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Abstract
The system of hot metal quality monitoring was established based on big data and machine learning using the real-time

production data of a steel enterprise in China. A working method that combines big data technology with process theory

was proposed for the characteristics of blast furnace production data. After the data have been comprehensively processed,

the independent variables that affect the target parameters are selected by using the method of multivariate feature

selection. The use of this method not only ensures the interpretability of the input variables, but also improves the accuracy

of the machine learning process and is more easily accepted by enterprises. For timely guidance on production, specific

evaluation rules are established for the key quality that affects the quality of hot metal on the basis of completed predictions

work and uses computer technology to build a quality monitoring system for hot metal. The online results show that the hot

metal quality monitoring system established by relying on big data and machine learning operates stably on site, and has

good guiding significance for production.
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1 Introduction

The integration of Germany’s ‘‘Industry 4.0’’ and ‘‘Made in

China 2025’’ brings a historical opportunity for China’s

traditional industry to transform to intelligentization and

informatization [1]. At the same time, severe climate

change forces countries around the world to launch low-

carbon economic plans to cope with the industrial devel-

opment trend of the new era. Worldwide, the steel industry

is beginning to transform. For example, the intelligentiza-

tion levels of BAOWU, BRS, Posco, etc., are in the leading

position in the steel industry [2–5]. Relatively, the intelli-

gent development of Chinese iron and steel enterprises is

relatively slow, and it has gradually become the industry

with the largest carbon emission among the 31 manufac-

turing categories [6]. In this context, the transformation of

China’s blast furnace (BF) smelting process to intelligen-

tization has become an irreversible trend.

The quality of hot metal in BF is an important basis for

achieving the goal of ‘‘high yield, high quality and low

consumption’’. However, BF ironmaking is a very complex

process. Although sensors can collect a lot of production

data, the data have the characteristics of nonlinearity, time

delay and strong coupling because of the wide range of

data sources and the complex relationship between data [7].

These reasons indirectly lead to the slow development of

intelligent ironmaking technology in BF. With the advent

of the era of Industry 4.0, many researchers have begun to

explore how to use computer technology and big data

technology to predict key indicators, which affect the

quality of hot metal. They want to improve the quality of

hot metal by accurately predicting the change trend of

relevant indicators.

From the current research status, the research content of

most scholars is mainly to predict a key index. Martin et al.
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[8] used the thermal simulation prediction model based on

fuzzy tool to predict the hot metal temperature (HMT) of

BF. In order to improve the prediction accuracy of HMT,

Zhao et al. [9] used the least square vector machine based

on chaotic particle swarm optimization as the HMT pre-

diction model, and got a good prediction effect. Diaz et al.

[10] improved the multivariate adaptive regression spline

model to predict the HMT of BF. It is proved that the

average absolute error is kept within 11.2 �C by testing and

verifying the production data of the steel plant for one year.

Using the dynamic relationship method between input

process variables and output variables based on attentional

mechanism module, Jiang et al. [11] proposed a dynamic

attentional deep migration network and realized the online

prediction of silicon content in hot metal. Wang et al. [12]

used the dynamic neural network based on principal

component analysis to predict the silicon content of hot

metal. The experimental results show that the prediction

accuracy of the model reaches 89.12%. Diniz et al. [13]

used a nonlinear autoregressive network to implement an

8-h prediction model for hot metal and silicon content with

an acceptable error range. Of course, the comprehensive

evaluation of hot metal quality is not without research. And

other reference uses different modeling methods to achieve

multi-angle prediction of hot metal quality [14–16].

Although many scholars have done a lot of research

work in predicting the quality of hot metal in BF, there are

still some areas that can be improved. (1) Accurate data

connection. There is serious time lag in the process of BF

production [17]. It may be wrong to use the current hot

metal quality index to correspond to the current operating

parameters, because a certain reaction process is required

for the iron-containing raw material to be transformed into

hot metal. Therefore, the data processing should be delayed

according to the actual production level of the enterprise.

(2) Feature selection diversity. In the modeling stage, the

method of selecting characteristic variables by traditional

correlation analysis is not necessarily explicable from the

perspective of manufacturing process and may omit some

important parameters that remain unchanged for a long

time [18]. In order to build an industrial machine learning

model suitable for enterprise production, big data tech-

nology and process theory methods should be fully inte-

grated in the feature engineering stage. This method can

not only avoid missing the operation index which is of

special concern to the production site, but also improve the

interpretability of input variables and model accuracy. (3)

Comprehensive prediction indicators. The quality of hot

metal is a comprehensive index affected by many factors

[19]. The traditional unitary prediction can only explain

part of the situation and cannot reflect the complex situa-

tion of hot metal quality and BF production. Therefore, it is

more persuasive and credible to be able to simultaneously

predict the indicators that enterprises are concerned about.

(4) Industrialization of research results. The lack of a

complete system and field application is the biggest flaw at

present. Researchers should apply the model to the actual

production after the completion of the research [20]. As

can be concluded from the above, on the one hand, opin-

ions (1) and (2) provide a new method of data processing

and analysis for iron quality prediction studies, which is the

basis for improving the accuracy of prediction. On the

other hand, opinions (3) and (4) meet the needs of the staff

and are of great significance in guiding production in a

timely manner.

Aiming at the deficiencies in the current research pro-

cess of hot metal quality, this paper establishes a hot metal

quality monitoring system based on big data and machine

learning. The main distribution of the article is as follows.

2 Data collection and processing

In order to ensure the accuracy of the model, the data used

in this study are the historical production data of a steel

enterprise in China (This iron and steel enterprise mainly

smelts vanadium and titanium ore. Therefore, the evalua-

tion indicators of hot metal quality are HMT, the silicon

and titanium content ([Si ? Ti]) and the sulfur content

([S])). For a long time in the past, the BF ironmaking

process has accumulated massive production data. Because

these data have the characteristics of different storage

locations and complex data structure, it is necessary to sort

out these data before the research begins.

2.1 Data sources

The data used in the study were all from the factory

database files. As shown in Fig. 1, all data of BF iron-

making process are stored in Oracle 10.2, SQL Server 2008

and Wonderware Historian 2014 databases. Data records

and storage frequencies of each database are different.

Wonderware Historian database stores real-time monitor-

ing data of BF production equipment; SQL Server database

stores the operation state parameters generated in the BF

ironmaking process; Oracle database stores the perfor-

mance of raw materials and test results of BF products.

Historical production data from February to August in 2021

were selected from the three databases mentioned above

for the study. There are 544 types data and nearly three

million data items.

2.2 Data pre-processing

As we all know, the quality of data directly affects the

prediction ability and generalization performance of the
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model. Therefore, data pre-processing is particularly

important as the first step in the whole data processing

process. It mainly aims at data integrity, credibility, timing

and standardization. After full analysis and processing,

standard, clean and continuous data are obtained to lay a

solid foundation for subsequent work. The production

parameters need to be delayed by one production cycle to

correspond to the predicted target before data processing,

because the process of turning the raw material into hot

metal is one production cycle (8 h).

2.2.1 Data integrity processing

Integrity processing is mainly to fill the missing values of

data, but the filling method depends on the situation. First

of all, the data missing rate of each parameter needs to be

counted. We will delete the fields whose data missing rate

is greater than 50%, and then analyze and process the

missing types of the remaining parameters one by one. The

analysis shows that there are two reasons for missing data

in the remaining parameters: BF condition maintenance

and equipment failure. Furnace condition overhaul will

cause large area data loss. Even filling in these data would

lose authenticity, so that we are going to delete them. Data

loss caused by device failure mainly includes timing loss

and correlation loss. Temporal absence can be divided into

short-term absence and long-term absence. If the missing

value type is short-time missing, it can be filled with the

previous value or linear interpolation method. However,

the data missing for a long time needs to be analyzed in

detail according to big data technology and process theory,

and then filled with simple models or theoretical formulas.

Some data that cannot be populated out of the dataset

should be temporarily moved rather than be deleted. If we

need these data to support the model, we can analyze them.

Data integrity processing is shown in Fig. 2.

2.2.2 Data credibility processing

There are many factors that affect the data to maintain high

or low fluctuation in a certain period of time, e.g., pro-

duction environment fluctuation, emergency operation

regulation, sampling anomaly, etc. For example, the num-

ber of batches of material, blast volume, hot air pressure

and other related parameters will be successively reduced
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before the rest maintenance. An emergency reduction in

blast volume can cause data to suddenly drop and then rise

again. In these cases, traditional boxplot processing will

exclude these data as outliers, resulting in the loss of valuable

data. Therefore, we combine the production level of the

enterprise and the process theory to deal with the outliers.

The method of global check first and then local check of

process theory is used to analyze the abnormal points

screened out by the boxplot. In addition, when encountering

some uncertain situations, it is necessary to deduce the pro-

duction status according to the parameter changes and judge

whether the data belong to the abnormal value.

2.2.3 Data timeline processing

It can be seen from Sect. 2.1 that the data of this factory are

mainly from the three databases mentioned above, but their

sampling frequencies are different. The data frequency in

Wonderware database is second. The data frequency in the

SQL Server database is uncertain. It contains not only some

data from Wonderware and Oracle databases, but also

some manually entered data. The data in the Oracle data-

base are all manually entered, and these data are mainly

laboratory results. Since the purpose of this study is to

predict the hourly frequency variation trend of hot metal

quality, we convert the data from Wonderware and SQL

Server databases into hourly data. Then, the batch number

is used as the standard to match the data in the other two

databases with the data in Oracle.

2.2.4 Data standardization processing

Because of the different properties of each parameter in the

dataset, it usually has different dimensional levels. If the

original data are directly used for analysis, high-value

fields may weaken the contribution of low-value fields.

Therefore, it is necessary to standardize the data with

certain rules and eliminate the limitation of data units. The

Z-Score normalization rule was selected for processing in

the study, and the following changes were made to the data

columns x1; x2; x3; :::; xn so that the new series

y1; y2; y3; :::; yn was scaled to [0, 1] interval. In Eq. (1),

x ¼ 1
n

Pn

i¼1

xi is the overall mean of the data column samples

and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n�1

Pn

i¼1

ðxi � xÞ2
s

is the overall standard deviation

of the data column samples (n is the sample size and xi and

yi is the sample individual value).

yi ¼
xi � x

s
ð1Þ

2.3 Feature engineering

There are still 526 fields of BF ironmaking parameters after

data pretreatment. If all these parameters are modeled as

input variables, not only dimension disaster but also diffi-

cult learning and high time complexity problems will

occur. Therefore, data must go through feature extraction

before further work. In this study, feature extraction is

divided into two steps: data reduction and feature selection.

In order to reduce the workload of feature selection stage,

data dimension reduction stage adopts filtering, principal

component analysis (PCA) and pearson correlation coeffi-

cient (PCC) to achieve data dimension reduction after pre-

processing. In the feature selection stage, we will use

important ranking and Granger causality test to analyze the

relationship between parameters after dimensionality

reduction and target parameters. Finally, the combined

process theory is used to supplement.

2.3.1 Data dimension reduction

Process parameters can be divided into three types: raw

fuel parameters, BF status parameters and laboratory

results parameters. According to the field production

experience, the following parameters are showed: one part

is a small part of the key data of raw fuel parameters and

inspection results, and the other part is all the data of BF

status parameters. They are added to the data dimension

reduction table. The data dimension reduction work in this

paper applies the following three methods (Table 1).

2.3.1.1 Filter Filter is simple and convenient. It can

remove parameters with variance variation of less than 0.1

by calibration threshold. Although filter conditions are too

extreme, it can remove some parameters that remain

unchanged for a long time. For example, according to the

process theory, it can be known that the basicity and other

parameters of sinter in the furnace will affect the temper-

ature of hot iron. However, in the actual production of a

factory, these parameters do not change much, just fluc-

tuating within a small range. Therefore, it is feasible to use

Table 1 Hierarchical data dimension reduction methods

Step Name Purpose

Step 1 Filter Remove parameter fields with variances

less than 0.1

Step 2 PCA Integrate parameters of same type and

realize data derivation

Step 3 PCC Remove parameters with low correlation

with target parameters
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the filter as a preliminary dimension reduction method for

data.

2.3.1.2 PCA PCA is mainly to recombine a large number

of the same type data with a certain correlation. The raw

data are replaced with a derived set of unrelated composite

indicators. The main steps are as follows:

(1) The original data of m rows and n columns that need

dimensionality reduction are transformed into n rows

and m columns matrix X;

(2) Zero mean is performed on each row of matrix X and

each row represents an attribute;

(3) Calculate covariance matrix, eigenvalue and

eigenvector;

(4) The eigenvectors are arranged into a matrix accord-

ing to the corresponding eigenvalues in rows from

top to bottom, and then, the first K rows are taken to

form a matrix P;

(5) The dimension reduction matrix is Y = PX.

In this paper, PCA is used to reduce the dimension of

parameters of the same type on the premise that the

information value is more than 90%. Specific dimension

reduction targets and derived parameters are shown in

Table 2.

2.3.1.3 PCC This method measures the degree of corre-

lation between two parameter variables X and Y. Therefore,

Pearson correlation coefficient was used in this paper to

remove the data with low correlation. The correlation

coefficient R ranges from –1 to 1. The closer the R ap-

proaches 1, the higher the positive correlation. The closer

to –1, the higher the negative correlation. At this stage,

|R|[ 0.5 parameters were selected.

2.3.2 Feature selection

Feature selection stage is a key task of data processing.

Although there are many feature selection methods based

on the level of relevance as a judgment criterion, such

methods are not necessarily interpretable in industry.

Therefore, the method of multivariate feature selection is

proposed in this paper. Firstly, recursive feature elimina-

tion with support vector machines (SVM-RFE) model is

used to establish the importance ranking of the target

parameters. Then, Granger causality test is used to verify

the causal relationship between parametric covariable and

dependent variable. Finally, the feature selection results are

analyzed with process theory.

2.3.2.1 SVM-RFE SVM-RFE was proposed by Guyon

[21]. It generates feature rankings by using coefficient

vectors. The algorithm process is as follows.

SVM-RFE algorithm

1. Initialize the original feature set S = {1, 2, ..., D} and

feature sorting set R = [];

2. The new training sample Xj is obtained by pairing

l (l - 1) / 2 training sample with different categories (l is

the number of samples).

3. The following process is repeated until S = [] :

(a) l training subsamples Xj (j = 1, 2, ..., l(l - 1) / 2)

were obtained;

(b) Xj was used to train SVM and coefficient vector wj

(j= 1, 2, ..., l) was obtained;

(c) Calculate the sorting criteria score ck ¼
P

j

w2
jk

(k = 1, 2, ..., |S|);

(d) Find the minimum feature of sorting score P =

arg min kck;

(e) Update feature set R = [P, R];

(f) Remove the feature S = S/P.

Table 2 Specific objectives and derived parameters of dimensionality

reduction using PCA

Derivative

parameter

Dimension reduction

target

Explanation

LSJY GL04_LSJY26275

GL04_LSJY32595

Static pressure at 26 and

32 m of BF body

LDWD_D1

LDWD_D2

GL04_LDWD5160

GL04_LDWD5700

GL04_LDWD6200

Temperature of the bottom at

different heights

LGWD_1

LGWD_2

GL04_LGWD7210

GL04_LGWD7700

GL04_LGWD8200

GL04_LGWD8700

GL04_LGWD9200

GL04_LGWD10200

GL04_LGWD11700

Temperature of hearth at

different heights

LQBWD_1

LQBWD_2

LQBWD_3

GL04_LQBWD6200

GL04_LQBWD8110

GL04_LQBWD10135

GL04_LQBWD17187

GL04_LQBWD19507

GL04_LQBWD21704

GL04_LQBWD24145

GL04_LQBWD26275

GL04_LQBWD29835

GL04_LQBWD32595

GL04_LQBWD34800

Temperature of cooling wall

at different heights

Hot metal quality monitoring system based on big data and machine learning 919
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The algorithm removes the features with the lowest

score in each cycle, and then retrains the remaining fea-

tures to obtain a new feature ranking. After continuous

recursion, a feature ordering table can be obtained. The

feature sorting table was used to define several nested

subsets to train SVM, and the optimal feature subset was

obtained by evaluating the advantages and disadvantages

of the subset according to the prediction accuracy. It is

worth noting that the top features are the result of a com-

bination of features. Therefore, SVM-RFE algorithm can

be used to pick out complementary feature combinations.

2.3.2.2 Granger causality test Granger causality test is

defined as follows: in the case of time series, the past

information of variable X and variable Y is used to predict

the future change of variable Y (variable X can help explain

the future change of variable Y), and independent variable

X is considered to be the Granger cause of dependent

variable Y [22]. The characteristics of this test method

determine that it can only be applied to the time series data

model test. BF ironmaking is a continuous and high-

strength process. It has the following characteristics: (1) BF

parameters are nonlinear; (2) each parameter is coupled

and interacts with the result; (3) the production state of BF

is greatly affected by the previous state. The second and

third characteristics just meet the conditions of Granger

causality test. Considering the limitation of the first feature,

we use the multivariate nonlinear Granger causality test for

feature selection [23]. It is worth affirming that although

the conclusion of the Granger causality test is only

‘‘causality’’ in the statistical sense, it does not hinder the

reference value it brings. It is more interpretable if a

parameter is selected by both methods.

This paper explains the whole characteristic selection

process by taking the HMT as an example. After data

dimensionality reduction and feature selection, only 32

parameters remain in the data sample. Although the num-

ber of parameters has been reduced, the number of

parameters is still too large for machine learning, which

easily affects the model learning time and accuracy.

Therefore, we perform importance ranking and Granger

causality test on these parameters. The specific results are

shown in Table 3.

2.3.2.3 Theory of BF process From Table 3, after using

the Granger causality test to test the 32 parameters that

have completed the importance ranking, there are 14

parameters of which the Granger causality test value is

p[ 0.05. However, these parameters that do not meet the

level of significance testing are meaningful in field pro-

duction. Therefore, these parameters need to be discrimi-

nated using BF ironmaking process theory.

Based on the theory of the BF ironmaking process, we

have the following conclusions [24]. The change of LFLL

and RFYL can quickly change the heat system of the hearth

and indirectly affect the change of HMT. LGWD_1 and

LGWD_2 are derived parameters generated by the PCA

dimension reduction of the temperature values in different

directions of the BF hearth. In actual production, the

temperature of hot metal is affected by the heat of the

hearth. MQLYL can have a direct effect on gas distribu-

tion, heat exchange and reduction reaction, which also

causes fluctuations in HMT. The amount of PCML can

change the gas flow distribution in the furnace and the

thermal state distribution in the hearth area. The variation

trend of [Si ? Ti] and the HMT are positively correlated in

a large proportion in the long-term range, and the HMT is

often judged by its content in the field production process.

Through cross-validation, it is known that the model

works best when there are 20 parameters. First, we select

13 parameters among the top 20 parameters in feature

importance, because they not only meet the Granger

causality test criteria but also have a satisfactory impor-

tance ranking. In addition, seven parameters were selected

from the remaining parameters in combination with the

process theory. The specific results are shown in Table 4.

3 Establishment of hot metal quality
prediction model

In the machine learning phase, we utilize the ensemble

learning model to predict the relevant indicators that affect

the quality of hot metal. As we all know, ensemble learning

models are very popular in well-known data analysis

competitions like Kaggle and Driven Data. It mainly

combines the prediction results of multiple weak machine

learning algorithms, using a certain strategy to combine

them and obtaining a satisfactory effect for the researcher

[25].

3.1 Base model selection and stacking

Due to the complicated BF production process, although

we have performed feature screening, the data volume of

the 20 parameters selected in Sect. 2.3.2.3 is also very

large (These 20 parameters contain data values of 10,040),

so that we use multiple base models to make preliminary

predictions on the selected parameters, and use the stacking

learning method [26]. This method can effectively combat

overfitting by adding regular terms and does not require

much adjustment to make it superior. By using the pre-

diction results of the previous stage to perform secondary

prediction, the optimal prediction results are obtained. In

this paper, five base model individual learners [27–31],

920 R. Liu et al.
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random forest (RF), extra trees (ET), AdaBoost, gradient

boosting (GDBT) and SVM, will be selected as the first-

layer learners, and then, the XGBoost algorithm will be

used as the second-layer learners [32]. The XGBoost reg-

ular term can not only prevent overfitting, but also adopt a

parallel optimization algorithm, which greatly improves

the efficiency of the algorithm and provides a basic guar-

antee for the realization of HMT prediction.

Stacking, as a stacking model that relies on the results of

multiple base models, usually outperforms a single strong

model. The main idea is as follows (Fig. 3).

3.2 Analysis of model performance

In order to verify whether the characteristics of the

ensemble model are better than other prediction models,

this paper selects three other types of prediction models for

comparison. Table 5 shows the prediction performance

results of four different models [33–35]: stacking, gray

models (GM), back-propagation network (BP) and long

short-term memory (LSTM). For the above models, the

article evaluates them from three angles: accuracy rate,

root mean square error (RMSE) and modeling time. It is

easy to find by comparison that the predicted hit rate of the

stacking model is about 10% higher than that of other

models. Although the modeling time of the stacking model

is slightly longer than that of other models in terms of time

complexity, considering that it is a stacking model, its

modeling time is acceptable. In summary, from the per-

spective of model prediction and the development of the

hot metal quality prediction and evaluation system, the

stacking model has better performance than other models,

and is worthy of being used as a hot metal quality pre-

diction model.

After verifying the superiority of the model, we take the

test. The results of using the stacking ensemble model to

Table 3 Importance ranking of SVM-RFE features and Granger

causality test results between independent variable parameters and

HMT

Parameter Important

degree

p A/

R

Definition

QLYC 1 0.3015 A BF pressure difference

GFDN 2 0.0231 R Blast momentum

TQXZS 3 0.0256 R Index burden permeability

of BF

LDYL_U 4 0.0482 R Top pressure

MQGLL 5 0.0452 R Gas flow rate

LFYL 6 0.0541 A Pressure of cold air

RFYL 7 0.5581 A Pressure of hot air

LGWD_1 8 0.5549 A 1-temperature of hearth

LQBWD_1 9 0.0259 R 1-temperature of stave

cooler

RFH 10 0.0123 R Thermal load

FZWD 11 0.0356 R Seat temperature

RFWD 12 0.0304 R Temperature of hot air

FYL 13 0.0354 R Oxy-enriched rate

LQSGSLL 14 0.0639 A Cooling book inlet water

flow

LDWD_D1 15 0.4551 A 1-temperature of BF

bottom

PJDW 16 0.0146 R Average top temperature

LGWD_2 17 0.0615 A 2-temperature of hearth

LQBWD_2 18 0.0048 R 2-temperature of stave

cooler

LLRSWD 19 0.0453 R Theoretical combustion

temperature

SJFS 20 0.0284 R Actual wind speed

MQLYL 21 0.0017 R Gas utilization

LQSPSLL 22 0.8792 A Cooling book outlet water

flow

LQBWD_3 23 0.0523 A 3-temperature of stave

cooler

CO_LYL 24 0.2989 A CO utilization

LQSGSWD 25 0.0002 R Cooling water inlet

temperature

LQSPSWD 26 0.0001 R Cooling water outlet

temperature

PCML 27 0 R Injecting coal quantity

LSJY 28 0.6113 A Static pressure of stack

LDWD_D2 29 0.7361 A 2-temperature of BF

bottom

RSLL 30 0.4872 A Soft water flow

PJYC_Z 31 0.2218 A Average pressure

difference in middle

Si ? Ti 32 0.0499 R Content of [Si ? Ti] in

hot metal

During Granger causality test, null hypothesis H0 is set: dependent

variable parameter X has no effect on target outcome variable Y. If
significance test level p[ 0.05, null hypothesis is accepted; other-

wise, null hypothesis is rejected. ‘‘A/R’’ in Table 3 stands for Accept

(A) or Refuse (R)

Table 4 Main characteristic parameters affecting temperature of hot

metal

Operating

parameter

Temperature

parameter

Mixing

parameter

Inspection

parameter

GFDN LGWD_1 TQXZS [Si ? Ti]

LDYL_U LGWD_2 FYL

MQGLL LQBWD_1 MQLYL

LFYL LQBWD_2

RFYL RFH

SJFS FZWD

PCML RFWD

PJDW

LLRSWD
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predict the HMT are shown in Fig. 4a. It can be clearly

seen that although the test set is randomly selected, the

error between the test result and the real value is basically

kept within ± 5 �C and the accuracy rate reaches 89.6%

within the allowable error range. Similarly, we have also

predicted [Si ? Ti] and [S], and the prediction results have

also achieved very good results. As shown in Fig. 4b, the

hit rate of [Si ? Ti] prediction results is 88.4%. Although

there are some obvious data deviation points, its fluctuation

is between 0 and 0.03. Figure 4c shows the [S] prediction

results. Since the exact value of [S] itself is in the thou-

sandths, predicted hit rate for [S] of the model is signifi-

cantly reduced. It is worth affirming that the deviation

between the predicted value and the actual value is

within ± 0.005, and the accuracy rate is 86.3%. From the

perspective of technology, the result error and accuracy can

be accepted.

4 Hot metal quality monitoring system

In order to monitor the quality of hot metal, this section

establishes the quality monitoring system of hot metal of

BF based on the prediction of relevant indicators of hot

metal.

The system uses the indicators (HMT, [Si ? Ti], [S])

concerned in BF production to comprehensively evaluate

the quality of hot metal. When the evaluation result

exceeds the acceptable range of the factory, the abnormal

parameters affecting the evaluation result are found by

analyzing the missing items, and the production status is

adjusted in time. Based on BF process theory, the system

sets the full scores of HMT, [Si ? Ti] and [S] as 35, 35 and

30, respectively, and formulates scoring rules suitable for

the factory according to the data distribution map of target

parameters. Steps are explained using [S] as an example.

The inspection and testing department will detect the sulfur

content of the furnace once every two hours. The historical

distribution and frequency distribution of sulfur content are
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Fig. 3 Structure diagram of stacking model

Table 5 Performance comparison results of stacking model and other models

Evaluation index Stacking GM BP LSTM

HMT Accuracy/% 89.6 62.6 76.3 81.5

RMSE 1.8841 3.3662 2.5846 2.0597

Modeling time/s 4.2281 2.9831 3.2545 3.5634

[Si ? Ti] Accuracy/% 88.7 65.2 75.8 84.1

RMSE 0.0212 0.0342 0.0315 0.0272

Modeling time/s 4.8261 2.9049 3.3842 3.5513

[S] Accuracy/% 86.3 58.7 79.1 83.9

RMSE 0.0083 0.0132 0.0093 0.0087

Modeling time/s 4.5002 3.6673 3.1889 3.4819
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shown in Fig. 5a, b. It can be seen from Fig. 5 that the

sulfur content of the enterprise was in a stable state as a

whole from February 2021 to August 2021, mainly con-

centrated in the interval of 0.04–0.06, and a small part was

greater than 0.06 or less than 0.04. Combining with the

process theory, it can be seen that in the BF ironmaking

process, hot metal is mainly desulfurized. The substandard

sulfur content in the hot metal will affect the fluidity of the

hot metal, prevent the decomposition of iron carbide, and

then affect the structure and performance of castings and

steel. Therefore, take the middle interval 0.04–0.06 as the

normal production level of the factory, take 0.005 as the

step and take the number of steps multiplied by 1.5 as the

step score. Correspondingly, respective evaluation rules are

formulated for HMT and [Si ? Ti]. Finally, the cumulative

result of the scores of these three evaluation indicators is

the final score of the hot metal quality of the heat. For the

convenience of classification, four grades of S, A, B and C

can be set for the final score of hot metal quality. The

classification can not only be adjusted at any time
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according to the actual production status of the factory, but

also can ensure the classification of data, which is conve-

nient for data mining in the future.

On the basis of the establishment of the evaluation

system, the BF hot metal quality monitoring system was

designed. The system mainly relies on Linux, Webstor-

m2021, Xshell7 and other software as the development

environment. Figure 6 shows the hot metal quality moni-

toring system. The interface of the system mainly includes

functions such as comprehensive evaluation of hot metal

quality, prediction of key indicators, monitoring of data

missing rate and monitoring of core parameters. As we can

see, the top of the interface of the system displays the

evaluation results and prediction information of the hot

metal quality at the current and the next moment, mainly

including the hot metal quality evaluation indicators and

comprehensive scores mentioned in this paper. The left

side of the interface of the system shows the variation

trends and prediction trends of the three target parameters

of HMT, [Si ? Ti] and [S] in detail. The evaluation

module uses the prediction module information to com-

prehensively score the quality of hot metal in each furnace

at the same frequency, which can effectively identify the

quality of hot metal and take timely adjustment measures

for the BF. In addition, other problems like data trans-

mission or equipment failure may cause discontinuities in

parameters, resulting in erroneous evaluation results.

Therefore, a missing statistics module is set up to count the

missing rate of some state parameters that are valued by

operators, and play an indirect role in monitoring equip-

ment stability. The state parameter monitoring module is

used to display most of the parameters in the BF iron-

making process, which are also of concern to operators,

e.g., hot blast pressure, furnace top pressure and so on. The

establishment of this module greatly improves work effi-

ciency: on the one hand, it is convenient for field operators

to view the status of each parameter in real time; on the

other hand, it can help operators adjust strategies in time

according to the trend of predicted results.

5 Conclusions

1. Disordered data frequency, long time lag and outliers

are common characteristics of industrial production

data. In the process of realizing industrial informati-

zation and intelligence, when processing data, it cannot

be directly deleted by partial generalization or cannot

be simply processed and used directly. When exca-

vating the potential value law of industrial data, it is

necessary to fully consider the influence of various

factors and conditions and use the method of com-

bining big data processing technology and process

theory to carefully process the original data.

2. The data used in the modeling process of this study are

the result of mutual fusion and joint screening based on

Fig. 6 Schematic diagram of hot metal quality monitoring system
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more than 540 original fields using methods such as

de-redundancy, data derivation, importance ranking,

causal analysis and process experience theory. Diver-

sified feature selection methods just meet the needs of

BF process modeling. This feature selection method is

not only applicable to the steel industry, but also to

other manufacturing industries.

3. In this paper, a hot metal quality monitoring system is

established according to the three hot metal quality

evaluation indexes concerned by the enterprise. The

test results of the system using the existing platform of

the factory show that not only the system running state

is stable during the test, but also the evaluation score

error is basically stable within ± 5 points, which is in

line with the expected effect. It meets the needs of

intelligentization development of BF in iron and steel

enterprises, and at the same time, it has the effect of

guiding production in a timely manner and ensuring

the smooth running of the BF.
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