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Abstract
Considering the dynamic influence of the roll vibration on the lubricant film thickness in the rolling deformation area,

nonlinear dynamic rolling forces related to film thickness in the vertical and horizontal directions were obtained based on

the Karman’s balance theory. Based on these dynamic rolling forces and the mechanical vibration of the rolling mill, a

vertical–horizontal coupling nonlinear vibration dynamic model was established. The amplitude–frequency equation of the

main resonance was derived by using the multiple-scale method. At last, the parameters of the 1780 rolling mill were used

for numerical simulation, and the time-domain response curves of the system’s vibration displacement and lubricating film

thickness under the steady and unsteady conditions were analyzed. The influences of parameters such as interface contact

ratio, nonlinear parameters and external disturbances on the primary resonance frequency characteristics were obtained,

which provided a theoretical reference for the suppression of rolling mill vibration.

Keywords Vertical–horizontal coupling � Nonlinear vibration � Mixed lubrication � Dynamic rolling force �
Main resonance � Amplitude–frequency characteristic

List of symbols
A Function related to time scale in horizontal solution

A Conjugation of A

B Function related to time scale in vertical solution

B Conjugation of B

a Vibration amplitude in horizontal direction

b Vibration amplitude in vertical direction

c1 Equivalent damping in horizontal direction

c2 Equivalent damping in vertical direction

cc Conjugation of the previous items

F1 External disturbance force amplitude in horizontal

direction

F2 External disturbance force amplitude in the vertical

direction

Fx Dynamic rolling force in horizontal direction

Fy Dynamic rolling force in vertical direction

F
0
x

Steady part of dynamic rolling force in horizontal

direction

F
0
y

Steady part of dynamic rolling force in vertical

direction

k1 Equivalent stiffness in horizontal direction

k2 Equivalent stiffness in vertical direction

l Deformation area length

m1 Equivalent mass of work roll

o1 Center of upper work roll

o2 Center of lower work roll

p Rolling pressure in deformation area

pa Pressure from dry friction

pb Pressure from fluid lubrication friction

P1 External disturbance in horizontal direction

P2 External disturbance in vertical direction

R Roll radius

s Back tension of strip

t Time

Tn Different time scales

ue Entrance speed of strip

u(x) Speed of strip in deformation area
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u Average speed of roller and strip

vR Roll speed

v0R Roll speed during vibration

x0 Amplitude under T0 time scale in horizontal

direction

x1 Amplitude under T1 time scale in horizontal

direction

xc Roll vibration displacement in horizontal direction

xc0 Horizontal displacement of roll during steady rolling

xd Exit position during vibration

xe Deformation zone length during vibration

xn Neutral position

X Dimensionless deformation area

y0 Amplitude under T0 time scale in vertical direction

y1 Amplitude under T1 time scale in vertical direction

ye Entrance thickness of strip

yd Exit thickness of strip

y0d Roll gap height

yc Roll vibration displacement in vertical direction

yc0 Vertical displacement of roll during steady rolling

y(x) Strip thickness in deformation area

z Lubricating film thickness in deformation area

z0 Film thickness under T0 time scale

z1 Film thickness under T1 time scale

zc Lubricant film thickness at junction of entrance area

and deformation area

zq Lubricant film thickness at entrance area

c Emulsion viscosity–pressure coefficient

e Small parameters

h Entrance angle

k Contact ratio between interfaces

l Emulsion viscosity

l0 Emulsion viscosity at standard atmospheric pressure

r Yield strength of strip

r1 Horizontal coordination factor

r2 Vertical coordination factor

sa Shear stress caused by dry friction

sb Shear stress caused by fluid friction

ss Shear stress on strip

u1 Angle parameter when solving A

u2 Angle parameter when solving B

x1 Undamped natural frequency in horizontal direction

x2 Undamped natural frequency in vertical direction

DFx Dynamic part of dynamic rolling force in horizontal

direction

DFy Dynamic part of dynamic rolling force in vertical

direction

X1 External disturbance frequency in horizontal

direction

X2 External disturbance frequency in vertical direction

1 Introduction

The vibration phenomenon of the rolling mill always exists

during working. The vibration of the rolling mill not only

reduces the quality of the products, but also damages the

equipment in severe cases and even leads to huge economic

losses [1, 2]. In order to avoid the vibration of the rolling

mill, a lot of research work has been carried out in recent

years [3–7]. Based on the rolling force model of Sims,

Wang and Yan established a dynamic vertical vibration

model considering entrance thickness deviation [8]. Liu

et al. [9] established a hysteresis nonlinear vertical vibra-

tion model of the rolling mill considering the hysteresis

nonlinear effect of roll elastoplastic deformation, and the

stability of the hysteresis nonlinear system was analyzed by

using the singularity stability theory. Liu et al. [10]

established a torsional–horizontal coupling vibration

model, in which the static bifurcation characteristics were

studied by using the singularity theory, and the branching

conditions and stability were studied by using the Hopf

bifurcation theorem. The coupled vibration of the rolling

mill among the vertical, horizontal and torsional directions

is also one of the research hotspots. Lu et al. [11] studied

the effect of various rolling conditions on the stability of

the continuous rolling mill. Zeng et al. [12] analyzed the

stability of the system with different process parameters

and structural parameters.

The friction between the strip and the roll in the

deformation area has a great influence on the vibration of

the rolling mill. Li et al. [13] proposed a friction coefficient

model for rolling force calculation, and a new solution

method for rolling force calculation formula was estab-

lished, with its accuracy higher than that of the traditional

Sims model. Hou et al. [14] studied the vertical–horizontal

coupled vibration characteristics by considering the friction

as the dry friction model. A nonlinear friction model was

used in vertical–torsional–horizontal coupling dynamic

model by Zeng et al. [15], and the stability region was

analyzed by using the Hopf bifurcation algebra criterion.

Liu et al. [16] used the regression index function model of

friction coefficient in the dynamic rolling process model,

and a vibration model with unsteady lubrication was

established. Wang et al. [17] established a multi-coupling

model of interface membrane constraints and quantitatively

analyzed the effects of some main parameters on the crit-

ical velocity and amplitude of vertical vibration.

In this paper, the mixed lubrication friction model was

used to replace the dry friction model in the Karman dif-

ferential equation, and the film thickness calculated by the

average flow Reynolds formula was brought into the cal-

culation to obtain a new dynamic rolling force expression.

Considering the impact of roll vibration displacement and

Vertical–horizontal coupling nonlinear vibration characteristics… 575

123



film thickness on dynamic rolling force, a vertical–hori-

zontal coupled vibration model was established and solved

by using the multi-scale method. Finally, the actual rolling

mill parameters were used for numerical simulation and

related dynamic analysis.

2 Rolling mill system modeling

2.1 Unsteady lubrication model under roll
vibration

Considering the influence of lubrication friction, the strip

interface is divided into an entrance area, a deformation

area and an exit area. The schematic diagram is shown in

Fig. 1. The pressure reaches a maximum at the junction of

the entrance area and the deformation area due to wedge

effect.

The expression of the emulsion pressure distribution in

the entrance area can be determined by the average flow

Reynolds equation as follows [18].

o

ox

z3q
12l

op

ox

 !
¼ � ue þ vR

2

ozq
ox

þ ozq
ot

ð1Þ

When the roll vibrates, the horizontal speed component

of the roll can be expressed as

v0R ¼ vR þ _xc ð2Þ

It is assumed that zq can be written as a function of

position x in the entrance region.

zq ¼ zc þ h x� xeð Þ ð3Þ

Integrating Eq. (1), the pressure gradient can be

obtained as

z3q
12l

op

ox
¼ _zq � hu
� �

x� xeð Þ þ 1

2
_h x� xeð Þ2þ f tð Þ ð4Þ

where u ¼ ueþvRþ _xc
2

; and f(t) is an arbitrary time function.

Ignoring pressure gradients in the entrance area, that is
op
ox ¼ 0; f tð Þ ¼ 0 can be obtained.

As a result of large pressure at the entrance area, it is

assumed that l changes with the pressure. The Barus vis-

cosity formula [19] can be used as follows

l ¼ l0e
cp ð5Þ

In order to simplify the analysis, supposing / ¼ e�cp,

according to Eq. (5), the deformation of / can be written as

/ ¼ 1þ 12cl0
h

u� _zc
h

� �
� 1

zq
þ zc
2z2q

 !
� 6cl0 _hCR ð6Þ

where CR ¼ R2hC1

zcC2
þ R2hC1

C2

ffiffiffiffiffiffi
aC2

p ln Rh�
ffiffiffiffiffiffi
RC2

p

Rhþ
ffiffiffiffiffiffi
RC2

p
� �

; C1 ¼ 2Rh2 � zc;

andC2 ¼ Rh2 � 2zc:

The boundary conditions at the edge of the entrance area

are x = 0 and z = zc, and the Tresca yield criterion is used

to calculate p.

p ¼ r� s ð7Þ

Substituting Eq. (7) into Eq. (6), the following equation

can be obtained

1� e�c r�sð Þ ¼ 6cl0 _hCR þ 6cl0
zch

u� _zc
h

� �
ð8Þ

The change rate of the entrance film thickness can be

calculated from Eq. (8)

_zc ¼ huþ h2zc _hCR � 1� e�c r�sð Þ

6cl0
h2zc ð9Þ

The change rate of the entrance angle is ignored because

the change is small, that is _h ¼ 0, and then, the differential

equation of the film thickness in the case of vibration is

obtained.

_zc ¼ hu� 1� e�c r�sð Þ

6cl0
h2zc ð10Þ

2.2 Nonlinear dynamic rolling force model

2.2.1 Parameters of deformation zone when roll vibrates

Figure 2 shows the diagram of a rolling process model.

Considering that the shape of the strip in the deformation

area is similar to a parabola [20], the strip thickness y(x) at

any position x in the deformation area can be expressed as

yðxÞ ¼ yd þ 2yc þ
x� xcð Þ2

R
ð11Þ

The distance from the centers of two rolls to the

entrance of the deformation area can be obtained from

Eq. (11).

Deformation
area Entrance areaExit area

Lubrication
oil

vR

O l

ueyd

y

zq

x
y

xc

yc

Fig. 1 Lubrication friction schematic of rolling interface
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xe ¼ xc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R ye � yd � 2ycð Þ

p
ð12Þ

The rolling speed of the strip at the neutral point can be

obtained according to the metal second flow correction

equation (Eq. (13)) proposed by Hu and Ehmann [21] and

it is equal to the roll speed.

uðxÞyðxÞ ¼ ueye � 2 xe � xð Þ _yc þ ye � yðxÞð Þ _xc ð13Þ

uðxÞ ¼ ueye � 2 xe � xnð Þ _yc þ ye � yðxÞð Þ _xc
yðxÞ ¼ vR ð14Þ

The neutral point coordinates can be obtained from

Eq. (14).

xn ¼ xc þ
_ycR

vR þ _xc
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CR

vR þ _xc
þ _ycR

vR þ _xc

� �2
s

ð15Þ

where

C ¼ ueye � 2ðxe � xcÞ _yc þ ye � y0d
� �

_xc � vRy
0
d

and y0d ¼ yd þ 2yc.

2.2.2 Determination of nonlinear dynamic rolling force

According to the slab analysis method, an arbitrary

microelement in the deformation area is shown in Fig. 3.

According to the Karman’s theory of force balance, a

differential equation of p and y(x) can be obtained

pþ rð Þ dyðxÞ
dx

þ yðxÞ dr
dx

� 2ss ¼ 0 ð16Þ

when x\ xn, take the negative and when xn\ x, take the

positive.

Substituting Eq. (7) into Eq. (16) and simplifying it, the

following equations could be obtained

r
dyðxÞ
dx

� yðxÞ dp
dx

� 2ss ¼ 0 ð17Þ

ss ¼ ksa þ 1� kð Þsb ð18Þ

sa of the rough contact surface boundary can be calcu-

lated by adhesive friction theory.

sa ¼
r
2

ð19Þ

sb can be calculated according to Eq. (20).

sb ¼ l0
uðxÞ � vR

z
ð20Þ

Substituting Eqs. (19) and (20) into Eq. (17) and

arranging them, following equation can be obtained:

k r
dyðxÞ
dx

� yðxÞ dpa
dx

� r

� �
þ

1� kð Þ r
dyðxÞ
dx

� yðxÞ dpb
dx

� 2l0
uðxÞ � vR

z

� �
¼ 0

ð21Þ

Since both pa and pb are greater than zero under the

mixed lubrication friction state, both parts must be equal to

zero at the same time if the equation is true.

r
dyðxÞ
dx

� yðxÞ dpa
dx

� r ¼ 0

r
dyðxÞ
dx

� yðxÞ dpb
dx

� 2l0
uðxÞ � vR

z
¼ 0

pðxÞ ¼ kpa þ 1� kð Þpb

8>>><
>>>:

ð22Þ

where p(x) is a function of p with respect to x.
Then, the rolling force in the vertical and horizontal

directions can be calculated by Eq. (23).

o

o

O x

y
xc
yc

xc
yc

yey dy 
d

y(
x )

s

Fig. 2 Model of rolling process

dx
σx σx+dσx

y(
x)

y (
x )
+

dy
(x

)

px

τx

τx

px(a)

dx
σx σx+dσx

y(
x)

y (
x)

+d
y(
x )

px
τx

τx
px(b)

Fig. 3 Stress diagram of strip. a Forward slide zone; b backward slide

zone. rx Normal stress
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Fx ¼
R xe

xd
p xð Þ tan hdx�

R xe
xd
ssdx

Fy ¼
R xe

xd
p xð Þdx�

R xe
xd
ss tan hdx

(
ð23Þ

where tan h ¼ x�xcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2� x�xcð Þ2

p ; because x� xcð Þ\\R,

tan h ¼ x�xc
R .

Fx and Fy in the vertical and horizontal directions can be

written as

Fx ¼ kr �2xn

ffiffiffiffiffi
R

y0d

s
tan�1 xnffiffiffiffiffiffiffiffi

Ry0d
p

 !
� R ln

x2n þ Ry0d
Ry0d

� �
þ

"

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye � y0d

y0d

s
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye � y0d

y0d

s !
� R

2
ln

ye
y0d

� �#
þ

2E 1� kð Þ
R

u2ey
2
eR

3

2 Ry0d þ x2n
� �� u2ey

2
eR

2

4y0d
� u2ey

2
eR

2

4
þ

"

2v2Rffiffiffiffiffiffiffiffi
Ry0d

p tan�1 xnffiffiffiffiffiffiffiffi
Ry0d

p
 !

� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye � y0d

y0d

s ! !#
þ

kr
2

xe � 2xnð Þ þ E 1� kð Þv2R 2xn � xeð Þ þ u2ey
2
eE 1� kð ÞZ xe

xn

R2

Ry0d � x2
� �2 dx�

Z xn

xd

R2

Ry0d � x2
� �2 dx

" #

ð24Þ

Fy ¼ kr �2xn

ffiffiffiffiffi
R

y0d

s
tan�1 xnffiffiffiffiffiffiffiffi

Ry0d
p

 !
þ R ln

x2n þ Ry0d
Ry0d

� �
þ

"

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye � y0d

y0d

s
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye � y0d

y0d

s !
� R

2
ln

ye
y0d

� �#
þ

r xe ln
ye
y0d

� �
� 2xe þ 2

ffiffiffiffiffiffiffiffi
Ry0d

q
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye � y0d

y0d

s !" #
þ

1� kð Þr �2xe þ 2

ffiffiffiffiffiffiffiffi
Ry0d

q
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye � y0d

y0d

s !" #
þ

1� kð ÞEv2R

ffiffiffiffiffi
R

y0d

s
2xn

ffiffiffiffiffi
R

y0d

s
tan�1 xn

Ry0d

� �
�

"

xe tan
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye � y0d

y0d

s !
�

ffiffiffiffiffiffiffiffi
Ry0d

q
ln

x2n þ Ry0d
Ry0d

� �
þ

ffiffiffiffiffiffiffiffi
Ry0d

p
2

ln
ye
y0d

� �#
þ 1� kð ÞEu2ey2e

Z xe

xd

Z x

xd

� 1

yðxÞ3
dxdxþ

kr
2R

x2e
2
� x2n

� �
þ E 1� kð Þ

R
v2R x2n �

x2e
2

� �	 

þ

u2ey
2
eR

2

2

2

Ry0d þ x2n
� 1

Rye
� 1

Ry0d

� �
ð25Þ

where E ¼ 2l0zc
ueþvR

, xd = xc; when xd\ x\ xn, take the neg-

ative and when xn\ x\ xe, take the positive.

2.3 Vertical–horizontal coupling vibration model
of rolling mill

Supposing that the point (xc0 yc0) is the equilibrium point

when the roll vibrates, the steady vibration speeds of roll

are _xc ¼ 0 and _yc ¼ 0. Fx and Fy are Taylor-expanded at the

equilibrium point (xc0, yc0, 0, 0, zc).

Fx ¼ F0
x þ DFx

Fy ¼ F0
y þ DFy

�
ð26Þ

Taking the first and third terms of Taylor expansion of

DFx and DFy, the followings could be obtained

DFx xc; yc; _xc; _yc; zcð Þ ¼ a1xc þ a2yc þ a3 _xc þ a4 _ycþ
a5zc þ a6x

3
c þ a7y

3
c

DFy xc; yc; _xc; _yc; zcð Þ ¼ b1xc þ b2yc þ b3 _xc þ b4 _ycþ
b5zc þ b6x

3
c þ b7y

3
c

8>><
>>:

ð27Þ

Since the structure of the rolling mill is symmetrical, the

four-degrees-of-freedom dynamic equation is reduced to

two-degrees-of-freedom.

m1 €xc þ c1 _xc þ k1 xc þ xc0ð Þ þ Fx ¼ P1

m1 €yc þ c2 _yc þ k2 yc þ yc0ð Þ þ Fy ¼ P2

�
ð28Þ

There are €xc ¼ €yc ¼ 0, _xc ¼ _yc ¼ 0, xc ¼ yc ¼ 0,

and zq ¼ zc in steady state. After these conditions are

brought into Eq. (28), the following equations can be

obtained

k1xc0 þ Fx xc0; 2yc0; 0; 0; 2zcð Þ ¼ 0

k2yc0 þ Fy xc0; 2yc0; 0; 0; 2zcð Þ ¼ 0

�
ð29Þ

Substituting Eq. (29) into Eq. (28) and eliminating

stable term, the equations can be simplified as

m1 €xc þ c1 _xc þ k1xc þ DFx ¼ P1

m1 €yc þ c2 _yc þ k2yc þ DFy ¼ P2

�
ð30Þ

Substituting Eq. (27) into Eq. (30), and dimensionless

coefficients of the equations, a1 ¼ c1þa3
m1

; a2 ¼ c2þb4
m1

;x2
1 ¼

k1þa1
m1

;x2
2 ¼ k2þb2

m1
; b1 ¼ a2

m1
; b2 ¼ b1

m1
; q1 ¼ a4

m1
; q2 ¼ b3

m1
; 11 ¼

a5
m1
; 12 ¼ b5

m1
; n1 ¼ a6

m1
; n2 ¼ b6

m1
; g1 ¼ a7

m1
; g2 ¼ b7

m1
;DP1 ¼ P1

m1
;

DP2 ¼ P2

m1
, and combining these dimensionless equations

with Eq. (10), the differential equations related to film

thickness can be obtained as follows:
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€xc þ a1 _xc þ x2
1xc þ b1yc þ q1 _yc þ 11zc þ n1x

3
c þ g1y

3
c ¼ DP1

€yc þ a2 _yc þ x2
2yc þ b2xc þ q2 _xc þ 12zc þ n2x

3
c þ g2y

3
c ¼ DP2

_zc þ uzc ¼ huþ h
2
_xc

8><
>:

ð31Þ

where u ¼ h2 1�e�c r�sð Þð Þ
6cl0

.

3 Model solving

3.1 Solving coupled vibration models

The external disturbance of the rolling mill is set as

DP1 = F1cos(X1t) and DP2 = F2cos(X2t). Assuming that

the vertical–horizontal coupled vibration system is a weak

nonlinear system, the nonlinear terms are taken as a small

parameter e, and then Eq. (31) can be written as the fol-

lowing equations.

€xc þ x2
1xc ¼ �e½a1 _xc þ q1 _yc þ b1yc þ 11zcþ
n1x

3
c þ g1y

3
c � F1 cos X1tð Þ�

€yc þ x2
2yc ¼ �e½a2 _yc þ q2 _xc þ b2xc þ 12zcþ
n2x

3
c þ g2y

3
c � F2 cos X2tð Þ�

_zc ¼ �e � h
2
xc þ _zc þ hu

� �

8>>>>>><
>>>>>>:

ð32Þ

Multiple-scale method is a method of introducing dif-

ferent time scales.

Tn ¼ ent; n ¼ 0; 1; 2:::
d

dt
¼ D0 þ eD1

d2

dt2
¼ D2

0 þ 2eD0D1 þ e2 D2
1 þ 2D0D1

� �
þ :::

8>>><
>>>:

ð33Þ

where Dn is
o
oTn

, n = 0, 1;

The solution of Eq. (31) can be set as

xc ¼ x0 T0; T1ð Þ þ ex1 T0; T1ð Þ þ :::
yc ¼ y0 T0; T1ð Þ þ ey1 T0; T1ð Þ þ :::
zc ¼ z0 T0; T1ð Þ þ ez1 T0; T1ð Þ þ :::

8<
: ð34Þ

Substituting Eq. (34) into Eq. (32), taking the term with

the same power exponent on both sides of the equal sign,

and sorting them out, the following equations are obtained.

D2
0x0 þ x2

1x0 ¼ 0

D2
0y0 þ x2

2y0 ¼ 0

uz0 ¼ 0

8<
: ð35Þ

D2
0x1 þ x2

1x1 ¼ �2D0D1x0 � a1D0x0 � q1D0y0 � b1y0 � 11z0�
n1x

3
0 � g1y

3
0 þ F1 cosðX1tÞ

D2
0y1 þ x2

2y1 ¼ �2D0D1y0 � a2D0y0 � q2D0x0 � b2x0 � 12z0�
n2x

3
0 � g2y

3
0 þ F2 cosðX2tÞ

uz1 ¼ � h
2
D0x0 þ D0z0 þ hu

8>>>>><
>>>>>:

ð36Þ

It can be seen that z0 = 0. The solution of Eq. (35) is set

as the following equation

x0 ¼ A T1ð Þ exp ix1T0ð Þ þ A exp �ix1T0ð Þ
y0 ¼ B T1ð Þ exp ix2T0ð Þ þ B exp �ix2T0ð Þ

�
ð37Þ

Substituting Eq. (37) into Eq. (36), then, Eq. (36) can be

rewritten as

3.2 Main resonance solution

Assuming that X1 = x1 ? er1, X2 = x2 ? er2, the fol-

lowing equations can be obtained by eliminating the long-

term terms

�2ix1D1A� ix1a1A� 3n1A2Aþ 1

2
F1 exp ir1T1ð Þ ¼ 0

�2ix2D1B� ix2a2B� 3g2B
2Bþ 1

2
F2 exp ir2T1ð Þ ¼ 0

8><
>:

ð39Þ

Amplitudes A and B in Eq. (37) are expressed in polar

coordinates.

D2
0x1 þ x2

1x1 ¼
1

2
F1 exp iX1T0ð Þ þ �2ix1D1A� ix1a1A� 3n1A

2A
� �

exp ix1T0ð Þ

� b1Bþ ix2q1Bþ 3g1B
2B

� �
exp ix2T0ð Þ � n1A

3 exp 3ix1T0ð Þ � g1B
3 exp 3ix2T0ð Þ þ cc

D2
0y1 þ x2

2y1 ¼
1

2
F2 exp iX2T0ð Þ þ �2ix2D1B� ix2a2B� 3g2B

2B
� �

exp ix2T0ð Þ

� b2Aþ ix1q2Aþ 3n1A
2A

� �
exp ix1T0ð Þ � n2A

3 exp 3ix1T0ð Þ � g2B
3 exp 3ix2T0ð Þ þ cc

z1 ¼
1

u
� h
2
D0x0 þ D0z0 þ hu

� �

8>>>>>>>>>>><
>>>>>>>>>>>:

ð38Þ
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A ¼ 1

2
a T1ð Þ exp iu1 T1ð Þ½ �

B ¼ 1

2
b T1ð Þ exp iu2 T1ð Þ½ �

8><
>: ð40Þ

Substituting Eq. (40) into Eq. (39), separating the

imaginary and real parts, and setting w1 = r1S1-u1,

w2 = r2S1-u2, it can be obtained that

_a ¼ � 1

2
a1aþ

F1

2x1

sinw1

a _w1 ¼ ar1 �
3

8x1

n1a
3 þ F1

2x1

cosw1

8><
>: ð41Þ

_b ¼ � 1

2
a2bþ

F2

2x2

sinw2

b _w2 ¼ br2 �
3

8x2

g2b
3 þ F2

2x2

sinw2

8><
>: ð42Þ

When the system is in steady response, _a ¼ _b ¼ 0, and
_w1 ¼ _w2 ¼ 0, combining Eqs. (41) and (42) to eliminate w1

and w2. The primary resonance amplitude–frequency

equation of the system can be obtained as

9

16
n21a

4 � 3x1n1a
2r1 þ x2

1 a21 þ 4r21
� �

� F2
1

a2
¼ 0

9

16
g22b

4 � 3x2g2b
2r2 þ x2

2 a22 þ 4r22
� �

� F2
2

b2
¼ 0

8><
>: ð43Þ

4 Numerical and analysis

The actual parameters of a 1780 rolling mill are used in

numerical simulation. The structure parameters and emul-

sion parameters of the rolling mill are shown in Table 1,

and the dynamic rolling force parameters are shown in

Table 2.

4.1 Time-domain characteristics

Figure 4 shows the time-domain curve, phase diagram and

Poincaré section of the roll in the vertical direction. It can

be seen that the vertical displacement quickly stabilizes,

and the amplitude of the vertical displacement fluctuates

stably. The phase diagram is closed, and the Poincaré

section is a point, which indicates that the system is a

single period motion at this time.

Figure 5 shows the time-domain curve, phase diagram

and Poincaré section of the roll in the horizontal direction.

It can be seen that the horizontal displacement response

quickly stabilizes, but the amplitude fluctuates within a

small range (10–17 m). The phase diagram is a closed

curve, and the Poincaré section is a point, which indicates

that the system is also a single period motion.

Figure 6a shows a three-dimensional view of the change

in the film thickness with time and the dimensionless

deformation area at the same time. It can be seen that the

film thickness gradually decreases and reaches a minimum

value at the exit position during the rolling process. Fig-

ure 6b shows the time-domain curve at the location of the

boundary between the entrance area and the deformation

area (X = 0). The initial film thickness fluctuates steadily

around a certain value that is determined by the rolling

process parameters and the emulsion parameters together;

thus, the effect of the lubricant film on the quality of the

strip can be reduced by changing the process parameters or

using different emulsions.

Figure 7 shows the time-domain response of roll’s

horizontal displacement, vertical displacement and film

thickness when the frequency of the external disturbance

force is equal to the natural frequency of the system. It can

be seen that the vibration displacement of the roll is larger

than those in Figs. 4a, 5a and 6b, which will cause periodic

chatter mark and reduce the quality of the product.

Therefore, reasonable parameters should be selected to

prevent the system from entering a bad state.

4.2 Amplitude–frequency characteristics

The influence of the contact ratio between the interface, the

different parameters in the nonlinear rolling force and the

change in the amplitude of the external excitation on the

amplitude–frequency characteristics of the system was

studied based on the equations already obtained.

Table 1 Structure parameters of 1780 rolling mill

m/kg y0/mm y1/mm R/mm vR/(m s-1) r/MPa k1/(N m-1) k2/(N m-1) c1/(N s m-1) c2/(N s m-1) l0/(Pa s) c/Pa-1

1.44 9 105 14.1 8.2 420 4 150.6 2.01 9 1010 1.8 9 1011 2 9 106 8.65 9 105 0.42 2 9 10–8

Table 2 Dynamic rolling force parameters of 1780 rolling mill

a1 a2 a3 a4 a5 a6 a7 b1 b2 b3 b4 b5 b6 b7

0 3.14 9 1010 - 2.52 9 107 4.75 9 108 - 29.29 0 4.98 9 1015 0 3.48 9 109 - 8.04 9 106 1.51 9 105 0.91 0 1.87 9 1014
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Figure 8 shows the amplitude–frequency curves for

different contact ratios. It can be seen that as k increases,

the proportion of fluid friction decreases, the primary

resonance amplitude value decreases and the jumping

phenomenon is more obvious. Therefore, the appropriate

rolling process parameters and emulsion can reduce the

primary resonance amplitude value of the system and the

jumping phenomenon.

(a)

(c)

(b)

µ

µ

µ
µ

)

)

)

)

Fig. 4 Vertical time-domain curve (a), phase diagram (b) and
Poincaré section (c)

(a)

(c)

(b)

µ
)

)

µ
)

)

µ

µ

Fig. 5 Horizontal time-domain curve (a), phase diagram (b) and
Poincaré section (c)
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Figures 9–13 show the primary resonance amplitude–

frequency characteristics of the rolling mill with different

vertical direction parameters.

Figures 9 and 10 show the amplitude–frequency char-

acteristic curves in the vertical direction under the changes

of parameter b2 and b4, respectively. The primary

resonance amplitude can be seen in the picture will

decrease and the occurrence of the jumping phenomenon

will be curbed as parameters b2 and b4 increase.

Figure 11 shows the amplitude–frequency diagram of

primary resonance when the coefficients of different non-

linear stiffness terms change. It can be seen that the

(a) (b)

µ

m

s

Fig. 6 Lubricant film thickness change. a Film thickness in deformation area; b film thickness curve

Fig. 7 Time-domain curve under instability. a Horizontal displacement; b vertical displacement; c film thickness
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Fig. 8 Primary resonance at different contact ratios. a b7 = 1.87 9 1014; b b7 = 1.87 9 1016

Fig. 9 Primary resonance amplitude–frequency curve of different b2
in vertical direction

Fig. 10 Primary resonance amplitude–frequency curve of different b4
in vertical direction

Fig. 11 Primary resonance amplitude–frequency curve of different b7
in vertical direction

Fig. 12 Primary resonance amplitude–frequency curve of different

damping c2 in vertical direction
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parameter b7 is related to the jumping phenomenon of the

system.

Figure 12 shows the primary resonance amplitude–fre-

quency of different damping in the vertical direction. It can

be seen that the amplitude of the primary resonance of the

rolling mill will decrease as damping c2 increases.

Figure 13 shows a primary resonance amplitude–fre-

quency diagram with different external disturbances F2 in

vertical direction. An increase in the amplitude of the

external disturbance force F2 causes an increase in the

maximum amplitude of the primary resonance in the ver-

tical direction in Fig. 13.

Figures 14–16 show the amplitude–frequency charac-

teristic curves of the rolling mill under different horizontal

direction parameters. It can be seen that there is no jumping

phenomenon in these Figs. 14–16. The change of the

parameters only affects the magnitude of the primary res-

onance amplitude value.

5 Conclusions

1. The dynamic expression of the lubricant film is derived

when the work roll vibrates. A dynamic rolling force

model under mixed lubrication friction conditions is

established, and a vertical-horizontal coupled vibration

dynamic model of the rolling system is established.

2. The amplitude–frequency characteristics of the system

of different parameters are obtained. In the y (vertical)

direction, the nonlinear term parameter b7 will cause

the system to jump, increasing camping term c2 can

effectively reduce the amplitude of the primary

resonance and increasing the magnitude of external

disturbance F2 can increase the primary resonance

amplitude value. In the x (horizontal) direction,

Fig. 13 Primary resonance amplitude–frequency curve of different

external disturbances F2 in vertical direction

Fig. 14 Primary resonance amplitude–frequency curve of different

external disturbances F1 in horizontal direction

Fig. 16 Primary resonance amplitude–frequency curve of different a3
in horizontal direction

u

Fig. 15 Primary resonance amplitude–frequency curve of different a1
in horizontal direction
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parameters only affect the primary resonance ampli-

tude value, but will not affect the system’s jumping

phenomenon. Therefore, the appropriate system

parameters are selected to reduce the rolling mill

vibration.

3. The interface contact ratio affects the primary reso-

nance amplitude–frequency characteristic curve of the

system. The larger the proportion of hydrodynamic

lubrication, the larger the primary resonance amplitude

value, and the stronger the jumping phenomenon.

Therefore, the primary resonance amplitude value of

the system can be reduced by selecting appropriate

rolling process parameters or emulsions.
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