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Abstract
Bone screws are devices used to fix implants or bones to bones. However, conventional screws are mechanically fixed with
thread and often face long-term failure due to poor osseointegration. To improve osseointegration, screws are evolving from
solid and smooth to porous and rough. Additive manufacturing (AM) offers a high degree of manufacturing freedom, enabling
the preparation of predesigned screws that are porous and rough. This paper provides an overview of the problems currently
faced by bone screws: long-term loosening and screw breakage. Next, advances in osseointegrated screws are summarized
hierarchically (sub-micro, micro, and macro). At the sub-microscale level, we describe surface-modification techniques for
enhancing osseointegration. At the micro level, we summarize the micro-design parameters that affect the mechanical and
biological properties of porous osseointegrated screws, including porosity, pore size, and pore shape. In addition, we highlight
three promising pore shapes: triply periodic minimal surface, auxetic structure with negative Poisson ratio, and the Voronoi
structure. At the macro level, we outline the strategies of graded design, gradient design, and topology optimization design
to improve the mechanical strength of porous osseointegrated screws. Simultaneously, this paper outlines advances in AM
technology for enhancing the mechanical properties of porous osseointegrated screws. AM osseointegrated screws with
hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.
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Introduction

Screws are widely used for implant- or bone-to-bone fixation
in various clinical situations, including dental implants [1],
arthroplasty [2], arthrodesis [3, 4], and fracture fixation [5].
Conventional screws are designed to improve screw–bone
purchase by optimizing the profile, thereby increasing the
holding force [6, 7]. For example, cancellous bone screws
have deepened threads and reduced core diameters to achieve
higher cancellous bone pullout strength [8]. Similarly, corti-
cal bone trajectory screws enhance fixation in patients with
osteoporosis by increasing the screw–cortical bone purchase
[9]. In addition, increasing the length and diameter of a screw
can improve the screw pull-out force [10–12]. These designs
improve the initial fixation strength of screws. However, the
dominant concept remains “mechanical fixation”whereas the
proper integrationof screwandbone is secondary,whichdoes
not solve the problem of screw loosening over the long term.

In the 1970s and 1980s, Brånemark et al. introduced
the concept of osseointegrated dental implants to achieve
long-term fixation through the osseointegration of screws
[13, 14]. Osseointegrated screws are bone screws directly
integrated at the screw–bone interface without other tissues
[14, 15]. Before this, dental screws primarily possessed a
smooth machined surface and were plagued by peri-screw
bone loss [16]. Surface modification techniques are now
widely used to create a robust interface between bone and
screw by increasing the osteoblast activity on the screw sur-
face. Changing the surface topography or surface chemistry
is the most commonly used surface-modification strategy.
The surface roughness of the screw increases the surface
wettability while allowing an exponential increase in the
cell attachment area, thereby improving the screw-bone
osseointegration [17, 18]. In addition, some bioactive fac-
tors, such as bone morphogenetic protein-2 (BMP-2) [19,
20], bone morphogenetic protein-7 (BMP-7) [21], and the
vascular endothelial growth factor [22], can be incorporated
into screws through surface modification to achieve better
osseointegration. Although surface-modification techniques
can increase osteoblast activity on the screw surface and pro-
mote osseointegration, solid screws have no space for bone
ingrowth. In addition, the stress-shielding effect, whereby
solid screws with a high modulus of elasticity unload the
mechanical load that the bone should support, leading to
bone resorption, is considered a significant cause of long-
term loosening [23, 24].

Porous screws have adjustable elastic moduli to avoid
stress shielding and have open interconnected channels for
bone ingrowth and vascularization [25, 26]. The ingrowth
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of bone into a porous screw provides mechanical interlock-
ing between the bone and the screw. Studies show that this
mechanical interlocking increases the pullout force of screws
exponentially [27, 28]. In addition, some porous structures
may be potential factors in improving the bone ingrowth
ability of porous screws. A triply periodic minimal surface
(TPMS) has a curvature similar to bone and a large surface
area, facilitating bone ingrowth [29]. AVoronoi structure has
randomness similar to the morphology of trabecular bone
[30]. Porous screws with an auxetic structure expand under
tension and resist pullout and shear in mechanics [31]. How-
ever, the mechanical properties of porous screws are inferior
to those of solid screws.

Optimizing material distribution is an effective strategy
to improve the mechanical strength of porous screws. The
relatively dense portion of the gradient design provides
mechanical strength, while the relatively porous portion pro-
vides space for the bone to grow into [26]. In addition, some
emerging material optimization methods, such as topology
optimization techniques, can increase the distribution of the
material in the force concentration region to avoid screw
breakage [32, 33].

Conventional manufacturing techniques employ turning,
milling, or grinding of cylindrical bar stock to produce
specific size screws [34]. However, manufacturing screws
with 100 μm pores remains challenging. Other manufac-
turing techniques, such as the chemical vapor deposition
[35], coagulant-assisted foaming [36], and vacuum diffusion
bonding of titaniummeshes [37], produce porousmetalswith
good bone ingrowth capabilities. However, these porous-
metal manufacturing techniques lack sufficient design–man-
ufacturing flexibility (i.e., it is very difficult to manufacture
porous screws based on a predesign). Additive manufactur-
ing (AM), also known as three-dimensional (3D) printing,
is a layer-by-layer predesigned numerical manufacturing
method [38] and has natural advantages for manufacturing
porous screws. However, AM technology also has certain
drawbacks, mainly concerning the inability to preciselyman-
ufacture porous screws according to the predesign due to
cracks in the substrates, which also reduce the mechanical
strength of AM screws [39, 40]. Heat treatment can lead to
a phase transformation in AM titanium screws and elimi-
nate some manufacturing defects; this strategy is expected to
improve the fatigue performance of the screws [41]. Further,
β-titanium alloys have the advantage of a high strength-to-
modulus ratio, which is expected to produce a new type of
screwwith low elasticmodulus and highmechanical strength
[42].

The profile design of traditional screws has been well
summarized by Mudgal and Jupiter [6] and Shea et al. [7].
The burgeoning AM technology allows for the fabrication
of high-quality porous metal implants, with potentially enor-
mous implications for the development of screws [43, 44].

123



208 Bio-Design and Manufacturing (2024) 7:206–235

Fig. 1 Schematic diagram of the development of bone screws

Agarwal et al. [44] reviewed various types of porous screws
that simultaneously avoid the stress-shielding effect, allow
the ingrowth of bone, and can be fabricated by AM tech-
nology. However, no review yet focuses on solutions to
the main challenges faced by AM screws, namely, reduced
mechanical performance and insufficient integration with
bone. Thus, based on the above background, we summarize
herein the concept ofAMosseointegrated screwswith hierar-
chical design, discussingmacro design,micro design, surface
modification, and the improvement of AM. This technology
is expected to provide excellent long-term fixation and the
required mechanical strength (Fig. 1).

From conventional solid screws to porous
osseointegrated screws

Long-term loosening of conventional solid screws

Screw fixation is one of the most extensive fixation methods
in clinical practice. The screw acts as a bridge, connecting
two ormore parts (bones, implants, and ligaments). However,
bone screws often suffer from long-term loosening. In den-
tistry, a reduction in the height of the alveolar bone around a
dental implant screw often occurs after implantation, which
means that the screw loses its bone anchoring, affecting
its survival in the oral cavity (Fig. 2a1) [45, 46]. In spinal

surgery, screws are widely used for joint fusion, including
vertebral body fusion and sacroiliac joint fusion. However,
peri-screw radiolucency is widely reported, suggesting bone
resorption and pseudarthrosis (Fig. 2a3) [47–49]. In trauma
surgery, radiolucency also occurs around the screws used
for long-term fixation (Fig. 2a4). In total hip arthroplasty,
screws are commonly used to fix the acetabular cup [40,
41]. Peri-screw radiolucency is also observed, which may
reduce the fixation of the cup and lead to secondary surgery
[50]. In anterior cruciate ligament reconstruction (ACLR),
interference screws are widely used for fixation to provide
stability and facilitate early and aggressive rehabilitation
[51]. However, tunnel widening after ACLR has been widely
reported clinically, resulting in clinical complications such as
joint relaxation [52, 53]. In addition, bone resorption around
screws can be reflected in the thinning of the surrounding
cortical bone [23]. In more severe cases, a lagging cutout of
the screw occurs (Fig. 2a2) [5].

Long-term loosening of conventional screws is mainly
caused by bone resorption and poor integration of bone
and screws. Several reasons can explain this phenomenon.
First, the stress shielding effect can cause resorption of the
surrounding bone, which is detrimental to bone regener-
ation [23, 54]. Second, solid screws lack space for bone
ingrowth and transportation channels for bone growth mate-
rial. The internal cavity of hollow screws lacks sufficient
contact with bone tissue. Third, screws with smooth surfaces
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Fig. 2 Long-term loosening of conventional solid screws and existing
porous screws. a Long-term loosening of conventional solid screws.
a1 Decrease in height of the alveolar bone around the dental screw
(Reproduced from [45], Copyright 2007, with permission from Wiley
Periodicals, Inc.). a2 Lagging cutout of screw at femoral neck (Repro-
duced from [5], Copyright 2004, with permission from Lippincott
Williams). a3 Peri-screw radiolucency in the vertebral body (Repro-
duced from [49], Copyright 2008, with permission from Lippincott
Williams). a4 Peri-screw radiolucency in the calcaneus (Reproduced
from [71], Copyright 2019, with permission from the authors, licensed
under CC BY). bComparison of micro-computed tomography analysis
and pull-out test for solid screws and porous screws (Reproduced from
[59], Copyright 2019, with permission from the authors, licensed under
CC BY). c Radiographs of porous screws. c1 Radiograph of stemless
total shoulder arthroplasty (Arthrex Inc., Naples, FL, USA) (Repro-
duced from [63], Copyright 2020, with permission from the authors,
licensed under CC BY 4.0). c2 Radiograph of osseointegrated dental
screws (Trabecular Metal Implants, Zimmer Dental Inc., California,
USA) (Reproduced from [72], Copyright 2017, with permission from
Allen Press Inc.). c3 Radiograph of the osseointegrated prostheses
for the rehabilitation of amputees (OPRA, Integrum AB, Mölndal,
Sweden) (Reproduced from [60], Copyright 2020, with permission
from the authors, licensed under CC BY-NC-ND). c4 Radiograph
of additive manufacturing (AM) osseointegrated screw for sacroiliac
fusions (iFuse-TORQ, SI-BONE, California, USA) (Reproduced from
[3], Copyright 2022, with permission from the authors, licensed under
CC BY-NC). c5 Radiograph of porous screw cages (reproduced from
[73], Copyright 2016, with permission from Korean Society of Spine
Surgery). d Existing porous screws. d1 Photograph of stemless total
shoulder arthroplasty systems (Arthrex Inc., Naples, FL, USA) (Repro-
duced from [62], Copyright 2018, with permission from the authors,

licensed under CC BY 4.0). d2 Photograph of osseointegrated dental
screws (Trabecular Metal Implants, Zimmer Dental Inc., California,
USA) (Reproduced from [35], Copyright 2013, with permission from
the authors, licensed under CC BY-NC-ND). d3 Photograph of OPRA
(Integrum AB, Mölndal, Sweden) (Reproduced from [23], Copyright
2021, with permission from the authors, licensed under CC BY-NC-
ND). d4 Photograph of AM osseointegrated screw for sacroiliac
fusions (iFuse-TORQ, SI-BONE, California, USA) (Reproduced from
https://si-bone.com/providers/solutions/pelvic-trauma/ifuse-torq, with
permission from SI-BONE). d5 Photograph of AM osseointegrated
screw for sacroiliac fusions (3D Printed implants, Genesys SIros™,
Texas, USA) (Reproduced from https://www.genesysspine.com/pr
oducts/sacral/lateral-sacroiliac-joint-fusion-siros-3d-printed/, with
permission from Genesys). d6 Photograph of AM osseointegrated
screw for sacroiliac fusions (3D™ SI Joint Fusion System, Cornerloc
TransLoc, Oklahoma, USA) (Reproduced from https://cornerloc.
com/transloc-3d/, with permission from Cornerloc). d7 Photograph
of AM osseointegrated screw for sacroiliac fusions (FIREBIRD SI
Fusion System, Orthofix, Texas, USA) (Reproduced from https://orth
ofix.com/products/spine-solutions/spine-procedures/si-fusion/firebird-
si-fusion-system/, with permission from Orthofix). d8 Photograph
of AM osseointegrated pedicle screw (Bi-Cortical/Mid-Line Porous
Cannulated screw, Tsunamimedical, Ventotene, Italy) (Reproduced
from https://www.tsunamimedical.com/product-category/spine/pedi
cle-screw-systems/modular-pedicle-screw-shafts/, with permission
from Tsunamimedical). d9 Photograph of AM osseointegrated pedi-
cle screw (Porous Cannulated screw, Tsunamimedical, Ventotene,
Italy) (Reproduced from https://www.tsunamimedical.com/product-
category/spine/pedicle-screw-systems/modular-pedicle-screw-shafts/,
with permission from Tsunamimedical)
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lack sufficient initial stability after implantation, and exces-
sive micro-movement may lead to the formation of fibrous
tissue around the screws [55, 56]. Fourth, a smooth surface is
not conducive to the adhesion and proliferation of bone cells
[17, 57]. AMporous screws possess an open porous structure
and a rough surface, which allows bone ingrowth that inter-
locks the bone and screw [58]. In addition, porous screws can
automatically collect autologous bone during screwing, thus
accelerating healing. Micro-computed tomography analysis
indicates good ingrowth of bone into porous screws. The
bone ingrowth significantly strengthens thefixation of porous
screws with respect to solid screws, as demonstrated by pull-
out tests (Fig. 2b) [59].

Commercially available porous bone screws

Currently, porous screws have been clinically validated for
fixing implants to bone and for fixing bone to bone, although
some screws are not produced by AM techniques (Table 1).

A porous screw used to fix an implant to bone is inte-
grated into the bone at one end and connected to the foreign
implant by mechanical fixation at the other end. A well-
osseointegrated porous screw corresponds to the “root” of the
implant in the bone. Inspired by Brånemark, osseointegrated
screws are applied in osseointegrated prostheses for the reha-
bilitation of amputees (OPRA; Figs. 2c3 and 2d3) [23]. The
OPRA instrument (Integrum AB, Mölndal, Sweden) con-
sists of three parts: an abutment screw, an abutment, and
an osseointegrated screw, the so-called “fixture” [60]. Com-
pared with socket prostheses, the OPRA improves patients’
quality of life and limb function [61]. Stemless total shoulder
arthroplasty (Arthrex Inc., Naples, FL,USA) is also designed
with osseointegrated screw fixation, which consists of three
parts: an anatomical humeral head, a trunnion for epiphyseal
fixation, and a hollow cage screw for metaphyseal fixation
(Figs. 2c1 and 2d1) [2, 62]. Prostheses with a hollow screw
design preserve bone volume and reduce bone resorption
more than traditional shoulder prostheses do [62, 63]. In addi-
tion, dental screws pioneered the development of osseointe-
grated screws (Trabecular Metal Implants, Zimmer Dental
Inc., California,USA)with a porous trabecular design,which
achieved good clinical results (Fig. 2c2 and 2d2) [64]. His-
tological sections show that copious bone growth penetrates
into the porous trabecular portion [65]. Although this highly
porous tantalum trabecular material was produced by chemi-
cal vapor deposition rather than AM, the good clinical results
validated the feasibility of this design [35].

Osseointegrated porous screws can also fix two bones,
as in arthrodesis. Classical sacroiliac fusions are often
performed with porous-coated triangular titanium implants
(SI-BONE, Inc., San Jose, CA, USA) [66, 67]. Clini-
cal reports also show similarly good fusion results with
hydroxyapatite-coated slotted screws (Globus Medical Inc.,

Audubon, Pennsylvania, USA) [68]. Recently, many systems
are developing versions of a threaded, 3D-printed bone screw
for this application (SI-BONE, Genesys Siros, Cornerloc
Transloc,OrthofixFirebird SI) (Figs. 2d4–2d7). Two patients
used this AM porous screw (iFuse-TORQ, SI-BONE) and
experienced complete relief of pain (Fig. 2c4) [3]. In addi-
tion, various promising standalone threaded titanium-alloy
cylindrical screw cages were used for interbody fusion of the
lumbar spine in the mid-1990s (Fig. 2c5) [69, 70]. However,
without the aid of pedicle screws for fixation, this indepen-
dent threaded cage lacked sufficient stability and was phased
out. As shown in Fig. 2a3, pedicle screws face the same prob-
lem of distant loosening. More recently, Tsunamimedical
introduced additively manufactured porous pedicle screws
(Ventotene, Tsunamimedical, Italy) to promote osseointegra-
tion of the screws (Figs. 2d8 and 2d9). Currently, there are
no clinical reports on the use of such pedicle screws.

To deal with these problems, we propose the concept of
hierarchically designedAMosseointegrated screws and sum-
marize the progress in surface modification, micro design,
macro design, and AM for this concept.

Potential problems faced by porous bone screws

Although porous screws have many advantages, which are
thoroughly discussed above, they also face potential prob-
lems, including inadequate osseointegration and concerns
about mechanical strength.

First, the combination of screw and bone is inadequate,
and the long-term fixation of screws can still be improved.
Optimizing the porous structure is considered a potential
facilitator of bone ingrowth, which needs further exploration
[23, 29]. In addition, although the bone grows into the porous
screw, a gap remains between the bone and the porous screw
substrate [18, 76]. Surface modification allows the bone to
be integrated directly into the substrate surface of the porous
screw without gaps [77].

Second, the mechanical properties of porous screws also
deserve full attention. Screws are subjected to complex loads
during and after implantation, including torsion, compres-
sion, tension, and bending (Table 2). In addition, because
a screw is subjected to cyclic loading, fatigue resistance is
essential for improving the screw lifetime. Broken screws
cause serious clinical complications, and both defects in
AM and porosity decrease screw strength. The mechani-
cal strength of screws should be improved by improving the
micro and macro design and the AM technology of screws.

To deal with these problems, we propose the concept of
hierarchically designedAMosseointegrated screws and sum-
marize the progress in surface modification, micro design,
macro design, and AM for this concept.
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Table 1 Summary of literature on
clinically available porous screws Application Research type Number of

patients
Follow-up (in
months)

Dental screw [1] Case report 1 12

Dental screw [65] Clinical-histologic case report 1 4

Dental screw [72] Retrospective study 42 25

Dental screw [64] Prospective study 30 60

OPRA [74] Retrospective study 51 60

OPRA [61] Prospective study 51 24

Shoulder arthroplasty [63] Retrospective study 39 24

Shoulder arthroplasty [75] Prospective study 49 108

Shoulder arthroplasty [62] Prospective study 73 58

Sacroiliac fusions [3] Case report 2

Sacroiliac fusions [68] Prospective study 32 24

Interbody fusion [73] Retrospective study 45 240

OPRA: osseointegrated prostheses for the rehabilitation of amputees

Table 2 Mechanical properties
required for bone screws Mechanical

property
Test method Test indicators Related standards References

Shear resistance Torsional test Torque ASTM F543 [59, 78]

Torsional strength ISO 6475

BS 3531–5.6–1991

Bending resistance Three-point
bending test

Bending strength YY/T 0119.5–2014 [59, 78]

Tensile resistance Tensile testing Tensile strength [31]

Compression
resistance

Compression test Compression
strength

[26, 79]

Fatigue resistance Fatigue testing Fatigue strength/ YY/T 0119.5–2014 [26, 80]

cycle number

Surfacemodification
of additive-manufactured osseointegrated
screws

The surface roughness of the screw is a critical factor affect-
ing osseointegration.One of the characteristics ofAMscrews
is the numerous semi-molten powders, tens of microns in
diameter, attached to their surface. On the one hand, the
rough surface created by these powders was considered to
be an advantage over conventional smooth screws (Figs. 3b
and 3e) [81]. Cells usually form numerous pseudopods on
this rough surface, indicating good adhesion [82]. A consid-
erable amount of bone tissue remains on the surface of AM
screws after push-out tests, indicating a higher osseointegra-
tion rate and bonding strength than conventionally machined
screws. Histological sections also show more active osteo-
genesis around the rough surface of the AM screw than is
the case with conventional smooth screws [81]. On the other
hand, the loosely bonded powders constitute foreign bodies

when shed in the body and may cause chronic inflammation
and osteolysis [83, 84]. Song et al. [85] categorized these
unmelted powders as either harmful or valuable powders.
Powderswith a contact angle θ greater than 90°with the scaf-
fold matrix are harmful powders and are more likely to fall
off the scaffold matrix after implantation in the body. These
powders can be removed by surface modification techniques,
such as acid etching or sandblasting [85, 86]. Powders with a
contact angle less than 90° are defined as valuable powders,
providing surface roughness. Although AM screws have a
rough surface, this roughness is on the order of ten microns.

Titanium-based materials are well known for in vivo sta-
bility and corrosion resistance provided by the natural oxide
film that formson their surface.However, this alsomeans bio-
logical inertness, which hinders osseointegration and bone
conductivity. Without surface modification, bone formation
in porous titanium screws forms a distance pattern, which
means that bone forms only around the strut, not directly on
the strut surface [77, 87]. Surface modification changes the
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Fig. 3 Surface modification of additive manufacturing (AM) osseointe-
grated screws. a Schematic diagram and fluorescence image of two
modes of osteogenesis. Porous scaffolds without surface modifica-
tion are in distance osteogenesis mode (left) (reproduced from [87],
Copyright 2018, with permission from Elsevier Ltd.), whereas porous
scaffolds with surface modification are in contact osteogenesis mode
(right) (reproduced from [77], Copyright 2016, with permission from
AmericanChemical Society).b, eScanning electronmicroscopy (SEM)
images showing the smooth surface and rough surface of screws
machined conventionally and by electron beam melting, respectively
(reproduced from [81], Copyright 2020, with permission from Else-
vier B.V.). c Anodizing and its further functionalization (the lower
part is reproduced from [91], Copyright 2019, with permission from
Elsevier; the upper part is reproduced from [110], Copyright 2020,

with permission from Elsevier). TNT: TiO2 nanotube d Hydroxyap-
atite (HA) coating and its further functionalization (the lower part is
reproduced from [101], Copyright 2020, with permission from The
Royal Society of Chemistry; the upper part is reproduced from [111],
Copyright 2019, with permission from The Chinese Society for Metals
(CSM) and Springer-Verlag GmbH Germany, part of Springer Nature).
f SEM images showing no ruptured bone tissue attached to the untreated
implant surface.gSEMimages showing ruptured bone tissue attached to
the micro-pits of the microarc oxidation (MAO)-treated implant (f and
g reproduced from [77], Copyright 2016, with permission from Amer-
ican Chemical Society). h Stained histological sections of AM porous
screws with HA coating, showing good bone ingrowth and osseointe-
gration (reproduced from [97], Copyright 2020, with permission from
the authors, licensed under CC BY 4.0)
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osteogenesis pattern to contact osteogenesis, which means
that bone forms directly on the surface of the porous screws
(Fig. 3a) [77]. Furthermore, the screws can be functionalized
by advanced modifications based on primary surface modi-
fications.

Primary surface modification
of additive-manufactured osseointegrated screws

Surface modification can create different roughness scales
on the surface of AM porous screws to improve integra-
tion with the bone [18]. For example, microarc oxidation
(MAO), also known as plasma electrolytic oxidation, can
create micron-level orange-peel-like surface morphology on
titanium substrates (Fig. 3g) [77, 88]. Scanning electron
microscopy (SEM) images show that bone interlaces with
1- to 2-μm-diameter micro-pores formed by MAO, whereas
the surface of the untreated AM porous scaffold lacked bone
attachment (Figs. 3f and 3g). Push-out tests also show that the
biofixation strength of the MAO-treated AM porous scaffold
significantly exceeds that of the AM porous scaffold [77].
Anodization produces uniform and regular TiO2 nanotubes
(TNTs) on the surface of porous titaniumalloys,whichmeans
nano-scale surface roughness and a higher surface-to-volume
ratio (Fig. 3c). Changing the anodization voltage can gener-
ate TNTs of different diameters on the screw surface [89]
into which pseudopods of osteoblasts can grow directly [90,
91]. Compared with the AM group, the new bone tissue
in the anodized group is tightly bound to the Ti–6Al–4V
matrix with a larger area, and no obvious fibrous connec-
tive tissue interface layer forms between the implant and
bone in the anodized group, indicating the direct fusion of
the implant with the bone tissue [18]. Changes in surface
topography transmit signals to cells through integrins, which
further affects the biological behavior of bone cells [92].
Surface topography can also polarize macrophages in the
M2 direction through a paracrine pathway, forming an anti-
inflammatory microenvironment conducive to bone repair
and reconstruction [93].

Changes in surface composition are another reason for
improving the osseointegration of AM screws. For example,
MAO or anodic oxidation can alter the charge on the surface
of AM screws [88, 94]. The charged surface attracts charged
fibronectin molecules and osteoblasts, which is thought to be
the first step in osseointegration after implantation into the
body [94]. In addition, the change in surface charge acceler-
ates the deposition of hydroxyapatite (HA), one of the main
inorganic components in native bone. Anions attract calcium
ions, which in turn attract phosphate ions to formHA precip-
itates on the surface [18, 95]. HA can also be added directly
onto the screw surface as a coating to enhance the osseoin-
tegration of the screw (Fig. 3d) [5, 68]. Histological sections
taken from patients demonstrate the tight bond between the

HA-coated screw and bone [96]. Huang et al. [97] reported
an HA-coated AM porous bone screw. Histological sections
show that the bone grows sufficiently into the pore and inte-
grates well with the matrix of the porous screw (Fig. 3h).

Advanced surfacemodification
of additive-manufactured osseointegrated screws

After the primary surface modification discussed above, fur-
ther bioactive factors can be added to functionalize the bone
screws. In addition to the excellent capacity for osseointegra-
tion ofTNT, its tubular structuremay serve as a drug reservoir
for local drugdelivery,which avoids adverse reactions caused
by systemic administration (Fig. 3c). Lee et al. [98] loaded the
recombinant human bone morphogenetic protein-2 (rhBMP-
2), a cytokine that induces bone formation, into TNTs on
the screw surface to promote the screw–bone integration
and avoid the risk of heterotopic ossification caused by the
systemic applicationof rhBMP-2.Heet al. [91] loaded1α,25-
Dihydroxyvitamin D3 (VD3), a vitamin that can promote
osteoblast andosteocytematuration, intoTNTson the surface
of a porous titanium scaffold. In vivo and in vitro evalua-
tions show that osseointegration improves significantly. In
addition to organic matter, TNTs can be doped with inor-
ganic matter to promote bone formation. Zhao et al. [99]
developed screwswith Si–TiO2 nanotubes through Si plasma
immersion ion implantation. Si–TiO2 nanotubes offer bet-
ter pre-osteoblast adhesion, greater proliferation, and more
facile extracellular matrix deposition than TNTs, and have a
greater pull-out force. In addition, TNTs can be doped with
antibacterial substances. Xiang et al. [100] used a hybrid-
surface system to extend the duration of drug release of
vancomycin-loadedTNTcappedby folic acid-functionalized
ZnO,which remains stable in physiological environments but
releases Zn2+ and vancomycin in mildly acidic environments
after bacterial infections. At the same time, due to the folic
acid and the sustained release of Zn ions, this hybrid-surface
system offers excellent biocompatibility.

Based on the HA coating, substituted-HA coatings
(Fig. 3d) are attracting research interest because they provide
screws with additional properties, such as osteoinduction or
antibiotic activity, which accelerates biomechanical fixation
and hinders infection and osteoporosis [101]. Different ions
can replace both the cation and anion of HA for different
purposes. Different cations, including Mg2+ for enhanc-
ing bioactivity properties, Ag+ for enhancing antibacterial
properties, can substitute for Ca2+ in substituted-HA coat-
ings [102, 103]. For example, zinc-substituted HA has been
studied for stimulating bone formation and antibacterial
properties [104, 105]. Similarly, different anions, including
SiO3

2−, F−, and CO3
2−, can also be applied in substituted-

HA coatings by replacing OH− or PO4
3− [106, 107]. For

example, fluoride-substituted HA improves the bonding
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strength and reduces the dissolution rate [107].What’s more,
co-substitution (i.e., combining two or more substituents
that lead to synergistic, complementary, or compensatory
effects) is a brilliant strategy to optimize HA coatings [108].
Recently, combining substituted HA with nanostructures
provided novel ideas for orthopedic coatings, including how
to improve biocompatibility, corrosion resistance, and the
mechanical properties of the coatings [109]. These research
efforts requiremore in vivo experiments to verify their safety.

In conclusion, surface modification endows AM porous
screws with sub-microscopic designed surfaces, resulting in
stronger bone–screw interfaces while reducing fabrication
time and improving the fixation.

Micro-design of additive-manufactured
osseointegrated screws

Surface designs are mainly on the scale of nanometers to
microns, whereas micro designs are on the scale of microns
to millimeters, allowing bone to grow into and thus interlock
withAMporous screws. Themechanisms involved aremulti-
faceted. From amechanistic perspective, the porous structure
avoids the stress-shielding effect (Fig. 4a). From a biological
perspective, porous screws provide a 3D network, which pro-
motes the proliferation and differentiation of bone marrow
mesenchymal stem cells, guides bone regeneration, and pro-
motes nutrient diffusion. The study of Yin et al. shows that
the expression of osteogenesis-related genes in the porous
group is significantly greater than that in the flat group [112].
Staining by 5-ethynyl-2’-deoxyuridine also indicates that the
porous group promotes cell proliferation. Furthermore, the
porous structure guides the bone-regeneration process. At
the tissue level, the orientation of collagen fibers, acting
as a secondary template for cell deposition and support-
ing the growth of bone into the scaffold, is also guided by
porous scaffolds [24]. At the cellular level, the cytoskeleton
is guided by a porous structure, as observed by staining for
F-actin [112]. At the molecular level, mechanical transduc-
tion, such as pathways related to yes-associated protein, may
mediate this biological process [113]. The greater expres-
sion of yes-associated protein at gene and protein levels in
the porous group than in the flat group was observed by
using quantitative polymerase chain reaction (qPCR) and
immunofluorescence staining [112]. Thus, porous screws
improve long-term fixation.

The mechanical strength of porous screws is also closely
related to the microporous design. Hedayati et al. [114]
reported that, for a porous structure composed of truncated-
cube unit cells, the ratio of the inclined strut length to the
uninclined strut length strongly affects the elastic modu-
lus and Poisson’s ratio. The deformation mechanism of the
porous structure, which is related to mechanical properties

such as fatigue performance, also depends strongly on the
pore shape [115]. The micro-design parameters of porous
osseointegrated screwsmainly include the porosity, pore size,
and pore shape, and affect both the mechanical and biologi-
cal properties of these screws. Novel pore architectures, such
as the Voronoi, TPMS, and auxetic structures, have attracted
more attention due to their unique properties.

Porosity and pore size of additive-manufactured
osseointegrated screws

Porosity and pore size are critical parameters in the design of
porous screws, significantly affecting the mechanical prop-
erties and biological performance of porous screws. Porosity
is defined as the percentage of pore space in a solid and can
be expressed by [116]

ρrelative � ρstructure

ρmaterial
, (1)

P � (1 − ρrelative) × 100%, (2)

where ρstructure is the mass-to-volume ratio of the porous
sample, ρmaterial is the density of the solid material, ρrelative

is the relative density of the porous sample, and P is the
porosity of the porous sample. The 3D definition of pore size
is the diameter of the largest virtual sphere in the structure
[117]. For porous structures composed of repeating arrays
of identical units, such as a TPMS, the unit size is used to
describe the pore size [38].

Effect of pore size and porosity on mechanical properties
of additive-manufactured osseointegrated screws

Porosity usually correlates negatively with mechanical prop-
erties. The three-point bending and torsion tests reveal a
highermechanical strength of porous screwswith lowporosi-
ties [59, 78]. Compression and tensile fatigue tests show that
fatigue life also correlates negatively with porosity [118].
According to the mechanics of the materials, the mechani-
cal properties of the porous structures, including the elastic
modulus and yield strength, depend on their relative densities
[119]. A power-law relationship exists between the mechan-
ical properties (i.e., elastic modulus E and yield strength) of
the porous structure and its relative density (Fig. 4b) [40, 120,
121]. Other studies report a linear dependence of mechan-
ical properties on porosity [122, 123]. This phenomenon
may be related to the deformation mechanism of the porous
structure. The mechanical properties are linear in relative
density in the tensile-dominated deformationmode,while the
bending-dominated deformation mode follows a power-law
relationship [115, 124]. In conclusion, low-porosity screws
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Fig. 4 Porosity, pore size, and triply periodic minimal surface (TPMS)
design of additivemanufacturing (AM) osseointegrated screw. a Porous
structure avoids the stress-shielding effect (reproduced from [27],Copy-
right 2019, with permission from the authors, licensed under CC
BY-NC-ND). b Relationship between mechanical strength and poros-
ity (reproduced from [40], Copyright 2020, with permission from IOP
Publishing Ltd). c Effect of pore size and porosity on the mechani-
cal and biological properties of screws. d Finite-element analysis of
beam-based and TPMS scaffolds, showing no stress concentration in
TPMS (reproduced from [29], Copyright 2022, with permission from

the authors, licensed under CC BY 4.0). e Compressive strength of
beam-based scaffold and TPMS scaffold (reproduced from [29], Copy-
right 2022, with permission from the authors, licensed under CC BY
4.0). f The torque of beam-based scaffold and TPMS scaffold (repro-
duced from [149], Copyright 2022, with permission from the authors,
under exclusive licence toSpringer-VerlagLondonLtd., part of Springer
Nature). g Schematic diagram showing how TPMS affects bone regen-
eration (reproduced from [29], Copyright 2022, with permission from
the authors, licensed under CC BY 4.0). MSCs: mesenchymal stem
cells; ECs: endothelial cells
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have higher mechanical strength and a lower risk of breakage
than high-porosity screws.

In general, the mechanical properties of porous metal
screws depend on their overall porosity, but they are also
affected by pore size. Some reports state that the mechanical
properties decrease with increasing pore size. For instance,
the study of Yang et al. shows that the elastic modulus and
compressive yield strength decrease with increasing unit size
[125]. Ran et al. [126] fabricated porous Ti6Al4V implants
with pore dimensions of 400, 600, and 800 μm and a wall
thickness of 300 μm. Their results show that the mechani-
cal properties decrease with increasing pore size, which is
attributed to a porosity that correlates positively to the pore
size for a given wall thickness. However, some researchers
reported different results when the predesigned porosity was
fixed. Taniguchi et al. [127] used selective laser melting
(SLM) to manufacture three porous titanium implants with
an intended porosity of 65% and pore sizes of 300, 600, and
900μm, and reported that themechanical properties decrease
with decreasing pore size. This phenomenon is attributed to
the powder used for AM having a certain diameter and to
the powder on the surface not completely melting during
manufacturing. Due to the manufacturing mismatch, for a
given porosity, the mechanical properties are degraded for
smaller pore sizes, slimmerwalls, and a greater fraction of the
unmelted part of the wall [127]. As the pore size approaches
the printable threshold, the adhesion between the powders
and the mechanical strength decrease, mainly due to the lim-
itations of manufacturing technology [128].

Effect of pore size and porosity on biological properties
of additive-manufactured osseointegrated screws

In contrast with the mechanical strength, low porosity does
not improve the biological properties of porous screws
(Fig. 4c). A decrease in porosity causes the elasticmodulus of
the screw to exceed that of the bone, leading to stress shield-
ing, which means that screws with a high elastic modulus
offload the mechanical load the bone should bear, resulting
in bone resorption and detrimental bone regeneration. When
the porosity is close to zero, the elastic modulus of metals
(Ti6Al4V: 110 GPa; CoCrMo alloys: 210 GPa [43, 126]) is
much higher than that of trabecular bone (from 0.07 to 6.9
GPa [129–131]) and cortical bone (from 3 to 40 GPa [40, 43,
131]). Studies show that when the stress of the surrounding
bone tissue is between 20 and 60 MPa, the surrounding bone
tissue is in a state of active reconstruction [132]. The bone
around solid screws experiences less stress. Fortunately, the
elastic modulus of porous screws can be controlled by the
porosity. Studies show that titanium alloys with 60%–80%
porosity have elasticmoduli similar to bone (1–8GPa),which
avoids stress shielding and enhances osseointegration [38,
82, 133].

Higher porosity also means higher permeability and more
space for bone ingrowth and vascularization [134]. Higher
permeability means better mass transport (the ability of cells
to enter and migrate into the scaffold and the ability of oxy-
gen, nutrients, and waste to diffuse through the scaffold).
In addition, the study of Cheng et al. [135] shows that the
vascular endothelial growth factor increases with increasing
porosity, indicating that high porosity induces vasculariza-
tion to support bone ingrowth. Pei et al. [40] implanted
58%–85%porosity scaffolds into rabbits and beagle dogs and
used push-out experiments to measure the stability between
the scaffold and the bone. One month after implantation, the
scaffolds’ shear strength with 58%, 73%, and 85% porosity
was 48, 55, and 60 MPa, respectively, indicating that higher
porosity promotes early osseointegration.

However, higher porosity does not mean the best fixation.
Kelly et al. [38] showed that, although high-porosity (90%)
implants have more bone ingrowth, they do not have higher
bone–implant shear strength. The maximum force, energy to
failure, and shear strength peaked between 60% and 70%.
The optimum porosity reported by other studies is similar.
Chen et al. [136] used SLM to manufacture scaffolds with
60% and 70% porosities and performed in vivo and in vitro
experiments. The results show that a scaffold with 60%
porosity strongly promotes cell proliferation, osteogenic dif-
ferentiation, and bone ingrowth. Pei et al. [40] conducted
push-out experiments six months after implanting the scaf-
folds with 58%–85% porosities. All test specimens broke in
the mature bone area rather than in the bone-formation area,
indicating that 58%–85% porosity is suitable for osseoin-
tegration. Shah et al. [137] used Raman spectroscopy and
electron microscopy to investigate the ultrastructure of the
bone–implant interface of solid and porous implants with a
porosity of 62.7%. The carbonate-to-phosphate ratio, pheny-
lalanine, and tyrosine levels of bone healing at the implant
interface with 62.7% porosity were more similar to native
bone, indicating that this porosity was expected to reduce
the stiffness mismatch between the screw and bone, elimi-
nating the stress shielding effect. These studies suggest that
controlling the porosity to 60%–80%promotes the long-term
fixation of porous screws.

Pore size also profoundly affects biological performance,
including the invasion of cells and the ingrowth of bone.
On the one hand, screw pores form the spatial basis for bone
ingrowth, and a pore that is too small is not conducive to bone
ingrowth (Fig. 4c). Human trabecular bone is between 100
and 200 μm thick, depending on the part of the bone [138].
Theoretically, tomeet the needs of bone ingrowth, screw pore
size should not be less than this range. Hulbert et al. [139]
showed that 75–100μmpores lead to the ingrowth of unmin-
eralized bone-like tissue, whereas smaller pores (10–44 and
44–75 μm) only had infiltration of fibrous tissue. Existing
fabrication techniques also limit the minimization of pore
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size. Pores that are too small may be blocked by unmelted
powders and become solid [128].

Moreover, permeability (a parameter that predicts the abil-
ity of cells and nutrients to diffuse deep into the scaffold)
increases as the pore size increases [128]. Screws with small
pore sizes are not conducive to bone ingrowth due to lim-
ited space, nutrients, and oxygen supplements. Many studies
confirm that pores that are too small are not conducive to fix-
ing screws in bone. Chang et al. [37] used vacuum diffusion
bonding to prepare porous titanium with a porosity of 70%
and an average pore diameter of 188–390 μm. The results
show that the porous scaffold with an average pore size of
390 μm was more favorable for cell proliferation and bone
ingrowth than scaffolds with smaller pore sizes. Taniguchi
et al. [127] implanted porous titanium scaffolds with a poros-
ity of 65% and pore sizes of 300, 600, and 900 μm into
a rabbit femur for two, four, and eight weeks. At all time
points, those with 600 μm pores fixate better than those with
300 μm pores. Similar results were obtained by Ran et al.
[126]: after implanting 400, 600, and 800 μm scaffolds into
rabbit femurs for 4 weeks and 12 weeks, bone ingrowth into
400 μm scaffolds was significantly less than bone ingrowth
into 600 and 800 μm scaffolds. Push-out tests also show that
400 μm scaffolds have inferior interfacial strength than the
rest groups.

Conversely, pore sizes that are too large are not conducive
to cell adhesion [125, 140]. Excessive pore size may be
more like a macro plane than a 3D pore structure for cells.
Moreover, cell seeding efficiency decreases as the pore size
increases [126]. Many studies confirm that excessively large
pores are not conducive to screw–bone bonding. Ran et al.
[126] and Taniguchi et al. [127] showed that the 600 μm
porous scaffolds bind bone more strongly than 800 and
900 μm porous scaffolds, respectively. The study of Hara
et al. shows that the bone ingrowth into 1000 μm porous
scaffolds is inferior to that into 500–800 μm porous scaf-
folds [133]. Fukuda et al. [141] implanted longitudinal square
channels with pore sizes of 500, 600, 900, and 1200 μm into
the dorsalmuscles of beagle dogs to study osteoinduction and
reported that the osteoinductive ability of 900 and 1200 μm
pores is inferior to that of 500 and 600 μm pores. Overall,
AM osseointegrated screws with 500–800μm pore size may
provide the best fixation.

TPMS design for additive-manufactured
osseointegrated screws

TPMS-designed osseointegrated bone screws offer mechan-
ical and biological advantages over conventionally designed
porous screws. Most porous structures manufactured by AM
are designed based on unit cells with polyhedral pores,
straight edges, and sharp turns. TPMS,with zeromean curva-
ture at all locations, can expand infinitely in the three-period

directions [138]. TPMS exists in four common types: primi-
tive surface (P surface), diamond surface (D surface), Gyroid
surface (G surface), and I-wrapped package surface (IWP
surface). These are expressed as follows [142, 143]:

P surface : cosX + cosY + cosZ � c, (3)

D surface : cosZ sin(X + Y ) + sinZ cos(X−Y ) � c, (4)

G surface : sinXcosY + sinY cosZ + cosXsinZ � c, (5)

(6)

IWP surface : 2 (cosXcosY + cosY cosZ + cosZcosX )

− (cos (2X ) + cos (2Y ) + cos (2Z )) � c,

where (X, Y , Z) represents the Cartesian coordinate system
and c is the level-set constant, which results in significant
variation in the local TPMS geometry.

According to the process of generating TPMS, TPMS can
be divided into network TPMS and sheet TPMS. TPMS is
a continuous non-self-intersecting surface that splits a space
into two subspaces. Network TPMS fills a subspace with
materials, whereas sheet TPMS uses materials to give the
surface a certain thickness [144]. The advantage of network
TPMS lies in better manufacturability and connectivity [145,
146]. During the AMprocess, it is easy to form amolten pool
under the curved surface of sheet TPMS, resulting in powder
adhesion and decreased porosity. However, sheet TPMS has
superior mechanical properties and a higher surface-area-to-
volume ratio, meaning larger bone tissue attachment area
within a given volume [147]. The study by Al-Ketan et al.
shows that sheet TPMS has better mechanical properties than
network TPMS and a larger surface area for the same pore
size and porosity [115]. The study of Cai et al. also shows that
the compressive strength of sheet TPMS is 1.3 to 2 times that
of network TPMS. The toughness produced by sheet TPMS
also exceeds that of network TPMS [148]. Therefore, sheet
TPMSmay be more suitable for porous screws than network
TPMS.

Mechanical advantages of TPMS-designed osseointegrated
screws

TPMS-designed osseointegrated bone screws are mechan-
ically superior compared with beam-based designs. At
low porosity, the porous structure only weakly affects the
mechanical properties of screws. In contrast, with increas-
ing porosity, the porous structure more strongly affects the
mechanical properties [115], and high porosity is benefi-
cial for the osseointegration of screws. Compression tests
demonstrate that the strength and toughness of sheet-TPMS
scaffolds are superior to those of beam-based scaffolds
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(Figs. 4d and 4e). Toughness is the area under the stress–s-
train curve at 25% strain and indicates the amount of energy
required to damage the material [115]. A possible damage
mechanism is that the structural design influences the defor-
mation mode, with beam-based scaffolds mostly exhibiting
mixed deformation modes, whereas sheet-TPMS structures
are predominantly tensile [115]. Torsional tests show that
the TPMS design may increase torsional strength and energy
absorption capacity comparedwith beam-based designs. Tor-
sional loading is amore complex condition than compression
and tension loading because the direction of the load is con-
stantly changing as the load is applied. Therefore, TPMS
structures that are extended in all directions possess better
torsional resistance (Fig. 4f) [149]. In addition, the excel-
lent flexural resistance of TPMS structures has been verified
by three-point bending tests and is widely used in sandwich
structures [150, 151]. Bobbert et al. demonstrated through
compression fatigue tests that the maximum endurance of
TPMS scaffolds could reach 60% of the yield stress at a fail-
ure threshold of 1×106 cycles, which is at least threefold
greater than the maximum endurance limit of beam-based
scaffolds [138]. Compared with beam-based designs, TPMS
design improves the fatigue performance of porous screws by
reducing the stress concentration, which is the leading cause
of fatigue failure [152, 153]. Therefore, TPMS-designed
porous bone screws should have greater mechanical strength,
which reduces the risk of screw breakage.

Biological advantages of TPMS-designed osseointegrated
screws

TPMS-designed screws also have biological advantages.
Bone remodeling is done layer by layer on the scaffold
surface, so a larger surface area facilitates bone deposition
[154, 155]. Al-Ketan et al. showed that the surface-area-
to-volume ratio of TPMS can be twice that of beam-based
scaffolds [115].A higher surface-area-to-volume ratiomeans
that TPMS provides more area for bone tissue attachment
within the same volume.

More impressively, TPMS has the same mean curvature
as bone trabeculae. The presence of surface stress related to
curvature affects the reconstruction of bone tissue [156, 157].
In vitro experiments show that TPMS promotes the prolif-
eration of osteoblasts and improves osteogenesis compared
with beam-based structures [29, 158]. The results of lamin
A/C (nuclear membrane protein) staining and immunoflu-
orescence co-staining of F-actin and vinculin indicate that
TPMS may induce the reorganization of the cytoskeleton of
human mesenchymal stem cells and further impose external
forces on the cell nucleus, thereby affecting its morphology.
Such regulation of the nuclear morphology may lead to a
cascade of cellular behavioral regulation, such as osteogenic
differentiation and the promotion of angiogenesis (Fig. 4g)

[29]. Bone ingrowth was also significantly increased in the
TPMS group compared with the beam-based cubic structure,
suggesting that TPMS scaffolds with continuously curved
surfaces can facilitate the infiltration of new tissue [29, 158].

The TPMS, especially the sheet-TPMS, has excellent
mechanical properties and proven bone ingrowth capac-
ity, which may be suitable for porous screws. Although
TPMS-designed porous bone screws are currently available
(FIREBIRD SI Fusion System, Orthofix, Texas, USA), the
corresponding clinical cases to support them are lacking.
In addition, dentistry researchers have considered designing
root-simulating implants with TPMS as the basic unit [152].
In the future, TPMS-based porous screws should merit more
in-depth research and validation.

Irregular trabecular-like design
for additive-manufactured osseointegrated screws

Human trabecular bone is a random structure with no fixed
shape, pore size, or local porosity (Fig. 5e). “Irregular-
ity” is the term usually used to describe the degree of
randomness. As the irregularity increases, the pore size
distribution becomes broader and more uniform. Liang et al.
[82] showed that about 90% of the pore size of the porous
scaffold with a low irregularity of 0.06 is concentrated
within 600–1000 μm. When the irregularity reaches 0.5,
the pore size approaches the normal distribution within
100–2000 μm. Liang et al. also showed that bone cell
proliferation and osteogenic ability are strongly related
to the irregularity of the scaffolds [82]. Therefore, the
irregular trabecular-like design may be another potential
lever for improving the osseointegration of porous screws.
The Voronoi-tessellation method has received increasing
attention for constructing irregular bone tissue engineering
scaffolds (Fig. 5e) [159]. A porous scaffold designed by the
Voronoi method can exactly match the natural bone proper-
ties at all levels (microstructure, mechanical, mass transport,
and biological properties) with optimum cell penetration,
nutrient diffusion, and osteoconduction properties [30, 160].

Mechanical performance of bone trabecular-like designed
osseointegrated screws

The mechanical properties are essential in trabecular-
like designed osseointegrated screws. Huang et al. tested
the bending and torsional resistance of trabecular-like
designed screws with 55% porosity. The bending strength
((240.91±108.00) N) and torque ((91.49±12.08) N·cm) of
trabecular-like designed screws are significantly less than
those of solid screws (bending strength: (2056.52±409.18)
N; torque: (275.99±127.39) N·cm) [78]. Like other types
of porous structures, porosity is also a core parameter of
the trabecular-like design and exerts an important influence
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Fig. 5 Auxetic and irregular trabecular-like design for additive
manufacturing (AM) osseointegrated screws. a Scanning electron
microscopy (SEM) image of an auxetic-designed screw (reproduced
from [172], Copyright 2021, with permission from Elsevier Ltd.).
b Radial displacement of auxetic screw and bone under stretching
(reproduced from [172], Copyright 2021,with permission fromElsevier
Ltd.). c Radial shrinkage and torsional deformation of auxetic structure
under compression (reproduced from [174], Copyright 2017, with per-
mission from American Association for the Advancement of Science).
d Schematic diagram of an auxetic screw and auxetic units of differ-
ent structures: d1 2D and 3D (reproduced from [181], Copyright 2012,
with permission from Acta Materialia Inc.) units of re-entrant hexagon
structure; d2 2D and 3D (reproduced from [183], Copyright 2019,

with permission from Elsevier Ltd.) units of double-V structure; d3 2D
(reproduced from [180], Copyright 2021,with permission fromElsevier
B.V.) and 3D (reproduced from [186], Copyright 2016, with permission
from IOP Publishing Ltd.) units of sinusoidal ligaments; d4 2D (repro-
duced from [187], Copyright 2018, with permission from Elsevier Ltd.)
and 3D (reproduced from [174], Copyright 2017, with permission from
American Association for the Advancement of Science) units of the
tetra-chiral structure. e Voronoi screw, Voronoi structure, and recon-
structed 3D model of healthy trabecular bone (reproduced from [59],
Copyright 2019, with permission from the authors, licensed under CC
BY 4.0; reproduced from [82], Copyright 2019, with permission from
Elsevier). Pull-out tests showed significantly higher pull-out strength
for Voronoi screws at both 6 and 12 weeks
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on its various properties. The apparent elastic modulus of
the trabecular-like Ti6Al4V scaffolds with a porosity of
48.83%–74.28% after heat treatment is 1.93–5.24 GPa, and
the ultimate yield strength is 44.9–237.5 MPa [82]. The
trabecular-like Ti6Al4V scaffolds with irregularity (0.4)
and porosity (70%, 80%, and 90%) after heat treatment
have an elastic modulus range of 0.84–1.97 GPa and an
ultimate strength range of 21.0–99.1 MPa [161]. The
degree of irregularity also has an important influence on
the mechanical properties of trabecular-like scaffolds. The
apparent modulus of elasticity tends to decrease as the
irregularity increases. However, the compressive strength
fluctuates as a function of the irregularity. A slight degree of
irregularity often decreases the strength caused by the initial
instability of the unit on which the structure is based. When
the irregularity exceeds a certain value, the structure forms
a new stress balance, and the compressive strength tends to
stabilize [162]. Chang et al. [59] showed that the mechanical
properties of trabecular-like designed screws could be
somewhat improved by optimizing the porous design.

Biological advantages of bone trabecular-like designed
osseointegrated screws

The potential biological advantage is the main attraction of
the bone trabecular-like design of porous bone screws. As
described in “Effect of pore size and porosity on biological
properties of additive-manufactured osseointegrated screws”
section, large pores facilitate substance penetration, whereas
small pores facilitate cell adhesion. The trabecular-like
design with widely distributed pore size can simultaneously
provide good permeability and high cell adhesion efficiency.
Compared with conventional scaffolds (the octet, body-
centered cubic, and pillar body-centered cubic), irregular
scaffolds have a more uniform stress distribution and wider
permeability [163]. A recent study has shown that scaffolds
with different pore diameters could give cells more diverse
stimulation, which is conducive to cell growth [164]. The
studies by Cheng et al. [135] and Liang et al. [82] show that
irregular scaffolds have better proliferation and osteogenic
ability, which may be related to the up-regulation of the
related gene expression. Wang et al. showed that irregular
scaffolds have a greater vascularization capacity than regular
porous scaffolds [165]. In vivo experiments also confirmed
the excellent osseointegration ability of the structure. Ragone
et al. [166] implanted a randomized trabecular titanium struc-
ture into sheep and proved that the structure underwent rapid
osseointegration both in cancellous and cortical bone. Pull-
out tests showed that the immediate stability of screws with
a trabecular-like design did not differ from that of regular
porous screws or solid commercial screws. However, after
6- and 12-week implantation, screws with a trabecular-like
design exhibited the best stiffness and pull-out strength [59].

At the same time, this study indicates that irregular screws
are more conducive to early osteogenesis, which is essential
for the rapid recovery of patients.

The long-term fixation of trabecular-like porous bone
screws (Zimmer Dental Inc., California, USA) has been
extensively demonstrated in dentistry [35]. However, Zim-
mer screws are fabricated by chemical vapor deposition. The
Voronoi-tessellation method combined with AM technology
offers more design and manufacturing freedom, which can
greatly expand the application scenario of trabecular-like
designed porous screws.

Auxetic design for additive-manufactured
osseointegrated screws

Auxetic structures have negative Poisson ratios (NPRs),
expanding in tension and contracting in compression. All
screws designed with the above-mentioned porous struc-
ture have a positive Poisson ratio, tending to contract in the
transverse direction under lengthwise stretching. In contrast,
auxetic porous screws with an NPR expand under stretching
to enhance the fixation of screws to bone (Fig. 5b) [31].

Auxetic structures can be divided into re-entrant, chiral,
rotating rigid (or semi-rigid), and other structures according
to their deformation mechanism [167]. Classic examples of
re-entrant structures are re-entrant hexagonal and double-V
or double-arrow structures, whose main deformation mech-
anism is bending of the oblique strut [168–170]. Chiral units
consist of central cylinders (nodes) connected by tangential
elastic ligaments (ribs),whose deformationmechanisms con-
sist of rotation of the nodes and bending of the ribs [167]. The
auxiliary response of the rotating rigid structure is caused by
the rotation of the rigid geometry around the hinge during
tension [171]. Yao et al. [31] compared the mechanical prop-
erties of three types of auxetic screws and showed that the
different auxetic structures change the mechanical proper-
ties of the screws, especially their functional properties. In
particular, the re-entrant structures have the highest tensile
strength and an NRP of greater magnitude.

According to the space form, auxetic structures can
be divided into two-dimensional (2D) and 3D (Fig. 5d),
determining their scope of application. It is obvious that 2D
auxiliary structures cannot be applied to screws, and hollow
screws can only be designed by transforming 2D auxiliary
structures into 3D tubular structures (Fig. 5a) [172]. Another
type of 3D auxetic structure comprises 3D auxetic cell arrays
in three directions, X, Y , and Z . Kolken et al. [173] applied
the 3D auxetic structure to the hip stem design to optimize
stress transfer. Theoretically, 3D auxetic structures can also
be applied to porous bone screws, which is a promising
approach.
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Mechanical advantages of auxetic-designed
osseointegrated screws

The core advantage of auxetic screws is their uniquemechan-
ical deformation behavior—the screws expand radially under
tension to resist pullout and improve screw fixation [172].
Frenzel et al. [174] reported a 3D tetra-chiral structure that
undergoes torsional deformation in addition to radial shrink-
age when compressed (Fig. 5c). Porous screws using this
lattice might be easier to screw in because they twist and
contract under compression and resist pullout by expanding
under axial stretching.

In addition, auxetic porous materials have a higher shear
strength than common porous materials [175]. For isotropic
materials, the shear modulus G correlates positively to the
elastic modulus E and negatively to the Poisson ratio v, as
expressed by [171, 176]

G � E

2(1 + v)
. (7)

Thus, auxetic screws are expected to offer high shear
strength while maintaining a low elastic modulus. Another
advantage of the auxetic structure is improved bending resis-
tance, almost twice that of conventional materials, because
material expansion tends to suppress crack propagation
[176–178]. Jiang et al. [179] reported a tubular auxetic
structure based on sinusoidal ligaments, with Poisson ratios
ranging from −0.7 to 0. Three-point bending tests showed
an 85.4% improvement in ductility compared with the dia-
mond structure [180]. Compression tests showed that the
compressive strength of porous scaffolds with comparable
porosity increases significantly as the Poisson ratio decreases
[176, 181]. In other words, the auxetic structure can deliver
a relatively high compressive strength while maintaining
high porosity. In addition, the auxetic structure has excel-
lent energy absorption and impact resistance and is used in
jounce bumpers [175, 182].

Furthermore, the mechanical properties of auxetic screws
can be further optimized by improving the design. Yao et al.
[31] found that increasing the wall thickness does not affect
the Poisson ratio of the screws but could improve the ten-
sile stiffness, strength, and breaking elongation rate. Further
research confirmed that adjusting the re-entrant hexagon
angle could change the Poisson ratio of auxetic pedicle
screws [172]. By smoothing the corners, stress concentra-
tions can be reduced while maintaining an NPR, further
improving mechanical strength [183]. Based on the double-
V structure, Guo et al. [184] developed the double-U design,
whose smooth geometry configurations can reduce stress
concentration in the elastic region and enhance the auxetic
behavior during large deformation. Meena and Singam-
neni [185] designed a novel S-shaped structure with less

stress concentration than re-entrant structures and with no
cracking or failure of the elements of the structure.

In summary, auxetic screws have excellent mechanical
properties and an NPR, which enhances fixation.

Biological performance of auxetic-designed
osseointegrated screws

The tensile-expansion-deformation behavior of auxetic
screws also gives them a biological advantage, espe-
cially in ligament reconstruction. Early stabilization of the
bone–screw interface and adequate stress stimulation are
essential for robust screw–bone integration. Excessivemicro-
motion during the early stages of screw implantation may
lead to the formation of fibrous tissue around the screw rather
than bone formation [56]. In addition, according to Wolff’s
law, bone resorption typically occurs if the bone surround-
ing the screw does not receive sufficient stress stimulation
[132, 188]. However, in ligament reconstruction, the liga-
ment tends to exert tension on the screws, which leads to
excessive micromovement of the screw in the bone tunnel
[189]. Tensile loads also shrink porous screws with positive
Poisson ratios [31]. Therefore, widening of the bone tunnel
around a screw is often reported in ACLR, implying that the
screw fails to integrate well with the bone [52, 53]. Interest-
ingly, auxetic screws could resist pullout by radial expansion
when subjected to a tensile force [31]. This increased stabil-
ity should provide an interface that facilitates screw–bone
integration. Conversely, radial expansion means that aux-
etic screws convert axial tension into radial pressure, which
facilitates better mechanical stimulation of the bone [31,
172]. Finite-element analysis (FEA) showed that under a
tension of 250 N, the auxetic screws expanded radially by
1.5 μm, while the nonauxetic screws underwent a radial
shrinkage of 1.0 μm [190]. In vitro experiments showed
that auxetic scaffolds effectively deliver biomechanical stim-
uli and promote periodontal ligament cell proliferation and
osteogenic capacity [191]. In addition, adequate mechani-
cal loading inhibits the expression of osteoclasts, retarding
the resorption of peri-implant bone tissue [192]. Wang et al.
[190] implanted auxetic screws in a rabbit femur and sub-
jected them to cyclic tensile loads. The results showed that
the osseointegration parameters of the auxetic screw, such
as bone volume fraction, number of trabeculae, and tra-
becular thickness, improved more than those of nonauxetic
screws after six-week implantation under in vivo dynamic
tensile loading. These studies suggested that auxetic screws
offer uniquebiological advantages in ligament reconstruction
and should provide a reliable anchor for ligaments through
stronger screw–bone integration.

In summary, the tensile-expansion-deformation behav-
ior of auxetic screws translates into more efficient load

123



222 Bio-Design and Manufacturing (2024) 7:206–235

transmission and improves stabilization, which favors
screw–bone integration, especially under tensile loading.

Macro design of additive-manufactured
osseointegrated screws

Porous screws can achieve bone ingrowth, thereby improv-
ing long-term fixation. However, as described in “Effect of
pore size and porosity on mechanical properties of addi-
tive-manufactured osseointegrated screws” section, porosity
dramatically reduces the mechanical properties of these
screws and increases the risk of screw fracture. By optimizing
the overall distribution of the material through macro design,
porous screws can provide sufficient mechanical strength
while preserving pores for bone ingrowth. Graded design,
gradient design, and topology optimization design are three
strategies that optimize material distribution.

Gradient design and graded design
for additive-manufactured osseointegrated screws

Gradient and graded designs are similar strategies for design-
ing porous screws,with the relatively dense portion providing
mechanical strength and the relatively porous portion pro-
viding space for bone ingrowth. Gradient design refers to a
change of porosity along a specific direction, manifested as
a gradual change in the mechanical and biological properties
[193]. At the same time, gradient design has no transition
zone between different parts [26]. These two strategies are
reasonable solutions to the contradiction between improv-
ing biological properties and reducingmechanical properties.
Davoodi et al. [128] designed a porous gradient implant with
a porosity ranging from 0.25 to 0.75, linearly varying from
the center to the surface. Compared with a uniform design
with similar porosity, this gradient design increases the lon-
gitudinal permeability of the implant by 60% without losing
its transverse permeability. At the same time, compression
tests showed that compared with a uniform porosity dis-
tribution, the gradient distribution of porosity improves the
overall mechanical performance of the scaffold. Torsional
tests showed that gradient design increases torsional stiff-
ness by 35% and ultimate shear strength by 15% compared
to the uniform design [194].

The graded design can also enhance the mechanical
properties of the porous screw. Zhang et al. [195] showed
that for a given porosity, the graded scaffold has a sim-
ilar elastic modulus as the uniform scaffold yet a higher
yield strength. FEA showed that the denser part carries
larger stresses, significantly improving the scaffold’s overall
strength. The compressive strength of the graded-porosity
scaffold is nearly 46% greater than that of the uniform-
porosity scaffold when the overall porosity is approximately

the same [196]. In addition, the graded design improves the
fatigue performance compared with uniform design [197].
Xiong et al. [26] designed a porous graded bone screw with
a dense core (Fig. 6) and, by adjusting the diameter of the
dense core, improved the static mechanical and fatigue prop-
erties of the screw.

To summarize, by ensuring space for bone ingrowth, the
gradient design and graded design improve the mechanical
properties of screws and reduce the chance of breakage.

Topology optimization design
for additive-manufactured osseointegrated screws

Topology optimization is a method of systematically opti-
mizing the distribution of implant materials to optimize the
load-transmissionmechanism [33]. The development of digi-
tal technology allowed topologyoptimization to be combined
with FEA. The stiffness requirements of different parts of the
implants can be obtained by FEA [198]. Topological opti-
mization increases the distribution of the material in stress
concentration areas to avoid implant failure. For instance,
Zhang et al. [33] designed a new proximal tibial prosthesis
by topology optimization, significantly optimizing its biome-
chanical and biological properties. Due to the richness of
screw application scenarios, some screws also concentrate
stress. The FEA results of Song et al. [199] showed that the
stress distribution of screws in lumbar fusion is not uniform
and concentrates mainly at the screw root. The screws used
to treat femoral neck fractures also suffer from stress concen-
tration [200]. Based on the deterioration of the mechanical
properties caused by screw porosity, stress concentration sig-
nificantly increases the risk of screw breakage. Topology
optimization technology increases the strength of the stress
concentration area of screws, thereby reducing the risk of
screw breakage. Some researchers improved the rod in spinal
fixators through topology optimization to reduce stress con-
centration in pedicle screws [32, 201]. However, the topology
optimization for a screw itself has not yet been studied.
According to the FEA results, increasing the material dis-
tribution in the stress concentration region of the screw is
vital and needs to be developed in future studies.

To summarize, themechanical performance ofAMporous
screws can be improved by macro design, including gradient
design, graded design, and topology optimization. However,
optimizing the design cannot decrease the loss in themechan-
ical strength of screws caused by AM defects.

Process andmaterial improvement
of additive-manufactured osseointegrated
screws

AM offers unprecedented advantages over traditional tech-
niques of manufacturing porous bone screws. Traditional
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Fig. 6 Graded design for additive manufacturing (AM) osseointegrated
screws (reproduced from [26], Copyright 2020, with permission from
the authors, licensed under CC BY 4.0). a Schematic diagram of uni-
form porous screw and graded screw and histological image of graded

screw.bStress–strain curves of uniform porous screw and graded screw.
cElasticmodulus, yield strength, and fatigue strength of uniformporous
screw and graded screw

screws are made through cutting, which can be done by turn-
ing, milling, or grinding. The initial material from which a
screw is made is called “bar stock,” which usually is a cylin-
drical rodwith a diameter approximating the largest diameter
of the screw [34]. After turning, the bar is transformed into
screws of specific sizes. Although traditional screw manu-
facturing methods have the advantages of large batches, low
cost, and high efficiency, using thesemethods tomanufacture
porous screws is challenging.Basically, efficiently producing
screws with complex designs is impossible with traditional
methods. AM can be used to manufacture porous screws of
the aforementioned design through a layer-by-layer manu-
facturing process (Fig. 7a) [26, 59, 78, 172]. However, AM
porous screws have the problem of discrepancies between as-
built products and predesigned models, which can decrease
their mechanical strength.

First, the layer-by-layer AM process and residual stresses
may lead to delamination between layers and deformation in
AM screws [161, 202]. Second, in themanufacturing process
of porous screws, internal voids and cracks form inside the

solid part of the porous structures (Fig. 7c) [203]. The ideal
AMporous screw should be porous, but the inside of the solid
struts thatmake up the pores should be dense. However, inter-
nal void defects appear within the struts of porous scaffolds
fabricated by powder bed fusion (PBF) [122, 202]. These
small voids or cracks decrease the fatigue strength [39]. The
reduction in porosity is another discrepancy between as-built
products and predesigned models, which is common in AM
based on PBF due to partially adhered powders on the sur-
face of the scaffolds [40]. This phenomenon is caused by the
thermal diffusion of loose powders and solidified material,
partial melting of boundary metal powders by the contour
laser track, and building the curved struts of porous parts on
the loose powders, resulting in the formation of a small melt
pool [122, 204]. These partially adhered powders may act
as crack-initiation sites at the surface, further shortening the
fatigue life [118]. Manufacturing defects and residual stress
play an important role in crack initiation and propagation [86,
161], which may fracture AM porous screws after implan-
tation. In addition, with PBF technology, the rapid cooling
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Fig. 7 Schematic diagram, defects, and post-treatment of additive man-
ufacturing (AM) screws. a Schematic diagram of a selective laser
melting (SLM) machine (reproduced from [237], Copyright 2015, with
permission fromElsevier Ltd.) b α and β phases of titanium (reproduced
from [212], Copyright 2012, with permission from Acta Materialia
Inc.). c Internal voids in the strut (reproduced from [204], Copyright
2017, with permission from Elsevier Ltd.). dOptical microscopy image

and β-phase distribution map of the hot isostatic pressing (HIP) sam-
ple, where green represents β-Ti and red represents α-Ti (reproduced
from [86], Copyright 2018, with permission fromActaMaterialia Inc.).
e Fatigue cracks are blunt passivated in HIP samples but not as-built
samples (reproduced from [41], Copyright 2017, with permission from
Elsevier Ltd.)

after heating causes screws made of Ti6Al4V to enter a rela-
tively brittle acicular martensite α phase, which reduces the
fatigue life of the screws [86]. Therefore, we must improve
themanufacturing ofAMscrews to enhance theirmechanical
properties.

Process improvement of additive-manufactured
osseointegrated screws

Research advances throughout the AM process reduce
defects in AM screws and improve the mechanical strength.
Preheating the powder before printing reduces the residual
stress, internal porosity, and cracking [205, 206]. Ali et al.
significantly reduced residual stresses in the printed prod-
uct by preheating the powder bed to 570 °C, resulting in a

3.2% and 66.2% increase in yield strength and elongation
of the manufactured product, respectively [206]. Polozov
et al. found that preheating above 600 °C produces products
without internal cracks, and the highest tensile strength was
manufactured at a preheating temperature of 980 °C [207].
During manufacturing, defects can also be reduced by opti-
mizing the process parameters. For example, reducing the
layer thickness improves manufacturing accuracy, which is
often better in SLM than in electron-beammelting due to the
smaller layer thickness in SLM [81, 172]. In addition, for
SLM, the volumetric energy density Edensity is a composite
indicator of the response energy input. The energy density
can be expressed as [208]

Edensity � Plaser
sht

, (8)
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Table 3 β-phase fraction and internal porosity of different heat treat-
ment methods (reproduced from [86], Copyright 2018, with permission
from Acta Materialia Inc.)

Group type β phase (%; mass
fraction)

Internal porosity
(%; area fraction)

As manufactured 0 1.2±0.6

Annealed at
800 °C for
150 min

9.6±0.6 1.3±0.7

HIP 11.5±1.5 0.1±0.1

Annealed at
1050 °C for
150 min

20.4±0.5 1.4±0.6

HIP: hot isostatic pressing

where Plaser is the laser power, s is the scanning speed, h is
the hatch distance, and t is the layer thickness. The proper
energy input plays a vital role in the densification of SLM
products, which requires a combination of high laser power
and high scanning speed or low laser power and low scanning
speed [208].

Heat treatment remains the only option to improve the
mechanical properties of as-manufactured screws [209].
Stress-relief annealing can remove residual stress and avoid
premature deformation and fracture of porous structures due
to stress concentration in fatigue tests. The number of cycles
for the scaffolds increases by at least 80% after stress-relief
annealing [161]. The study by Liang et al. also showed
that the specimens had a greater ultimate strength after
stress-relief annealing (600 °C, furnace cooling) because it
avoids premature deformation and fracture by relieving resid-
ual stress [82]. This study also showed that fully annealed
(840 °C, furnace cooling) specimens had higher yield plas-
ticity. After full annealing, the inhomogeneous martensite
structure transforms into a stable coarse-grained structure
and, finally, a basket structure. Fatigue tests showed that
scaffolds with the same porosity could cycle over four times
more than unannealed scaffolds after full annealing [161].
Furthermore, hot isostatic pressing (HIP) treatment substan-
tially reduces the internal porosity of the scaffold matrix and
transforms the microstructure into a more ductile mixture of
α+β phases (Fig. 7d) (Table 3) [41, 86]. The presence of the
β phase provides more ductility to AM porous screws. The
tougher α+β phase blunts the fatigue cracks and improves
the fatigue performance compared with the brittle α phase.
Figure 7e shows that fatigue cracks are blunted in the HIP
scaffolds, whereas no crack blunting occurs in the SLM spec-
imens [41]. The fatigue-endurance ratio of the SLM lattice
after HIP treatment at 1×106 cycles reaches a level equiva-
lent to that of solid metals [210]. Wu et al. showed that, at
1000 °C and 150 MPa, HIP treatment eliminates the voids in

the struts, reduces the microhardness from 403 to 324 HV,
reduces the yield strength from143 to 100MPa, and increases
the fatigue-endurance ratio from 0.3 to 0.55, which is com-
parable to the fatigue-life ratio of solid metal materials [41].

Material improvement of additive-manufactured
osseointegrated screws

In addition to optimizing the manufacturing process of AM
screws, optimizing the screw material can improve their per-
formance. Early screws were mainly made of stainless steel,
but their biocompatibility was poor, so titanium alloys grad-
ually replaced them.

However, the elastic modulus of titanium alloys is much
greater than that of bones. At the same time, the screws
require sufficient mechanical strength to avoid breakage. The
development of β-titanium alloys offers a potential solution
to this paradox. The introduction of the β phase in titanium
alloys depends mainly on alloying elements and thermo-
mechanical processes [211]. At room temperature, titanium
is characterized by a hexagonal close-packed crystal struc-
ture known as the α phase. When heated above 882 °C,
the structure transforms into a body-centered cubic structure
called the β phase (Fig. 7b) [86]. Some alloying elements,
such as Al, C, and O, increase the transition temperature;
these are called α stabilizing elements. Other alloying ele-
ments, such as Ta, V, Fe, and Nb, reduce the transformation
temperature and are called β stabilizing elements [212]. In
addition, the cooling process of the β phase affects the final
microstructure of titanium alloys, producing the α′ or α′′
phase [42]. The advantage of β-titanium alloy lies in its
low elastic modulus and relatively high strength-to-modulus
ratio [42]. Low elastic modulus means better avoidance of
stress-shielding phenomena, even with lower porosity. A
higher strength-to-modulus ratio indicates that the screws
have higher mechanical strength under the same elastic mod-
ulus. The elastic modulus of β-type Ti–24Nb–4Zr–8Sn with
75% porosity is only 0.95 GPa, while the strength can reach
50 MPa [213]. Although no β-titanium alloy screws have yet
been reported in the literature, these porous β-titanium alloys
fabricated by PBF have demonstrated their feasibility [211,
213]. When the elastic modulus of Ti6Al4V is reduced to
1.3 GPa, the strength is only 18.8 MPa [38]. Table 4 sum-
marizes the mechanical properties of inert metals that can
be used in screw fabrication. The development of β-titanium
alloy should produce a new type of screw with low elastic
modulus and high mechanical strength.

Titanium alloys have good in-body stability and corro-
sion resistance and are widely used for screws that need to
provide long-term retention. However, in some orthopedic
diseases, such as fractures and hallux valgus, screws only
serve for temporary fixation. Once the bone heals, the screw
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Table 4 Elastic modulus and
strength of various types of
titanium alloys

Composition Type Elastic modulus (GPa) Strength (MPa) References

Pure Ti α 105 170–485 [214]

Ti6Al4V α+β 114 825–869

Ti6Al7Nb α+β 110 800–1000 [215]

Ti15Ta5Zr β 42.2 445.7 [216]

Ti20Nb10Zr5Ta β 59 566 [217]

Ti30Nb5Ta3Zr β 64.2 680 [218]

Ti21S β 52±0.3 709±6 [219]

Ti25Ta α′′ 64 480 [214]

Ti15Nb9Zr α′ 39 850 [42]

is no longer necessary [220, 221]. Thus, the upside (osseoin-
tegration) can also be the downside (difficult to remove)
if removal is required. Absorbable screws do not require
secondary-surgery removal, which avoids the pain and costs
of secondary surgery for patients. A variety of absorbable
materials can be used to manufacture AM screws. Most
absorbable screws currently used clinically are polylactic
acid materials [25, 51]. However, screws made of these
biodegradable synthetic polymers often face problems such
as fractures due to insufficient mechanical strength [222].
Biodegradable metallic screws (Fe, Zn, and Mg) may be a
good choice because they combine high mechanical strength
with gradual degradation [223–225]. According to the metal
activity order, the metals’ degradation rates may be ranked
as follows: Mg>Zn>Fe. Iron-based screws have excellent
mechanical properties and the slowest degradation. Tai et al.
[226] and Liu et al. [224] fabricated biodegradable Fe-based
porous screws by SLM. The biosafety of Fe-based screws
was verified in the rabbit rotator-cuff tear model and rabbit
lateral femoral condyle model [224, 226]. However, further
clinical application of iron-based screws remains challeng-
ing due to themagnetic properties of Fe and the production of
iron-oxide degradation by-products [227]. The slow degra-
dation rate of Fe-based screws is also a drawback [226].
The degradation rate of Zn lies between that of Fe and
Mg.Recently, Zn-baseddegradable orthopedic implants have
received increasing attention due to their osseointegration-
promoting effect and mechanical strength (close to that of
pure titanium) [228]. Montani et al. [229] explored the fea-
sibility of preparing Zn-based implant materials by PBF.
Subsequently, Wen et al. [230] applied a porous Zn scaffold
prepared by SLM to biomedicine. Qu et al. [225] reported
Zn2Ag-based screws with both osseointegration-promoting
and antibacterial effects. Zinc-based screws have great poten-
tial as a new type of orthopedic screw and merit further
in-depth exploration. Of the three metals, Mg-based screws
are the most studied and have achieved good results in clin-
ical practice [221]. Different Mg-based screws, including
MgYREZr screws [220, 231], high-purity Mg screws [232],

and Mg–Zn–Ca screws [233], have been validated in clinical
trials in different countries. Although good clinical results
have been achieved, the rapid degradation rate and rela-
tively poor mechanical strength of magnesium-based screws
remain challenging to solve [231, 234]. Magnesium alloys
are also challenging for AM due to the high chemical reac-
tivity, which poses a risk of combustion [235]. To solve these
problems, some researchers have tried to develop Mg-Ti
hybrid screws composed ofMg rod andTi-based interference
screws with holes in the screw body [223, 234]. Encourag-
ingly, Li et al. [236] fabricated porous Mg-based scaffolds
using SLM, laying the foundation for AMMg-based screws.
In conclusion, for screws that need to be removed surgically,
degradable screws have excellent development prospects.
Material advances will have a profound and epoch-making
impact on the development of screws.

To summarize, AM offers unique advantages for manu-
facturing porous screws. Although the current AM screws
have certain defects, the advancement of AM and materials
should endow AM screws with greater mechanical strength.

Summary and challenges

Screw fixation has always been widely used in clinical prac-
tice.With the development of medical technology, especially
the emergence of permanent orthopedic implants such as var-
ious prostheses, the long-term fixation capacity of screws has
become an urgent problem to solve. In earlier research, screw
optimizationmainly focused on the profile design to improve
the initial stability. However, conventional, smooth solid
screws have poor osseointegration and suffer from long-term
loosening. AM technology produces porous screws, which
are expected to have a suitable elastic modulus to avoid stress
shielding while allowing bone ingrowth. Macro designs and
the improvement ofAMcanbalance the reduction inmechan-
ical strength of screws caused by porosity and AM defects.
Furthermore, surface modification can improve the osseoin-
tegration capacity of porous screws and achieve a stronger
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bone–screw combination. AM osseointegrated screws with
hierarchical design can act as “roots” in the bone to further
fix various prostheses or for joint fusion. In the future, the
continuous optimization of the osseointegration screw will
further expand the scope of its clinical applications.

Note that AM osseointegrated screws with hierarchical
design also face some challenges:

1. More comprehensive experimental validation is needed
for the fixation effect of AM bone screws: including
in vitro and in vivo pull-out tests at different stages of
implantation to validate the immediate and long-termfix-
ation of AM screws.

2. The mechanical properties of AM bone screws are infe-
rior to those of conventional solid screws. Therefore,
more comprehensive mechanical testing of AM bone
screws, including torsion test, three-point bending test,
tensile test, compression test, and fatigue test, is needed
to ensure their mechanical safety. However, a compre-
hensive and unified mechanical property test standard
for AM bone screws is currently lacking. The develop-
ment and unification of relevant standards will greatly
facilitate the development of AM bone screws.

3. AM screws still have many manufacturing defects
that may weaken their mechanical properties. Recent
advances in AM technology may help improve the
mechanical strength of screws

4. For screws destined for temporary fixation and requir-
ing removal by secondary surgery, absorbable screws are
worthy of in-depth study.

5. The biosafety, clinical ethics, and pre-implantation ster-
ilization procedures of surface-modified screws must be
confirmed, especially as concerns surface modification
with bioactive factors.
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