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Abstract
In cold rolling process, the flatness actuator efficiency is the basis of the flatness control system. The precision of flatness is

determined by the setpoints of flatness actuators. In the presence of modeling uncertainties and unmodeled nonlinearities in

rolling process, it is difficult to obtain efficiency factors and setpoints of flatness actuators accurately. Based on the

production data, a method to obtain the flatness actuator efficiency by using partial least square (PLS) combined with

orthogonal signal correction (OSC) was adopted. Compared with the experiential method and principal component analysis

method, the OSC–PLS method shows superior performance in obtaining the flatness actuator efficiency factors at the last

stand. Furthermore, kernel partial least square combined with artificial neural network (KPLS–ANN) was proposed to

predict the flatness values and optimize the setpoints of flatness actuators. Compared with KPLS or ANN, KPLS–ANN

shows the best predictive ability. The root mean square error, mean absolute error and mean absolute percentage error are

0.51 IU, 0.34 IU and 0.09, respectively. After the setpoints of flatness actuators are optimized, KPLS–ANN shows better

optimization ability. The result in an average flatness standard deviation is 2.22 IU, while the unoptimized value is 4.10 IU.

Keywords Cold rolling � Flatness actuator efficiency � Data-driven prediction � Partial least square � Flatness control
optimization

1 Introduction

Flatness is an important geometrical feature of cold-rolled

strips. Many severe defects and quality problems can

appear [1, 2]. Strips with poor flatness are more likely to be

broken with quality issues during later manufacturing

phases.

In the flatness control system, the flatness effect of force

applied by any actuators can be quantified to be the effi-

ciency factors of flatness actuators. Based on the efficiency

factors of flatness actuators, the adjustment values can be

calculated, and the flatness deviation can be eliminated.

Therefore, the flatness actuator efficiency is the basis of the

flatness closed-loop control. There are two methods used to

obtain the flatness actuator efficiency at present. One is

from rolling experiments, and the other one is by finite

element simulation [3]. It should be emphasized that the

rolling experiments have suffered from some limits, since

they can only test a few rolling conditions and the cost is

high. The finite element method (FEM) has been applied in

a variety of metal forming processes. The 3D elastic–

plastic FEM was used to simulate a cold strip rolling

process in a 6-high continuously variable crown (CVC)

rolling mill to study the effect of the flatness actuator on

the strip crown and edge [4]. According to Wang et al. [5],

the efficiency factors of flatness actuators for a universal

crown control (UCM) mill were obtained using an elastic–

plastic FEM. However, the process of finite element sim-

ulation is complicated and the calculation time is long,

which leads to difficulties of analysis and calculation in

real time. In order to overcome these problems, new

methods and more attempts should be proposed to obtain

the efficiency factor of flatness actuators.

In the past, in order to achieve the setpoints of flatness

actuators, static load distribution or dynamic load
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distribution was used to optimize the rolling schedule. At

present, two types of flatness closed-loop control methods

are used: One is the pattern recognition method, and the

other is the multivariable optimization method [6]. With

the development of flatness control technology, the

advanced multivariable control techniques, such as singular

value decomposition and model predictive control, have

been successfully applied in commercially available real-

time flatness control systems [2, 7]. These approaches

provide new potentials to improve closed-loop control

performance and enhance stability. Even though all the

above methods are accepted and widely used, certain

interests are focused on the incorporation of improved

nonlinear techniques applicable in the flatness control

problem. To accommodate the presence of modeling

uncertainties and unmodeled nonlinearities, the adaptive

techniques and online parameter identification coupled

with self-tuning regulation are urgently needed. The data-

driven model, due to its nonlinearity and capability of

adaptive information processing, will be widely used to

improve the precision of the flatness control [8, 9].

In the flatness control system, the conventional mathe-

matical model and self-learning are used to control flatness

based on the single parameter or stand. The data-driven

method as the multivariable optimization method is an

efficient alternative. The necessary process information can

be extracted directly from huge amounts of the recorded

process data in this method [10, 11]. The multivariate

regression algorithms, such as principal component anal-

ysis (PCA), partial least square (PLS), kernel partial least

square (KPLS), and their modified algorithms, can effec-

tively establish models with the high-dimension and cou-

pling data [12]. In PCA, all input variables are given the

same weight in the process of normalization. The rela-

tionship between input and output variables is not consid-

ered. To solve this problem, the PLS algorithm is proposed

as a powerful method that can detect the input variables

mostly related to the output variables [13]. By orthogonal

transformation, PLS can preserve a set of linearly irrelevant

principal components and establish a linear model. How-

ever, the process data are usually high-dimensional and

contain noise. To reduce the negative effect of variable

coupling and noise, OSC (orthogonal signal correction)–

PLS) that combines OSC and PLS together is proposed

[14, 15]. KPLS is an effective algorithm that can model

collinear and nonlinear data. The basic ideas of KPLS are

to map the data points into a feature space with a nonlinear

map function and carry out a linear PLS in the feature

space [16]. Artificial neural network (ANN) is a family of

statistical learning algorithms inspired by biological neural

networks, which is used to estimate any nonlinear functions

without the need for prior transformations [17, 18]. The

prediction error of the KPLS model with indeterminate

parameters can be compensated by the ANN algorithm.

KPLS combined with ANN is established to predict the

flatness values. Furthermore, a coordination optimization

algorithm between the flatness and the parameters of stands

is presented based on the KPLS–ANN model. The opti-

mization process can effectively modify the setting

parameters of work roll bending (WRB), intermediate roll

bending (IRB) and roll tilting (RT) of all actuators based on

the actual values in rolling process and reduce the flatness.

The optimization model has the excellent flatness control

capability, and it can meet the demands of online

application.

In this paper, the data are collected from 1450 mm

UCM cold rolling production lines. By OSC–PLS, the

flatness actuator efficiency is obtained. Meanwhile, the

KPLS–ANN flatness prediction model is established, and

the flatness is optimized based on the model.

2 Structure of 6-high UCM cold mill

The tandem cold rolling line consists of five UCM cold

mills, and each of them influences the flatness. The mills

are composed of the back-up rolls, the intermediate rolls

and the work rolls. In cold rolling process, the flatness

actuators mainly include a WRB device, an IRB device, a

RT device, and an intermediate roll shifting (IRS) device.

The cold rolling mill can change the flatness and correct

the flatness defects by using the flatness actuators.

Here is a brief description of WRB, IRB, RT, and IRS:

(1) WRB can make the work roll crown change rapidly

within a certain range by acting bending force on roll

necks. (2) IRB is similar to the WRB, but the difference is

that the IRB acts on the intermediate roll. (3) RT increases

the rolling force on one side of the strip while reduces the

rolling force on the other side. (4) IRS eliminates the

contact between the work roll and the intermediate roll

outside strip width, and thus, the flatness control ability is

obviously enhanced.

WRB, IRB, and RT can be adjusted offline or in the

closed-loop control [2]. In fact, the actuators in the last

stand can influence the flatness directly. This paper

explores the efficiency factors of WRB, IRB and RT in the

last stand. The flatness control will be optimized with the

consideration of WRB, IRB and RT in all stands.

In the flatness closed-loop control system, the flatness

actuator efficiency can be used to analyze and calculate the

flatness from the view of measured plate stress distribution.

Therefore, it can realize the comprehensive utilization of

flatness measurement information and improve the ability

of flatness control. The efficiency factor is defined as the

change of flatness caused by unit actuator adjustment,

which can be expressed as
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Eij ¼ DYið1=DXjÞ ð1Þ

where Eij is the element of the efficiency factor matrix E;

DXj is the adjustment of the jth actuator; and DYi is the

change of flatness caused by actuators adjustment in the ith

flatness measured position.

3 Flatness actuator efficiency achievement

3.1 Flatness actuator efficiency obtained
by OSC–PLS

The data of the cold rolling process have large noise and

characteristics of multivariable coupling. The central idea

of PCA is to reduce the number of dimensions of the data

while preserving as many as possible of the variations in

the original dataset. Compared with PCA, PLS can not only

reduce the dimensionality of high-dimensional data and

eliminate noise, but also analyze the relationship between

input variables and output variables. OSC is a method of

processing data that can remove the orthogonal part of the

input variable and the output variable. For the purpose of

reducing the number of required latent variables and the

random disturbance in the data, this method is used in Refs.

[19–21]. In order to reduce the effect of variable coupling,

the OSC–PLS that combines OSC and PLS was adopted in

this paper.

The main steps to obtain the flatness actuator efficiency

are as follows.

Step 1 Preprocess the data, including time synchro-

nization process, the incremental computation of flatness

and parameters in unit time, and data standardization.

Step 2 Process the data using OSC as outlined in

Table 1.

Step 3 Establish the PLS model with the flatness incre-

ment and actuator value increment.

Step 4 Obtain the efficiency factor matrix from the

OSC–PLS model.

The parameter increments are the input variable matrix

X (n 9 p), and the flatness increments are the output

variable matrix Y (n 9 q).

In order to summarize the variable information of X and

Y, the PLS algorithm extracts the principal components

t and u from X and Y. Therefore, the PLS model estab-

lished with t and u can reduce the effect of errors and

variable coupling. A linear model of X and Y can be

indirectly established with the PLS algorithm [22].

According to Kim et al. [15] and Sampson et al. [23], a

PLS model can be established. The steps of PLS algorithm

are shown in Table 2. The OSC–PLS model of flatness is

given as follows:

Y ¼ XBþ C ð2Þ

B ¼ XTUðTTXXTUÞ�1TTY ð3Þ

where T (n 9 h) is the matrix composed of p principal

components t; U (n 9 h) is the matrix composed of

q principal components u; C (n 9 q) is the residual matrix;

and h is the number of the principal components. X has

been processed with OSC.

The PCA algorithm is shown in Table 2. According to

Gertler and Cao [24], X can be described by PCA as

follows:

X ¼ T1L
T ð4Þ

and thus, the PCA model of flatness can be established as

Y ¼ XB2 þ C2 ð5Þ

B2 ¼ LT
� ��1ðTT

1T1Þ�1TT
1Y ð6Þ

where T1 (n 9 h1) is the score matrix of X; L (p 9 h1) is

the loading matrix; and C2 (n 9 q) is the residual matrix.

Since the number of the principal components has a

great influence on the results of the PLS model, the fivefold

cross validation method has been used to determine the

Table 1 Step of OSC algorithm

Step OSC algorithm

(1) Obtain first principal component told of X with PCA

(2) Orthogonalize told to Y: tnew ¼ ðI � YðYTYÞ�1YTÞtold
(3) Calculate PLS weight vector w that satisfies Xw ¼ tnew

(4) Calculate a new score vector t from X and w: t ¼ Xw

(5) If t� toldk k= tk k\10�10 or steps 2–4 have repeated more than 20 times, continue to step 6; else, set told ¼ t and return to step 2

(6) Compute a loading vector p: p ¼ XTt=tTt

(7) Subtract orthogonal part of X and Y: XOSC ¼ X � tpT

(8) For more OSC components, set X ¼ XOSC, return step 2 and get a new matrix XOSC

I An (n 9 n) identity matrix
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number of the principal components. As shown in Fig. 1,

prediction error sum of squares (PRESS) of the different

principal components is calculated by fivefold cross vali-

dation, and the number of the principal components is the

best when the PRESS is minimum.

According to the definition, the efficiency factors are

actually the linear regression coefficients of the actuator

value changes and the flatness change.

Get flatness actuator increment matrix X2 from cold

rolling process parameter increment matrix X

X ¼ X1 X2½ � ð7Þ

where X1 is the matrix of other process parameter

increments.

Therefore, get E from B

Y ¼ XB ¼ X1B1þX2E ð8Þ

B ¼ B1

E

� �
ð9Þ

where B1 is the linear regression coefficient of X1.

Because the data are standardized

E ¼ D�1x EDy ð10Þ

where Dx is the diagonal matrix composed of the standard

deviation of the input variables; and Dy is the diagonal

matrix composed of the standard deviation of the output

variables.

In a similar method, the flatness actuator efficiency

factor can be calculated by the PCA model.

1247 sample points were selected at a time interval of

0.2 s for the calculation of the flatness actuator efficiency

factors at the last stand. The data mainly include variables

such as the flatness values from 16 flatness measured

points, rolling speed, rolling force, RT, WRB force and

IRB force. The number of the OSC components is 1.

According to the fivefold cross validation method, the

optimal number of PLS components is 3. The efficiency

factors calculated by OSC–PLS, PCA and experiential

methods are shown in Fig. 2.

3.2 Validation of flatness actuator efficiency

The flatness changes can be calculated by the change of the

actuator values and the efficiency factors. Therefore, the

flatness change error reflects the error of the efficiency

factors. To validate the flatness actuator efficiency, the

flatness changes are calculated and compared with the

actual flatness changes. The flatness changes can be cal-

culated as follows:

Table 2 Step of PLS and PCA algorithms

Step PLS PCA

(1) Get l and c from XTYYTXl ¼ kl

YTXXTYc ¼ kc

Get l from XTXl ¼ kl

(2) l l= lk k
c c= ck k

l l= lk k

(3) t ¼ Xl

u ¼ Yc

t ¼ Xl

(4) p ¼ Xt=tTt

r ¼ Yt=tTt

(5) Set X, Y matrices:

X  X � tpT

Y  Y � trT

Set X matrix: X  X � tlT

(6) Repeat steps 1–5, until convergence Repeat steps 1, 2, 3, and 5, until convergence

k Eigenvalue

Data

Training

Test

Training

Test

Training

Test

Training

Test

Training

Test

Average

Fig. 1 Fivefold cross validation method
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Yc¼ X2E ð11Þ

where Yc (n 9 q) is the flatness change value matrix.

If the error between the flatness changes and the actual

flatness changes is small, the efficiency factors are accu-

rate. To validate the predictive abilities of the models, root

mean square error (RMSE), mean absolute error (MAE),

and mean absolute percentage error (MAPE) will be used

to evaluate the model.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1
ðy� ycÞ2

s

MAE ¼ 1

m

Xm

i¼1
y� ycj j

MAPE ¼ 1

m

Xm

i¼1
ðy� ycÞ=yj j

ð12Þ

where y is the actual value; yc is the prediction value; and

m is the number of data points.

The flatness changes are calculated based on other data,

and compared with the actual flatness changes. According

to Fig. 3, the flatness change error based on the OSC–PLS

method is less than that based on the PCA method or the

experiential method. The OSC–PLS method accurately

describes the changes of the flatness, and the flatness

actuator efficiency factors at the last stand obtained by

OSC–PLS method are the most accurate, which has the

minimal RMSE of 1.28 IU and MAE of 1.01 IU.

4 Flatness prediction and optimization

4.1 Flatness prediction based on KPLS–ANN
model

KPLS is an effective nonlinear regression algorithm. KPLS

with different kernel functions can solve different problems

by analyzing the relationship between principal compo-

nents and generating the regression model in the feature

space.

Consider a nonlinear transformation of the input vari-

ables xi, i = 1, 2, …, n into feature space F:
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Fig. 2 Efficiency factors of RT (a), WRB (b) and IRB (c) calculated by OSC–PLS, PCA, and experiential methods
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Fig. 3 Flatness change error based on flatness actuator efficiency factors at last stand obtained by experiential method (a), PCA method (b), and
OSC–PLS method (c)
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xi 2 Ra ! UðxiÞ 2 F ð13Þ

where xi is the vector of the ith row of X (n 9 p); and U(xi)

is the vector of the ith row of matrix U (n 9 m) in an m-

dimensional feature space F.

Applying the kernel trick, UUT can represent the

(n 9 n) kernel matrix K of the cross dot products between

all mapped input data points U(xi), i = 1, 2, …, n

K ¼ UUT ð14Þ

where Kði; jÞ ¼ UðxiÞUðxjÞT.
When the Gaussian kernel function is used, Kði; jÞ ¼

exp xi � xj
�� ��2=r2

� 	
where r is the kernel parameter.

K should be centered as follows:

K ¼ ðU� �UÞðU� �UÞT ¼ ðI � INÞUUTðI � INÞT ð15Þ

where IN is an (n 9 n) matrix with all its entries equal to

1/n; and �U ¼ INU.
The KPLS algorithm is outlined in Table 3.

According to Kim et al. [15], a KPLS model can be

described as

Ŷ ¼ UBKPLS ð16Þ

BKPLS ¼ UTUðTTKUÞ�1TTY ð17Þ

where Ŷ is the prediction of Y; and BKPLS is the regression

coefficient.

To establish the nonlinear model, the nonlinear relation

between the flatness influence factor and the flatness can be

considered in KPLS. However, the number of principal

components selected from KPLS may be inaccurate

because KPLS extracts the principal components from the

infinite high-dimensional feature space. The prediction

error of the KPLS model can be compensated by the ANN

algorithm, which will overcome the parameter problem in

the KPLS model and reduce the prediction error of the

model.

The prediction error of the KPLS model is as follows:

R ¼ Y � Ŷ ¼ Y � UBKPLS ð18Þ

To improve the prediction precision of the flatness, the

ANN model with single hidden layer is established with R

and X. The ANN model is trained by minimizing the

square error of the output. The structure of ANN consists of

74 neurons in the input layer and 20 neurons in the output

layer. According to Yu et al. [17], the output of the ANN

model is as follows:

R̂ ¼ gðXÞ ¼ R� R0 ð19Þ

where R̂ is the output of the ANN model; g(X) is the ANN

model of the residual matrix; and R0 is the residual matrix

of the ANN model.

As shown in Fig. 4, the KPLS–ANN model can be

expressed as

Yp ¼ UBKPLS þ gðXÞ ð20Þ

where Yp is the output of the KPLS–ANN model.

Since the KPLS–ANN model can find the inherent law

of multiple variables in the kernel feature space and the

primal space, the KPLS–ANN model can accurately pre-

dict the flatness values.

In the cold rolling process, the flatness is affected by

many factors and is difficult to be predicted using the linear

model. The flatness can be influenced by various factors

including the flatness actuators, rolling force, thickness and

tension directly or indirectly. In order to achieve the

accurate flatness prediction, KPLS and ANN are combined

to establish the KPLS–ANN model.

4.2 Flatness optimization based on KPLS–ANN
model

The actual rolling process is complicated and variable, and

it is difficult to consider a large number of variables that

change in real time. The data-driven method can compre-

hensively analyze the relevant factors affecting the flatness

during the rolling process and establish a model of the

flatness.

The parameters of each stand have an influence on the

final flatness. Considering the influence relation of these

parameters to the final flatness, the flatness prediction

model is established. Based on the KPLS–ANN flatness

prediction model, the gradient descent method is used to

optimize setpoints of actuators. The optimization process

can effectively modify the initial setting parameters of

WRB, IRB and RT in all stands and reduce the flatness. In

order to ensure the rationality and feasibility of setpoints, it

is necessary to consider reasonable constraints during the

optimization algorithm. If there is historical production

data of similar products, the initial setpoints should be set

according to the production data to avoid the local opti-

mum. The adjustment ranges of RT, WRB and IRB are - 1

Table 3 Step of KPLS algorithm

Step KPLS algorithm

(1) Initialize ui

(2) ti ¼ Kui, ti  ti= tik k
(3) pi ¼ YTti

(4) ui ¼ Ypi, ui  ui= uik k
(5) Repeat steps 2–5 to obtain converged ti and ui

(6) K  ðI � tit
T
i ÞKðI � tit

T
i Þ

T
, Y  ðI � tit

T
i ÞY

(7) Repeat steps 1–6 to obtain ti?1 and ui?1
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to 1 mm, - 840 to 1840 kN, and 0 to 2200 kN, respec-

tively. In every 100 ms, the adjustment amount of RT is

less than 0.05 mm and those of WRB and IRB cannot be

greater than 50 kN.

The steps of optimizing the setpoints of flatness actua-

tors are as follows.

Step 1 According to the initial setpoints of flatness

actuators and other influencing factors of the flatness

including rolling force, thickness, tension and rolling

speed, the flatness values can be predicted by the KPLS–

ANN model.

Step 2 Calculate the square of the flatness and the gra-

dient approximation of the square (The difference method

is used to calculate the approximate value of the gradient

due to the complication of gradient of the KPLS–ANN

model).

Step 3 Set the square of the flatness as the destination

function, and adjust the actuator setpoints with the gradient

descent method. The adjustments of actuator setpoints are

limited by the mechanical constraints.

Step 4 Predict the new flatness by the KPLS–ANN

model.

Step 5 If the gradient approximation of the destination

function is equal to zero or steps 2–4 have repeated more

than 20 times, continue to step 6; otherwise, return to step

2.

Step 6 Get the optimized setpoints of flatness actuators.

4.3 Results of flatness prediction
and optimization

In the cold rolling process, 1942 discrete data points are

obtained from different steel strips. The number of mea-

sured points of steel strips with various widths is different.

In order to process the data conveniently, all the measured

points are unified to 20 points by interpolating. The data

used for flatness prediction and optimization calculation

include 20 flatness values and 74 process variables of 5

stands including rolling speed, rolling force, RT, WRB

force, IRB force and so on. 1553 data points are set as

training set, and the remaining 389 data points are set as

testing set. The KPLS–ANN predictive model is shown in

Fig. 5.

A part of input variables are given in Table 4.

The prediction results of the KPLS, ANN, and KPLS–

ANN models are shown in Fig. 6. Comparison between the

predicted flatness and the actual flatness shows that KPLS,

ANN, and KPLS–ANN methods all have good predictive

ability. This is because these methods can establish the

nonlinear model to analyze the nonlinear relationship

between the flatness and the influence factors. The flatness

predicted by KPLS–ANN is closer to the actual flatness

than those by the other models.

As shown in Fig. 7, compared with KPLS and ANN,

KPLS–ANN shows the best predictive effect and the

lowest RMSE of 0.51 IU, MAE of 0.34 IU, and MAPE of

0.09. It shows that the correlation between the rolling

process data and the flatness can be represented by the

KPLS–ANN model, and the model can predict the flatness

values accurately.

Based on the KPLS–ANN model, the flatness can be

optimized by the gradient descent method. The capacity of

the equipment is limited, and each control parameter also

has upper and lower limits. If the flatness corresponding to

the setpoints does not reach the target flatness, it is adjusted

according to the gradient descent method. When the target

has been reached or the adjustment amount has reached the

limit, the adjustment is stopped. Figure 8 shows the flatness

values optimized by the KPLS and KPLS–ANN models.

Whether the KPLS model or the KPLS–ANN model is

Fig. 4 Structure of KPLS–ANN model
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used, the effect of optimizing all stands is better than that

of only optimizing the last stand.

The standard deviations of the flatness values are com-

pared in Fig. 9, while Fig. 10 shows the standard devia-

tions of initial flatness values and the optimized flatness

values in box plot. Compared with the optimization by the

KPLS model, the optimization by the KPLS–ANN model

can reduce the flatness standard deviations more

effectively.

Only optimizing WRB, IRB and RT in the last stand is

not able to obviously reduce the flatness. However, when

optimizing WRB, IRB, and RT in all stands, the flatness

can be obviously reduced. In the last mill optimized,

KPLS–ANN has a better optimization ability that gets the

average of flatness standard deviation of 3.49 IU. For all

stands optimized, the average of standard deviation is

2.22 IU. Compared to the initial average of standard

deviation of 4.10 IU, the optimization is remarkable. The

flatness has been significantly optimized by the KPLS–

ANN model.

Because of strong self-adapting and self-learning ability

of the KPLS–ANN method, it is able to get better accuracy

of prediction than traditional models under various com-

plicated working conditions. The results show that the

optimization model based on the KPLS–ANN has the

excellent flatness control capability. Meanwhile, the flat-

ness optimized by comprehensive adjustment of all stands

Fig. 5 Flatness prediction process

Table 4 Part of input variables for flatness prediction and optimization

Item Unit Item Unit

Entrance thickness mm Roll gap tilting 1–5 mm

Exit thickness mm Intermediate roll shifting 1–5 mm

Width mm Rolling speed 1–5 m/s

Strip thickness 1–5 mm Strip tension 1–6 MPa

Rolling force 1–5 kN Tension tilting 1–6 MPa

Rolling force tilting 1–5 kN Coil diameter mm

Work roll bending force 1–5 kN Steel grade –

Intermediate roll bending force 1–5 kN Rolling mode –
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obtains a better effect than that by adjustment of the last

stand.

5 Conclusions

1. The accurate flatness actuator efficiency is obtained.

The OSC–PLS method is proposed to obtain the flat-

ness actuator efficiency at the last stand, and the effi-

ciency factors are validated by rolling process data.

2. KPLS–ANN has a high flatness predictive ability.

Compared with KPLS and ANN, KPLS–ANN shows

the best predictive ability, with lower RMSE, MAE,

and MAPE of 0.51 IU, 0.34 IU, and 0.09, respectively.

3. The flatness can be significantly optimized by the

KPLS–ANN model. With the setpoints of flatness

actuators optimized, the average of flatness standard

deviation is 2.22 IU. Compared to the average of

initial standard deviation of 4.10 IU, the optimization

is effective.
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Fig. 6 Flatness prediction results by KPLS, ANN, and KPLS–ANN. a Actual flatness; b flatness predicted by KPLS; c flatness predicted by

ANN; d flatness predicted by KPLS–ANN
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[19] M. Boháč, B. Loeprecht, J. Damborsky, G. Schüürmann, Quant.

Struct. Act. Relat. 21 (2002) 3–11.

[20] N. Khorshidi, A. Niazi, J. Food Meas. Charact. 12 (2018)

1885–1895.

[21] G. Wang, S. Yin, IEEE Trans. Ind. Inform. 11 (2015) 398–405.

[22] B. Zhu, Z.S. Chen, Y.L. He, L.A. Yu, Chemom. Intell. Lab.

Syst. 161 (2017) 108–117.

[23] P.D. Sampson, M. Richards, A.A. Szpiro, S. Bergen, L. Shep-

pard, T.V. Larson, J.D. Kaufman, Atmos. Environ. 75 (2013)

383–392.

[24] J. Gertler, J. Cao, AIChE J. 50 (2004) 388–402.

Data-based flatness prediction and optimization in tandem cold rolling 573

123


	Data-based flatness prediction and optimization in tandem cold rolling
	Abstract
	Introduction
	Structure of 6-high UCM cold mill
	Flatness actuator efficiency achievement
	Flatness actuator efficiency obtained by OSC--PLS
	Validation of flatness actuator efficiency

	Flatness prediction and optimization
	Flatness prediction based on KPLS--ANN model
	Flatness optimization based on KPLS--ANN model
	Results of flatness prediction and optimization

	Conclusions
	Acknowledgements
	References




