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Abstract

Significant advancements in various research and technological fields have contributed to remarkable findings on the physio-
logical dynamics of the human body. To more closely mimic the complex physiological environment, research has moved from
two-dimensional (2D) culture systems to more sophisticated three-dimensional (3D) dynamic cultures. Unlike bioreactors
or microfluidic-based culture models, cells are typically seeded on polymeric substrates or incorporated into 3D constructs
which are mechanically stimulated to investigate cell response to mechanical stresses, such as tensile or compressive. This
review focuses on the working principles of mechanical stimulation devices currently available on the market or custom-built
by research groups or protected by patents and highlights the main features still open to improvement. These are the features
which could be focused on to perform, in the future, more reliable and accurate mechanobiology studies.
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The adult human body is composed of approximately 37
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cues which often regulate cell proliferation, migration, dif-
ferentiation, and function, and ultimately, may be responsible
for the development of disease [2]. To study and under-
stand how cells respond to mechanical stimuli or how
host cells will behave upon the implantation of biomateri-
als, researchers use mechanical stimulation devices. These
devices subject biomaterials to a particular mechanical stress
with the aim of stimulating cells through deformation of
the biomaterials. Devices which are currently commercially
available offer limited customization and restricted force
measurement capabilities [3, 4]. As a consequence, a wide
variety of apparatuses, with varying levels of sophistication,
design, functionality, and precision, have been custom-built
by research groups to meet particular needs, while others
are protected by patents. This review focuses on the working
principles, functionality, and main operational features of a
number of mechanical stimulation devices developed over
the past years, and highlights the main features still open to
improvement.

The cellular microenvironment

All cells are in permanent interaction with the surrounding
microenvironment, including the extracellular matrix (ECM)
and neighbouring cells. That interaction is based on a com-
bination of multiple cues, including biological and physical
cues able to influence cell behaviour [5, 6]. Cells are con-
stantly and cyclically subjected to external forces whose
type and magnitude are highly variable and dependent on
location [7]. These forces are crucial from the beginning
of cell life: throughout the development of embryos, and in
everyday activities, in which cells experience shear stress
during breathing and blood flow, or tensile and compres-
sive stresses from skeletal muscle contraction, joint loading,
and tendon/ligament stretching [8—11]. Their ability to sense
externally imposed forces and mechanical properties of the
surrounding ECM is denominated “cell mechanosensing”
[12]. These signals are later converted into changes in intra-
cellular biochemistry and gene expression, a process often
referred to as “mechanotransduction” [13]. Mechanical stim-
uli include not only externally imposed forces (namely
tensile, compressive, and shear forces), but also intrinsic cel-
lular tensions generated by active cell contraction [7]. In fact,
besides the intracellular response to dynamic modifications
of the ECM, cells are also able to influence the environment,
leading to a reciprocal interaction [7, 11]. Both outside-in
and inside-out pathways exist in mechanotransduction pro-
cesses, and are able to trigger signalling cascades [14, 15].
In this sense, the environment plays an important role in
many cellular processes, such as cellular adhesion, migration,
proliferation, differentiation, and apoptosis [15]. Given the
importance of mechanical interactions in cellular behaviour,

mechanobiology has emerged as a novel interdisciplinary
field combining biology, mechanics, and engineering, which
aims to understand how cells sense and behave in response to
mechanical stimuli [7, 11, 16, 17]. Over the past few decades,
researchers have developed systems to control the cellular
microenvironment and, while some focus on improving cell
culture conditions, others aim to study the effects of a par-
ticular mechanical stimulus on cells by using unique cells or
biomaterial-based constructs.

Moving from 2D to 3D models

Biological systems are organized into several levels of struc-
tural organization, becoming more complex as the length
scale increases. Beginning at the micrometre scale, cells
assemble to form tissues, which are organized into organs,
which together form the organism, the highest level of orga-
nization, on the metre scale. Biological model systems range
from simplified two-dimensional (2D) cell cultures to more
complex three-dimensional (3D) cell cultures, organoids, tis-
sue explants, and model organisms, such as the mouse [2].
As the complexity rises, the associated cost and physio-
logical relevance increase, while experimental accessibility
decreases [2].

The 2D and 3D cell culture systems discussed below are
illustrated in Fig. 1, in both static and dynamic modes. In
conventional and static cell cultures, the nutrient supply is
maintained by frequently changing the culture medium. Pri-
mary cells or established cell lines may be cultured as a
2D monolayer, in the case of an adherent culture, or as a
cell suspension known as a “suspension culture”. Although
monolayer cultures are easily manipulated, used worldwide
in life-science research, and still accepted as the gold stan-
dard, cells are highly anisotropic. This is why it has been
experimentally observed that even within a particular cell
line, cellular responses may differ for an identical mechani-
cal input [18]. Moreover, it has been reported that cells may
lose some differentiated characteristics [19] and that conven-
tional 2D culture models, whether in Petri dishes or culture
flasks, do not replicate the dynamic in vivo 3D microen-
vironment [2]. As a consequence, over the past decades,
researchers have focused on more complex cell culture mod-
els which include cell seeding on prefabricated scaffolds
or incorporate cells into 3D scaffolds (usually hydrogels
made of synthetic polymers). These materials allow cellu-
lar spatial organization into functional cell-based constructs.
In order to keep up with continuously more complex and
demanding research, bioreactor systems were developed
for numerous applications, for example, in the context of
cell biology research and regenerative medicine therapies.
While the absence of media mixing or circulation in a static
aqueous environment leads to limited diffusion of fluids or
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Fig. 1 Cell culture models may be in a static or dynamic mode. In 2D
monolayer cultures, adherent cells are in contact with the culture vessel,
neighbouring cells, and the culture medium. In non-adherent plates, 3D
spheroids are grown in suspension, either without or with medium agita-
tion (fed-batch bioreactor). In spinner-flask bioreactors, cell dispersion
or cell-based constructs attached to a needle are in contact with a homo-
geneous medium due to agitation and medium perfusion. Rotating wall

gases and contributes to cell-waste accumulation and nutri-
tion depletion [5, 20], 3D models with continuously mixed
media in a dynamic culture allow homogeneous media and
cell dispersion, better reproducing the in vivo spatial and
biomechanical complexity [19]. Three-dimensional culture
systems, particularly bioreactors, are not the scope of this
review, but extensive works on this topic may be easily
found in the literature [2, 20-23]. Briefly, fluid-flow-induced
bioreactors are designed to enhance nutrient supply to cell
cultures and replicate tissue-specific conditions [24]. They
are often grouped into fed-batch [25], spinner-flask [26],
rotating [24, 27], and perfusion bioreactors [21, 28]. Despite
the continuous media agitation in bioreactors, an efficient
supply of gases and nutrients is not always assured and sam-
ple handling and maintenance of sterility are challenging.
Because of the constraints related to bioreactor size, cost,
and time consumption when running parallel multiple exper-
iments, the reactor volumes in microfluidic systems can be
reduced down to picolitres, while assuring a laminal-flow
pattern [29, 30]. In addition to the decrease in reagent con-
sumption, the culture environment is particularly controlled,
because cell shape, dimensionality, and density are tightly
regulated in 10-100 pwm channels [31, 32]. In the category of
micro-engineered devices, lab-on-a-chip-based devices are
commonly used for point-of-care diagnostics and are char-
acterized by easy handling and high performance of body
fluid analyses [33]. Organ-on-a-chip devices can be used for
culturing cells, spheroids, organoids, and tissue biopsies and,
among their final applications, can be used for drug screen-
ing and development, disease modelling, and the study of
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Perfusion bioreactor Microfluidic

system

Rotating wall
vessels

vessels enable cell culture mixing without an internal stirring mecha-
nism by definition of a proper rotation speed. Perfusion bioreactors use
continuous and fresh medium perfusion through cell-based constructs,
provided by peristaltic pumps. Microfluidic systems are used for cultur-
ing and monitoring of both adherent and non-adherent cells. The fluid
dynamics is represented by the red arrow

human physiology, due to their capability of closely repli-
cating the dynamic microenvironment of living organs [30,
34]. Howeyver, the resultant fluid-flow-induced shear stresses
may induce cell damage, and current devices lack automation
and well-defined protocols [34]. In contrast to bioreactors,
microfluidic-based culture models (or bioreactors on a chip)
offer optimized culture conditions and precise control over
the chemical and physical cellular environment through the
integration of sensors [29].

Two-dimensional culture models are based on a cell mono-
layer in which cells are forced to adapt to an artificial, flat,
and rigid surface [27], and thus do not provide meaning-
ful information regarding the real dynamics that living cells
and tissues experience. Therefore, 3D culture models have
greatly increased in number and sophistication, and have the
capability of more closely replicating the dynamic microen-
vironment. They are also more experimentally tractable
than model organisms. Despite the fact that bioreactors and
microfluidic-based platforms are attractive devices for trans-
porting nutrients and thus improving overall cell culture
conditions [2, 35], fluid-flow-induced shear stresses cannot
be measured in this setting; thus, although this shear stress
is considered an important contribution to cell metabolism,
it cannot be considered as a mechanical input for mechan-
otransduction studies.

In the context of mechanobiology, external force can
be applied through direct methods such as micropipette
aspiration [36-38], atomic-force microscopy [38—41], and
substrate deformation [32, 42—44]. Indirect methods can also
be used, in which cells are, for example, subjected to optical
or magnetic fields [45—47]. In direct methods, a generated
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Fig.2 Examples of mechanical stimulation devices used for
mechanobiology studies. The commonly studied mechanical stresses
are compressive and tensile stresses, either applied to cells incorpo-
rated inside 3D constructs (left) or cells seeded on a flexible substrate
(right). The movement imposed on the biomaterials is represented by
the red arrow

and controlled force is applied directly on cells, leading, in
some cases, to a large global cell strain. On the other hand,
indirect methods allow researchers to monitor deformation
in different regions of a cell, but not to precisely control or
measure the applied stress [32, 47].

Mechanical stimulation devices have been developed to
study cellular response to an externally applied mechani-
cal stimulus or to mimic physiological dynamics to perform
more reliable studies. For example, one can apply com-
pressive or tensile forces on cells in a controlled way via
biomaterials, as illustrated in Fig. 2. Typically, these devices
consist of a culture medium vessel, a specific space for
the cell-based construct/substrate, and clamping parts to
apply tensile or compressive loading in a controlled com-
puted way [21]. Furthermore, some devices allow real-time
monitoring by the use of chambers composed of light-
transparent materials and multi-chamber configurations for
parallel experiments [21]. Individual components, such as
biomaterials, ECM, and soluble and mechanical cues, may
be integrated in these systems to closely mimic the in vivo
environment and study physiology and screen therapeutics.

Emerging mechanical stimulation devices

Mechanical stimulation devices have gained interest due to
their potential for replicating mechanical cues observed in the
in vivo microenvironment, controlling mechanical and phys-
ical properties with precision, and in some cases, allowing
simultaneous analysis [48, 49]. Mechanical strains in a given
material obtained by applying either tensile or compressive
stresses in any direction and at controlled loading features,
such as strain magnitude and frequency, create a mechani-
cal strain environment around the cultured cells. The strain

Uniaxial

Biaxial Equiaxial

Fig.3 The substrate on which cells (represented by green circles) are
cultured may be subjected to different strain modes: uniaxial, biaxial,
or equiaxial, as a consequence of substrate movement imposed by the
load

profile obtained by such substrate deformation may occur in
one of the three different modes illustrated in Fig. 3.

Novel and more complex devices have been developed to
assure optimal cellular conditions during manipulation (e.g.,
application of a particular mechanical stimulus) and analyse
the corresponding cellular behaviour in small-scale volumes.
Some of the operational features of these mechanical stimu-
lation devices are summarized in Table 1.

Depending on the goal of a particular study and con-
sequently of the experimental design, cells may be seeded
directly on the substrate or incorporated in functional con-
structs. Scaffolds or cell-based constructs are 3D structures
often used to regulate the environment of cells, and in
this sense, cells can be manipulated by controlling the
mechanical properties of the scaffold, such as elasticity,
rigidity, and strain. Natural scaffolds are made of naturally
derived materials, namely collagen, fibrin, and components
of decellularized tissues, whereas fully synthetic matri-
ces are often composed of poly(dimethylsiloxane) (PDMS)
and poly(L-lactide-co-glycolide) (PLGA) [27]. One of the
most common materials used in mechanobiology research is
PDMS, because it is non-cytotoxic, autoclavable, and flex-
ible. Furthermore, it has high optical transparency and low
auto-fluorescence, which allows cell analysis by fluorescence
and optical imaging techniques [7, 50]. Hydrogels are bio-
compatible and biomimetic 3D structures which, once again,
facilitate imaging because the cellular behaviour in their inte-
rior can be monitored. Moreover, hydrogels are typically used
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Table 1 List of operational features of mechanical stimulation devices

Device feature Description

Mechanical stimulus type Selection depends on the study
focus/application and may
include at least one of the
following: tensile,
compressive, shear, or

vibration stimulus

Strain mode (uniaxial, biaxial,
or equiaxial), magnitude,
frequency (static, cyclic, or
intermittent), duration, and
waveform (static, sinusoidal,
ramp)

Definition of loading features

Aseptic conditions The device parts in contact with
the cell culture medium and/or
cells must be sterile during
sample handling and

throughout the experiment

Incubation Short vs. long-term

experiments

- The device either incorporates
a means of changing the cell
culture medium every few
days, as well as controlling
and maintaining the
temperature at 37 °C,
exchanging gases, and
controlling humidity to
perform long-term
experiments (over more than
24 h), or has the correct
geometry and dimensions to
fit the incubator

- Static vs. dynamic culture
(with or without continuous
media mixing)

Multi-sample testing Study more than one sample
simultaneously (run in parallel

more than one experiment)

Control and monitor cell
behaviour in real time through
glass or a transparent material,
mostly by inverted confocal
microscopy analysis

Live imaging

Automation The drive mechanism may be
automated
Maintenance The device requires either low

or high maintenance

to apply mechanical stimuli on cells because they allow a uni-
form distribution of stresses throughout the structure [21].
One of the most important concerns in mechanobiology
studies is to ensure aseptic conditions during experiments.
Therefore, all parts of the mechanical stimulation device are
assembled inside a laminal-flow biosafety cabinet and then
the complete and mounted device along with its electronic
components is placed in a typical culture incubator, allowing
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maximally sterile conditions and, when required, a long-term
experiment. As already mentioned, confocal imaging is often
preferable to upright microscopy techniques, mainly to over-
come issues related to device size constraints. Therefore, the
design of some devices considers the overall device dimen-
sions to ensure that it fits in the microscope chamber, and the
incorporation of a glass coverslip or other materials with sim-
ilar optical properties to allow high-magnification imaging of
the cultured or encapsulated cells, for example, for perform-
ing live imaging studies [32,42, 51, 52]. Other developments
are intended to produce high-throughput capabilities, such
as by increasing the number of wells/chambers which can be
loaded simultaneously [51, 53-57].

Commercially available cell-stimulation devices

In vitro mechanical stimulation devices have been developed
to apply specific mechanical stimuli to biomaterials and, in
this way, stimulate cells, for example, as they would be stim-
ulated by external cues typically observed in physiological
conditions. Some tension and compression devices are avail-
able on the market, and the most well-known companies
are FLEXCELL International Corporation, TA Instruments,
CellScale, IonOptix, BISS, and Strex. Some features of
their commercially available products, including the type
of mechanical stimulus and the maximum strain and fre-
quency that can be applied, are summarized in Table 2.
Figure 4 is a graphical representation of the maximum
strain/displacement and frequency provided by the device
models.

Some of the commercialized devices may be used to
evaluate a variety of specimens, including cells seeded in
monolayers, 3D cell-seeded constructs (e.g. hydrogels), nat-
ural tissues, or bioartificial tissue samples. Stretching devices
commercialized by FLEXCELL use regulated vacuum pres-
sure and positive air pressure to deform flexible-bottomed
culture plates. Depending on the type of culture plate, equib-
iaxial or uniaxial tension may be applied. Flexcell FX-2000
and FX-4000 created by FLEXCELL International Corpo-
ration, and recently upgraded to FX-6000 T, were used to
promote tensile loading [58-61].

The Flexcell FX-2000 cell-strain unit is composed of a
circular silicone rubber membrane at the bottom of each
well of the culture plate, in which biaxial strain is regu-
lated by applying vacuum, promoting a multi-radial uniform
stretch. One group exposed flexor tendon cells to biaxial
tensile strain of 0.0075% at 1 Hz and analysed the forma-
tion and organization of the actin stress-fibre network and
cell-cell adherent junctions under loading [58]. In another
study, the same Flexcell unit was used to apply an equib-
iaxial cyclic strain of 3% at 0.25 Hz (2 s on, 2 s off)
to human mesenchymal stem cells (hMSCs) for 16 days,
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Fig. 4 Graphical arrangement of the commercially available mechanical stimulation devices according to their maximum strain/displacement and

frequency

which decreased proliferation and stimulated matrix min-
eralization over unstrained cells (Figs. 5a-5c) [59]. Human
embryonic stem cells (hESCs) were cultured on BioFlex cul-
ture plates coated with Matrigel and exposed to a biaxial
10% membrane strain for 10 cycles/min using the FX-4000
device [61]. The mechanical strain inhibited hESC differ-
entiation, but self-renewal was promoted compared to an
unstrained control [61]. Porcine valve interstitial cells and
bone-marrow-derived hMSCs (bm-hMSCs) were cultured on
BioFlex culture plates and exposed to a biaxial (radial and
circumferential) tensile strain of 7%, 10%, 14%, and 20%
respectively at 0.6 Hz for 4 days [62]. The strain magni-
tudes, which were homogenously distributed throughout the
membrane, had an impact on collagen production [62]. More
recently, the FX-6000 T Tension System was used on vascular
smooth muscle cells derived from human-induced pluripo-
tent stem cells (hiPSCs-VSMCs) [63]. Uniaxial cyclic tensile
strain of 2.5% at 2.75 Hz applied for a period of 48 h enhanced
the expression of VSMC and ECM markers and also the for-
mation of phalloidin, mostly in a perpendicular direction to
the tensile loading direction [63]. A Flexcell FX-4000 strain
unit was used by Sumanasinghe et al. to apply an uniaxial
cyclic tensile strain to bm-hMSCs seeded on linear 3D type
I collagen matrices [60]. Cyclic tensile strains of 10% and
12% at 1 Hz induced osteogenic differentiation compared to
unstrained controls after 1 and 2 weeks, without osteogenic
supplements [60].

Commercialized by IonOptix, C-Pace EM is a multi-mode
electromechanical stimulator which can be coupled to the C-
Stretch system. This stimulator was used to apply electrical,
mechanical, and combined electromechanical stimulation
to human-induced pluripotent stem-cell-derived cardiomy-
ocytes (hiPSC-CMs) cultured on fibronectin-coated PDMS
[64]. A uniaxial cyclic tensile strain of 5% was applied at
1 Hz for 3 or 7 days and, with regard to electromechanical
stimulation, cells were also stimulated with an electrical field
of 3 V/cm and 4 ms biphasic pulse duration at the end of the
mechanical stimulus hold phase to mimic the isovolumetric
contraction. All three stimulus modes resulted in stress-fibre
formation and sarcomeric length shortening, but upon elec-
tromechanical stimulus the transmembrane calcium current
significantly decreased (Figs. 5d and Se) [64].

A BioDynamic™ chamber mounted on an ELF3200
mechanical testing machine from the TA Instruments group
was used in compressive loading studies [65, 66]. Five per
cent global strain was applied by cyclic compressive loading
(for 2h on day 9 and then every 5 days up to and including day
19) to hMSCs cultured in 3D polyurethane (PU) scaffolds,
and was found to promote osteogenic differentiation and min-
eralized matrix production [65]. MLO-AS osteoblastic cells
cultured on PU open-cell foam scaffolds were exposed to a
compressive strain of 5% at 1 Hz (for 2 h per day on days
5, 10, and 15 of culture), which promoted the production of
mineralized matrix (Figs. 5f—=5h) [66]. Endothelial progeni-
tor cells (EPCs) isolated from rat bone-marrow were seeded
in demineralized bone matrix (DBM) scaffolds under cyclic
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Fig.5 Cellular results of studies which made use of commercially
available devices. Von Kossa staining of cell layers after 16 days in
culture showed that compared to the unstrained condition (a), hMSCs
that underwent mechanical strain imposed by Flexcell FX-2000 had
greater matrix mineralization (b), as corroborated by measurement
of matrix-deposited calcium (c) (reproduced from [59], Copyright
2003, with permission from Elsevier). d Sarcomere length analysis
by actin (ACTN, red) and nuclei (DAPI, cyan) staining of sam-
ples: non-conditioned (NC), electrically conditioned (E), mechanically
conditioned by an IonOptix C-stretch (M), and electromechanically
conditioned (EM) (scale bar: 25 mm). Results for different conditioning
procedures (1 Hz 3 d, 2 Hz 3 d, and 1 Hz 7 d) are shown in a boxplot
(e) (reproduced from [64], Copyright 2017, with permission from Else-
vier). Empty and non-loaded scaffolds were loaded by a TA Instruments
BioDynamic device coupled with an Electroforce testing machine, then
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cut into cross sections and stained with Sirius red (for collagen) (f) and
alizarin red (for calcium) (g). Absorbance of MTS (for cell-viability
assessment), alizarin red, and Sirius red per loaded scaffold at day 20
was normalized to a paired non-loaded scaffold (mean+SD) (h), and
showed an increase of matrix mineralization after loading (reproduced
from [66], Copyright 2009, with permission from Elsevier). i Expression
of gremlin-1 (Grem1) protein (green) in mouse primary chondrocytes
increased 24 h after tensile stress loading (stress+) was applied with the
Strex STB-140 system, compared to the unloading condition (stress—)
(scale bar: 50 wm). j An acceleration of mouse osteoarthritis develop-
ment after surgical induction was observed through safranin O staining
and gremlin-1 immunofluorescence. Scale bars: 100 pm and 50 pwm,
respectively (reproduced from [69] authored by Chang et al. under the
Creative Commons license CC BY 4.0). h(MSCs: human mesenchymal
stem cells
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Table 2 Summary of commercially available devices which apply tensile and/or compressive stresses

Company Product model Stress type Loading Maximum strain (%) or Maximum frequency
capacity displacement (mm) (Hz)
FLEXCELL FX-6000 T Uniaxial/biaxial tensile 33% 5
International Tension System stress
Corporation FX-5000C Uniaxial compressive 62N
Compression stress
System
TA Instruments Biodynamic 5110*%  Uniaxial 200 N 6.5 mm 20
tensile/compressive
stress
Biodynamic 5170*%  Uniaxial tensile stress
BioDynamic Uniaxial 15
5210%* tensile/compressive
stress
BioDynamic Uniaxial tensile stress
5270%
CellScale MCBI1 Biaxial tensile stress 10N 20% 2
MCFX Uniaxial tensile stress 30N 12.5% 0.5
MCT6 200 N >100% 2
MCTR Uniaxial compressive 700 kPa 0.5
MCTX stress 100 N 2 mm 2
MCIJ1 Bioreactor Uniaxial tensile stress 100 N 25.4 mm 2
IonOptix C-Stretch Uniaxial tensile stress 20% 10
BISS TE200 Uniaxial 200 N 25 mm 13
TE500 tensile/compressive 500 N
stress
TE40? 40N 4.5 mm
Strex STB-1400 Uniaxial tensile stress 20% 1
STB-100
STB-150 W 30%
STB-190-XY Biaxial
tensile/compressive
stress

AThe device also allows a pulsatile flow stimulation

compressive loading. Cell-based constructs were placed in
a BioDynamic ELF5110 device, and after being subjected
to 5% strain at 1 Hz for 4 h/day for 7 days, proliferation of
EPCs increased [67].

Cell tensile loading systems from Strex are reported in
the literature for diverse purposes, including the evaluation
of cell adhesion and mechanotransduction studies. Meniscal
root and horn cells were cultured on rat tail COL1-coated
polydimethylsiloxane and subjected to 2 h and 4 h treat-
ment with 5% and 10% uniaxial cyclic tensile strain at
0.5 Hz, using a STB-140 system. The density of both root and
horn cells was reduced after mechanical treatment, whereas
expression of the chondrocyte-associated genes SOX9 and
COL2A1 was significantly enhanced [68]. Using the same
loading system, mouse primary chondrocytes were seeded
into silicon stretch chambers coated with fibronectin, and

after 48 h were subjected to cyclic tensile loading (0.5 Hz,
10% elongation) for 30 min in a CO; incubator. The excessive
loading accelerated osteoarthritis development by inducing
gremlin-1 (Figs. 51 and 5j) [69]. In a different study, Murali
et al. seeded hMSCs onto silicone chambers coated with
COL1 and subjected them to tensile loading at 1 Hz fre-
quency and 8% strain for 6, 24, 48, and 72 h, using the
ST-140 model. They suggested that when subjected to uni-
axial loading, hMSCs underwent tenogenic differentiation
through activation of epithelial sodium channels [70]. Taka-
hashi et al. seeded normal human lung fibroblasts onto silicon
chambers coated with COL1, and a uniaxial sinusoidal cyclic
tensile loading of 30 cycles/min was applied for 10 min using
the ST-140 model. The concentrations of ATP in the super-
natant were significantly elevated by 20% strain, but not by
4% strain. The researchers also visualized ATP release during
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Four-point bending
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Clamped samples connected to a
stretching device

Fig. 6 Representation of four tensile working principles. In the four-
point bending apparatus, the cell-based construct is supported by
stationary supports and strain is distributed in the perpendicular plane to
the applied load. However, the strain magnitude is not distributed uni-
formly between these horizontal planes because it increases from the
central horizontal axis to the external medial and lateral faces (which
are subjected to maximum tensile and compressive strains, respectively)
[73]. Constructs can also be placed in cages and fixed at two oppo-
site ends: one rigidly and the other to the rake attachment. The linear
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Fig. 7 Graphical arrangement of the devices designed and produced by
research groups according to the maximum tensile strain/displacement
studied at a particular frequency. Observation: despite the fact that
Subramanian et al. [57] applied 2% uniaxial tensile strain to cells encap-
sulated in collagen constructs, the device used in this study may operate
at a loading strain up to 12% at cyclic frequencies of 0.01-1 Hz

cell stretch in real time, using the NS-600 W model. Follow-
ing a single uniaxial tensile strain of 22% for 1 s duration,
the release of ATP continued and increased in intensity [71].
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Linear sliding rake system

Vacuume-actuated stretcher

|Vacuum

sliding rake is then controlled at the desired frequency and amplitude.
Cell-based samples can also be clamped and connected to a tensile
device (one end of the rectangular membrane is fixed while the other is
connected to a computer-controlled movable frame). Finally, polymeric
substrates may be exposed to uniaxial tensile loading with a vacuum-
actuated tensile device. The movement imposed by the tensile loading
device is represented by the red arrow

Besides application of tensile or compressive stresses, all
models of TA Instruments presented in Table 2 include pul-
satile stimulation. For example, the BioDynamic 5170 and
BioDynamic 5270 test instruments permit a flow range of
17-1760 mL/min. These devices are computer-controlled,
allowing a static, cyclic, or intermittent deformation in
a range of frequencies, amplitudes, and waveforms. The
substrates used for culture plates of commercialized mechan-
ical stimulation devices are typically flexible and light-
transparent materials that enable phase-contrast, fluores-
cence, or scanning confocal microscopy analysis. The design
and material choices allow, in some cases, simultaneous and
real-time visualization using inverted microscopes. While
these are often preferred to upright microscopes because they
do not limit the total height of the device, it is mandatory
to ensure that the focal length is not compromised. Despite
the notorious progress on the tensile and compressive load-
ing devices available on the market, the main motivation for
research groups to design and fabricate their own devices
is related to these device-associated costs. The cost of these
devices ranges from thousands to tens of thousands of dollars,
and the total price may increase when considering mainte-
nance and the need to purchase additional device-specific
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Fig.8 Results of studies performed with customized tensile loading
devices. ALP staining at 24 h was higher for cells subjected to mechan-
ical loading by a four-point bending device (a) compared to unstretched
cells (b) and control cells (¢) (reproduced from [43], Copyright 2008,
with permission from Elsevier). d Scanning electron micrographs of 3D
collagen constructs encapsulated with OB6, C2C12, or AC10 cells at
day 3 either loaded by a linear sliding rake system or non-loaded (scale
bar: 100 wm) indicated that the fibre orientation of loaded cells was
parallel to the axis of load application (reproduced from [57], Copy-
right 2017, with permission from Wiley). e Staining of actin (green),
sarcomeric z-lines (red), and nuclei (blue) of cardiomyocytes cultured
on clamped samples connected to a tensile device revealed that after

accessories (such as culture well plates) in order to maximize
the number of samples that can be tested at the same time
[3]. Moreover, the macroscopic dimensions of some devices
limit their throughput, and it is usually difficult or impossible
to adapt to particular experiments such as, for example, using
other substrate materials than polymers, which restricts the
utility of these devices in a research context [3, 51, 52, 72].

Custom-built cell-stimulation devices

Despite the focus on continuous innovation, mechanical
stimulation systems available on the market present critical
challenges. Consequently, numerous research groups have
designed and developed custom-built devices to study the
effects of tensile and compressive loading conditions on cel-
lular behaviour.

@ Springer

being subjected to 6 h of cyclic uniaxial tensile loading, the cells
aligned in the direction of loading (white arrow) (reproduced from [3],
Copyright 2018, with permission from ASME). f No significant dif-
ferences in the average normalized total fluorescence of nuclei were
found between non-stretched (control) and stretched groups, but F-
actin fluorescence significantly increased with loading performed with
a vacuum-actuated tensile device. The spatial distribution of per cent
change between stretched and control average nuclei (g) and F-actin
fluorescence (h) showed that expression of F-actin increased after ten-
sile loading (reproduced from [52], Copyright 2018, with permission
from Springer Science Business Media, LLC, part of Springer Nature)

Tensile loading devices

Several tensile loading devices with different designs and
working principles have been developed in recent years.
Table 3 lists uniaxial tensile loading studies in which devices
were custom fabricated to meet research groups’ needs. The
tensile loading working principles were divided into four
major groups: four-point bending apparatuses, linear slid-
ing rake systems, clamped samples connected to a tensile
device, and vacuum-actuated tensile devices, as represented
in Fig. 6. The tensile loading devices designed by research
groups are graphically arranged in Fig. 7, according to the
maximum strain/displacement and frequency under study.
The majority of tensile loading devices involve cell culture
on a circular flexible membrane (fixed along its periphery)
or rectangular flexible membrane (fixed at opposite ends)
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(@) (b)

0.2 mm

After 12 hr stretch

Control

Fig.9 Schematic representation of the cross section of cells (repre-
sented in green) cultured on flexible membranes (a) and the deformation
of the latter as the pin moves upwards (b). The alignment of C2C12 and
HDMEC S in response to loading is illustrated by fluorescent images of
HDMEC:s (¢, d), C2C12 myoblast cells (e, f), and A549 alveolar epithe-
lial cells (g, h) stained with Calcein AM before loading (left column)
and after being subjected to cyclical tensile loading (5 Hz for 12 h) (right
column) (reproduced from [72], Copyright 2008, with permission from
Elsevier). HDMECsSs: human dermal microvascular endothelial cells

(Fig. 7). Some of the results obtained by the studies men-
tioned in Table 3 are summarized in Fig. 8.

Application of cyclic uniaxial (one direction) tensile
strains sometimes leads to a heterogeneous biaxial strain pro-
file, due to the Poisson effect. Therefore, custom-designed
devices were developed to modulate equiaxial strains and
generate a homogeneous strain environment [32, 44, 78, 79].

Other groups focused on reproducing a more complex phys-
iological environment by applying biaxial strains [80, 81].
Tensile loading was also performed using piezoelectrically
actuated pins of a Braille display [72]. Briefly, an elastomeric
membrane of PDMS containing microwells was placed on
top of an actuated pins array and deformed by the Braille pin
movement. Each pin was independently computer-controlled
and responsible for applying a cyclically radial strain (maxi-
mal 20%—25% radial and 12% tangential). Mouse myogenic
C2C12 cells and human dermal microvascular endothelial
cells (HDMECS) aligned to the loading direction at increas-
ing frequencies of 0.2, 1, and 5 Hz, after 2, 4, and 12 h,
in contrast to human lung adenocarcinoma epithelial A549
cells, which did not respond to tensile loading (Fig. 9) [72].

Compressive loading devices

Microfabricated devices have been developed to apply com-
pressive strain to cell-encapsulated constructs. Typically, the
compression is achieved by loading pistons actuated by a
pneumatic system. This type of compressive device can gen-
erate three types of compression: unconfined, semi-confined,
and confined, all of which are illustrated in Fig. 10.
Unconfined compression was studied in the majority of
compressive loading studies, as it represents the simplest
microfabrication technique. One device was designed to
study the influence of dynamic 10% compressive strain
at 1 Hz for up to 3 weeks on chondrogenesis of goat
bm-MSCs encapsulated in poly(ethylene glycol) diacry-
late (PEGDA) hydrogels, as well as human embryonic
body-derived (hEBd) cells encapsulated in tyrosine-glycine-
aspartate-serine  (YRGDS)-PEG-acrylate hydrogels [82].
The expression and synthesis of chondrocyte-specific matrix
molecules were also studied, under the same loading condi-
tions, with bovine bm-stromal cells encapsulated in agarose
gels for 8 and 16 days [83]. Another group investigated
the role of cyclical unconfined compression on osteogene-
sis by applying 10% and 20% compressive strains at 0.5 Hz
for 4 h on rat pre-osteoblasts seeded into electrospun poly-
caprolactone (PCL) scaffolds [84]. Only the 10%-magnitude
strain induced expression of osteogenic-related proteins and
transcription factors, showing that elevated magnitudes may
inhibit bone formation [84]. Ravichandran et al. designed
a custom-fabricated device to apply a range of compressive
strains to four independent chambers. hMSCs were seeded on
polycaprolactone- tricalcium phosphate (PCL-TCP) scaf-
folds using fibrin gel and then exposed to 0.22%, 0.88%,
and 1.1% compressive strain at 1 Hz, 4 h/day for 4 weeks
[85]. Cyclic physiological compression of 0.22% resulted in
higher ALP activity compared to supra-physiological strains;
it also up-regulated osteogenic markers and generated high
mineralization levels [85]. C3H10T1/2 mouse MSCs were
encapsulated in PEG hydrogels and exposed to 6%, 11%,

@ Springer
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Unconfined

Confined

Semi-confined

Fig. 10 Illustration of compression models: unconfined compression, confined compression, and semi-confined compression. The three-dimensional
cell-based construct is compressed by the movement of a piston, in this case as a result of pressurized air (represented by the red arrow)
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Fig. 11 Finite-element simulations of three compression modes all
involved application of 10% compressive strain on PEG hydrogel
(adapted from [88], Copyright 2011, with permission from IOP Publish-
ing Ltd). Strain field within the hydrogel was generated for unconfined

14%, and 26% compressive strains. Regardless of the strain
magnitude, there was no significant difference in nuclear
deformation, whereas cellular deformation only changed
significantly at the highest strain levels [86]. The device pro-
posed by Moraes et al. [86] consisted on an array of loading
posts suspended over actuation cavities and was adopted and
altered by Lee et al. to subject alginate-chondrocyte con-
structs to compressive strain [87]. These constructs were
placed on PDMS balloons with different diameters and by
varying only the cavity diameter (with the applied pressure
remaining the same), it was possible to create a range of
compressive strains. Because the balloons were inflated with
pressurized air, compression on constructs was studied either
in a static (14 kPa, 1 h) or dynamic (14 kPa, 1 Hz, 1 h) mode.
Lee et al. found that the mean strain of chondrocytes was
approximately 50% of the gel strain, with a permanent defor-
mation of 9%—-30% for static compression, and 0.5%—6% for
dynamic compression. Finally, cell viability was found to be
higher in dynamically loaded constructs, perhaps due to bet-
ter nutrient transport [87]. Despite these findings, unconfined
compression generates a heterogeneous strain distribution
within the 3D construct. In contrast, confined compression
generates a uniform strain, but challenges arise concerning
its microfabrication. Semi-confined compression offers eas-
ier microfabrication, but uniform strains are only achieved
in the central region of the biomaterial. These findings were
obtained from the finite-element simulations (represented in

@ Springer
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(a), confined (b), and semi-confined (c) compression modes and the
radial, circumferential, and axial strains (mean and standard deviation)
were plotted for the total axial thickness of the hydrogel

Fig. 11), and the obtained strain fields for the three compres-
sion modes were compared [88].

The same group fabricated a semi-confined compression
device, which was used to generate nominal strains of 20%,
30%, 40%, and 45% on PEG and collagen hydrogels. The
authors concluded that this compression model enables the
study of cellular responses to precisely applied strains on a
range of polymerizable biomaterials, improving the appli-
cability and versatility of the device [88]. Zhang et al. [89]
used a custom-designed dynamic-compression loading sys-
tem with a stepper motor to apply a 10% compressive strain
on PCL scaffolds encapsulated with hMSCs. PCL-based
constructs subjected to both mechanical and biochemical
stimulation supported a chondroprotective effect [89].

Review of patents

Given the promising outcomes from engineered mechani-
cal stimulation devices in mechanobiology studies like those
described above, many patent applications have been filed
in the past few decades. We looked at both granted patents
and patent applications, and conducted our research through
the Derwent Innovation Index [90] and Google Patents
[91] databases, which include European, USA, and World
Patents (WIPO—World Intellectual Property Organization).
The keywords were related to mechanical cell stimulation
and resulted in a total of 369 records. We excluded inventions
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whose descriptions could not be automatically translated to
English, those with unclear abstracts, and those not within
the scope of this review.

A total of 44 patents of devices able to create different
stimuli (tensile, compressive, shear stresses, and vibration)
were comprehensively studied and selected, taking into
account their in vitro cellular purposes. Table 4 summarizes
the selected inventions. They are organized first by frequency
level (low to moderate vs. high frequency), then by actuator
type, as schematically illustrated in Fig. 12, and finally by the
imposed stress state. Inventions that obey non-conventional
actuation principles are in a separate category.

To better organize the resulting inventions, we grouped
them according to their actuation principle. From low to
high frequencies, the actuation may be pneumatic (either
positive or negative pressure), motor-driven, or magnetic.
However, some inventors disclosed more than one function-
ality principle. The invention of Sittampalam et al. [96] is
a drug-screening device and system that attempts to impart
strain to cells in a similar manner to physiological motion
and rest. According to their description, different mechani-
cal drive systems can be adopted to move the pins and thus
exert mechanical strain on cells, including a linear actuator
(Fig. 13a), an electromagnetic system, or a pneumatic system
(Fig. 13b).

The device invented by Shapiro et al. [118], defined in
Table 3 as belonging to the motor-driven category has, in fact,
more than one approach to achieving membrane mechanical
displacement (Fig. 14). The elastic membrane upon which
the cell culture is placed is securely held in place and moved
by a displacement applicator located, for example, on the
bottom surface. Then, it is cyclically moved upward and
downward by a force generator, deforming the membrane.
This membrane deformation imparts biaxial forces (either
tensile or compressive) to the cells mounted thereon, and
the strain profile may be either uniform or non-uniform. The
electric motor drives an actuating apparatus, such as a cam
(Fig. 14a), which revolves eccentrically about an axis, con-
tacting the bottom surface of the rod and forcing the rod
and displacement applicator to move upward to contact and
deform the membrane. At the end of the upward stroke, the
applicator moves to a lowered position out of contact with the
membrane. The invention may also correspond to a mechan-
ical actuated tensile apparatus which applies biaxial strain
(Fig. 14b) or simultaneously applies tensile loading to sev-
eral cell cultures (Fig. 14c). The removable and disposable
wells are mounted above each available displacement appli-
cator.

Substrate deformation through the pneumatic actuation
principle may be achieved by pressure [92, 98] or vacuum
[93-97], and by pulling a portion of the flexible membrane
upward or downward, respectively. Despite the simple set-
up, in both modes the stimulus frequency is low and may not

even be capable of creating dynamic cycles. However, vac-
uum pumps are slower than pressure inlet. Other inventions
aim to deform the membrane through pressurization of the
fluid (e.g., culture medium) [99, 102], or by creating hydro-
static pressure using a piston [100]. If not carefully designed,
moving the flexible membrane upward through a displace-
ment applicator, by pressure or manually (e.g. with a piston),
may cause friction between the membrane of interest and the
loading post of the device, as represented in Fig. 15.

Hydraulic actuators are comprised of a hollow cylinder
with a piston, and due to unbalanced pressure applied to
the piston, a force is generated that deforms the membrane
equiaxially. Although these actuators are often limited in
terms of frequency, invention number DE102009057698A1
of Kiesow et al. [98] allows cyclic testing in a frequency
range of 0.001 to 200 Hz.

Still, either in low- or high-frequency mode, the culture
liquid in contact with the cells may be pressurized and the
generated hydrostatic pressure then exerts a compressive
mechanical force on cells.

The motor-driven mechanism involves the conversion of
a rotary motion of an electric motor into linear displace-
ment. The selected motor may be a stepper motor [103, 104,
106-111, 117], alinear DC motor [105, 113, 114, 119, 128],
aservo motor [126], or a voice-coil motor [105, 115]. Stepper
motors, which are composed of multiple toothed electromag-
nets, were preferred for some of these inventions. Despite
the possibility of miniaturization, precise rotation (ranging
from step angles through full 360° rotation), easy set-up
and control, this type of motor is frequently slow due to a
low transmission ratio (from rotational to linear movement).
Moreover, it may cause small vibrations, which will act as
an external disturbance to the system and thus should be
considered separately from the substrate’s deformation. Lin-
ear DC motors are two-wire continuous rotation motors with
each pulse being so fast that the motor seems to be rotat-
ing constantly with no stuttering. Servo motors are also fast,
with high torque, and can be precisely controlled because of
their accurate rotation within a limited angle. This actuation
principle is particularly suitable for uniaxial tensile loading
and for larger engineered constructs. In addition, it allows
multiple loading modes and precise control over the strain
features, such as amplitude and frequency. On the other hand,
some potential disadvantages are the risk of contamination
and limitation of high-throughput capabilities [134].

The linear actuation principle may be preferable because
it allows for automation, requires less maintenance, and
offers a broader range of strain magnitudes, frequencies,
and durations of mechanical stimulus. Invention num-
ber US10,421,955B2, assigned to IonOptix LLC in 2019
(Fig. 16), applies a tensile strain up to 50% (at 0.01-10 Hz)
on a deformable rectangular culture dish made, for example,
from silicone rubber [111]. A plurality of viewing ports are

@ Springer
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Fig. 12 Actuation principles of
various mechanical

Low to high frequeny

cell-stimulation devices, divided

Hydraulic
pressure

Fluid-flow
induced shear

Hydrostatic Motor
pressure driven

Magnetic
actuation

by frequency level: low to high Pneumatic

for values up to 200 Hz and

extremely high frequency for

values up to 100 MHz Pressure || Vacuum

Extremely high frequeny

Non-conventional principles of actuation

Piezoelectric actuation

Laser (micro cavitation) Environmentally responsive

Fig. 13 The device of invention number US 2013/0059324 Al may be
operated (a) by a mechanical drive mechanism, in which the rotation
of a non-circular shaft (218) moves the movable support (216), thereby
pushing the push members (214) in respect to the pins (118); or (b) by

Fig. 14 Illustrations of invention
number US 5,348,879 of Shapiro

(b)

/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII’

N3
NN / N

a pressurized mechanism (220), in which the change of fluid volume
moves the support (216), imparting mechanical strain to the cells located
in the wells (112). Illustrations from [96]

et al., with three different
displacement applicators

18

(represented in the drawing by

24). In (a), a cam deforms the
membrane, in (b), the membrane
is secured by plates and is
deformed by the displacement
applicator moving upward, and in

(¢), each well is mounted above

the displacement applicator.
Schematics from [118]

Friction

Fig. 15 The displacement applicator moves up and down, which may
create friction between the flexible membrane and the loading post

provided to enable cell culture observation by microscope
and exchange of the culture medium, permitting long-term
experiments to be performed.

Muthiah et al. [115] developed a mechanical tensile
device, invention number US 2012/0219981A1, with dimen-
sions of 408 mm x 150 mm (much larger than a 24-well plate).
It is composed of two engagement areas located at opposite
ends of a flexible substrate; each one connected to a mov-
able element and a motor to promote opposite movements,
as shown in Fig. 17. The device may include a temperature-
control unit, such as a heating unit and/or a fan, to assure
uniform distribution of heat and to maintain the temperature,
a humidity reservoir unit, and a gas-control unit to control the
gas parameters and supply. During or after tensile loading,

@ Springer
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(a)

130a

40

Fig. 16 Illustrations of invention number US10,421,955B2, assigned to
TonOptix LLC. (a) is a side view of the electromechanical stage (28a)
composed by a fixed support (32) and a moving support (36) connected

504 514

Fig. 17 Schematics of invention number US 2012/0219981Al, assigned
to Muthiah and Lane [115], in which each motor (denoted by 504 and
506) is connected to an opposite end of the cell culture device (502).
The embodiment includes a water reservoir (512), an electric heating
unit (508) and cooling fans (510), and computer interface connections
(514). Figures from [115]

the materials may also be imaged using a microscope base
plate.

The magnetic actuation principle is an indirect method
used to apply mechanical stresses on the substrate of interest.
The actuating part is never in contact with the moveable one,
which decreases the risk of contamination, but it is hard to
control the strain and velocity. In addition, there is a potential
unwanted magnetic effect on cells.

Looking further at low- to high-frequency range, some
inventions apply fluid-flow-induced shear stress to cells.
Despite the fact that this stimulus cannot be considered
a mechanical cue for mechanotransduction studies given
that it cannot be measured, Jiang et al.’s invention number
CN10314657A also provides, according to the inventors, ten-
sile stresses on cells [127], and Boronyak et al.’s invention
number US 8,852,923 B2 may be adapted to impose cyclic
flexural and/or tensile stresses [128].

The aforementioned inventions apply tensile, compres-
sive, or shear stresses to cells, and some allow simultaneous

@ Springer

(b)

to a stepper motor (42). (b) is a perspective view illustrating six cul-
ture dishes and supporting parts of the electromechanical stage. Figures
from [111]

electric stimulation. When cells are stimulated by deforma-
tion of the substrate on which they are cultured, those forces
generate uniaxial, biaxial, or equiaxial strains (previously
described in Fig. 3). In-plane substrate distension through
frictionless platen displacement (by vacuum, pressure, or
another means) creates biaxial strain traction on a flexible
culture membrane and produces a uniform strain field [119].
This strain-profile output may be required for more accu-
rate and controlled mechanotransduction studies, given that
all cells cultured on the substrate are subjected to the same
strain.

Actuation using piezoelectric or ultrasound elements was
used to create vibration/oscillation. The main advantage is
easy set-up, but the deformation created exhibits low ampli-
tude and high frequency. In addition, the deformation of
the piezo elements is not equal to the deformation of the
substrate, and consequently of the cells, because losses are
always present and, as the whole device vibrates, the vibra-
tions can be even more attenuated.

Potential and future perspectives

Significant progress in research and technological fields
has contributed to remarkable findings on the physiologi-
cal dynamics of the human body. Basic life science research
has moved from 2D culture systems to more complex 3D
dynamic cultures, not only to improve cell culture condi-
tions by promoting nutrient and oxygen flow to cells, but
also to more closely mimic the complex physiological envi-
ronment. Unlike bioreactors or microfluidic-based culture
models, for the purpose of mechanobiology studies, cells are
usually seeded on polymeric substrates or incorporated into
3D constructs and stimulated in mechanical force devices in
order to investigate cell adaptation to different mechanical
stresses, such as tensile or compressive stresses.
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Regenerative medicine strategies involve the use of bio-
materials whose mechanical properties and behaviour upon
implantation may be studied in vitro by closely mimicking
physiological conditions of, for example, bone [43, 74-76],
heart muscle [42, 135], tendon [56], and lung [77]. By repro-
ducing the physiological conditions to which the implants
or biomaterials would be subjected, the need to perform
in vivo animal testing would decrease. This would be in line
with the European Directive 2010/63/EC which follows the
“3Rs: reduction, refinement, and replacement” strategy to
reinforce the importance of using alternative in vitro and in
silico methods to obtain the maximal information from the
intended product prior to clinical trials [136-138]. Despite
more reliable studies conducted over the past years for mul-
tiple tissue-specific applications, there are still opportunities
for further improvement. Mechanical stimulation devices
should be designed (or integrated with other systems) to
allow multiple and real-time assessment and evaluation of
cell behaviour and responses at a microscale. One possibility
is performing real-time imaging using non-invasive imaging
techniques, fluorescence, or CT. In order to assure opti-
mal experimental conditions, mechanical stimulation devices
could be coupled and assembled with sensors for monitor-
based and cell-specific parameters, such as pH, temperature,
oxygen, and secretion of small molecules and proteins.
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