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Abstract
Microstructural classification is typically done manually by human experts, which gives rise to uncertainties due to subjec-

tivity and reduces the overall efficiency. A high-throughput characterization is proposed based on deep learning, rapid

acquisition technology, and mathematical statistics for the recognition, segmentation, and quantification of microstructure in

weathering steel. The segmentation results showed that this method was accurate and efficient, and the segmentation of

inclusions and pearlite phase achieved accuracy of 89.95% and 90.86%, respectively. The time required for batch processing

byMIPAR software involving thresholding segmentation, morphological processing, and small area deletion was 1.05 s for a

single image. By comparison, our system required only 0.102 s, which is ten times faster than the commercial software. The

quantification results were extracted from large volumes of sequential image data (150 mm2, 62,216 images, 1024 9 1024

pixels), which ensure comprehensive statistics. Microstructure information, such as three-dimensional density distribution

and the frequency of the minimum spatial distance of inclusions on the sample surface of 150 mm2, were quantified by

extracting the coordinates and sizes of individual features. A refined characterization method for two-dimensional structures

and spatial information that is unattainable when performing manually or with software is provided. That will be useful for

understanding properties or behaviors of weathering steel, and reducing the resort to physical testing.

Keywords Deep learning � High-throughput � Microstructure � Sequential image � Rapid acquisition � Quantitative
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1 Introduction

The volume fraction, dimension, and morphology of

microstructure phases are responsible for the mechanical

properties of metallurgical materials [1–5]. Complex

microstructural information is often obtained by manual

quantification or software quantification with artificial

participation [6], which are both very time-consuming

processes and virtually impossible to ensure completely

objective statistics. Previous material characterization

trends [7–11] indicate that microstructure quantification

should ultimately accomplish two goals. One is providing a

refined understanding of the structures or volumetric data

to extract truly useful material characteristics. The other is

efficiently analyzing large data volumes using automated

processing. This motivation leads us to use deep learning

method and high-throughput scanning electron microscope

(SEM) to automatically collect images and segment and

quantify pearlite, bainite and inclusions in weathering steel.

Microstructural quantification is mainly performed

using commercial image processing software such as

MIPAR, Image J, and Photoshop [12–14]. However, these

are no longer sufficient for researchers due to time-
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consuming artificial selection. Many papers have focused

on improving the precision and speed of segmentation and

quantification [15–18]. Dutta et al. [19] developed an

automated method for the morphological classification of

ferrite–martensite dual-phase microstructures. The sec-

ondary phase precipitated in the gamma matrix of a nickel-

based alloy was identified using a neuronal network [20].

This method achieved statistical reliability of 95% from 54

SEM images, but the number of test images was still too

small to guarantee reliable accuracy. Albuquerque et al.

[21] proposed a computational system for analyzing ima-

ges of ferrous alloys, which optimized the process of seg-

menting and quantifying microstructures using

mathematical morphologies and an artificial neural net-

work. Morphological operators and artificial neural net-

works are used for segmentation and quantification,

respectively, and take 180 s for a single image output

because of the separation of the feature extraction and

classification operations.

In recent years, artificial intelligence has made break-

throughs in many fields, especially computer vision

[22–27]. Deep learning methods have also captured atten-

tion due to their adaptive, self-learning, and parallel pro-

cessing abilities [28–31]. Bulgarevich et al. [32]

demonstrated an accurate microstructure pattern recogni-

tion/segmentation technique that was combined with other

mathematical image processing and analysis methods to

handle image data. Such machine learning models may not

be able to classify data with fewer characteristics, e.g.,

bainite–pearlite in weathering steel, and the test set is

insufficient (* 1 mm2). Yoshitaka et al. [33] demonstrated

three deep learning methods, including LeNet5, AlexNet,

and GoogLeNet, for microstructure classification. Due to

the need for fewer training images and more precise seg-

mentation [34, 35], U-Net detection network has demon-

strated excellent performance for biomedical images

[36–38]. For example, Ronneberger et al. [39] proposed the

use of U-Net convolutional networks that relied on the use

of data augmentation to achieve more precise segmenta-

tions with fewer training images.

So far, images from test sets are unordered and insuf-

ficient, usually only dozens to a hundred images (* 1

mm2). The application of deep learning methods like U-Net

for the quantitative characterization of materials is still

rare; however, Navigator-OPA high throughput SEM (joint

research by Focus e-Beam Technology Co., Ltd. and NCS

Testing Technology Co., Ltd.) provides an effective images

acquisition technology that ensures high resolution while

achieving large-scale continuous collection. Previous

studies suggest that U-Net is suitable for the recognition

and pixel-wise segmentation of microstructures.

In this work, we describe a characterization method

based on U-Net, high-throughput SEM, and mathematical

statistics to quantify the microstructures in weathering

steel. Our method has four advantages—speed, accuracy,

comprehensiveness, and refinement—that can simultane-

ously meet four of these requirements.

(1) Speed The image acquisition speed of high-through-

put SEM is 10 times faster than conventional SEM.

Four regions of target detection (candidate region

generation, feature extraction, classification and

location refinement) were unified into a neural

network framework to ensure faster running speed.

(2) Accuracy The trained U-Net architecture was used to

perform pixel-wise segmentation. The generalization

ability of U-Net network is strong enough to predict

unknown image, which improved the accuracy of

segmentation and quantification.

(3) Comprehensiveness The quantification results were

extracted from sequential image data (150 mm2,

62,216 images, 1024 9 1024 pixels), which ensured

comprehensive statistics.

(4) Refinement Individual features were quantified by

extracting the coordinates and sizes from SEM

images. The suitable mathematical statistics pro-

vided a refined characterization of two-dimensional

structures and spatial information.

We provide a brief introduction to the experimental

methods and procedures and then show the segmentation

and evaluation results. The extracted binary images, com-

bined with other suitable mathematical methods, were used

to represent the area, density, and distribution of the

microstructures.

2 Methods

2.1 Overview of proposed method

Figure 1 shows an overall flowchart of the proposed image

quantitative method. First, U-Net detection network model

was established to realize the classification and segmenta-

tion tasks. Second, we obtained high-resolution images by

continuous collection using a high-throughput SEM. Third,

we used suitable mathematical methods to extract more

refined information from the binary images.

2.2 U-Net based deep convolutional networks

We constructed a network (Fig. 2) based on the original

U-Net architecture that consisted of a contracting path and

an expanding path [39–41]. The left side of the structure

was the down-sampling layer, which captured the global

content using a contracting path. The right side was the up-

sampling layer, which propagated contextual information
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into higher-resolution layers via an expanding path. The

entire architecture consisted of 9 blocks, between which

there are 4 max-pooling layers and 4 transposed convolu-

tions. The inner part of the block included a convolution

layer, ReLu activation function, and a dropout layer, which

served to extract deep features from shallow features and

deal with nonlinear problems to prevent overfitting.

In the experiments, images from SMA490BW weath-

ering steel were chosen as the dataset. A group of material

experts and metallographers assigned the objects shown on

the polished and corroded surfaces to the corresponding

phases according to experience and related records, as

shown in Fig. 3. Afterward, manual labels were created

using LabelMe software.

Manually labeled data were divided into a training set

and validation set, as shown in Fig. 1. The training set was

used to obtain the target detection model, and the valida-

tion set was used to verify the reliability of the model. The

mean pixel accuracy (MPA) of the testing set was regarded

as the judgment condition for training termination, and the

termination threshold was set to 98% during the training

process. When MPA of the training set was greater than or

equal to 98% for three consecutive times, the training was

terminated and saved as the final feature recognition and

extraction model of this method. Cross entropy was used in

the loss function during training. The optimization function

used Adam during back propagation.

In addition, to solve the over-fitting phenomenon caused

by insufficient data, data augmentation was performed

before beginning the training. Training the data after

enlargement gives the trained model a stronger general-

ization ability, making it possible to process the features

acquired in different scenarios.

2.3 Image data sets

A hot-rolled SMA490BW weathering steel plate

(200 mm 9 160 mm 9 11 mm) was used in the experi-

ment. Two sections from one-third width of the plate were

mounted for metallographic sample preparation. Samples

were ground using silicon carbide papers to 3000 grit, and

then polished using 3, 1, and 0.5 lm diamond slurries.

After ultrasonic cleaning, sample No. 1 remained polished,

and sample No. 2 was corroded in a solution of nitric acid

and alcohol. Two samples were placed into a high-

throughput SEM to collect the image data. Collecting

results are shown in Table 1. The sampling area of sample

No. 1 was 150 mm2, and 62,216 consecutive images with

1024 9 1024 pixels were obtained. The sampling area of

sample No. 2 was 70 mm2, and 65,600 consecutive images

with 1024 9 1024 pixels were obtained.

Fig. 1 Flowchart of image segmentation and quantification method
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2.4 Implementation and statistical analysis

All images representing the surface information of the

sample (acquired in Sect. 2.3) were put into the trained

U-Net target detection model for segmentation. For sample

No. 1, the network eliminated interference from foreign

pollutants and scratches on the quantitative results and

performed correct identification of inclusions and accurate

pixel-wise segmentation. For sample No. 2, the network

automatically assigned objects to either the bainite or

pearlite phases according to the microstructure features.

After segmentation, binary graphs were obtained and

marked as bainite and pearlite phases and nonmetallic

inclusions.

The size, area, and coordinates of each object in samples

No. 1 and No. 2 are extracted from the binary images using

the connected region algorithm. According to the sizes of

bainite, pearlite, or nonmetallic inclusions, an appropriate

threshold value was selected to show the surface distribu-

tion. The distribution density of objects was calculated and

characterized using a statistical method. The distribution

difference of objects in different regions of hot-rolled steel

sections was also quantitatively characterized. This method

can extract more refined microstructure distribution details

from images by quickly handling large volumes of image

data, which will be useful for performing quality control on

newly developed steels.

2.5 Performance evaluation

The goal during microstructural classification is to classify

objects inside steel images based on microstructure classes.

These objects can be considered as ‘‘background’’ (scratch

and matrix) or ‘‘foreground’’ (bainite, pearlite, inclusions

in the present microstructure), as shown in Fig. 3. The

substructure of such objects should be classified with the

correct label in this work, and the more the objects cor-

rectly classified by our method are, the more accurate the

system is. Therefore, the classification performance using

the metrics described by Eqs. (1)–(4) is evaluated.

P ¼ TP

TPþ FP
ð1Þ

R ¼ TP

TPþ FN
ð2Þ

Fig. 2 Architecture of neural network employed in our method
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F1 ¼ 2P� R

Pþ R
ð3Þ

A ¼ TPþ TN

TPþ FN þ TN þ FP
ð4Þ

where P measures the precision of the system; R measures

the recall of the system; F1 is close to the smaller values of

P and R; TP and TN are the number of correctly classified

objects; FP and FN are the number of objects that were

erroneously classified; and A measures the accuracy of the

system. Accuracy represents the ratio of the number of

samples correctly classified by the classifier to the total

number of samples. To evaluate the semantic segmentation

performance, the metrics described by Eqs. (5) and (6) is

used.

IOU ¼

P

i

Pii

P

i

P

j

Pij
ð5Þ

DICE ¼
2
P

i

Pii

P

i

Pii þ
P

i

P

j

Pij
ð6Þ

where IOU is intersection over union; DICE is the dice

coefficient; Pij is the number of pixels of class i predicted

as class j; and Pii is the number of pixels of class i predicted

as class i. The hardware used for experimentation was

Intel(R) Xeon(R) CPU E5-2695V4 @2.10 GHz. All

experimentation was carried out with Python version 3.5,

TensorFlow and LabelMe.

3 Results and discussion

3.1 Classification and segmentation using U-Net

In addition to non-metallic inclusions, there were some

scratches and pits on the surface of polished sample No. 1,

which will interfere with U-Net predictions because of the

similarity between the morphology and inclusions. To

investigate the classification accuracy, we compared the

output images selected from test data with the results

marked by experts. Table 2 shows the confusion matrix of

Fig. 3 Microstructure patterns observed by light optical microscopy (a) and SEM images (b–f) of SMA490BW weathering steel. Ferrite (F) is

matrix phase and serves as background, and bainite (B), pearlite (P) and inclusion are treated as ‘‘objects’’ (second phase)

Table 1 Collecting results of microstructure in weathering steel by

high-throughput SEM

Sample Object Field/mm2 Number Size

No. 1 Inclusion 150 62,216 1024 9 1024

No. 2 P and B 70 65,600 1024 9 1024
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U-Net prediction and the actual classifications. In Table 2,

1478 non-metallic inclusions were predicted by U-Net, in

which 1278 inclusions were correct segmented non-

metallic inclusions (TP), and 200 were wrong segmented

scratches and pits (FP). It also included 58 wrong seg-

mented non-metallic inclusions (FN) and 1461 correct

segmented scratches and pits (TN). Table 3 shows the

evaluation results of the classifications made by U-Net

network. The recall and precision numbers show the cor-

rect classification percentage of actual classes and predic-

tions. The performance gives a recall rate of 95.66%, a

precision rate of 86.47%, an accuracy of 91.39%, and a

harmonic mean rate of 90.83%. These values indicate that

U-Net is good at correctly classifying inclusions.

Table 2 shows the actual and predicted numbers of

bainite and pearlite objects. U-Net misclassified 5 pearlite

objects as bainite. However, 34 bainite were misclassified

as pearlite because of complex inner structures and their

similar morphologies. In Table 3, evaluation values of

pearlite and bainite (sample No. 2) were more than 90%.

Table 4 presents the results of the pixel-wise semantic

segmentation. Pearlite has the highest Iou of 83.54%, and

DICE of 90.86%. Inclusion and bainite achieved IOU of

82.18% and 67.04%, and DICE of 89.95% and 79.96%,

respectively. IOU of bainite was slightly inferior to that of

pearlite due to their similar texture and its discontinuous

shape in the interior led to confusion.

The latest image processing software was used to

compare the results. In addition to the small training set,

our method also showed good segmentation accuracy and

processing time, requiring only 0.102 s for a single image,

which is far less than that of MIPAR image processing

software requiring 163 s for manual processing and 1.05 s

for a batch processing. The process consisted of thresh-

olding segmentation, morphological processing and small

area deletion requiring manual input and selection. The

segmentation accuracy of U-Net is higher than that of

MIPAR batch process, especially for bainite and non-

metallic inclusions, as shown in Table 4. The gray value of

nonmetallic inclusions is close to that of the background,

and the shape of bainite is various, which will reduce the

segmentation accuracy of MIPAR.

Figures 4 and 5 show examples of inclusion segmenta-

tion using U-Net based on deep convolutional networks. It

is noted that inclusions segmented by the network have

some common features, including different heights and

colors from the matrix, and the contour lines of the

inclusions were round and not sharp, which is typically

used to distinguish similar pits and scratches. The output

details in Fig. 4 indicated that pixel-wise segmentation was

more refined and efficient compared with the hand-crafted

features, and it better sketched the continuous and clear

outline changes of the objects. The final results of bainite

and pearlite segmentation are depicted in Fig. 5, which

shows that most objects were correctly classified. Single

objects were obtained by the target detection network,

which is of great significance to the statistical analysis of

sample sections. Because of the good generalization ability

of U-net network, the image segmentation model estab-

lished in this paper can also be applicable to other types of

steel with similar organization.

Table 2 Confusion matrix of U-Net classification showing actual and predicted numbers of objects identified as bainite, pearlite, inclusions, and

scratches

Confusion matrix Predicted class label by U-Net

Inclusion P B Scratch

Actual class label Inclusion 1278 0 0 58

P 0 485 5 0

B 0 34 273 0

Scratch 200 0 0 1461

Table 3 Evaluation value of classification based on U-Net

Sample Recall/% Previous/% Accuracy/% F1/%

No. 1 95.66 86.47 91.39 90.83

No. 2 98.98 93.45 95.11 96.14

Table 4 Evaluation values of segmentation based on U-Net and

MIPAR (%)

Structure Metrics MIPAR U-Net

Inclusion IOU 69.98 82.18

DICE 81.74 89.95

P IOU 78.35 83.54

DICE 87.72 90.86

B IOU 38.60 67.04

DICE 52.28 79.76
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3.2 Time consumption

The time consumption of each step is shown in Table 5.

First, a U-Net model is constructed based on a convolu-

tional neural network by training it with image data, which

involves learning microstructure feature information from

labeled images. The corresponding time consumption of

this process is shown in the label and train columns. Then,

large volumes of image data were quickly obtained by

high-throughput SEM, and the time consumption is shown

in SEM column. Afterward, the established U-Net model

provided image classification and pixel-wise segmentation.

For inclusions (sample No. 1) and pearlite (sample No. 2),

images of pixels with sizes of 1024 9 1024 required only

0.102 s to output a binary image, which was achieved in

real-time. Based on the results in Table 5, for a sample with

Fig. 4 Examples of inclusion segmentation using U-Net based on deep convolutional networks

Fig. 5 Examples of microstructure with good segmentation performance (a–c) and under-segmentation (d) segmentation using U-Net based on

deep convolutional networks. Bainite and pearlite are red and green, respectively
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an area of 70 mm2, 279 min or less (collection and seg-

mentation were performed simultaneously) was required

from the surface image collection to the acquisition of

individual feature regions. As a comparison, the batch

processing method using MIPAR software takes 1148 min

while manual drawing will take 41,000 min. Therefore, our

method can achieve better speed and accuracy.

3.3 Quantitative results and statistical analysis

The evaluation results of classification and segmentation in

Tables 2 and 3 confirm our expectation that the quantitative

results extracted from images are trustworthy. The size,

area, and coordinates of each object in samples No. 1 and

No. 2 are quantified from the binary images using the

connected region algorithm. Table 6 shows the quantitative

results of the microstructure of SMA490BW weathering

steel, and Fig. 6 shows its area percentage.

The single sizes and coordinates of the feature region

were extracted using the connected region algorithm. Then,

the spatial and dimensional information extracted from

images were represented with figures and numbers using a

suitable mathematical method. The statistical results and

distribution trends were introduced using inclusions as an

example. Larger nonmetallic inclusions are more likely to

degrade performance due to a greater discontinuity in the

matrix [42]. Figure 7 shows the area distribution of indi-

vidual inclusions over the sample surface of 150 mm2.

Based on Fig. 7, most inclusions were small, with an area

less than 5 lm2 accounting for 67.23% and an area less

than 10 lm2 accounting for 95%.

The three-dimensional distribution of inclusions on the

sample surfaces of 150 mm2 was revealed according to

their size and corresponding coordinates of individual

objects, as shown in Fig. 8. The larger the size of the

inclusion, the larger the color bar number. Inclusions with

lager section areas were quickly selected from the signal

color. In addition, the rolled plate section was divided into

the outermost part, the second outer part, and the center

part, each of which has a different structure and perfor-

mance due to their different forming conditions [43]. Fig-

ure 8 indicates that our method of quantifying feature

regions can be used to compare properties in these different

regions, and even predict the performance without physical

tests.

The distance distribution of inclusions was quantita-

tively calculated using U-Net and mathematical statistics to

guide the smelting and subsequent processing of materials.

Table 5 Comparison of proposed method with manual drawing and software methods

Sample Method Model building Data acquiring Testing time DICE/%

Label/h Train/h Field/mm2 SEM/min Single image/s Test/min

No. 1 U-Net 25 48 150 102 0.102 105 89.95

No. 2 U-Net 272 96 70 167 0.102 112 90.86

No. 2 MIPAR – – 70 167 1.05 1148 87.72

No. 2 Handwork – – 70 167 375 410,000 100

Table 6 Quantitative results of microstructure in weathering steel

Sample Object Field/mm2 Area/mm2 Quantity

No. 1 Inclusion 150 0.041677 10,294

No. 2 P 70 6.51 482,185

No. 2 B 70 0.316 99,293

Fig. 6 Area percentage of microstructure in SMA490BW weathering

steel

Fig. 7 Area distribution frequency diagram of individual inclusions
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Independent and dispersed inclusion spots have little

influence on the performance, while dense or continuously

distributed spots and blocks greatly degrade the perfor-

mance [44]. In addition, existing research shows that a

higher density of nonmetal inclusions results in a worse

comprehensive performance of steel [45].

The spatial distance of inclusions was calculated using

this proposed method as follows. First, we named all

images from the testing set and created a coordinate sys-

tem. The number of images in the horizontal direction

(x) was 101, and the number of images in the vertical

direction (y) was 154. All pixels in the images were asso-

ciated with the coordinates x and y. Second, the coordinates

of the inclusions were identified, and the center point

coordinates of inclusions were determined by reading the

image name and averaging the inclusion pixel value. Third,

the minimum distance was screened. 5000 pixels (50 nm

resolution) was set as the threshold value, and 5000 pixels

were expanded in x and y positive and negative directions,

using the inclusion center as the origin. In this region, all

distances between inclusions were accurately calculated.

After sorting all distances, the minimum distance was

selected as the statistical distance. The distance results

formed a normal distribution, as shown in Fig. 9. Bainite

and pearlite in the microstructure can also be quantified

using suitable mathematical methods to extract refined and

comprehensive information.

4 Conclusions

This work demonstrated a high-throughput characterization

method for the recognition, segmentation, and quantitative

analysis of the microstructure in weathering steel from

sequential SEM images. Images were rapidly acquired by

high-throughput SEM and subjected to pixel-wise seg-

mentation using a trained U-Net architecture. The result

showed that pearlite phases and inclusions had pixel

accuracies of 90.86% and 89.95%, respectively. The time

consumption of a single image was around 0.102 s, which

is ten times less than that of traditional methods. Besides

the high accuracy and efficiency, this method can analyze

large amounts of image data (150 mm2, 62,216 images,

1024 9 1024 pixels), which ensures the comprehensive-

ness of statistics and greatly eliminates incomplete statis-

tics in a single field of view.

To demonstrate the diversity of the segmentation results,

the distribution tendency of each extracted feature region

was quantitatively counted by a mathematical method,

using inclusions as an example. The area distribution of

individual inclusions, the minimum spatial distance

between inclusions, and the three-dimensional density and

size distributions were obtained using this method, which

provided a refined characterization method for two-

Fig. 8 Three-dimensional distribution of inclusions on a sample surface size of 150 mm2

Fig. 9 Frequency diagram of minimum spatial distance of inclusions

in SMA490BW weathering steel
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dimensional structures or spatial information of

microstructures. That will be useful for understanding

distribution of microstructure in weathering steel, com-

paring properties in different regions, and even predicting

the performance without physical tests. It is concluded that

quantitative characterization of microstructures using the

proposed method is an effective, accurate, comprehensive,

and refined method for characterizing and analyzing the

microstructure of steels.
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