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Abstract
The microstructural characteristics of spherical metal powders play an important role in determining the quality of

mechanical parts manufactured by powder metallurgy processes. Identifying the individual powder particles from their

microscopic images is one of the most convenient and cost-efficient methods for the analysis of powder characteristics.

Although numerous image processing algorithms have been developed for automating the powder particle identification

process, they perform less accurately in identifying adjacent particles that are heavily overlapped in their image regions.

We propose an automatic algorithm to robustly and accurately identify spherical powder particles, especially heavily

overlapped particles, from their microscope images. A parallel computing framework is designed to further enhance the

computational efficiency of the proposed algorithm. Powder characteristics such as particle size distribution and the

location of potential satellite particles have been derived from our identification results. The accuracy and efficiency of our

algorithm are validated by real-world scanning electron microscope images, outperforming other existing methods and

achieving both precision and recall above 99%.
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1 Introduction

In powder metallurgy processes, the microstructural char-

acteristics of feedstock metal powders play an important

role in determining final product quality. Powder charac-

teristics such as particle morphology and size distribution

greatly influence a powder’s flowability and apparent

density [1, 2], which subsequently impact mechanical

properties, surface roughness, and/or the porosity defect

level [3–5] of the final manufactured part.

As one of the primary methods for the microstructure

characterization of metallic powders, scanning electron

microscopy (SEM) generates high-resolution images for

close-up observation of powder particles [6]. From such

SEM images, powder characteristics can be qualitatively

estimated by manual interpretation [7] or quantitatively

calculated by image processing techniques.

Compared to manual interpretation, automatic or semi-

automatic image processing tools have proven their supe-

rior efficiency and robustness for microstructure charac-

terization of numerous materials [8–10]. For the

characterization of metal powders, existing image pro-

cessing methods [11–13] focus on the recognition of

individual powder particles, which can be applied to

determine other essential powder characteristics such as the

particle morphology and size distribution. These methods

can be categorized into three approaches: the watershed

segmentation approach, the circle detection approach, and

the data-driven approach.

The watershed segmentation approach is widely adopted

and implemented in image processing software such as

ImageJ [11] and MIPAR [12]. It is able to detect individual

powder particles by partitioning the input SEM image into

corresponding particle regions. However, watershed seg-

mentation usually encounters over-segmentation problems

[14], and furthermore it is less accurate in recognizing

powder particles that are heavily overlapped in their image
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regions. One example of the necessity in powder mor-

phology of recognizing heavily overlapped powder parti-

cles is to identify the presence of ‘‘satellites’’, where small

‘‘satellite’’ particles adhere to larger powder particles. The

presence of satellite particles impedes powder flowability

and subsequently leads to more internal defects in parts

manufactured by powder metallurgy processes [5]. For the

characterization of metal powders, accurately recognizing

the heavily overlapped particles is required for high-pre-

cision analyses of particle size distribution and potential

satellite locations.

On the other hand, the circle detection approach, based

on algorithms such as the circular Hough transform (CHT)

[13], is able to accurately identify both regular and heavily

overlapped powder particles in general by recognizing their

circular contours. However, in addition to being less effi-

cient in terms of both computation time and memory

requirements, this approach is prone to generate false

positive detections because of its sensitivity to image noise

[15].

Recently, data-driven approaches have demonstrated

great potential for the quantification of metal powder par-

ticles (satellites in particular) by implementing instance

segmentation and deep learning models [16, 17]. The

performance of deep learning models largely depends on

the quality and amount of labeled data. Because of the

challenge of collecting and labeling enough representative

data for the target problem, deep learning models in

engineering applications generally encounter pitfalls in

their applicability and reproducibility [18]. Robust rule-

based powder particle identification/labeling algorithms

can further improve the effectiveness of data-driven

methods, for example by providing more labeled training

data for deep learning.

Therefore, in this research, we propose an automatic

algorithm to characterize spherical metal powders from

their SEM images. Our algorithm is able to robustly

identify the sizes and locations of individual powder

particles, including heavily overlapped particles. To further

enhance the computational efficiency, a parallel computing

framework is designed and implemented for the algorithm.

The accuracy and efficiency of the proposed algorithm are

validated on 50 real-world SEM images of spherical metal

alloy powders.

2 Materials and methods

2.1 Materials and microscope images

For the evaluation of our algorithm, 50 SEM images were

collected from three spherical metal alloy powders com-

monly used in powder metallurgy processes: Ni3Al, TC4

(Ti6Al4V), and TiAl powders. The powders were first pre-

alloyed and then produced by the plasma rotating electrode

process, which provides powder particles with a high

degree of sphericity, high flowability, and low porosity

compared to other metal powder manufacturing methods

[19].

The images, with resolution 1024 9 943 pixels, were

taken using a Nova NanoSEMTM scanning electron

microscope. Example test images are shown in Fig. 1.

2.2 Algorithm details

In order to achieve better performance in terms of both

accuracy and efficiency than existing algorithms, our

algorithm is designed as a three-stage scheme:

1. We first roughly partition the input SEM image into

small image regions that represent individual powder

particles using watershed segmentation. Heavily over-

lapped particles may not be correctly segmented in this

stage (but will be handled in the next stage).

2. For each image region, we perform a CHT to conduct a

thorough detection of powder particles (especially

Fig. 1 Example test SEM images. a Ni3Al; b TC4; c TiAl powders
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overlapped particles), and then determine their exact

sizes and locations. In this stage, the small-size image

regions enable the CHT to significantly improve its

accuracy and efficiency compared to being directly

applied on the entire SEM image.

3. We collect detection results from each of the image

regions and sort them into a list of detected powder

particles for the entire input SEM image.

Since spherical powders are the most frequently used

and in-demand type of powders in powder metallurgy

processes because of their high shape consistency and

superior flowability [20], we focus on the identification of

metal powder particles that have a high degree of

sphericity. Irregularly shaped powder particles are identi-

fied by the circular regions that best fit their contours.

2.2.1 First stage: individual particle region segmentation

In the first stage of our algorithm, using distance-trans-

form-based watershed segmentation, we partition the input

SEM image into sub-regions representing individual pow-

der particles.

From the input SEM image (Fig. 2a), we first convert it

to grayscale and then utilize a Gaussian filter to eliminate

high-frequency image noise. Otsu’s method [21] for auto-

matic image thresholding is then applied to convert the

grayscale image into a binary image (Fig. 2b) by separating

its image pixels into two classes based on their pixel

intensity: the (lighter) powder particle pixels and the

(darker) background pixels. Next, to remove the remaining

image noise or microstructural artifacts (e.g., debris from

broken particles), morphological operations such as open-

ing and area opening [22] are applied on the binary image.

Next, we implement distance-transform-based water-

shed segmentation [23] to recognize image regions corre-

sponding to individual powder particles. This method

constructs the distance transform of our denoised, thresh-

olded binary image (Fig. 2c) and applies watershed seg-

mentation to it (Fig. 2d). We also adopt our over-

segmentation detection and merging method [14] as a post-

processing step to address the impact of over-segmentation,

which is otherwise typically one of the shortcomings of

watershed segmentation.

This watershed segmentation stage works well on seg-

menting image regions of isolated or slightly overlapped

powder particles. However, this process is less effective on

segmenting heavily overlapped powder particles because

they are not easily distinguishable from each other in

binary images. Furthermore, instead of exact sizes and

locations of powder particles, the watershed segmentation

only provides their segmented image regions, which cannot

be directly used to quantify powder characteristics like the

particle size distribution. Hence, the second stage of our

algorithm is designed to address the aforementioned

problems.

Fig. 2 Algorithm overview. a Input SEM image; b image thresholding and noise reduction; c distance transform; d individual particle region

segmentation; e circular Hough transform in each image region; f identified powder particles after result summarizing across image regions

Automatic characterization of spherical metal powders by microscope image analysis: a parallel… 2295

123



2.2.2 Second stage: circle detection in each image region

In the second stage of our algorithm, in order to determine

the exact sizes and locations of spherical particles and the

existence of heavily overlapped particles, we conduct a

circle detection process on the input SEM image, inside

each of the corresponding image regions calculated from

the first stage.

The circular Hough transform [13] is applied in this

stage for the detection of spherical powder particles. As

shown in Fig. 3, in each image region, individual powder

particles, including heavily overlapped particles, are

detected as circles by the algorithm. Their sizes and rela-

tive locations in the corresponding image regions (as dis-

tinguished from their ‘‘global’’ locations in the entire input

image, which will be calculated in the third stage) are also

determined. Note that a powder particle might be detected

in more than one image region if it overlaps with other

particles.

The accuracy and efficiency of the circular Hough

transform directly relate to the size of the target image

region. Smaller image regions lead to a more accurate and

efficient circle detection process. By reducing the target

image region from the entire SEM image to individual

particle regions, our algorithm significantly improves both

the accuracy and efficiency of the identification of

spherical powder particles compared to existing methods

(see Sect. 3).

2.2.3 Third stage: result sorting across image regions

In the final stage of our algorithm, we collect circle

detection results from each image region and sort them into

a list of detected powder particles for the entire input SEM

image (Fig. 2f). In this sorting process, the relative ‘‘local’’

locations of detected particles from each image region are

converted into their ‘‘global’’ locations in the (entire) input

image. Since overlapped powder particles might be con-

tained in multiple image regions, we identify and eliminate

such repeated detections by checking identified powder

particles with similar radii and global locations.

2.3 Parallel computing framework

The second stage of our algorithm is well-suited for par-

allel computing, wherein larger, complex problems are

broken into smaller, independent tasks that can be executed

simultaneously [24]. The implementation of CHT algo-

rithm in each segmented image region is an independent

task and does not impact the computation process or result

for any other image regions. Since an input SEM image

may contain as many as hundreds of powder particles,

parallelizing the second stage of our algorithm (CHT

computations in each of the corresponding particle regions)

can significantly reduce the overall computation time (see

Sect. 3.3).

Therefore, we design a parallel computing framework

for the proposed algorithm. As illustrated in Fig. 4, the

second stage (circle detection) is implemented in parallel

on the graphics processing unit (GPU) by simultaneously

conducting circle detection (CHT) computation in each of

the image regions. Other parts of the algorithm (the first

and third stages) are still implemented in serial on the

central processing unit (CPU).

3 Results and discussion

3.1 Overview

Our algorithm has been implemented in MATLAB (serial

computing stages) and CUDA/C?? (parallel computing

stages), and run on a PC with an Intel CoreTM Processor i7-

8550U CPU with 16 GB RAM and an NVIDIA GeForce

GTX 1080 Ti graphics card.

The ground truth powder identification results were

manually determined by two powder metallurgy experts

independently. They had consistent classifications of the

Fig. 3 Representative examples of circle detection results
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locations and sizes of all powder particles across our 50 test

SEM images (as described in Sect. 2.1).

For comparison with our algorithm, we implemented

two existing methods, watershed segmentation and the

CHT, and then tested them on our SEM images. Since

watershed segmentation is only able to provide image

regions representing individual powder particles but not

their exact sizes and locations, a least-squares fitting

technique [25] was applied on each segmented image

region as a post-processing step for the watershed method,

for accurate identification of particle sizes and locations.

We validated our algorithm on the 50 test SEM images.

As shown in Fig. 5, from the test images, our proposed

algorithm successfully identified individual spherical

powder particles no matter whether they were heavily

overlapped or not. It outperformed existing algorithms in

both accuracy and efficiency. In the rest of this section, we

present detailed analyses of the accuracy (Sect. 3.2) and

efficiency (Sect. 3.3) of our algorithm and

(in Sect. 3.4) discuss how the identification results can be

further applied in determining powder characteristics such

as particle size distribution and potential satellite positions.

3.2 Accuracy

In our experiments, the identification results of individual

powder particles can be classified into three types:

• True positive (TP): real powder particle positions that

are correctly identified.

• False negative (FN): real powder particle positions that

are not identified.

• False positive (FP): non-powder-particle positions that

are misidentified as powder particles.

Precision and recall metrics are calculated to quantita-

tively compare the accuracy of our proposed algorithm to

other existing methods. In this context, precision is the

probability that identified powder particles are real powder

particles, whereas recall is the probability that real powder

particles are successfully identified by the algorithm.

Mathematically, these two metrics can be expressed as

follows:

Precision ¼ TP

TPþ FP
ð1Þ

Recall ¼ TP

TPþ FN
ð2Þ

Note that there is a tradeoff between precision and recall

for the CHT algorithm. Thus, we chose to tune its user-

defined parameters (e.g., voting sensitivity) to minimize the

total number of false positives and false negatives. For

example, as shown with the two different CHT results

pictured in Fig. 5, while determining the optimal parameter

values for the CHT method, the lower sensitivity was

ultimately selected because it led to the fewest total mis-

takes (5 false negatives) compared to other parameter

values, such as the second best sensitivity choice (high

sensitivity in Fig. 5) that resulted in 6 mistakes (4 false

negatives ? 2 false positives).

Table 1 summarizes the overall precision and recall of

our proposed algorithm and the two existing comparison

methods across the 50 test images. The watershed seg-

mentation performed well on the identification precision

(99.3%), but had a low recall value (89.2%) due to its

inability to identify heavily overlapped powder particles,

which leads to false negatives (particles not detected). The

CHT method is sensitive to image noise and usually per-

forms poorly on detecting circles with a wide range of size

variation. For powder particle identification with the CHT

method, the aforementioned problems give rise to both

false positives and false negatives and subsequently

Fig. 4 Parallel computing framework of our algorithm
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influence the method’s precision and recall values (95.2%

and 93.8%, respectively).

Our proposed algorithm achieved the best performance

in both precision and recall. In our algorithm, the indi-

vidual particle region segmentation eliminates the vast

majority of image noise and artifacts and narrows down the

region of interest from the entire SEM image to small

image regions representing individual powder particles.

Consequently, by implementing the CHT algorithm in each

of these small segmented image regions, our circle detec-

tion stage demonstrated excellent robustness and accuracy,

leading to 99.3% precision and 99.5% recall rates in the

identification of individual powder particles.

3.3 Efficiency

The manual labeling of powder particles is an accurate but

time consuming process. Automatic image processing

algorithms are orders of magnitude faster than the manual

labeling process, even performed by experienced material

experts. Among these automatic algorithms, as well as

obtaining the best accuracy, our proposed algorithm also

required the least computation time, with the comparison

algorithms taking about 3–5 times longer (Table 2), though

all took less than 1 s.

Fig. 5 Experimental result comparison between our proposed algorithm and other existing methods

Table 1 Accuracy comparison between our proposed algorithm and

other existing methods (%)

Algorithm Ours Watershed CHT

Precision 99.3 99.3 95.2

Recall 99.5 89.2 93.8
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It is computationally expensive to directly analyze high-

resolution SEM images by the CHT method since its

computational complexity has a quadratic relationship to

the size (number of pixels) of the input image [26]. On the

other hand, although watershed segmentation is efficient

for segmenting particle regions, it requires a subsequent

circle fitting post-process for particle size and location

determination, which substantially increases the overall

computation time of the watershed method.

Due to the effectiveness of our three-stage powder

identification procedure and parallel computing frame-

work, our algorithm reduced the computation time by 63%

and 80% compared to the watershed and the CHT methods.

3.4 Powder characteristics

The accurate identification of powder particles enables us

to further derive various powder characteristics, such as

particle size distributions and the position of those particles

identified as potential satellites.

Note that the classification of satellite particles, those

small powder particles that physically adhere to larger

powder particles, cannot be definitively determined from

SEM images since often only the geometric overlapping

relations among powder particles can be observed from 2D

images, but not their physical connections. However, from

our identification results, we are able to provide potential

positions that have a high probability of being satellites.

We mathematically define potential satellite particles as

follows: those identified particles that a) have their centers

located inside at least one other particle (an overlapping

particle), and b) the satellite particle has smaller diameter

than (one of) its overlapping particle(s). As shown in

Fig. 6b, following our definition, potential satellite posi-

tions are calculated and highlighted. Such potential satellite

positions can then be used to assist researchers to further

interpret/predict powder characteristics such as the level of

agglomeration and powder flowability [5].

From the particle identification results, the particle size

distribution can also be derived and represented in either

the form of a histogram (Fig. 6c) or percentile values of

identified powder particles’ diameters.

4 Conclusion

In this paper, we have presented an automatic algorithm to

identify spherical metal powder particles from SEM ima-

ges. The novel three-stage procedure and parallel com-

puting architecture enable our algorithm to outperform

other existing methods in both accuracy and efficiency. The

algorithm successfully handles all 50 test SEM images,

robustly identifies powder particles, and calculates their

exact locations and sizes. It achieves an overall precision

and recall of 99.3% and 99.5%, respectively, and an

average computation time of 0.136 s per SEM image. From

the identification results, powder characteristics such as

particle size distribution and potential satellite positions are

also quantified and visualized for researchers to further

investigate powder properties.

Table 2 Efficiency comparison between our proposed algorithm and

existing automatic methods (computation time per SEM image)

Ours Watershed CHT

0.136 s 0.365 s 0.688 s

Fig. 6 An example of our identification results and its derived powder characteristics (a), potential satellite positions (b), and particle size

distribution (c)
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