Thermal effect of lime, J/kg

R Sample final slag alkalinity

R Preset final slag alkalinity

Tr Melting point of hot metal, K

Tr0 Melting point of molten steel, K

T0 Indoor temperature, K

Ttrue Hot metal temperature, K

Tend Molten steel temperature, K

Tyr Preheating temperature, K

ZMgO Content of MgO in sample final slag, %

ZMgO Preset MgO content in final slag, %

1 Introduction

Basic oxygen furnace (BOF) steelmaking is made of hot

metal, scrap steel and ferroalloy as the main raw materials;

without the aid of external energy, the process of steel-

making is completed in the BOF by the physical heat of hot

metal itself and the chemical reaction between the com-

ponents of hot metal. BOF steelmaking is one of the two

major steel production processes in the world. The main

purpose of BOF smelting is to achieve the target compo-

sition and molten steel temperature at the end of the

blowing process [1], which requires the control of oxygen

blowing mode and feeding mode within the smelting cycle

[2], and the terminal temperature is related to the forward

flow of the entire production and even affects the opti-

mization of the production process [3]. Research and

development of process control model based on the entire

BOF steelmaking production process and smelting mech-

anism has become the core technology for the implemen-

tation of automatic control of BOF steelmaking [4]. At

present, there are many prediction models about the end-

point, and the commonly used prediction methods include

the prediction method of state space model [5–7] and the

prediction method based on historical data modelling

[8–10]. Due to the lack of effective monitoring means of

smelting process in traditional model, the ‘‘static control

model’’ based on this model has not achieved good results.

With the rapid development of measurement technol-

ogy, many new sensors and devices are put into use in the

production process of BOF. Domestic and foreign scholars

build corresponding models based on these devices and

apply them to actual production, hoping to improve the

control effect. Birk et al. [11] developed a real-time model

and named it ‘‘dynamic control model’’ to distinguish it

from ‘‘static control model’’. However, the ‘‘dynamic

control model’’ is still based on physical and chemical

laws. Because the BOF steelmaking process is accompa-

nied by complex heat and mass transfer and chemical

reactions, the ‘‘dynamic control model’’ is difficult to be

reduced to a set of equations for modelling. In addition, the

stability of the BOF process control directly affects the hit

rate of the dynamic control model. The ‘‘dynamic control

model’’ which only reflects the operation of the BOF

through partial sensor results cannot adapt to the BOF

smelting process under complex working conditions.

With the development of information technology,

scholars have adopted artificial neural network (ANN) and

other data-driven models to describe the mathematical

relationship of smelting process. Due to its accurate iden-

tification of complex and nonlinear dynamic systems [12],

ANN is suitable for modelling and controling in the pro-

cess of steel manufacturing [13]. Radhakrishnan and

Mohamed [14] used neural networks as soft sensors to

predict the mass fraction of silicon and sulphur in blast

furnace hot metal, and created an expert control system to

improve the quality of hot metal. Pernı́a-Espinoza et al.

[15] proposed several robust learning algorithms to train

the neural network and described the annealing process of

steel. For BOF steelmaking, Cox et al. [16] used ANN to

predict oxygen and coolant requirements during the second

blowing. Fileti et al. [17] developed an inverse neural

network model to calculate the adjustment of oxygen

blowing process at the end of smelting. Das et al. [18] used

ANN with Bayesian regularization to predict the control

behaviour of steelmaking process. Many successful appli-

cations of artificial neural network in steelmaking mod-

elling have been studied in the literature. However, the

ANN model is sensitive to initialization parameters, and it

is difficult to adjust the structural parameters, which

essentially affects the efficiency and prediction accuracy of

ANN, and the ANN model is still difficult to meet the

industrial requirements.

Jayadeva et al. [19] proposed a dual support vector

machine (TSVM) algorithm in 2007. This method is an

improved support vector machine algorithm to reduce the

computational complexity of modelling and is widely used

in classification applications. In 2010, Peng [20] proposed a

dual support vector machine (TSVR) algorithm for

regression, which can be used to build prediction models of

industrial data. Based on the above modelling methods,

various forecasting models in iron and steel production

have sprung up. Brämming et al. [21] proposed tilt fore-

casting by using multivariate data analysis. Wang et al.

[22] established a multilevel recursive regression model for

predicting end-point phosphorus content in the BOF

steelmaking process. Han and Liu [23] proposed an anti-
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jamming end-point prediction model of extreme learning

machine (ELM) based on evolutionary film algorithm.

Wang et al. [24] proposed input weighted support vector

machine modelling by applying input variable selection

technique. Han and Cao [25] established a prediction

model on the basis of improved case-based reasoning

method. Scholars [26, 27] conducted a neural network

prediction model to achieve the target endpoint conditions

in molten steel. He and Zhang [28] developed a prediction

model of terminal phosphorus content in BOF steelmaking

process based on principal component analysis (PCA) and

back-propagation (BP) neural networks. Gao et al. [29]

developed a prediction model of BOF steelmaking end-

point based on KNNWTSVR and LWOA. Zhou et al. [30]

developed a prediction model of terminal phosphorus

content of BOF based on monotone-constrained BP neural

network. Qi et al. [31] developed a BOF end-point carbon

prediction model based on real-time learning. Gao et al.

[32] developed a wavelet transform weighted double sup-

port vector machine regression-based static terminal con-

trol for basic oxygen furnace steelmaking. Diaz [33] used

infrared temperature measurement and prediction technol-

ogy to predict the temperature of hot metal in basic oxygen

BOF. These achievements are based on statistical and

intelligent methods.

The end-point prediction model based on data learning

has good guiding significance for BOF smelting, but it is

difficult to be applied to actual control. There are essential

differences between the actual control model and the pre-

diction model. First, because the actual production requires

excellent steel production conditions to be studied as the

target, the data set of the actual control model is more

stringent. Second, in order to meet the changes of actual

production conditions, the actual control model needs

stronger ability to adapt to the changes of process and raw

material types, which is the lack of all models based solely

on data learning. Third, the prediction model does not take

into account the complex actual situation of the smelting

state fluctuation, and the actual control model must con-

sider the possible impact of the smelting state fluctuation

on the final result. To sum up, the actual control model

should not only be able to improve the accuracy of the

model by data learning, but also be able to get rid of the

dependence on the original data and adapt the solution to

the process conditions.

The classical definition of case-based reasoning model

(CBR) was proposed by Schank Ronger [34] in 1989. CBR

uses existing experience to solve current problems and can

well solve complex and changeable process conditions by

combining mechanism analysis. Liang et al. [35] realized

the prediction of terminal P content of BOF through attri-

bute reduction two-step case-based reasoning. Gu et al.

[36] used CBR model to predict endpoint carbon content of

BOF. The CBR model can not only improve the model

accuracy by relying on the big data learning method, but

also put forward the modification of the solution by com-

bining the mechanism model flexibly, which is suitable for

the establishment of the online control model of BOF

production.

In this paper, with Jianlong Steel 120 t BOF from as the

research object, on the basis of auxiliary preheating process

(temperature up to 500 �C), CBR model combined with

metallurgical reaction mechanism is used to calculate the

number of auxiliary materials, using expert system for

static control of smelting process, stable process operation

system. Combining the two methods, an online BOF ter-

minal temperature control model based on big data learning

was established to realize accurate control of the smelting

process and terminal temperature of the BOF.

2 Production conditions

Jianlong Steel has a 120 t BOF, mainly producing Q195

and Q195C steels. In terms of classification, Q195 and

Q195C steels belong to plain carbon steel with the same

production process and little difference in terminal control

objectives. The research object of the model in this paper is

only Q195 and Q195C steels in normal smelting process,

and the smelting condition under abnormal initial condi-

tions is not discussed in this paper. The BOF is equipped

with 4 high preheating silos. The main preheating raw

materials include lime, limestone, dolomite and ore. The

preheating temperature can reach 100–500 �C. In addition,

the furnace mouth is equipped with high-resolution and

high-brightness camera, through monitoring the light

intensity of the furnace mouth to determine whether

splashing occurs in the smelting process. At the end of

smelting, the platinum–rhodium temperature probe was

inserted into the melting pool of the converter by manually

throwing to measure the temperature, some samples of

molten steel were taken out, and the composition of molten

steel was analysed quickly by the spectrometer.

3 System architecture

The structure of the online BOF terminal temperature

control system is shown in Fig. 1. When smelting begins,

the initial data are collected and transmitted to the CBR

model. The case retrieval module transfers the case sam-

ples to the case adjustment module and expert system by

matching and screening the case database data. The cal-

culation results of expert system and case adjustment

module are transmitted to object linking and embedding

(OLE) for process control (OPC) platform at the same time.
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The OPC platform controls the smelting equipment system

with programmable logic controller (PLC). Due to the

weighing deviation in the high bin of BOF, a feeding error

model is developed to improve the weighing accuracy.

After smelting, the production data enter the production

database, and after cleaning and evaluation, it is selectively

enters the case database to become new learning samples.

4 Establishment of terminal temperature
model of online BOF

The online BOF terminal temperature control system

mainly includes CBR model and expert system model.

Among them, the CBR model is responsible for calculating

the amount of raw material added under the current initial

conditions. The expert system model is responsible for

formulating the execution of the action flow of the oxygen

lance and the feeding equipment.

4.1 Establishment of CBR model

CBR model can be regarded as a cycle of three steps: case

retrieval, case adjustment and case learning. Among them,

case retrieval is to screen out historical samples with

attributes close to the current initial condition by formu-

lating rules, and the effectiveness of case description in the

case base is the fundamental guarantee for the success of

the CBR model. Case adjustment can be divided into two

situations. First, there is no difference in the type of attri-

butes of the solution between the current case and the

historical case, like the change of raw material type. In this

case, mechanism model analysis or data regression pre-

diction can be used to modify the solution. Second, there is

a difference in the type of attributes between the current

case and the historical case. In this case, the regression

algorithm based on historical data will lose its function,

and the solution can only be modified by means of

mechanism model analysis. Case learning refers to the

evaluation and learning of the solution satisfactory to the

user and saving it in the case base. First of all, the case base

is established.

4.1.1 Establishment of preferred case base based
on historical big data

The case base is the starting point of CBR model operation.

Before the formal operation of CBR model, the case base

should be filled first. The database of common models can

be divided into control model database and prediction

model database. The case database of control model and

prediction model has essential differences. In addition to

cleaning the missing, discrete and other problem data of the

initial data, the control case database also needs to make a

judgement according to the production fluctuations moni-

tored in the production process and the treatment of the

end-point. Because case retrieval requires similar attri-

butes, and the production process expects the end result to

be superior, it requires that the case base of the control

class model only stores the preferred sample. The samples

with poor end-point control effect will not only occupy the

retrieval resources, but also hardly be used by the retrieval.

Three thousand production data were selected for opti-

mization processing, and the results were put into the case

database. The main rules of data screening are as follows:

(1) The optimal data must be complete in content, and

accurate in value, and the value is a variable.

(2) In addition to the terminal composition and temper-

ature meeting the process requirements, the optimal

data should also meet the requirements of

stable smelting process, no ‘‘flying lance’’ and

serious splashing accident, no reblowing phe-

nomenon, so as to ensure the safety of smelting.

(3) The technical index of the optimal data is better, the

single consumption of molten iron is lower and the

control interval of the terminal composition and

temperature is narrower.

On the basis of satisfying the steel production process

and data integrity, the process is screened, and the optimal

data 420 groups are obtained. As the production process

progresses, the case database will automatically filter the

production data, and the preferred data that meet the

requirements will be put into the case database to increase

the number of preferred data.

Since the model in this paper is an online operation

model, excessive feature items will affect the running

speed of the model. In order to cooperate with the pro-

duction process, it is necessary to reduce the number of

feature items. Feature item screening is mainly divided by

the influence of feature item on the solution through the

Fig. 1 Online BOF terminal temperature control system
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way of weight judgement. In essence, case analysis model

is to analyse and calculate different cases with similar

initial conditions. When the characteristic items of initial

conditions fluctuate little between different cases, their

influence on the solution will be very small. This makes it

possible that feature items that are particularly important in

mechanism calculations may not be important in case

studies. For example, the content of Mn, P and S elements

in hot metal and molten steel changes very little, and their

influence on the change of terminal temperature is very

weak.

The distribution of some feature items before and after

screening is shown in Table 1.

4.1.2 Case retrieval

Case retrieval needs to quickly search for case samples

with similar characteristics according to the initial condi-

tions. The main feature items include hot metal composi-

tion, hot metal temperature, loading system and target

molten steel temperature. Traditional case retrieval

requires full-feature calculation and arrangement of all

cases and current instances. When there are a large number

of case base samples, this method requires a large amount

of computing resources and cannot guarantee the retrieval

speed. Based on the actual situation on site, this paper

designs a retrieval method of step size indentation, as

shown in Fig. 2. By comparing characteristic deviation

values, this method gradually improves the case similarity,

removes invalid samples and finally obtains the target

samples.

4.1.3 Case adjustment

After obtaining the preferred sample through case retrieval,

it is necessary to modify and adjust the case according to

the current situation. The adjustment content includes the

amount and type of auxiliary materials added. The CBR

model uses the existing experience to model, so that the

mechanism model only needs to calculate the adjustment of

the case solution when the main features change. Because

the preferred sample is similar to the current condition

characteristic value, the calculation result changes from the

traditional mechanism model to the calculation of the

overall addition of characteristic value to the difference of

the addition of characteristic value, reducing the calcula-

tion range of the mechanism model and narrowing the

result deviation of the mechanism model.

The purpose of the incremental calculation model of

auxiliary materials is to meet the requirements of slagging

and dephosphorization in the smelting process under the

current initial conditions, and to calculate the amount of

each auxiliary material. Because the case database data are

similar to the characteristic value of the current furnace, the

overall change of the amount of material added is small,

and the quality of the BOF slag generated by default is the

same. Based on the material balance, the heat increment

model aims to reach the pre-set steel temperature by cal-

culating the mass of iron-containing cold material or

adjusting the amount and type of auxiliary materials. The

main calculation formula [37] is shown in Table 2, the

formula marked with * is derived by authors and the cor-

responding parameters are shown in summary table of

symbols. Due to the reduction of the computational mag-

nitude in the mechanism calculation process by the case

analysis model, the calculation result is transformed from

the overall addition calculation of eigenvalues by the tra-

ditional mechanism model to the difference addition cal-

culation of eigenvalues, which makes the deviation

calculation result of the mechanism model and the actual

situation decrease simultaneously, and reduces the adverse

influence of the calculation accuracy of the formula on the

Table 1 Case retrieval feature items

Characteristic

item

Carbon content of hot

metal/%

Silicon content of hot

metal/%

Hot metal

temperature/�C
Molten steel

temperature/�C
Mass of hot

metal/t

Mass of scrap

steel/t

Pre-screening 3.0–7.3 0.2–1.8 1150–1450 1560–1680 70–95 10–25

Post-screening 3.7–5.7 0.2–0.75 1240–1410 1620–1670 84–96 6–18

Fig. 2 Case retrieval rule
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results. Through the actual production process verification,

the calculation accuracy meets the field requirements.

4.2 Establishment of expert system model

The control process of oxygen lance and charging affects

the temperature of molten pool and the reaction rate of

decarbonization in the smelting process, thus affecting the

smooth progress of the production process and the control

effect of the terminal temperature. Jianlong Steel adopts

dry dust removal. Within 5 min of oxygen blowing, the

system automatically monitors the concentration of CO and

O2 at the dust removal fan. When both concentrations reach

5% at the same time, an alarm will be triggered, resulting

in ‘‘flying lance’’. The high occurrence period of ‘‘flying

lance’’ accidents occurred during smelting 200–400 s.

Splashing mainly occurs when smelting 200–400 s and

600–900 s. Under the shooting of the high-definition and

high-brightness camera, it can be seen that the furnace

mouth brightness caused by splashing or slag splashing

rapidly increases to form two more concentrated peaks.

The historical data of artificial smelting in 113 groups were

randomly selected for analysis, and it was found that the

rate of ‘‘flying lance’’ was as high as 39.2%, the splashing

rate in the early stage was 21.4% and the splashing rate in

the later stage was 81.25%.

4.2.1 Oxygen lance expert system model

In order to solve the problem of ‘‘flying lance’’ and

splashing caused by artificial smelting, this paper mainly

formulates the standard of oxygen lance action by ‘‘ignition

period’’, ‘‘slagging period’’ and ‘‘carbon drawing period’’.

(1) ‘‘Ignition period’’

The ignition process of BOF is not smooth, and the

insufficient combustion of carbon elements in hot metal

produces a large number of carbon monoxide and unburned

oxygen into the dust removal fan, which is an important

cause of the ‘‘flying lance’’ problem. In view of this phe-

nomenon, the height of the oxygen lance is gradually

reduced in the early stage of blowing, and the oxygen flow

rate is gradually increased. The oxygen supply intensity is

10,000 m3/h, the oxygen lance height is 2.3 m and blowing

time is 20 s. The concentration of CO and O2 is monitored

at the dust removal fan. If CO concentration is greater than

3.5% and O2 concentration is greater than 5%, oxygen flow

rate decreases 4000 m3/h and the lance position remains

unchanged. Otherwise, oxygen supply intensity rises to

14,000 m3/h, lance level drops to 2.1 m, after blowing for

15 s; oxygen supply intensity rises to 16,000 m3/h, lance

level drops to 1.9 m, with blowing time of 30 s. Keep

monitoring CO and O2 concentration until O2 concentra-

tion\ 5%, ignition is successful, lance position gradually

drops to basic lance position 1.5 m and oxygen flow

gradually rises to 21,000 m3/h.

(2) ‘‘Slagging period’’

Smelting 90–240 s in slagging stage, the first batch of

auxiliary materials forms alkaline slag with good fluidity,

and the reaction stage of silicon manganese begins. At this

point, the lance position is maintained at 1.5 m, and the

flow rate is maintained at 21,000 m3/h, the sampling results

of the furnace mouth high-clearance and high-brightness

camera are analysed continuously, if the furnace mouth

light intensity exceeds 300 cd and lasts for more than 20 s,

Table 2 Case adjustment of main calculation formula

Calculation content Equation Serial number

Limestone difference Lss ¼ 2:14� R� LSi=fssCaO (1)

Adjusted alkalinity value of limestone bLss ¼ 2:14� m� R� f Si � mFe � R� fSi � 1000=fssCaO (2*)

Dolomite adjustment value bLsb ¼ msb � ZMgO � ZMgO

� �

=ZMgO
(3*)

Physical heat of hot metal QFe ¼ ptQFe
� mFe � Csl Tr � T0ð Þ þ Clh þ Clq � Ttrue � Trð Þ

� �

(4*)

Hot metal carbon oxidation heat QC ¼ ptC � mFe � fC � ðnCO � QCO þ nCO2
� QCO2

Þ (5)

Hot metal silicon oxidation heat QSi ¼ ptSi � mFe � fSi � QSiO2
(6)

Scrap steel absorbs heat Qst ¼ mst � pti � Csl0 � Tr0 � T0ð Þ þ Clh0 þ Clq0 � Tend � Tr0ð Þ
� �

(7*)

Heat absorption of auxiliary materials Qfl ¼ Qi � mi (8)

Preheating heat of auxiliary materials Qyr ¼ Cj � mj � Tyr � T0
� �

(9)

Added mass of ore mk ¼ Qsy=QK (10)

Limestone adjustment amount mss dl ¼ Qsy= Qsh � fssCaO=fshCaO � Qssð Þ (11*)

Lime adjustment amount msh ¼ �mss dl � fssCaO=fshCaO (12*)
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the system determines that slag overflow or splashing

occurs in the furnace, the lance height is adjusted to rise by

10 cm and the flow rate is reduced by 2000 m3/h for 30 s.

Smelting 240–360 s in the carbon–oxygen reaction stage,

when CO concentration is greater than 20%, a large

amount of CO and CO2 gas may break through the slag

layer and carry part of the slag to high altitudes causing

splashing. During this period, the oxygen flow rate was

reduced to 19,000 m3/h, which eased the severity of the

carbon–oxygen reaction.

(3) ‘‘Carbon drawing period’’

After 780-s smelting, the carbon pulling stage was

entered, and the CO concentration was less than 20%. The

lance position is lowered to 1.3 m, and the flow rate is

raised to 22,000 m3/h for carbon drawing operation.

4.2.2 Feeding expert system model

The feeding expert system includes two parts: adding

slagging materials and adding cold materials. The addition

of slagging materials should ensure the effect of slagging

and dephosphorization in the early stage, and arrange the

addition number of auxiliary materials in each batch

according to the furnace condition process. The addition of

cold material should reduce the probability of splashing

and ensure the stability of furnace condition.

(1) Adding slagging materials

The first batch of slagging materials is dolomite and

limestone. In order to ensure the early-stage alkalinity and

rapid slag-making requirements, the proportion of the first

batch of auxiliary materials is required to account for 2/3 of

the total added amount, and the added time is smelting for

90 s. The second batch of slagging materials will have an

impact on the surface of the molten pool after being put

into the BOF. If the mass of slagging materials is greater

than 2 t for a single time, the auxiliary materials will throw

the slag with low viscosity to the furnace mouth, resulting

in slag overflow or splashing. In order to prevent this kind

of situation, the second batch of auxiliary materials is

added twice, each time accounting for 1/6 of the total

amount and feeding time is smelting for 240 s.

(2) Adding cold materials

In the later stage of smelting, it is necessary to add iron-

bearing cold material to adjust the temperature according to

the heat condition of hot metal and the requirement of

molten steel temperature. The single addition amount of

cold material is less than 250 kg. The feeding time is 560 s

for smelting, and the interval time is 50 s to prevent

splashing caused by a large amount of FeO accumulated in

the molten pool.

4.3 Establishment of feeding error model

Jianlong Steel uses vibration feeder to weigh auxiliary

materials. The weighing speed and accuracy are affected

by the frequency and time of aftershocks, so that it is

difficult to give consideration to the weighing precision

when the weighing speed is guaranteed. In order to prevent

the total amount of various materials from exceeding the

design value due to the accumulative error of a single

weighing, the feeding error model is developed. The

feeding error model monitors the written value of the

material name before and after discharging in each silo,

calculates and saves the difference between the actual

discharging quantity and the designed discharging quantity

and makes up the difference in the next stocking of the

material in the silo; the calculated addition difference value

is added with the next addition value of the auxiliary

material. Because the weighing accuracy of the material

scale is more than 150 kg, when the newly calculated

number of auxiliary materials added is less than 150 kg, no

action is performed.

5 Model implementation

This system uses Python to programme the charging and

oxygen lance control system. OPC platform is used to

control PLC equipment. Using SQL Server to design the

underlying database, the OPC control platform integrates

the control switch of blowing mode and feeding mode.

During the production control process, the model can dis-

play information such as the position of oxygen gun and

oxygen flow rate, which can help the model run smoothly.

6 Verification of running results of online
temperature model

Through online BOF terminal temperature control model

operation, 110 groups of production data were obtained for

analysis, and carbon and phosphorus content of molten

steel and steel temperature were obtained for verification.

Among them, Q195 and Q195C steels require the terminal

temperature to be 1630–1670 �C, carbon content of molten

steel of 0.04%–0.10% and phosphorus content of molten

steel\ 0.04%. The pre-set terminal temperature of the

process, that is, the target control temperature of the model,

is 1650 �C.
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6.1 Result verification of components

The composition of molten steel is shown in Fig. 3. As

shown from Fig. 3a, in the experimental results, the max-

imum carbon mass fraction of steel is 0.09%, the minimum

is 0.05% and the average is 0.063%. As shown from

Fig. 3b, in the experimental results, the maximum phos-

phorus mass fraction of steel is 0.04%, the minimum is

0.005%, the average is 0.022% and the average dephos-

phorization rate is 78.94%, meeting the process conditions.

6.2 Results of temperature verification

The molten steel temperature is shown in Fig. 4, in which

the pre-set terminal temperature of CBR model is 1650 �C.
As shown from Fig. 4, the highest, lowest and average

molten steel temperature are 1669, 1630 and 1648 �C. The
hit rate is 62.73%, 90.91% and 100% when the molten steel

temperature fluctuation range is ± 10, ± 15 and ± 20 �C.

6.3 Validation of expert system control effect

Through the improvement of the oxygen lance operating

system and charging system by the expert system, the

smelting process is more stable, and some production

parameters of BOF smelting are shown in Fig. 5.

By comparing Fig. 5a and d and Fig. 5b and e, it can be

seen that the overall control effect of the oxygen lance

basically reaches the design goal of the oxygen lance

expert system, and the ‘‘flying lance’’ accident caused by

the unsmooth ignition process is eliminated during the

smelting period of 200–400 s. By comparing Fig. 5c and f,

it can be seen that the peak of light intensity between 200

and 400 s during smelting shrinks significantly, the

splashing rate in the early smelting stage drops to 13.3%,

the peak of light intensity between 600 and 800 s during

smelting shrinks and decreases overall and the splashing

rate in the late smelting stage drops to 56.7%.

7 Analysis and discussion

Under the conditions of BOF production, many factors,

such as temperature and composition fluctuation of hot

metal, unknown amount and temperature of hot metal slag,

variation of cooling capacity of scrap steel and uneven

preheating of auxiliary materials, will have a certain impact

on the accuracy of the model. The main impact analysis is

as follows:

(1) Composition and temperature fluctuation of hot

metal

The influence of the temperature fluctuation, carbon con-

tent and silicon content on the heat of hot metal can be

obtained by using Table 2, Eqs. (4), (5) and (6), respec-

tively. The calculation formula of the affected heat of hot

metal on the change of terminal temperature DT is shown

in Eq. (13).

T ¼ Qdv=½ðmFe þ mstÞ � Clq0 � ptst þ msl � CslÞ ð13Þ

where T is temperature change of molten steel, K; Qdv is

caloric deviation value, J; ptst is the yield of molten steel,

%; and msl is quality of slag, kg.

Figure 6a shows the influence of hot metal component

deviation on the terminal temperature. When the temper-

ature of hot metal changes by 10 �C, the terminal tem-

perature fluctuation of the model is 6.94 �C, and the

maximum fluctuation at the theoretical is 9.2 �C. When the

carbon component deviation of hot metal is 0.1%, the

terminal temperature fluctuation of model is 12.3 �C, and
the maximum temperature fluctuation of theoretical is

15.3 �C. When the deviation of silicon composition in hot

Fig. 3 Results of molten steel composition. a Test carbon mass fraction of molten steel; b dephosphorization effect of molten steel
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metal is 0.05%, the terminal temperature fluctuation of the

model is 12.86 �C, and the maximum temperature fluctu-

ation at the theoretical is 16 �C. Because the deviation of

hot metal silicon composition is more frequent in actual

production, the deviation of hot metal silicon content has

the greatest influence on the terminal temperature.

(2) Effect of slag quantity and temperature on blast

furnace

The blast furnace slag enters the BOF along with the hot

metal in the process of mixing iron. Part of hot metal heat

is absorbed in the process of transforming blast furnace

slag into BOF slag. The heat absorbed by blast furnace slag

Qgsl can be obtained by Eq. (14).

Qgsl ¼ mgls � Cgsl � Tsl � Tgsl
� �

ð14Þ

where mgls is the mass of blast furnace slag, kg; Cgsl is heat

capacity of blast furnace slag, J/K; Tsl is temperature of the

BOF slag, K; and Tgsl is the temperature of blast furnace

slag, K.

By substituting the result of Eq. (14) into Eq. (13), the

influence of blast furnace slag with different masses and

temperatures on the final temperature can be obtained, as

shown in Fig. 6b. It can be seen that the higher the mass of

blast furnace slag, the lower the temperature and the higher

the impact on the terminal temperature. When the mass of

blast furnace slag is 3 t and the temperature is 1100 �C, the
influence is the highest, which is 24.85 �C. When the mass

Fig. 4 Temperature control results of molten steel. a Temperature distribution of molten steel; b hit ratio of molten steel temperature

Fig. 5 BOF smelting process parameters. a Position of artificial smelting oxygen lance; b oxygen flow in artificial smelting; c artificial smelting

light intensity; d position of system smelting oxygen lance; e oxygen flow in system smelting; f system smelting light intensity
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of blast furnace slag is 0.5 t and the temperature is

1200 �C, the influence is the lowest, which is 3.31 �C.
However, in actual production, the slag carried by the iron

ladle is usually only estimated by 3%–5%, which will

affect the calculation accuracy of the model temperature.

(3) Scrap steel has not been classified and its composi-

tion is tested

Currently, iron and steel enterprises lack the capacity to

classify and test scrap. Different types of scrap have dif-

ferent cooling capabilities. The calculation method of

febrile element is the same as the influence method of the

deviation of carbon and silicon in hot metal on the terminal

temperature. The calculation process of heat absorption of

scrap steel caused by different cooling capacity is shown in

Eq. (7) (Table 2). By substituting the result of Eq. (7) with

Eq. (13), the influence of scrap temperature dropping

ability change on the terminal temperature can be obtained,

as shown in Fig. 6a. When scrap cooling ability changes by

10%, the terminal temperature fluctuation of the model is

16.21 �C, and the maximum temperature fluctuation at the

theoretical is 17 �C.

(4) Auxiliary materials are not preheated evenly

Jianlong Steel adopts hot blast furnace burning gas as heat

source and transmits high temperature of 500–800 �C gas

to the high silo at the top of the BOF to preheat the aux-

iliary materials into the furnace. Because the preheating

temperature of auxiliary materials is not evenly distributed

in the silo, the detected preheating temperature of the silo

cannot reflect the whole preheating condition of the aux-

iliary materials. The influence of the preheating condition

of auxiliary materials on the terminal temperature is shown

in Fig. 7.

As shown from Fig. 7, if the deviation between the

average preheating temperature and the detected preheating

temperature increases by 100 �C, when the preheating

mass of limestone is 6 t, the influence of terminal tem-

perature can reach 3.78 �C. When the preheating mass of

dolomite is 3 t, the influence of terminal temperature can

reach 3.18 �C. When the preheating weight of lime is 3 t,

the influence of terminal temperature can reach 1.56 �C.
When the preheating mass of return ore is 2.5 t, the

influence of terminal temperature can reach 4.75 �C. As the
main auxiliary material in smelting process, limestone is

used the most, and its preheating temperature test deviation

has the greatest influence on the terminal temperature.

(5) Influence of other factors

Other factors that may lead to excessive drop in the tem-

perature of the BOF lining, such as the shutdown of the

BOF for maintenance and the delay of production due to

the delay of production scheduling, cannot be measured

quantitatively at present, but these factors will affect the

molten steel temperature in the BOF and affect the accu-

racy of the temperature model.

8 Conclusions

1. This paper develops an online BOF terminal temper-

ature control model based on big data learning CBR

model and expert system model. By using the expert

system to control the BOF smelting, the ‘‘flying lance

rate’’ is reduced from 39.2% to 0, the early splashing

rate is reduced from 21.4% to 13.3% and the late

splashing rate is reduced from 81.25% to 56.7%. The

smelting process controlled by model automation is

Fig. 6 Analysis diagram of influencing factors of terminal temperature. a Effect of hot metal and scrap on terminal temperature; b effect of blast

furnace slag on terminal temperature
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more stable than that of artificial smelting process, and

the safety of smelting is also improved.

2. The pre-set terminal temperature of CBR model is

1650 �C. The maximum and minimum molten steel

temperature is 1669 and 1630 �C, respectively, and the

average molten steel temperature is 1648 �C. The hit

rate is 62.73%, 90.91% and 100% when the molten

steel temperature fluctuation range is ± 10, ± 15 and

± 20 �C, respectively.
3. The average carbon fraction and phosphorus fraction

of molten steel in the model smelting furnace are

0.063% and 0.022%, respectively, and the average

dephosphorization rate is 78.94%, which meet the

actual process requirements.

4. The carbon, silicon and temperature deviation of hot

metal have direct influence on the terminal tempera-

ture, and the silicon content deviation has the greatest

influence under the same conditions. When the devi-

ation of silicon composition in hot metal is 0.05%, the

terminal temperature fluctuation of the model is

12.86 �C, and the maximum temperature fluctuation

at the theoretical is 16 �C. The difference between the

actual preheating temperature of auxiliary materials

and the detected preheating temperature will affect the

terminal temperature. The influence of limestone is the

most obvious. When the temperature difference is

increased by 100 �C and the amount of limestone is 6 t,

the influence on the terminal temperature can reach

3.78 �C.
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