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Abstract
A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for

hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and

abnormal values. Models established on the basis of the data without data processing can cause misleading results, which

cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was

proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical

property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization

algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal

design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and

0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results,

which verify the effectiveness of the optimal design of hot rolling process.
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1 Introduction

Traditionally, a large amount of pilot experimental works

need to be done to obtain the optimal process parameters

during hot strip rolling. With the development of computer

technology, communication technology and automation

technology, it is possible to establish data-driven models to

cut down the workload of process optimization. Optimal

design of process has been extensively investigated in

many fields, such as welding process [1, 2], weld pool

geometry [3], drilling process [4], grinding process [5],

laser cladding process [6] and some other processes [7, 8].

In hot strip rolling field, Mohanty et al. [9] optimized the

hot-rolled coil widths using a genetic algorithm to mini-

mize the trim loss. Mahfouf et al. [10, 11] optimized the

tensile strength (TS), reduction of area and cost of the

investigated alloy steel by using fuzzy models and multi-

objective optimization algorithm. Mohanty et al. [12] also

correlated the mechanical properties (yield strength (YS),

TS, elongation (EL) and plastic strain ratio) of the cold-

rolled interstitial-free (IF) steel sheets with chemical

composition and process parameters, then combined the

genetic algorithm to design process parameters to achieve

predefined properties. The researchers also optimized the

process parameters of SPA-H steel to meet required

mechanical properties before [13]. In order to ensure tight

oxide scales on the surface and the mechanical properties

simultaneously, the researchers optimized the process

parameters of 510L steel by using the multi-objective

particle swarm optimization algorithm [14].

However, as the amount of industrial data with low

quality becomes large, modeling usually cannot achieve a

predefined performance, which may lead to a failure in

optimal design of hot rolling process. Therefore, a
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reasonable data processing method becomes essential to a

successful data-driven model for reliable process opti-

mization. Unfortunately, investigation about industrial data

preprocessing is exiguous.

In this paper, the mechanical property prediction model

of multi-grade C-Mn steel was established by using

Bayesian neural network. With appropriate data process-

ing, the mechanical property prediction models acquired

good performances. Combined with the multi-objective

optimization algorithm named Non-dominated Sorting

Genetic Algorithm II (NSGAII), the models were

employed for optimal design of hot rolling process. New

rolling process was designed for reducing Q345B steel with

0.017% Nb and 0.046% Ti content removed. Industrial

trials were extensively carried out, which showed good

agreements with the optimized process.

2 Mechanical property modeling

2.1 Data processing

Industrial data for the production of hot-rolled strips are

often redundant, abnormal and imbalanced, which may

cause errors in mechanical property predictions. Figure 1

shows the fluctuation of YS for the same steel of C

0.156%, Si 0.24% and Mn 0.82% after the same rolling

schedule with the finish rolling thickness (FDH) of

9.8 mm and coiling temperature (CT) of 552-560 �C.
Due to the fluctuation in actual hot rolling process and

testing of mechanical property, the acquired values have

been measured to be fluctuant. The overfitting of fluctuant

data caused by using neural network modeling would

influence the effectiveness of optimal design of hot rolling

process. It means that models should be established to

predict average values under certain processes to ensure

the stability of the prediction. Therefore, during the model

development, the average values for certain rolling

schedules have been used rather than all industrial data

without data processing.

Figure 2 shows the fitting results of YS data before and

after data averaging. The YS increases as the dataset

number increases according to physical metallurgy prin-

ciple. Although data in each dataset have similar process

parameters, the original YS values are fluctuant in a cer-

tain scale (Fig. 2a), which may cause misleading predic-

tions because of the data overfitting by neural network.

After data averaging (Fig. 2b), the regularity of the data

becomes significant, which is beneficial for establishing a

reasonable model.

The mechanical property prediction model based on

Bayesian neural network model can be obtained by mini-

mizing mean-square error between predicted values and

training data through multiple iterative calculations. In this

way, only the minimum mean-square error can be guar-

anteed, and the distribution of the error between the pre-

dicted value and training data is ignored. The distribution

of industrial data is always imbalanced, which may cause

the modeling to be accurate for some data but misleading

for other data [10, 15]. To improve the imbalanced distri-

bution of the training data, the data are sorted out by

mechanical property and divided into n intervals. The

number of data in each interval is expressed as D. Hence,

all the intervals can be written in a vector D = {D1, D2,…,

Dn}. X = {X1, X2,…, Xn} are the number of balanced data

after processed. The l, which is integer, represents the

replicating multiples of the unbalanced data number. The

relationship between Xi, li and Di can be written as

Xi = li�Di. Setting the maximum frequency as a constant,

Dmax = max(D), then the objective function for obtaining

the optimal l can be defined as follows:

min F ¼
Xn

i¼1

Xi � Dmaxj j ð1Þ

where i is the interval of mechanical property. By substi-

tuting X into Eq. (1), the objective function can be written

as F ¼
Pn

i¼1

li � Di � Dmaxj j. Therefore, l can be calculated

by minimizing the objective function.

Figure 3 shows the distribution of YS data before and

after data balancing. There are enough data at the high and

low strength area for neural network training after data

balancing. And the prediction accuracy at this area would

be improved compared with data without balancing.Fig. 1 Distribution of YS for same steel and same rolling schedule
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2.2 Prediction model of mechanical property

Industrial data of C-Mn steel were used for the develop-

ment of the mechanical property prediction models.

Table 1 shows data scale before and after data processing.

According to the data analysis, the process parameters

which had strong effects on mechanical property, including

chemical composition, furnace temperature (FT), interme-

diate slab thickness (FEH), rough rolling exit temperature

(RDT), finish rolling temperature (FDT), FDH and CT,

were selected as the inputs of the Bayesian neural network

model. The mechanical properties, such as YS, TS and EL,

were considered as the outputs, respectively. Based on the

linear correlation among average cooling rate, FDT and

CT, average cooling rate can be replaced by FDT and CT.

In the same way, total reduction rate in finish rolling can be

replaced by FEH and FDH.
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Fig. 2 Fitting results of YS data before (a) and after (b) data averaging

Table 1 Data scale before and after data processing

Variable Data before processing (7756 cases) Data after processing (1090 cases)

Minimum Maximum Mean Standard deviation Minimum Maximum Mean Standard deviation

YS/MPa 323 547 394.9 31.0529 354 443 393.5 14.9543

TS/MPa 449 640 531.5 20.4248 499 585 530.5 15.2935

EL/% 10.5 39 24.6 2.9837 20 31 24.3 2.6171

C/mass% 0.15 0.179 0.16 0.0073 0.15 0.179 0.16 0.0074

Si/mass% 0.21 0.27 0.24 0.0121 0.21 0.27 0.24 0.0121

Mn/mass% 0.8 0.87 0.83 0.0142 0.8 0.87 0.83 0.0144

FT/�C 1163 1265 1217.4 18.4067 1165 1256 1218.0 18.1226

FEH/mm 46 48 47.8 0.6097 46 48 47.8 0.6140

RDT/�C 974 1091 1038.1 21.9314 983 1091 1039.2 22.0856

FDT/�C 810 909 859.3 16.6787 812 909 860.2 16.1989

FDH/mm 9.45 12 10.6 0.9838 9.45 11.9 10.57 0.9796

CT/�C 492 623 556.8 22.3131 492 623 557.2 22.0540

Fig. 3 Distribution of YS data before and after data balancing
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The data were divided into training data and testing data

according to approximately 1:1. These data were used for

model development and accuracy testing. Another 299

cases data were used to test the final accuracy of the

mechanical property prediction models. The modeling

technology was applied according to Ref. [16]. The number

of hidden layer units was set to be 9, 10 and 9 for YS, TS

and EL, respectively.

Figure 4 shows the comparison between the predicted

and measured mechanical properties. Dash lines represent

the absolute error of ± 30 MPa and ± 4% for strength and

EL, respectively, indicating that satisfactory precisions can

be obtained.

3 Optimal design of hot rolling process
and application

Minimization for the consumption of alloying elements is

one of the most important directions for the production of

steel products [17]. In current work, the optimal hot rolling

process has been developed for Q345B steel by removing

0.017% Nb and 0.046% Ti content as compared with the

conventional grade.

Table 2 shows the lowest limit for the required

mechanical property of Q345B steel, and the objective

function for each mechanical property is described by

Eq. (2).

f iMP ¼
1;000;000 if MPi\MPti orMPi [MPti þ u

MPi �MPti if MPti �MPi �MPti þ u

�

ð2Þ

where MPi and MPi
t are the predicted and targeted value of

the ith mechanical property; i equals to 1, 2, and 3, cor-

responding to YS, TS and EL, respectively. The coeffi-

cient, u, is designed as the threshold value of the objective

mechanical property range.

The chemical composition of the conventional Q345B

steel contains about 0.017% Nb and 0.046% Ti, with C

ranging from 0.06 to 0.08% and Mn ranging from 0.8 to

0.9%. Its typical hot rolling process parameters for the slab

thickness of 9.75 mm include FEH of 46–48 mm, FT of

1150–1250 �C, RDT of 990–1090 �C, FDT of 840–880 �C
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Fig. 4 Comparison between predicted and measured mechanical

properties. a YS; b TS; c EL

Table 2 Required mechanical property of Q345B steel with thickness

smaller than 16 mm

Steel grade YS/MPa TS/MPa EL/%

Q345B C 345 470–630 C 20
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and CT of 580–620 �C. In current work, a new hot rolling

process has been designed to remove Nb and Ti microal-

loying elements. In order to meet the predefined require-

ments for mechanical properties, the FDT and CT were set

to be in the range of 812–880 and 500–623 �C, respec-
tively, by using the ultra-fast cooling after hot rolling

[18, 19]. Other process parameters were set according to

the history data. Table 3 shows the constraints for process

parameters in the optimal design of Q345B steel. The

mechanical property prediction model of C-Mn steel was

reversely optimized for acquiring the predefined mechani-

cal property. The optimized solutions were the optimal

chemical composition and rolling parameters. Therefore,

taking the modeling errors and the equipment capability

into account, the target values for YS, TS and EL were set

to be 385 MPa, 510 MPa and 24% with the u of 60 MPa

for YS and TS and 6% for EL, respectively. The hot rolling

process of Q345B steel was optimized by NSGAII, with

parameters shown in Table 4.

The optimized solutions in Table 5 show the diversity. It

can be seen that the EL decreases as the strength increases.

The tendency of YS and TS is highly similar. According to

the optimized solutions shown in Table 5, the first solution

was selected as hot rolling process for industrial trials. The

fluctuation of process parameters was controlled as C

(0.1599 ± 0.05) mass%, Si (0.2555 ± 0.05) mass%, Mn

(0.8356 ± 0.05) mass%, FT (1198 ± 30) �C, FEH

(47.4 ± 0.5) mm, RDT (1043 ± 30) �C, FDT

(853 ± 20) �C and CT (549 ± 20) �C. Figure 5 shows the

mechanical properties for industrial trials of reduced

Q345B steel. Although the Nb and Ti elements were

removed in reduced Q345B steel, the mechanical proper-

ties could still meet the requirements of Q345B steel by

decreasing the FDT and CT from 860 to 853 �C and from

600 to 549 �C, respectively.

Table 3 Constraint for process parameters in optimal design of Q345B steel

Limit C/mass% Si/mass% Mn/mass% FT/�C FEH/mm RDT/�C FDT/�C CT/�C

Upper limit 0.17 0.27 0.87 1250 48 1090 880 623

Lower limit 0.15 0.21 0.80 1165 46 990 812 500

Table 4 Parameters used in NSGAII

Parameter Value

Population size 100

Maximum generation 200

Crossover fraction 0.8

Migration fraction 0.2

Pareto fraction 0.3

Table 5 Optimized solutions and corresponding predicted mechanical properties

No. C/mass% Si/mass% Mn/mass% FT/�C FEH/mm RDT/�C FDT/�C CT/�C YS/MPa TS/MPa EL/%

1 0.1599 0.2555 0.8356 1198 47.4 1043 853 549 401 537 24.8

2 0.1554 0.2537 0.8045 1226 47.7 1024 815 560 392 524 27.9

3 0.1684 0.2465 0.8106 1219 47.1 1032 876 566 405 539 25.7

4 0.1609 0.2489 0.8237 1221 47.8 1044 851 507 398 533 24.0

5 0.1577 0.2109 0.8202 1216 47.8 1033 875 547 387 526 25.2

6 0.1508 0.2265 0.8163 1245 47.7 1086 853 572 386 527 25.2

7 0.1578 0.2399 0.8247 1227 47.5 1064 862 517 403 534 24.1
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Fig. 5 Mechanical properties for industrial trials of reduced Q345B

steel
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4 Conclusions

1. Industrial data of hot-rolled strips collected from pro-

duction line could not be used to establish models

directly. Data processing including data averaging and

data balancing is essential to develop a successful

neural network model.

2. Based on the Bayesian neural network, the strength

and EL of hot-rolled C-Mn steel could be predicted

with the accuracy of ± 30 MPa and ± 4%,

respectively.

3. By combining the data-driven models and multi-

objective optimization algorithm, optimal design of

hot rolling process for C-Mn steel could be carried out.

New hot rolling process was designed for Q345B steel

with 0.017% Nb and 0.046% Ti content removed. The

optimal solutions and industrial trials results were

compared, which were in good agreement to verify the

feasibility of the optimal design of hot rolling process.
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