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Abstract
With the goal of achieving advanced and multi-step prediction of silicon content of molten iron in the blast furnace

ironmaking process, a path adaptive optimization seeking strategy coupled with simulated annealing algorithm and genetic

algorithm was proposed from the perspective of innovative intelligent algorithm application. It was further coupled with

wavelet neural network algorithm to deeply explore the nonlinear and strong coupling relationship between the information

of big data samples and construct a cascade model for continuous prediction of silicon content of molten iron with the

intelligent research results of state variables such as permeability index as the node and silicon content forecast as the

output. In the model construction process, the 3r criterion was used for non-anomaly estimation of abnormal data to build a

time-aligned sample set for multi-step forecasting of iron content, the normalization method was used to eliminate the

influence of dimensionality of sample information, and the spearman correlation analysis algorithm was used to eliminate

the time delay between state variables, control variables, and silicon content of molten iron in the blast furnace smelting

process. The results show that permeability and theoretical combustion temperature as the key state variable nodes have

real-time correlation with the silicon content of molten iron, and there are accurate forecasting results on the optimal path

with the endpoint of molten iron silicon content prediction. The path finding based on the improved genetic algorithm of

simulated annealing has good effect on the downscaling and depth characterization of sample data and improves the data

ecology for the application of wavelet neural network algorithm. The accuracy of the real-time continuous forecasting

model for the silicon content of molten iron reaches 95.24%; the hit rate of continuous forecasting one step ahead reaches

91.16%, and the hit rate of continuous forecasting five steps ahead is 87.41%. This model, which can realize the nodal

dynamics of state variables, has better promotion value.

Keywords Silicon content � Molten iron � Optimal path � State variable node � Wavelet neural network � Step-by-step
prediction

1 Introduction

The silicon content of the molten iron, which is the final

product of the blast furnace, not only reflects the quality of

the molten iron, but also characterizes the thermal state of

the blast furnace. Therefore, the accurate prediction of the

silicon content of the molten iron is very important for the

operation of the blast furnace [1]. However, the blast fur-

nace smelting system involves a complex set of heat

transfer and chemical reactions, with internal momentum,

heat, and mass transfer coupling. During smelting, blast

furnace gases rise and fall; the internal phase transforma-

tion of gas–solid–liquid phase-oriented fluidity of the blast

furnace constantly evolves in an extremely complex pro-

cess with nonlinear, strong coupling and large time delay

characteristics. Relying solely on mechanistic analysis and

mathematical models of the smelting process makes con-

tinuous and accurate prediction of the molten iron silicon

content difficult [2–4]. Therefore, effectively using
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technological innovation-driven ironmaking blast furnaces

and achieve continuous prediction of the molten iron sili-

con content is an increasingly important requirement for

intelligent manufacturing in the steel industry.

Large-scale data have been linked, integrated, and fused,

providing renewed impetus and opportunities for collabo-

rative development in various industries. Given the rapid

technological changes and enormous data availability,

exploring fusion data techniques to support complex

decision-making and provide deep insight through data

mining has become key support and core competitive

advantage [5]. Global science and technology development

and national strategic needs have focused increasingly on

big-data management. Moreover, the metallurgical indus-

try in China is facing problems under the ‘‘new normal’’ of

the Chinese economy. Consequently, the harsh market

conditions have forced the steel industry to vigorously

develop intelligent metallurgical manufacturing technolo-

gies with data at their core.

China’s steel industry generates multi-source multi-

modal data, accurately portraying the production process.

Most data are discarded as they are considered ‘‘invalid’’

[6], but these data can be rich in information, making it

important to combine different modal data sources to

conduct deep data mining and fusion modeling [7]. Exist-

ing blast furnace big-data research uses artificial intelli-

gence algorithms to model complex processes, ignoring

complex process mechanisms and using data-driven tech-

nology to determine quantitative relationships between

variables. Based on the general rules of blast furnace

smelting process mechanism and transient process, a model

was designed to predict the silicon content of iron 10 h

ahead of time based on the specific blast furnace boundary

conditions, taking into account the iron ore raw material

and coke quality. The root-mean-square deviation between

the obtained predicted iron silicon content and the actual

measured value is 0.09% [8]. In Ref. [9], a new multi-input

multi-output (MIMO) Takagi–Sugeno (T-S) fuzzy model

was proposed using an output transfer matrix. By explicitly

modeling inter-indicator correlations through low-rank

learning of the correlation matrix, the great challenge of

jointly determining the MIMO T-S model and the fuzzy

rules for inter-indicator correlations is overcome. And a

better prediction result for the silicon content of molten

iron was achieved even with a sample missing rate of 90%.

In order to overcome the difficulties caused by the non-

linear time-varying dynamics of the process and to enable

random vector functional-link network (RVFLN) to learn

online and avoid data saturation, by sequential learning

with forgetting factors and applying the Cauchy distribu-

tion function to properly evaluate the weights of different

data, good modeling accuracy was achieved for outlier

contamination rates up to 50% and for anomaly magnitudes

up to 5 times the difference between the maximum and

minimum values of each output [10]. The T-S fuzzy

modeling method based on Bayesian block structure spar-

sity for continuous prediction of silicon content of molten

iron. By this method, the main important fuzzy rules and

the corresponding pivotal result parameters can be auto-

matically selected to obtain compact fuzzy models with

good generalization performance [11]. The effect of

parameter variations on the silicon content was determined

by differential processing and correlation analysis [12].

The Elman silicon content prediction model and logistic

furnace temperature fluctuation prediction model were

developed [13]. The adaptive density peak clustering of the

Bonferroni index and a multi-source path finding algorithm

were combined to construct a method to predict the silicon

content of molten iron in blast furnace based on optimal

work migration [14].

Based on the above analysis, it is important to under-

stand the meaning of data-driven technology: ‘‘deep min-

ing of universal laws among sample information in known,

incomplete or imprecise measurement results of big data

(samples)’’ [15]. The data information collected during the

blast furnace smelting process can be divided into ‘‘control

variables’’ and ‘‘state variables’’ according to their func-

tions; the data information collected during the blast fur-

nace smelting process can also be divided into ‘‘sample

input’’ and ‘‘sample output’’ according to the structure of

the data-driven model sample set. For the ‘‘sample input’’

and the ‘‘sample output’’, the sample input index data are

ahead of the sample output and are easier to obtain than the

output index. Obviously, the sample input is the state

variable, which is ahead of the sample output (silicon

content of molten iron) for continuous prediction and needs

to consider the control variables such as coal injection

volume and state variables such as permeability index, but

the state variables will change with the control variables. In

addition, the volume of the blast furnace is huge, and the

gas–solid–liquid phase fluidity exists inside the blast fur-

nace. The physical and chemical reactions in different parts

of the blast furnace are significantly different. This dif-

ference makes the blast furnace have obvious thermal

hysteresis and chemical hysteresis to the step of control

parameters and the fluctuation of raw and fuel properties

and compositions. There are intermittent and continuous,

real-time and delay relationships in the process of setting

and adjusting process parameters. To this end, based on the

sample information to complete the spatiotemporal align-

ment between sample information and form data-driven

samples with certain correspondence, a path adaptive

model using simulated annealing algorithm to optimize the

genetic algorithm is proposed, and this improved model is

coupled with wavelet neural network algorithm to deeply

explore the nonlinear and strong coupling relationship
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between large data sample information in the blast furnace

smelting process and realize a model with permeability

index. The model is a continuous forecasting model with

the prediction of state variables such as permeability index

as the node and the prediction of silicon content of molten

iron as the endpoint.

2 Model for controlling silicon content
of molten iron in blast furnace

The mathematical model mechanisms of the blast furnace

smelting process are primarily based on hydrodynamic and

metallurgical reaction kinetics.

(1) The blast furnace smelting process can be examined

from a fluid dynamics perspective. The ‘‘downward

fluid’’ movement comprises the movement of raw

fuel loaded at the furnace top under high-tempera-

ture physicochemical conditions. The ‘‘upward

fluid’’ movement includes movement of the blast

air, coal injection entering via the air outlet, and the

resulting fluid movement in the plant from the

chemical reactions. The applicable universal laws of

fluid science are the mass conservation equation,

equation of fluid motion, and equation of state of

matter [16]. Considering only the fluid in the blast

furnace axial z-direction moving at a material speed

(vLS) and ignoring the radial (r) and annular (h)
effects on the movement speed, the simplified blast

furnace fluid dynamics mathematical model can be

expressed as follows:

oq
ot

þ oqvLS
oz

¼ kq

dvLS
dt

¼ G� 1

q
Qfq

Ff

ð1Þ

where Qfq is the air volume; q is the fluid density;

k is the scale factor; Ff is the permeability index,

defined as the ratio of air volume to differential

pressure P, that is, Ff = Qfq/grad P; t is the time; and

G is gravity.

(2) The chemical reaction in blast furnace smelting

process is the chemical reaction in fluid motion.

From the perspective of mathematical modeling,

more than 100 chemical reactions in blast furnace

are abstracted into generalized chemical reaction

equations (A ? B = F ? G ? Um \ (Ts and p and

w))i [17], where A and B are reactants, F and G are

products, and Um denotes the thermal effect of the

reaction process. The model constraints are the

starting temperature Ts, pressure p, and concentra-

tion of reactants w required for the ith chemical

reaction to proceed. Only chemical reactions that

satisfy these constraints occur. Analyzed from the

viewpoint of mathematical planning models, it

constitutes a special mathematical planning prob-

lem—a microscopic, large scale, dynamic linear

programming problem.

The intricate correlation of the two kinetic models

causes extremely complex variations in the silicon content

of molten iron. Figure 1 shows the migration trends of

silicon content of molten iron in the longitudinal direction

of the blast furnace, starting from the middle of the furnace

to the window area. The silicon content increases with

increasing carbon in the molten iron, reaching a maximum

in the window area, and is higher than that in the final iron.

Only the silicon content in the metal directly above the

window is close to the outgoing iron value as silicon

continues to enter the pig iron below the window [18].

Silicon is absent in the metal in the soft melt before the drip

zone, and it is only in the high-temperature zone after the

drip zone that silicon gradually enters the pig iron.

A prerequisite for predicting the silicon content of

molten iron is to clarify the silicon source, which deter-

mines the interval for estimating the silicon content of

molten iron. Based on the material balance, SiO2 from the

coke ash can supply the silicon needed for low-silicon iron

in the form of SiO. However, as it is available in limited

quantities (Table 1), silicon should also be obtained from

the slag when smelting other iron types. Consequently, the

thermodynamically permissible silicon content in blast
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Fig. 1 Metal iron and slag composition migration trends along

longitudinal direction of blast furnace
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furnace pig iron is much greater than the actual quantity of

silicon supplied via coke ash. Moreover, the silicon

reduction is governed by kinetic conditions such as the

molten iron temperature and SiO2 activity in the slag.

A reasonable approach is to express the relationship

between the thermal regime and the silicon in the pig iron

in terms of the heat balance established by the volume of

gas, the amount of material, and the respective temperature

levels in the high-temperature zone below the drip zone.

The residence time of the iron droplets in the reaction

zones, that is, the gas–liquid contact time (t) in relation to

the smelting cycle (s) and drip zone height (h), is over-

looked. Under countercurrent conditions, an increase or

decrease in the iron solution residence time should be

expressed as an increase or decrease in the residence time

of the gas in this zone. Because there is no change in the

amount of heat consumed per unit time and that supplied

by the gas, the residual time (sh/H, where H is the height of

blast furnace body) is eliminated when calculating the

silicon content in pig iron.

To determine the estimated silicon content in the molten

iron based on material balance, the blast furnace supervisor

can evaluate the relevant fluctuation patterns by adjusting

the key controlling parameters, such as the material speed,

permeability index, air volume, and coal injection amount

(Qpm). The air volume and the coal injection are related to

fluid dynamics, while the material speed and the perme-

ability index are related to chemical reaction kinetics and

state variables of fluid dynamics. The partial differential

equation for variations in the silicon content of molten steel

can be expressed as follows:

dw½Si�
dt

¼ LðtÞ ovLS
ot

þ FðtÞ oFf

ot
þ QðtÞ oQfq

ot
þMðtÞ oQpm

ot

ð2Þ

where L(t), F(t), Q(t), and M(t) represent the influence

coefficients of the differential terms material speed, per-

meability index, air volume, and coal injection amount,

respectively, and are nonlinear functions that vary with

furnace temperature and index conditions.

Through the above analysis, the estimation interval and

the variation mechanism of the silicon content of molten

iron can be determined. Consequently, a big data mining

study of the blast furnace smelting process was conducted

to achieve the multi-step prediction of the silicon content

of molten iron continuously and accurately by incorporat-

ing data-driven technology.

3 Time registration between big data
and sample information in blast furnace
smelting process

3.1 Determining data index category of blast
furnace smelting process based on control
theory

The blast furnace is an inertial system from a control

perspective. When many control parameters (actions)

change, it causes a lag of state parameters. The possible

lags and the corresponding response law should be digitally

expressed to realize intelligent prediction and control of the

blast furnace smelting process. Moreover, a certain tran-

sition is required when the blast furnace changes from one

stable state to another. The first-order response, as

expressed in Eq. (3), can schematically characterize the

response process of the silicon content of molten iron, as

shown in Fig. 2.

y t þ tDð Þ ¼ Kx� T
dy t þ tDð Þ

dt
þ y0 ð3Þ

where x denotes a step, that is, a control parameter; tD is the

time delay; T is the time constant; y is the final effect; K is

the gain; y0 denotes the response with time t = 0; and

y(t ? tD) denotes the response with time t. After a step is

sent, a response can only occur after a time delay, reaching

a stable state after a period of 4 T or 5 T. Hence, the actual

period from changing a control parameter to obtaining the

desired response is tD ? 4 T or tD ? 5 T.

Table 1 Maximum amount of silicon supplied by different coke ratios (kg/t)

Coke ratio 400 500 600 700 800 900 1000

Maximum Si amount 11.2 14.0 16.8 19.6 22.4 26.2 28.0

y0

y
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Fig. 2 Schematic of first-order response process of silicon content in

molten iron
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Several parameters (including interference) often play a

key role in strengthening or weakening the changes in the

silicon content of molten iron. Often, other parameters can

change before the completion of specific behavior, which

can positively or negatively impact the previous transition

behavior, resulting in a complex transition behavior. Con-

sequently, the big data from the blast furnace smelting

process should be further classified from a control system

perspective.

(1) Control variables are the variables controlled when

the blast furnace length adjusts the operational state

of the blast furnace. It comprises the relevant

variables of the upper distribution and lower blast

systems. Typical indicators include blast volume,

blast temperature, blast humidity, coal injection

volume, oxygen enrichment rate, pulverized coal

composition, hot air pressure, and air pressure.

(2) State variables are the primary performance indica-

tors that measure the operational state of the blast

furnace. These variables are concentrated in the blast

furnace body.

3.2 Big data sample set of blast furnace smelting
process based on time registration

Abnormalities in the collected data can result from the

failure of blast furnace detection instruments and the

abnormal operation of the blast furnace [19]. This study

completes the abnormal data processing information col-

lected during the blast furnace smelting process using the

following three steps:

Step 1: Abnormal value detection. The 3r criterion is

adopted as the criterion to detect abnormal values in the

blast furnace sample set, X = {x2, …, xn}. When the

absolute difference between the detected and average value

is greater than 3r, it is marked as an abnormal value; r can

be expressed as follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

e2i =ðn� 1Þ
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðxi � xÞ2=ðn� 1Þ
s

ð4Þ

where n is a positive integer greater than or equal to 2; xi is

the ith measurement of index X; x is the average of all

measurements of index X; and ei is the difference between

the xi and the x.

Step 2: Outlier classification. This study compares the

curves of the permeability index, cold air pressure, and

silicon content of molten iron as indexes closely related to

the molten iron content. Figure 3 shows that the molten

iron silicon contents obtained from the eighteenth and

thirty-second heats are at the lowest point, belonging to a

suspicious point of abnormal value. Analyzing the changes

in the cold air pressure and permeability index—the cold

air pressure decreases considerably, accompanied by an

increase in the permeability index—shows signs of cooling

furnace temperature. Consequently, it was determined that

the suspicious points of these two abnormal data are non-

abnormal values and vice versa.

Step 3: Normalization of indicator data. Based on Steps

1 and 2, the abnormal data caused by sensor failure are

deleted, and the abnormal data caused by the abnormal

operational state of the blast furnace are retained. The

sample indexes after abnormal data processing differ

owing to the differences in their dimensions. For example,

the blast furnace permeability index range is [50, 100],

while the cold air flow parameter range is [1800, 2300]. It

is unreasonable to use them directly in predicting molten

iron silicon content, as they can falsely influence the pre-

diction results. Data normalization in Eq. (5) can be used to

control the range of control parameters, such as the coal

injection volume and air pressure, between [0,1] to

improve the accuracy of subsequent model predictions.

x�i ¼
xi �minðXÞ

maxðXÞ �minðXÞ ð5Þ
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where x�i is the standard value of xi.
The data-driven technology and intelligent algorithms

deeply mine the big data derived from the blast furnace

smelting process to realize the accurate and continuous

prediction of molten iron silicon content. The premise

involves selecting the appropriate variables and their most

appropriate time value. The correlation between the control

variables, state variables, and molten iron silicon content

under different time delay is obtained using the Spearman

correlation analysis to realize the time registration between

the index data. The principle of maximum correlation

between the characterization parameters and molten iron

silicon content under different time delay helps select the

most appropriate time value of the variable.

Table 2 shows the sample indicator variable symbols

and descriptions.

Step 1. Obtain 68 groups of index data—with a sampling

period of 1 h—which correspond with their collection time

and can be used to generate the initial sample set.

Step 2. Derive each index corresponding to the molten

iron silicon content sequence under 0 delays based on eight

different delay sequences. A sequence correspondence

under four delays is shown in Fig. 4. The abscissa ‘‘0’’

refers to the current time, ‘‘1’’ refers to the time in the next

1 h, that is, the time of the nearest sampling in the future,

and ‘‘ - 1’’ refers to the time of the nearest sampling from

the current time in history.

Step 3. Calculate and record the absolute correlation

coefficient between each index in Fig. 4 and the molten

iron silicon content sequence under eight different delays.

Step 4. Compare the absolute value of the correlation

coefficient of each row in Table 3 and underline and mark

bold to the largest value. If there is little difference between

the two or three adjacent correlation coefficients and they

are considerably higher than the coefficients under other

delays, underline and mark bold to those coefficients too.

Step 5. Record the delay corresponding to the marked

correlation coefficient in Table 3 and assign the delay

directly to si. Take the corresponding index data sequence

as the sample input.

We collected a big data sample set from the smelting

process of a blast furnace (3200 m3) in a steel plant in

northern China. The samples comprised 55,000 hot metal

sampling and testing results from November 1, 2019 to

October 31, 2021 and the corresponding raw material and

process information. Based on a sampling period of 1 h, a

sample set using the variables shown in Table 2 as the input

and the molten iron silicon content as the output for a given

time sequence was constructed. Spearman analysis was

used to calculate the correlation coefficient between the

68-index data shown in Table 2 (set time delay 0, 1, 2, 3, 4,

5, 6, and 7 h). After the above five steps, Table 3 is

Table 2 Sample indicator variable symbols and descriptions

No. Variable name Variable

unit

Symbol

1 Raw material 1. Dafeng low strength

coke

kg y1(t - s1)

2 Raw material 2. Dafeng dry

quenching coke

kg y2(t - s2)

3 Raw material 3. Shanxi coke kg y3(t - s3)

4 Raw material 4. Japanese coke kg y4(t - s4)

5 Raw material 5. Yaxin coke kg y5(t - s5)

6 Raw material 6. Stem Yang coke kg y6(t - s6)

7 Raw material 7. Sinter kg y7(t - s7)

8 Raw material 8. Kaixin pellet kg y8(t - s8)

9 Raw material 9. Xinjing pellet kg y9(t - s9)

10 Raw material 10. Northeast pellet kg y10(t - s10)

11 Raw material 11. Brazilian pellet kg y11(t - s11)

12 Raw material 12. SP10 block ore kg y12(t - s12)

13 Raw material 13. FMG block ore kg y13(t - s13)

14 Raw material 14. Newman block ore kg y14(t - s14)

15 Raw material 15. Limestone kg y15(t - s15)

16 Actual cumulative batches y16(t - s16)

17 Expected batches Circle y17(t - s17)

18 Joule ratio % y18(t - s18)

19 Oxygen enrichment rate % y19(t - s19)

20 Wind temperature �C y20(t - s20)

21 Hot air pressure kPa y21(t - s21)

22 Set coal injection rate t/h y22(t - s22)

23 Actual coal injection rate t/h y23(t - s23)

24 Cold air flow m3/min y24(t - s24)

25 Blowing humidity % y25(t - s25)

26 Oxygen enrichment m3/h y26(t - s26)

27 Total oxygen flowrate m3/h y27(t - s27)

28 Blast momentum J/s y28(t - s28)

29 Total load [ore/coke (excluding

coke)]

% y29(t - s29)

30 Fe/C % y30(t - s30)

31 Cooling water temperature �C y31(t - s31)

32 Cooling water flow m3/h y32(t - s32)

33 Water temperature difference �C y33(t - s33)

34 Coal injection rate m/s y34(t - s34)

35 Feed rate m/s y35(t - s35)

36 Calculated top gas volume m3/h y36(t - s36)

37 Top temperature �C y37(t - s37)

38 Top temperature range �C y38(t - s38)

39 Top pressure kPa y39(t - s39)

40 Differential pressure kPa y40(t - s40)

41 Permeability index y41(t - s41)

42 Furnace body static pressure kPa y42(t - s42)

43 Blanking point y43(t - s43)

44 Single layer coke thickness m y44(t - s44)

45 Single layer mineral material

thickness

m y45(t - s45)

902 Y. Han et al.
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obtained, the order of delay being from small to large. We

discern the following special cases.

(1) The indexes with an absolute value of correlation

coefficient greater than 0.8 with data series of the

molten iron silicon content include the actual coal

injection amount {y23(t), y23(t - 1)} under 0 and 1

delay, the permeability index {y41(t - 1)} under 1

delay, the heat supplied to the lower part of the

cohesive zone under 1 and 2 delay {y50(t - 1),

y50(t - 2)}, the proportion of the heat supplied to the

lower part of the cohesive zone under 1 delay in the

total heat supply {y51(t - 1)}, and the historical hot

metal silicon content {Y[Si](t - 1)} under 1 delay.

(2) At 0 and 1 time delay, the correlation coefficient

with the data series of the molten iron silicon content

is relatively large for the air temperature {y20(t),

y20(t - 1)}, actual coal injection {y23(t), y23(t - 1)},

oxygen enrichment {y26(t), y26(t - 1)}, total load

{y29(t), y29(t - 1)}, permeability index {y41(t),

y41(t - 1)}, and single layer coke thickness {y44(t),

y44(t - 1)}.

(3) At 1 and 2 time delay, the correlation with the data

series of the molten iron silicon content is a

relatively large indicator of the heat supplied to the

lower part of the cohesive zone {y50(t - 1),

y50(t - 2)}.

(4) At 2 and 3 time delay, correlations are exhibited by

the differential pressure {y40(t - 2), y40(t - 3)} and

the gas quantity at the air outlet {y47(t - 2),

y47(t - 3)}.

(5) At 1, 2, and 3 time delay, the correlations with the

data series of the molten iron silicon content are

relatively large indicators of the molten iron sili-

con content at historical moments {Y[Si](t - 1),

Y[Si](t - 2), Y[Si](t - 3), Y[Si](t - 4), Y[Si](t - 5)}.

(6) At 3 and 4 time delay, the correlation is relatively

large for the total heat supply {y49(t - 3),

y49(t - 4)}.

(7) At 3, 4, and 5 time delay, the correlation is relatively

large for the gas index of the furnace belly

{y47(t - 3), y47(t - 4), y47(t - 5)}.

4 Development of a dynamic
and continuous prediction model
for molten iron silicon content

Based on modern cybernetics, the blast furnace smelting

process can be simplified into a multiple-input single-out-

put system, and the molten iron silicon content can be

predicted using the operating parameters. When the system

is in a relatively stable state, the molten iron silicon content

at t ? 1 can be expressed as follows:

yðtÞ¼/1yðt�1Þþ �� �þ/nyðt�n/Þþ c1uðt�1Þþ �� �þ
cnuðt�ncÞþh1eðt�1Þþ �� �þhneðt�nh�1Þþ
hðtÞ

ð6Þ

where y(t) and y(t - 1) denote the molten iron silicon

content at t and t - 1, respectively; u denotes the input

variable, that is, the operating parameter to be considered,

Table 2 (continued)

No. Variable name Variable

unit

Symbol

46 Theoretical combustion temperature �C y46(t - s46)

47 Gas volume in tuyere area m3/h y47(t - s47)

48 Bosh gas index m3/min y48(t - s48)

49 Total heat supply GJ y49(t - s49)

50 Heat supplied to lower part of

cohesive zone

GJ y50(t - s50)

51 Proportion of heat at lower part of

cohesive zone

% y51(t - s51)

52 Gasification coke quantity t y52(t - s52)

53 Carbon monoxide concentration in

tuyere area

% y53(t - s53)

54 Hydrogen concentration in tuyere

area

% y54(t - s54)

55 Nitrogen concentration in tuyere area % y55(t - s55)

56 Nitrogen oxide discharge of hot blast

stove

m3/h y56(t - s56)

57 Average temperature of Section 6

water cooling

�C y57(t - s57)

58 Average temperature of Section 7

water cooling

�C y58(t - s58)

59 Average temperature of Section 8

water cooling

�C y59(t - s59)

60 Average temperature of Section 9

water cooling

�C y60(t - s60)

61 Average temperature of Section 10

water cooling

�C y61(t - s61)

62 Average temperature of Section 11

water cooling

�C y62(t - s62)

63 Average temperature of Section 12

water cooling

�C y63(t - s63)

64 Silicon content value of molten iron

in last five times

% Y[Si](t - 5)

65 Silicon content value of molten iron

in last four times

% Y[Si](t - 4)

66 Silicon content value of molten iron

in last three times

% Y[Si](t - 3)

67 Silicon content value of molten iron

in last two times

% Y[Si](t - 2)

68 Silicon content value of molten iron

in last time

% Y[Si](t - 1)

Cascade model for continuous prediction of silicon content of molten iron with coupled… 903

123



such as wind temperature and load; e denotes the error of

the estimated value; u, c, and h denote the model param-

eters; and un, cn, and hn denote the response order of y,

u and e, respectively.

Using Eq. (6), the dynamic data system model of hot

metal silicon content can be obtained as shown by ŷðtÞ in
Eq. (7) that represents the estimated value of y(t).

ŷðtÞ ¼ /1yðt� 1Þ þ � � � þ/nyðt� n/Þ þ c1uðt� 1Þ þ � � �þ
cnuðt� ncÞ þ h1eðt� 1Þ þ � � � þ hneðt� nh � 1Þ

ð7Þ

In a complex blast furnace smelting process, the

adjustment of one control variable can often cause changes

in multiple state variables. In addition, each state variable

can be affected by multiple control variables. Moreover,

the static prediction model of molten iron silicon content

based on historical data can be affected by the actual

working conditions, resulting in poor robustness. By ana-

lyzing the time registration between big data in the blast

furnace smelting process and studying the impact of dif-

ferent index data on state variables, the multi-path coupling

relationship between variables, and the influence of each

index on molten iron silicon content, the dynamic and

continuous prediction of molten iron silicon content can be

realized [20–22]. Through path optimization, the impact of

the characterization parameters on different control vari-

ables as the starting point and the hot metal silicon content

as the endpoint can be obtained. After retrieving the state

variables in each path, we can use the characterization

parameters before the state variables on each path as the

input and the corresponding state variables as the output to

predict each state variable. Finally, we integrate all control

and state variables as the input samples to realize the

dynamic prediction of molten iron silicon content. This

study designed an improved path optimization algorithm

by coupling simulated annealing algorithm (SA) and

genetic algorithm (GA). The implementation framework of

the wavelet neural network algorithm can be used to con-

struct a cascade dynamic and continuous prediction model

of molten iron silicon content.

More indexes related to the molten iron silicon content

should be considered to form index redundancy and

improve the model prediction accuracy [23]. However, as

more than one index data is possible in a physical sense,

and sequences with different delays strongly correlate with

the molten iron silicon content, it is necessary to re-plan the

variables, dividing the index data into more than one index

based on the delay. The sample input set for predicting the

molten iron silicon content under the time sequence con-

structed in this study has 83 elements (Table 3), of which

40 are control variables, and 43 are state variables,

including the molten iron silicon content at time delay 1, 2,

and 3). Assuming that the set of control and state variables

are B and C, respectively, then A = B [ C. The elements

in the sets of B and C can be expressed as follows:

B¼ f y1ðt� 7Þ y2ðt� 7Þ y3ðt� 7Þ y4ðt� 7Þ
y5ðt� 7Þ y6ðt� 7Þ y7ðt� 7Þ y8ðt� 7Þ
y9ðt� 7Þ y10ðt� 7Þ y11ðt� 7Þ y12ðt� 7Þ
y13ðt� 7Þ y14ðt� 7Þ y15ðt� 7Þ y16ðt� 7Þ
y17ðt� 5Þ y18ðt� 5Þ y19ðt� 6Þ y20ðt� 7Þ
y24ðtÞ y25ðtÞ y25ðt� 1Þ y26ðtÞ

y27ðt� 6Þ y28ðtÞ y28ðt� 1Þ y29ðt� 3Þ
y30ðtÞ y31ðtÞ y31ðt� 1Þ y32ðtÞ
y33ðtÞ y34ðtÞ y34ðt� 1Þ y35ðt� 2Þ

y36ðt� 3Þ y37ðt� 2Þ y38ðtÞ y39ðt� 4Þ g
ð8Þ

Fig. 4 Corresponding relationship diagram of correlation coefficients between index sequences under different delays to be solved
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Table 3 Raw material control variable information for time registration

Variable symbol Correlation coefficient between corresponding variables under different time delay and real-time silicon content in

molten iron

Delay

si = 0 h si = 1 h si = 2 h si = 3 h si = 4 h si = 5 h si = 6 h si = 7 h

y19(t - s19) 0.2863 0.0466 0.0567 0.1066 0.0733 0.0316 0.0506 0.0720 0

y21(t - s21) 0.1704 0.0909 0.0819 0.0334 0.0760 0.1106 0.0046 0.0518 0

y25(t - s25) 0.1291 0.0423 0.0176 0.0426 0.0015 0.0517 0.0154 0.0767 0

y27(t - s27) 0.2422 0.0921 0.0268 0.0835 0.0684 0.0573 0.0285 0.0170 0

y28(t - s28) 0.7085 0.1106 0.3016 0.3772 0.3048 0.0983 0.0651 0.0028 0

y33(t - s33) 0.2569 0.1373 0.0735 0.0576 0.0308 0.0668 0.1069 0.0873 0

y42(t - s42) 0.2571 0.0302 0.0261 0.0128 0.0409 0.0426 0.0420 0.0997 0

y46(t - s46) 0.6864 0.1709 0.1532 0.4369 0.2657 0.1682 0.4787 0.0902 0

y53(t - s53) 0.5720 0.0665 0.0777 0.0559 0.0857 0.0923 0.0583 0.1214 0

y54(t - s54) 0.5689 0.0008 0.1238 0.0717 0.0510 0.0504 0.0595 0.0538 0

y55(t - s55) 0.5929 0.1686 0.0553 0.0675 0.0325 0.0400 0.1876 0.0748 0

y20(t - s20) 0.7556 0.7572 0.1620 0.1976 0.2544 0.0639 0.0210 0.0332 0, 1

y23(t - s23) 0.8963 0.8735 0.1601 0.2055 0.1501 0.0686 0.0865 0.0226 0, 1

y26(t - s26) 0.7769 0.7397 0.0533 0.0727 0.0409 0.0339 0.0590 0.0090 0, 1

y29(t - s29) 0.6640 0.6943 0.0884 0.0994 0.0218 0.0593 0.0830 0.0778 0, 1

y41(t - s41) 0.7344 0.8752 0.2291 0.2893 0.1644 0.3565 0.5942 0.1801 0, 1

y44(t - s44) 0.6635 0.6984 0.3835 0.3525 0.2837 0.0584 0.1662 0.0657 0,1

y36(t - s36) 0.0195 0.1812 0.0743 0.0880 0.0533 0.0986 0.0728 0.0881 1

y37(t - s37) 0.0319 0.1779 0.0901 0.0942 0.0357 0.0192 0.0466 0.0527 1

y38(t - s38) 0.0954 0.1811 0.0919 0.0803 0.0781 0.0786 0.0502 0.0149 1

y39(t - s39) 0.0633 0.1243 0.0459 0.0713 0.0771 0.0819 0.0207 0.0590 1

y43(t - s43) 0.2274 0.6347 0.2053 0.2053 0.2869 0.0802 0.0922 0.0584 1

y51(t - s51) 0.1740 0.8189 0.4172 0.0625 0.2790 0.3606 0.0958 0.0920 1

y50(t - s50) 0.0997 0.8570 0.8368 0.0925 0.0894 0.3634 0.0884 0.0608 1, 2

y16(t - s16) 0.0374 0.0851 0.1423 0.0830 0.0958 0.0742 0.0735 0.0653 2

y18(t - s18) 0.0630 0.2927 0.4433 0.1811 0.0557 0.0739 0.0403 0.0419 2

y30(t - s30) 0.2934 0.1881 0.5845 0.2188 0.0993 0.0134 0.0790 0.0655 2

y32(t - s32) 0.0927 0.0783 0.2035 0.0966 0.0667 0.0908 0.0408 0.0911 2

y35(t - s35) 0.4058 0.3723 0.6049 0.3251 0.0854 0.2675 0.0996 0.3054 2

y40(t - s40) 0.0603 0.0773 0.4947 0.4126 0.0586 0.0957 0.1707 0.0512 2, 3

y47(t - s47) 0.0420 0.0868 0.3578 0.3718 0.2541 0.0824 0.0709 0.0948 2, 3

y24(t - s24) 0.0049 0.0615 0.0211 0.1263 0.0558 0.0550 0.0255 0.0774 3

y31(t - s31) 0.0896 0.0610 0.0620 0.3151 0.1291 0.0655 0.0835 0.0314 3

Y57(t - s57) 0.0449 0.0664 0.0944 0.3152 0.0825 0.0801 0.0751 0.0251 3

y58(t - s58) 0.0682 0.0764 0.0453 0.3480 0.0593 0.1308 0.1320 0.0732 3

y59(t - s59) 0.0796 0.0570 0.0828 0.3196 0.0558 0.0853 0.0791 0.0771 3

y60(t - s60) 0.0316 0.0385 0.0653 0.4892 0.0309 0.0563 0.0299 0.0752 3

y61(t - s61) 0.0397 0.0897 0.0361 0.3478 0.0700 0.0935 0.0645 0.0776 3

y62(t - s62) 0.0292 0.0817 0.0375 0.4580 0.0667 0.0752 0.0680 0.0509 3

y63(t - s63) 0.1548 0.0317 0.0215 0.5183 0.0225 0.1369 0.0514 0.0658 3

y49(t - s49) 0.1914 0.3408 0.3321 0.7228 0.7046 0.3165 0.0902 0.0749 3, 4

y48(t - s48) 0.0390 0.1910 0.0972 0.4572 0.4769 0.4166 0.1576 0.0628 3, 4, 5

y34(t - s34) 0.0684 0.1242 0.3933 0.2823 0.6852 0.4812 0.4591 0.1271 4

y17(t - s17) 0.0283 0.0411 0.0327 0.1989 0.1784 0.3126 0.1481 0.1722 5

y18(t - s18) 0.0487 0.0880 0.0535 0.0411 0.0473 0.3897 0.0103 0.1848 5

y56(t - s56) 0.1194 0.3564 0.3552 0.3660 0.1399 0.5783 0.0247 0.1407 5
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C ¼ f y21ðt� 2Þ y22ðt� 6Þ y23ðt� 2Þ y40ðt� 2Þ
y41ðt� 1Þ y42ðt� 1Þ y43ðt� 1Þ y44ðt� 1Þ
y45ðt� 2Þ y45ðt� 3Þ y46ðtÞ y46ðt� 1Þ
y47ðtÞ y48ðt� 1Þ y49ðtÞ y49ðt� 1Þ

y50ðt� 6Þ y51ðtÞ y52ðt� 2Þ y52ðt� 3Þ
y53ðt� 3Þ y53ðt� 4Þ y53ðt� 5Þ y54ðt� 3Þ
y54ðt� 4Þ y55ðt� 1Þ y55ðt� 2Þ y56ðt� 1Þ
y57ðt� 7Þ y58ðtÞ y59ðtÞ y60ðtÞ
y61ðt� 5Þ y62ðt� 3Þ y63ðt� 3Þ y64ðt� 3Þ
y65ðt� 3Þ y66ðt� 3Þ y67ðt� 3Þ y68ðt� 3Þ g

ð9Þ

Based on the sets shown in Eqs. (8) and (9), a weighted

directed graph of the silicon content in the iron can be

constructed, with the weights and directions of the directed

graph being specified as follows.

(1) Taking all elements in the set as nodes and the

correlation coefficient between elements as the

weight, the correlation coefficient matrix between

the data series of each variable is 83 9 83 (since the

number of variables studied is 83). However, the

calculation method is simple and can be solved

quickly using SPSS software; hence, it is not shown

in this paper.

(2) The effect of the silicon content on each direction of

molten iron can be determined. From any element,

the arrow always points to an element with less

delay. If the delays of two elements are equal, the

two elements are the starting and endpoint of each

other.

(3) Starting from any element, the path that can reach

the molten iron silicon content at the current time

through the directed graph can be considered as one

path. The travel route can only move forward

without turning back. This path reflects the infor-

mation transfer direction and influence relationship

among the characteristic parameters of blast furnace.

(4) The indexes to determine the advantages and disad-

vantages of a path are the least cost (eliminating the

correlation between variables) and longest path

(providing more sample input redundancy), that is,

Table 3 (continued)

Variable symbol Correlation coefficient between corresponding variables under different time delay and real-time silicon content in

molten iron

Delay

si = 0 h si = 1 h si = 2 h si = 3 h si = 4 h si = 5 h si = 6 h si = 7 h

y19(t - s19) 0.0493 0.0614 0.0417 0.0276 0.0680 0.0280 0.1218 0.0307 6

y17(t - s17) 0.0399 0.0211 0.0238 0.0342 0.0769 0.0687 0.3338 0.0335 6

y22(t - s22) 0.0213 0.0521 0.1233 0.0096 0.1378 0.0562 0.2216 0.0361 6

y45(t - s45) 0.0868 0.1142 0.1832 0.1613 0.0977 0.0760 0.4897 0.0886 6

y1(t - s1) 0.0776 0.0698 0.0196 0.0419 0.0128 0.0612 0.0478 0.1873 7

y2(t - s2) 0.0994 0.0826 0.0423 0.0406 0.0589 0.0469 0.0588 0.1945 7

y3(t - s3) 0.0859 0.0226 0.0319 0.0377 0.0714 0.0844 0.0620 0.2448 7

y4(t - s4) 0.0446 0.0688 0.0373 0.0888 0.0522 0.0576 0.0972 0.3988 7

y5(t - s5) 0.0309 0.0091 0.0228 0.0384 0.0702 0.0266 0.0436 0.1048 7

y6(t - s6) 0.0738 0.0543 0.0584 0.0657 0.0114 0.0003 0.0091 0.1270 7

y7(t - s7) 0.0414 0.0185 0.0611 0.0515 0.0220 0.0723 0.0470 0.1091 7

y8(t - s8) 0.0242 0.0300 0.0425 0.0068 0.0143 0.0757 0.0590 0.1518 7

y9(t - s9) 0.0343 0.0438 0.0619 0.0787 0.0216 0.0273 0.0561 0.1091 7

y10(t - s10) 0.0529 0.0208 0.0769 0.0390 0.0194 0.0727 0.0754 0.1069 7

y11(t - s11) 0.0777 0.0776 0.0846 0.0802 0.0863 0.0507 0.0781 0.1056 7

y12(t - s12) 0.0279 0.0710 0.0622 0.0543 0.0010 0.0348 0.0665 0.1255 7

y13(t - s13) 0.0479 0.0829 0.0259 0.0477 0.1041 0.0193 0.0440 0.1768 7

y14(t - s14) 0.0341 0.0142 0.0846 0.0559 0.0440 0.0839 0.0106 0.1904 7

y15(t - s15) 0.0774 0.0445 0.0130 0.0598 0.0439 0.0224 0.0555 0.1848 7

y16(t - s16) 0.0888 0.0672 0.0498 0.0765 0.0788 0.0948 0.0531 0.1695 7

y20(t - s20) 0.0474 0.0361 0.0336 0.0474 0.0434 0.0530 0.0176 0.1067 7

y52(t - s57) 0.1565 0.1133 0.0459 0.0819 0.1870 0.0772 0.0892 0.5908 7

Y[Si](t - s69) 1.0000 0.8024 0.7360 0.5953 0.2541 0.0920 0.2176 0.1481 1, 2, 3
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the sum of path weights is the smallest on the

premise of traversing as many nodes as possible.

GA and SA are intelligent algorithms used to solve

complex programming problems. A GA and SA coupled

blast furnace characterization parameter path optimization

algorithm was designed to solve the multi-path coupling

problem between variables. The proposed algorithm adopts

the strong overall searchability of GA and the strong local

searchability of SA to circumvent the disadvantages of

insufficient stability of GA and the time-consuming over-

head of SA. Based on the correlation between each index

under different time delay sequences and the correlation

with the molten iron silicon content under different time

sequences, a weighted directed graph of the characteriza-

tion parameters of the molten iron silicon content can be

constructed. Several best influence paths in-line with the

actual production situation of the blast furnace can be

excavated using different control variables as the starting

point, laying the foundation for the follow-up intelligent

learning of the wavelet neural network algorithm.

The path optimization algorithm of the GA and SA

coupling technique is described as follows.

(1) Using any control variable as the starting point and

the molten iron silicon content at time t as the

endpoint, the initial population can be randomly

generated.

(2) Determine the fitness functions. Set the fitness

function as shown in Eq. (10), where ai denotes the
correlation between the ith and (i ? 1)th parameter,

k is a coefficient, and m denotes the number of

individuals in the population.

(3) The roulette method can be adopted. Based on

individual fitness, some individuals with greater

fitness are selected from the population with the

probability of p0i to form a mating pool, as expressed

in Eq. (11), where N is the population, and Fi is the

fitness of the ith individual.

(4) The adaptive probability function can cross, mutate,

and update the mating pool. The adaptive probability

function can be expressed as shown in Eq. (12),

where f denotes the larger fitness of the two

individuals crossing, favg denotes the average fitness

value, fmax denotes the best fitness, and p1 and p2 are

constants.

(5) SA can be applied to the new individuals generated

after crossover and mutation. The accepted individ-

uals and their parents conduct elite selection to form

their offspring population.

(6) Repeat execution of Steps 2–5. Stop when the fitness

function value no longer increases.

F ¼
X

m�1

i¼1

kai
m� 1

ð10Þ

p0A ¼ k=Fi

P

N

i¼1

k=Fi

ð11Þ

p1 ¼
fmax � fð Þ= fmax � favg

� �

; f [ favg
p2; f � favg

�

ð12Þ

This study used the wavelet neural network algorithm to

learn the sample set and mine the quantitative relationship

between sample inputs and outputs. Though the wavelet

and back propagation (BP) neural network algorithms are

multilayer feedforward networks, the kernel functions are

wavelet and sigmoid functions, respectively. Wavelet

analysis can better determine the local characteristics of the

signal by transforming the wavelet basis function. The

corresponding weight and activation threshold from the

input to the hidden layer can be replaced by the scale

expansion and time translation factors of the wavelet

function. Moreover, the gradient correction method can

modify the weight and wavelet basis function parameters

of the network, giving the wavelet neural network stronger

nonlinear approximation abilities.

The training steps of the wavelet neural network algo-

rithm are as follows:

(1) Randomly initialize the scaling factor, translation

factor, and network connection weight of the wavelet

function, and set the network learning rate.

(2) Divide the samples into training and test samples.

The training samples are used for network training,

and the test samples to test the network prediction

accuracy.

(3) Input the training samples into the network, to

calculate the prediction output and the error between

the network and expected output.

(4) The network weight and wavelet function parame-

ters can then be corrected based on the error, making

the network predicted value close to the expected

value in the future.

(5) Determine whether the algorithm ends. If not, return

to 3.

Thus, starting from each control variable, that is, the

elements in set B, the optimal path to reach the molten iron

silicon content can be found using the improved GA and

SA. The corresponding nodes of elements in set C can be

retrieved by integrating the optimal path results. The

characterization parameters before the node are used as the

prediction input of the state variables [24]. The prediction

value of elements in C can be obtained using the wavelet

neural network and is substituted into the prediction input
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data of the molten iron silicon content to realize dynamic

prediction [25]. The dynamic and continuous prediction

model of molten iron silicon content based on path opti-

mization is shown in Fig. 5.

The dynamic and continuous prediction model of molten

iron silicon content has the following advantages:

(1) Supplement the data set under low delay. During the

early stage of blast furnace operation, the state

variables with a small time delay with the molten

iron silicon content have not yet been obtained.

Therefore, the corresponding state variables are

predicted through the known control variables that

supplement the input data of the prediction model to

realize a dynamic prediction model.

(2) Dynamic precise control. Based on the operational

mechanism of the blast furnace and actual operation

of workers, this model aims to realize the dynamic

control and early prevention of furnace temperature.

The workers can predict changes in corresponding

state parameters by assuming the input control

parameters to predict changes in the furnace tem-

perature. Thus, the goal of a stable and abundant

furnace temperature and conditions can be achieved.

5 Results and discussion

5.1 Optimal path for silicon content prediction
in hot metal

The primary goal of the research is to find the optimal

prediction path for the molten iron silicon content. To

verify the excellent properties of the improved objective

algorithm (GA and SA) in path finding, we performed

simultaneous search operations using the three algorithms

and compared their performance in terms of iteration times

and fitness functions. The smaller the number of iterations

and the larger the fitness function, the better the perfor-

mance. This metric is equivalent to the metric for deter-

mining the merit of a path.

By analyzing the elements in set B, a longer path can be

considered using the elements in the subset B0 as the

starting point, as follows:

B0 ¼ f y1ðt � 7Þ y2ðt � 7Þ y3ðt � 7Þ y4ðt � 7Þ
y5ðt � 7Þ y6ðt � 7Þ y7ðt � 7Þ y8ðt � 7Þ
y9ðt � 7Þ y10ðt � 7Þ y11ðt � 7Þ y12ðt � 7Þ
y13ðt � 7Þ y14ðt � 7Þ y15ðt � 7Þ y16ðt � 7Þ
y20ðt � 7Þ y19ðt � 6Þ y27ðt � 6Þ g

ð13Þ

In Table 4, the above 19 elements were used as the path

starting points, and the three algorithms were applied

simultaneously to set A. The number of iterations and the

value of the fitness functions for each optimal path were

obtained for comparative analysis. Based on the data

summarized in Table 4, the following results were

obtained:

(1) Comparative analysis of the number of iterations.

The GA achieved a stable value of fitness function at

an average of 68 iterations in determining the

optimal path, while the SA algorithm required 126

iterations. Based on the relationship between the

number of iterations and the running time of the

algorithm, the SA algorithm took twice as long to

run as GA. The average number of iterations of the

GA and SA algorithm was close to that of GA,

suggesting that the target algorithm inherited the

advantage of the rapid convergence of GA.

(2) Comparative analysis of fitness values. The average

fitness function value of the GA for searching the

optimal path for the 19 different starting points in

Table 4 was 0.24004, while that of the SA algorithm

was 0.28407, with an improvement of 18.34%. The

average fitness function value for the target algorithm

was 0.30021, which is significantly better than those

of the individual GA and SA algorithms. Thus, the

target algorithm inherited the global rapid search

capability of GA and the local optimal value-seeking

capability of SA.

(3) Overall. The GA and SA algorithm exhibits excel-

lent path finding performance and quality, achieving

a comparable number of iterations to the GA

algorithm and optimal fitness values. Paths (1)

y4(t - 7) ? Y[Si](t), (2) y7(t - 7) ? Y[Si](t), (3)

y8(t - 7) ? Y[Si](t), (4) y19(t - 6) ? Y[Si](t), and

(5) y22(t - 6) ? Y[Si](t) have higher values of

fitness function. Overall, the fitness value achieved

using the GA and SA for path (2) was considerably

better than that of the two comparison algorithms

and had the highest fitness values of all paths.

The molten iron silicon content prediction path aims to

eliminate the correlation between variables and reduce the

number of input indicators while considering the coupling

synergy of multiple variables in terms of duration and

structure. Thus, a cascade of continuous molten iron silicon

content predictions is achieved with coupled state variable

node studies to determine that this model works best.

The state variable permeability index (y41(t)) and theo-

retical combustion temperature (y46(t)) with ‘‘0’’ delay as

the molten iron silicon content at the current moment were

selected as evaluation indicators to verify this assumption.

We compared the forecast accuracy of y41(t) and y46(t) on

paths (1)–(5) and selected the path with the highest forecast

accuracy for both state variables as the optimal path.
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We used the wavelet neural network algorithm to learn

the sample data on paths (1)–(5) to obtain comparison plots

of the forecast results of the permeability index and theo-

retical combustion temperature. The actual values and error

plots when forecasting the permeability index under the

five paths are shown in Figs. 6 and 7, and those for the

theoretical combustion temperature are shown in Figs. 8

and 9. The wavelet neural network structure used in this

study was 5 - 30 - X. The five nodes in the input layer

indicate the number of steps in the prediction sequence.

The 30 and X nodes in the hidden and output layers indicate

the number of state variables on the prediction path.

Figure 6 represents the comparison of the prediction

effects of the permeability state variables achieved under

the five preferred paths. Since the starting point of path (2)

is the raw material information and the lag time is the

longest (7 h), the path can traverse more selective nodes

from the starting point to the endpoint, so that the sample

set is guaranteed to be rich in content while seeking the

optimal selection. It is verified through simulation predic-

tion tests that the sample set formed based on path (2) is the

most superior and can make the prediction results closer to

the actual values. In addition, Fig. 7 shows the distribution

of the permeability prediction error under the five preferred

paths, which shows that the prediction error of the

algorithm using the sample set formed by path (2) is within

[- 1, 1], the prediction error of path (3) is within [- 5, 5],

and the prediction error of the remaining three preferred

paths is within [- 20, 20]. Figures 8 and 9, which use the

theoretical combustion temperature as the prediction node

in the data representation, again confirm that the best

prediction is achieved using path (2) to form the sample

set.

Figures 6, 7, 8 and 9 show that the predicted and actual

values are the closest to path (2), y7(t - 7) ? Y[Si](t), for

the permeability index and theoretical combustion tem-

perature forecasts. Consequently, path (2) was used as the

optimal path for the molten iron silicon content prediction.

5.2 Predicting molten iron silicon content

The sample set for prediction can be divided into three

categories as follows:

(1) Class 1 data use all the variables in Table 2 as a

sample set, including instant and historical data

collected during the blast furnace smelting process.

To realize the advanced prediction of the molten iron

silicon content, we pay more attention to the

effective predictions of Y[Si](t ? 1), Y[Si](t ? 2),

Fig. 5 Dynamic prediction model of molten iron silicon content based on path optimization
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Y[Si](t ? 3), Y[Si](t ? 4), and Y[Si](t ? 5). The input

of the sample output time ahead or the synchronous

sample input index when predicting Y[Si](t ? 1) can

be the data from the actual historical data aligned to

moment t ? 1 when the sample input indicators in

Table 2 are control variables. For example, the

kinetic energy of the blast (y28) control variable can

be used directly as a sample input with its corre-

sponding time series y28(t ? 1). When the sample

input indicator is a state variable, the sample input

indicators in Table 2 at time t can only be selected.

For example, the theoretical combustion temperature

(y46) state variable can only be used as a sample

input at time t with y46(t), not with its temporal

counterpart y46(t ? 1).

(2) Class 2 data are immediate and historical data based

on the control variables selected after optimal

filtering and the state variables that pass through

the path. The selection constraints for the indicators

are the same as those of Class 1 data. Certain state

variables cannot be applied directly, and the number

of variables is only reduced by path finding.

(3) Class 3 data are immediate and historical data for

control variables selected based on optimal path

filtering and predicted values for state variables. The

selection of indicators for Class 3 data would not

have the constraints of Class 1 and Class 2 data. The

state variables corresponding to the time series

Y[Si](t ? 1), Y[Si](t ? 2), Y[Si](t ? 3), and Y[Si](t ?

4) are obtained via prediction, then used as inputs, so

that the prediction process could achieve dynamic

Table 4 Comparison of three paths optimization algorithms

Path start Path end GA SA GA and SA Optimal algorithm

Iteration Fitness Iteration Fitness Iteration Fitness Iteration Fitness

y1(t - 7) Y[Si](t) 67 0.14212 108 0.20088 68 0.21700 GA GA and SA

y2(t - 7) Y[Si](t) 69 0.22943 101 0.29006 73 0.28406 GA SA

y3(t - 7) Y[Si](t) 57 0.11774 174 0.20449 58 0.28863 GA GA and SA

y4(t - 7) Y[Si](t) 55 0.30194 168 0.32084 64 0.34884 GA GA and SA

y5(t - 7) Y[Si](t) 64 0.24146 132 0.28387 74 0.25927 GA SA

y6(t - 7) Y[Si](t) 77 0.20486 76 0.27900 80 0.29407 GA GA and SA

y7(t - 7) Y[Si](t) 73 0.38799 199 0.40224 95 0.45861 GA GA and SA

y8(t - 7) Y[Si](t) 64 0.28184 136 0.34580 65 0.34013 GA SA

y9(t - 7) Y[Si](t) 73 0.10342 110 0.16085 65 0.13620 GA and SA SA

y10(t - 7) Y[Si](t) 72 0.21807 118 0.21828 77 0.24038 GA GA and SA

y11(t - 7) Y[Si](t) 74 0.21130 180 0.29228 68 0.31398 GA and SA GA and SA

y12(t - 7) Y[Si](t) 78 0.29678 119 0.31826 59 0.34549 GA and SA GA and SA

y13(t - 7) Y[Si](t) 78 0.17567 100 0.23590 72 0.29940 GA and SA GA and SA

y14(t - 7) Y[Si](t) 61 0.20465 94 0.28792 60 0.27606 GA and SA SA

y15(t - 7) Y[Si](t) 66 0.29645 144 0.33889 70 0.34945 GA GA and SA

y16(t - 7) Y[Si](t) 60 0.20028 185 0.25666 78 0.21207 GA SA

y20(t - 7) Y[Si](t) 62 0.17866 135 0.20910 77 0.21050 GA GA and SA

y19(t - 6) Y[Si](t) 67 0.38919 118 0.40428 61 0.40992 GA and SA GA and SA

y22(t - 6) Y[Si](t) 72 0.37880 116 0.34765 74 0.34990 GA GA and SA

Average 68 0.24004 126 0.28407 69 0.30021 GA GA and SA
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Fig. 6 Comparison of prediction results of ventilating index under 5

paths
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self-renewal of the sample set. The wavelet neural

network algorithm intelligently learns the above

three classes of sample sets to construct multi-step

prediction models for the molten iron silicon content

Y[Si](t), Y[Si](t ? 1), Y[Si](t ? 2), Y[Si](t ? 3),

Y[Si](t ? 4), and Y[Si](t ? 5). A comparison of

the prognosis results and analysis is shown in

Figs. 10–15.

When comparing the real-time forecast results, since

Class 2 and 3 sample sets are similar at this stage, the

forecast accuracy is also equivalent. The forecast using

Class 1 is the worst. Firstly, it considers too many redun-

dant variables, resulting in a small proportion of effective

information. Secondly, the learning is poor because the

parameter selection of the wavelet neural network algo-

rithm depends on the few useful sample data for path

optimization.

When comparing the 1- to 5-step ahead prediction

results, the prediction accuracy using the Class 3 sample

set always shows a considerable advantage. The forecast

accuracy of Class 1 and 2 sample sets is low, with a

maximum error boundary. We conclude that some of the

control variables in the historical data play a role in frame

support, that is, the empirical control of operations such as

adjusting the fabric and improving the blast can change the

molten iron silicon content trends. However, accurate

Fig. 7 Comparison of prediction error of permeability index under 5

paths time series

Fig. 8 Comparison of theoretical combustion temperature prediction

results under 5 paths
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tion error of permeability index under 5 paths time series
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research, consideration, and control cannot be achieved

from an accuracy perspective.

The average error values were analyzed to determine the

validity of the proposed method. Table 5 confirms the

advantages and extension value of the proposed step-by-

step silicon content prediction technique. The mean abso-

lute error and coefficient of variation increase, and the

prediction hit rate decreases on the sequence of real-time

forecasts in molten iron silicon content to 5-step ahead

forecasts in all three classes. The results reflect the

dependence of forecast accuracy on the sample set validity,

with a strong correlation between the big data collected

during the blast furnace smelting process and the molten

iron silicon content. Using Class 1 and 2 data, the average

absolute error and hit rate in the predicted molten iron

silicon content from 1- to 5-step ahead were in the range of

[0.241, 0.254] and [17.5%, 23.0%], respectively. Although

the hit rate of real-time prediction was above 94%, it was

ineffective in providing a reference for the overcasting of

the molten iron silicon content regulation. Class 3 data

achieved over 87% of the 5-step ahead forecasts, with

91.16% of the forecasts hitting 1-step ahead. Class 3 data

were a dynamic sample set that achieved good prediction

accuracy; however, the accuracy gradually decreased with

accumulating prediction errors in the state variables, with

silicon content as the endpoint.

In summary, the wavelet neural network algorithm is an

intelligent algorithm suitable for learning sample sets with

temporal correlation. The prediction accuracy of the same

intelligent algorithm varies considerably depending on the

sample sets category. y7(t - 7) ? Y[Si](t) was used as the

optimal path for the prediction of molten iron silicon

content. The sample set was dynamically updated to

achieve over 87% molten iron silicon content prediction

accuracy 5-step ahead.

Fig. 10 Comparison of real-time prediction effect

Fig. 11 Comparison of step 1 ahead prediction effect

Fig. 12 Comparison of step 2 ahead prediction effect

Fig. 13 Comparison of step 3 ahead prediction effect
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6 Conclusions

1. The optimal selection of sample indicators, based on

the principle of maximum correlation and time align-

ment, was a prerequisite for ahead-of-time, continuous,

and accurate prediction of the molten iron silicon

content. In addition, it contributed to creating a good

data ecological environment for using intelligent

algorithms.

2. Adopting the GA and SA coupling algorithm, we

optimized the molten iron silicon content prediction

path and reduced the sample input indicator, improving

the effectiveness of the sample set information.

Moreover, it lowered the complexity of the intelligent

data learning algorithm, directly enhancing the learn-

ing efficiency of the wavelet neural network algorithm.

3. Based on the optimization of the molten iron silicon

content forecasting path, a self-learning forecasting

model based on control variables is constructed with

control variables as sample inputs and lagging state

variables in the path as sample outputs. The model is

the driving force to drive the dynamic update of the

sample set and the guarantee to achieve 1, 2, 3, 4 and

5-step ahead prediction of the silicon content of molten

iron.

4. The proposed cascade model with coupled state

variable nodes achieved a forecasting accuracy of

91.16% in 1-step ahead predictions and a hit rate of

87.41% in 5-step ahead predictions.

5. The model formed a paradigm comprising data infor-

mation self-processing, prediction path self-optimiz-

ing, and state variable node information self-updating.

Moreover, the step-by-step and continuous prediction

of molten iron silicon content can help develop

intelligent control systems for blast furnaces.

Fig. 14 Comparison of step 4 ahead prediction effect

Fig. 15 Comparison of step 5 ahead prediction effect

Table 5 Comparison of step-by-step prediction effect of molten iron silicon content in blast furnace based on learning sample differences

Categories Class 1 Class 2 Class 3

MAE CV Hit rate/% MAE CV Hit rate/% MAE CV Hit rate/%

Real-time 0.0499 0.5671 94.56 0.0491 0.5741 95.41 0.0494 0.5692 95.24

1-step 0.2440 0.5766 21.94 0.2482 0.5759 22.96 0.0486 0.5708 91.16

2-step 0.2466 0.5857 20.58 0.2474 0.5789 21.94 0.0507 0.5792 89.63

3-step 0.2482 0.5863 20.07 0.2533 0.5895 20.41 0.0526 0.5889 89.63

4-step 0.2485 0.5908 19.56 0.2509 0.5995 19.90 0.0488 0.5948 88.10

5-step 0.2494 0.6028 17.52 0.2417 0.6062 19.90 0.0505 0.6007 87.41

MAE—Mean absolute error; CV—coefficient of variation
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