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Abstract
Recently, tissue engineering (TE) is one of the fast growing research fields due the accessibility of extra-molecular matrix
(ECM) at cellular and molecular level with valuable potential prospective of hydrogels. The enhancement in the production
of hydrogel-based cellular scaffolds with the structural composition of ECM has been accelerated with involvement of rapid
prototyping techniques. Basically, the recreation of ECM has been derived from naturally existed or synthetic hydrogel-
based polymers. The rapid utilization of hydrogels in TE puts forward the scope of bioprinting for the fabrication of the
functional biological tissues, cartilage, skin and artificial organs. The main focus of the researchers is on biofabrication of
the biomaterials with maintaining the biocompatibility, biodegradability and increasing growth efficiency. In this review,
biological development in the structure and cross-linking connections of natural or synthetic hydrogels are discussed. The
methods and design criteria that influence the chemical and mechanical properties and interaction of seeding cells before and
after the implantations are also demonstrated. The methodology of bioprinting techniques along with recent development has
also been reviewed. In the end, some capabilities and shortcomings are pointed out for further development of hydrogels-based
scaffolds and selection of bioprinting technology depending on their application.
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Introduction

Tissue engineering can simply be defined as a field of science
having multi-disciplinary nature of combining life sciences
and engineering technology together with molecular bio-
logical attributes to improve the structural regeneration and
growth of tissues for malfunctioning and clinical applica-
tions. The approach of the tissue engineering is to develop
new techniques for biocompatible seed cells and tissues
for different transplants directly or indirectly in the body.
The materials used for TE should be biocompatible which
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means that they should be compatible without affecting the
biological and physical nature of the living tissues. These
biomaterials influence the focus of TE toward the devel-
opment of reparative cells to make an efficient matrix that
is biologically suitable for implantation through appropriate
supportive scaffold with biocompatible nature and improve
the growth of the tissue [1]. Recently, the statistics released
by US department of Health and Services show that from
2012 to 2017, the number of patients of transplants raised
from 28,054 to 34,770, respectively, with more than 114,000
patients who are still are on the waiting list [2]. The his-
tory of tissue engineering moves back to early 1970s, when
the demand of transplantation of organs in medical field
rose with less number of donor’s availability [3]. This leads
to the combination of cell and organ developmental biol-
ogy, implantation engineering, clinic medical and veterinary
sciences, biomaterials and bio physics and mechanics [4].
Researchers started working on tissue engineering with com-
bination of these fields for creating living tissues by utilizing
the few cells from any particular body part and linking them
with different biomaterials like polylactic acid [5], polyethy-
lene glycol [6], hydrogel collagen [7] or different types of
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Fig. 1 Schematic representation of main elements of tissue engineering

extracellular matrix [8] for covering the shortage of donors
with fast recovery, improved quality and less complications
after transplantation [9].

Tissue engineering includes the development of appro-
priate 3D scaffolds that should have the ability to provide
a regenerative environment for the growth of tissues and
organs. Typical biomaterial scaffolds are stuffed with biore-
actors having the function of mechanical support and chemi-
cal stimuli to growing cells. These scaffolds may be directly
implanted to the infected part or kept in vitro environment for
synthesizing cells for further implantation [10]. The essential
factors of tissue engineering are shown in Fig. 1.

The implanted cells or tissues with the supporting matrix
have the ability to reconstruct within the scaffolds and regen-
erate the infected parts of the body. But in doing so, there are
many challenges of regeneration of seeded cells, and then,
transplantation has its own complications. The homogenous
growth of the seeded cells into their parents’ cells within the
scaffold is one of the biggest challenge. Secondly, the low-
quality growth cells also affect the transplantation and badly
influence the interaction of cell and supporting matrix. So to
overcome these challenges of the tissue engineering, some
natural or synthetic biopolymers are used in matrix interface
to enhance the regeneration process [1, 11]. These matrix
materials should pose the properties of reproducing them-
selves in different kinds of cells, and the process should be
cost-effective and easily processed [12].

The main concept of this review is to explain the impor-
tance of hydrogels in the field of tissue engineering with the
characteristics that enable such biomaterials to easily inter-
act with particular tissues and can exist with normal working
conditions in specific environment during direct implanta-
tions or in vivo/vitro. The stability and degradability of such

materials are very important factors during tissue engineer-
ing applications. The classification of hydrogels is given on
the basis of naturally and synthetically extracted biomaterials
with recent development for improving the biocompatibility,
biodegradability andmechanical properties. Further, additive
manufacturing (AM) techniques for such biomaterials with
their specific characteristics and design criteria are discussed.
The characteristics of bioinks and criteria for selecting these
bioinks for specific method of 3D printing with considerable
limitations are also explained.

Hydrogels

Hydrogels belonged to hydrated polymeric materials having
≥90%ofwater content byweight. As hydrogels have greater
pervading quality for oxygen and also no response for foreign
bodies, theywere applied in the field of biomedical as contact
and intraocular lens from 1960s [13]. Researchers always
worked on finding the materials for some replacement of
extracellular matrix (ECM) for structural support of the cells,
and hydrogels are one of the best materials as they have great
resemblance with natural ECM. Hydrogels have the great
ability to control cellular and molecular attachments with
structural and functional integrity. They are also biocompat-
ible and biodegradable in nature [9]. The faculties which
hydrogels provide during tissue engineering are similar to
properties of natural ECM, which helps in the attachment
and migration with retaining the biochemical nature of the
cells [14], enables easy and fast diffusion of the nutrients
[9] with mechanical and biological support to enhance the
growth of seeded cells [15]. The scaffolds can be manufac-
turedwith natural or synthetic hydrogels having resemblance
with natural ECM.

The general benefits of the hydrogels are biocompatible,
biodegradable and easily injected in vitro for growth after
specific conditions, great mean of transportation of the nutri-
ents during development process and can easily be modified
for the usage in different places [16]. It also has some limi-
tations: It usually provides low mechanical strength, is very
difficult to handle, needs high sterilized conditions and is
expensive for treatment.

Types of hydrogels

Hydrogels, on the basis of their nature, place of transplanta-
tion and requirement of support, can be classified into two
main categories as naturally existed and synthetically pre-
pared hydrogels. Both the types have their own advantages
and uses. Naturally existed hydrogels possess natural ligands
which provide significant adhesion to the cells and usually
was obtained from natural ECM, but some are extracted
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Table 1 Types of cells and
tissue engineering applications
of naturally existed hydrogels

Hydrogels from natural
polymers

Type of cells TE applications Study/references

Collagen Astroglial cells,
chondrocytes

Spinal cord, vocal cord,
skin, cartilage, neural

[28, 30, 31, 21, 22, 32,
33, 34, 35]

Gelatin Fibroblasts,
chondrocytes

ECM, cartilage [36, 37, 38, 39, 40]

Pullulan Fibroblasts,
mesenchymal stem
cells, smooth muscle
cells, human umbilical
vein endothelial cells

Skin, cartilage, soft
tissues stem cell
culture, vascular

[41–43, 44, 45, 46, 47]

Hyaluronic acid Fibroblasts,
chondrocytes, human
embryonic, stem cells

ECM, cartilage, skin,
eye, facial,
intraperitoneal,
vascular, connective
tissue

[48, 49–51, 52, 53, 54,
55]

from non-mammalian sources like brown seaweed alginate
[17]. However, synthetically produced hydrogels can be cus-
tomized chemically according to the application and usage
of the material [18]. They lack the property of cell adhesion,
but it can be improved through functionalization with ECM
proteins.

Hydrogels with natural materials

The hydrogel polymers which originated from the national
biomaterials are classified as natural hydrogels.Many hydro-
gels made of natural proteins such as collagen and gelatin are
biodegradable, biocompatible with supportive nature during
cellular attachment [16]. With these advantages, they also
have some drawbacks like variation in properties during the
preparation of every batch, difficult to synthesis and process
and material properties are not constant [19]. In tissue engi-
neering, the applications of naturally existed hydrogels are
numerous as shown in Table 1.

Collagen

The most abundantly used protein as hydrogels is collagen,
which is present almost 30% in the body of mammals [20].
In tissue engineering, collagen is the most important pro-
tein used because of its triple-standard helical structures with
self-aggregating quality using covalent and hydrogen bonds.
They construct different types of cartilages including fibrous
or articular [4]. The quality of these proteins is the variation
in their supportive linkage that can be changed according to
the use in vivo [21] by utilizing their chemical [9] or physical
cross-linking designs [22] or mixing with different polymers
[23]. Collagen has the ability to form different kinds of gels,
sponges, etc., which exist due to variation in strands of col-
lagen and induction in the cross-linking.

It has a great potential for the production of hydrogels as it
has resembling properties of natural ECM having the ability
of enhancing cell functionality and adhesion properties. It
can be used in the manufacturing of many types of artificial
tissues like skin [24], cartilage [25], heart valves [26], breast
reconstruction [27], vocal cord [9, 28] and spinal cord [29].
Recently, many researchers are working for the improvement
in the use of collagen-based scaffolds. Calabrese worked a
lot in the development of collagen and discussed the chon-
drogenesis process for converting collagen into cartilage and
the full differentiation of bioactive factors during vivo stage
[30]. He also worked on hydrogels bone formation with col-
lagen/hydroxyapatite as biomaterial scaffolds in vitro and
after implantation [31, 32].

Different techniques have been used for the fabrication of
collagen hydrogels. The manufacturing of aligned wall com-
posite fibers is done using electrospinning technique from
collagen and other protein fibers because it became more
biocompatible with the mixing with electrospun fibers [33].
Nakada et al. [34] also worked on the improving of biocom-
patibility of collagen with denaturizing the collagen at high
temperature and low pressure to convert collagen fibers into
cross-linkage structures. Some cross-linking of fibers like
carbodiimide also elevate biocompatibility and stability of
collagen–chitosan scaffolds [35].

Gelatin

Gelatin is another biomaterial used for the manufacturing
of hydrogels. It can be obtained by partial hydrolysis of
collagen which is a mixture of proteins and peptides usu-
ally obtained from skins, bones and connective tissues of
the animals. Gelatin is also very important because of its
degradability and compatibility nature in vitro as well as dur-
ing direct implantation. It also retains its bioactive nature
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including MMP-sensitive sites and RGD sequences with
cost-effectiveness [56].

Gelatin can easily be obtained from different by-products
of the animals, forming high strength and changeable natured
hydrogels. Thermally, they are less stable at high temper-
atures with water-soluble property. They have wide range
of applications in biomedical [36]. The capability of cross-
linking for the gelatin is little less, but its mechanical
supportive strength has been increased with the technique
of double network of photo-cross-linking of gelatin and gel-
lan gum [37]. As the strength of the DN hydrogels was not
impressive as encapsulated cells and cell-compatible con-
ditions, the model of micro-gel-reinforced hydrogels was
suggested with the same products, gelatin and gellan gum
for better biological and mechanical properties as compared
to DN hydrogels [57]. Some researchers worked on improv-
ing biocompatibility of the gelatin by mixing other non-toxic
and biocompatible materials like dextran aldehyde [58] or
chitosan [59].

Research on gelatin also reveals that they do not influence
the functional and physical conditions of antigenic response
toward the body, but they affect macrophages to activate
them [60]. Development has also been done to improve
the biocompatibility of gelatin and related biomaterials by
combining sponge scaffolds of hydroxyapatite with different
modified surfaces [38, 61]. The altering of soaking process
by depositing the nano-hydroxyapatite helps to improve the
growth of seeded cells and increase their adhesive bonding
properties [39]. For the additive manufacturing techniques,
a 3D scaffold has been developed with PCL placed between
gelatin–chitosan hydrogels for congenital heart defects. They
are biodegradable patches containing a thin PCL-layer self-
assembled core which provide significant strength to the
ventricular walls for proper function. This novel research
helps the doctors to facilitate patients more efficiently [40].

Pullulan

Another kind of hydrogel is pullulan, usually manufactured
from the yeast such as fungus Aureobasidium pullulans. In
1958, Bernier was the first scientist to extract the pullulan
and tried to understand its chemical structure. Pullulan is
a type of exopolysaccharide (EPS) formed as thick sledge
in amorphous form on the surface of bacterial infected cells
[62–64]. The appearance of the pullulan powder iswhitewith
no taste and odor. It is not soluble in any organic or inorganic
solvents except water. Due to the properties of water-soluble
and toxic nature, pullulan is used in medical application such
as drugs carrier, preparation of syrups [41–43] and packaging
material [44].

Pullulan can also be manufactured by fermentation of
different waste materials [45]. Machy also worked on the
extraction of pullulan and dextran which improves the rapid

growth of cells located in endothelium region [46]. Simi-
larly, Amrita et al. [47] utilized pullulan and their derivatives
as scaffolds for tissue engineering by pore wall mineraliza-
tion method with enhanced osteo-conductive properties. To
improve the mechanical properties of the pullulan, Aschen-
brenner employed cross-linking technique to combine pul-
lulan and dextran [65]. Therefore, different types of pullulan
including nanoparticles and nano-gels can be used in drug
delivery systems, curing of tumor cells and supporting nor-
mal cells for toxicity of drugs.

Hyaluronic acid

Hyaluronic acid (HA) chemically known as hyaluronan natu-
rally was found in the body of mammals having non-sulfated
glycosaminoglycan and extensively found in the different
body parts including neural, epithelial and connective tis-
sues, eye and joint fluids [48, 66]. They are very essential
part of different humanbodymechanisms such as cell growth,
wound healing, embryonic and tumor development [49–51].

On the basis of cross-linkage variation, HA can be divided
into two categories such as monophasic or biphasic [52].
Both of them are toxic-free fillers, and biphasic HA mostly
is used in hyaluronidase resistance and syringeability [53].
Molecularweight is an important factor in changing the prop-
erties and application of HA with other materials. Similarly,
HA is water-soluble, helps in the process of angiogenesis,
biodegradability and does not provoke any immunogenic
response with higher molecular weight. HA with lower
molecular weight displays angiogenic, immunogenic and
inflammatory response [54]. HA hydrogels are covalent
bonded cross-linked manufactured by different methods
including esterification [67], electrospinning cryogelation
[68] and annealing [69]. The properties like biocompati-
bility and biodegradability of hyaluronic acid have been
enhanced by photo-polymerization of UV-initiators during
cross-linking process [70]. Recently, researchers are focus-
ing on the biomedical applications of HA and its derivatives
like visco-supplementation [55], wound healing [71], tissue
engineering [72] and therapeutics [50].

Hydrogels with synthetic materials

Synthetic polymers have great influence for the researchers
to be utilized in the field of biomedical and pharmaceutical
applications because of their wide availability, biocompat-
ibility, biodegradable nature and easy to handle. It also
provideswide range ofmaterial selectionwith different phys-
ical and chemical behavior suitable for various applications
as shown in Table 2. For the first time in 1954, Wichterle
and Lim worked for the development of polymeric hydro-
gel biomaterial using 2-hydroxyethyl methacrylate (HEMA)
and ethylene dimethacrylate (EDMA) as copolymers to use
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Table 2 Biocompatibility nature
of different types of
synthetically manufactured
hydrogels and their tissue
engineering applications

Hydrogels from
synthetic polymers

Biocompatibility nature TE applications Study/references

Poly (lactic and glycolic)
acid

Products degrade during
metabolic pathway,
localized inflammation

Bone, nerves, skin,
ligament, tendon,
vessels, cartilage,
kidney, tumor, bladder,
liver cells

[74, 75, 76, 77, 79, 80,
81, 82]

Polyethylene oxide and
polyethylene glycol

Hydrolysis, mild foreign
in PEO and minimal
foreign in PEG body
reaction, no
inflammation

Bone, skin, muscles,
vessels, cartilage,
nerves, cardiovascular,
intraperitoneal, liver
cells

[83, 84, 85, 86, 87, 88,
89]

Polycaprolactone Hydrolysis, minimal
inflammation

Skin, ligament, tendon,
vessels, nerves,
cartilage, bone, retina

[90, 91, 92, 93, 94]

as contact lenses [73]. Generally polymeric hydrogels are
bonded with covalent or ionic bonds and show less bio-
compatibility nature as compared to the naturally derived
polymers. However, the prominent advantages of synthetic
polymers are comparatively high degradation and mechani-
cal properties [74] with simple structure and monomeric unit
constituency [75].

Poly(lactic and glycolic) acid-based hydrogels

Poly(lactic and glycolic) acid (PLGA) has influence for
the extraction of hydrogels because of considerable proper-
ties including biocompatibility, biodegradation rate, clinical
applications at human level, highly allowable for modifica-
tions in surface properties and ease of transportation with
handling [76]. PLGA and their copolymers are exclusively
used in tissue engineering [75] especially for bones and
cartilages due to their impressive strength and biodegrad-
able nature [76, 77]. A rapid increase has been found for
the usage of polymeric biomaterials in medical applications
with the combination of tri- and multi-block copolymers of
PLA for hydrogel preparation [78]. Similarly, the mixture of
hydrophilic PLA polymers exhibits specific and useful prop-
erties with variable concentration ratios and possibilities.

Researchers worked for the degradation of poly(lactic and
glycolic) acid polymers which have been considered as one
of the main concerns for tissue engineering because inter-
mediate degradation leads to decrease the pH value of the
implanted cells and this action reduces the mechanical prop-
erties in newly generated bone [79]. The concentrations of
lactic and glycolic acid may also affect the degradation pro-
cess such as higher concentration of lactic acid take more
time for biodegradation that will prolong the support for tis-
sue regeneration [80].

Recently, more work has been done on biocompatibil-
ity of PLA-based scaffolds like bovine amniotic epithelial
stem cells [95], osteoblast-like human bone fibroblast (MG-

63) cells [81, 96] and nano-hydroxyapatite/PLA scaffolds
with human bone marrow-derived mesenchymal stem cells
(hMSCs) [82]. Biocompatibility of PLA scaffolds has also
been enhanced by employing the techniques like organic
solvent-free extraction [97], room temperature ionic liquids
(RTILs) [98] and electrospinning technique [99]. The scaf-
folds of such polymers (PLA, PGA and PLGA) also provide
mechanical support, guidance for the growth of new tissues
and help in the complete degradation in the body for patho-
logically altered tissue structures such as skin, ligaments,
skeletal muscles and vascular tissues [74].

Polyethylene oxide- and polyethylene glycol-based
hydrogels

Polyethylene oxide (PEO) andpolyethylene glycol (PEG) are
also abundantly used as biomaterials for extracting hydrogels
[100]. The functional attributes of PEO and PEG hydrogels
are photo-polymerization capability, suitable mechanical
properties, easy to handle for scaffold structures and chemi-
cal composition. All these characteristics make them suitable
for 3D models for tissue development. The drawback of
these hydrogels is that they do not provide sufficient adhesive
support to the cells due to the limited antigenicity, immuno-
genicity, cell adhesion and protein binding [83].

The major properties that researchers wanted to achieve
with the hydrogels are biodegradability, biocompatibility,
thermo-sensitivity and easy handling for biomedical applica-
tions, and polyethylene glycol (PEG)-based copolymers are
perfect biomaterial for such attributes. PEG and PEO are also
permitted by FDA for pharmacological applications [84].
Combination of copolymers of PEO [101] and PEG [102]
with PLLA produced polycaprolactone hydrogels with ther-
mal reversibility. Degradability of these hydrogels has also
been enhanced by combining themwith oligopeptides [103],
hydrolytically degradable PLA [104] and carboxymethyl cel-
lulose [105] and PLLA for the reduction of tumor growth
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factor (TGF-β) [78]. PLGA showed great biocompatibility
with both PEO and PEG as compared to other biomaterials
like poloxamer [84].Houet al. [85] employeddifferent bioac-
tive and compatible PEG-scaffolds for tissue engineering
applicationswith newdesigns andmanufacturing techniques.

PEG has great compatibility nature which helps to reduce
the growth of thrombus and damage caused to the tissues
in vitro/vivo because PEG suppresses the platelet adhesion
process. Secondly, it is also used as coating material for
drugs carrier delivery purposes [83]. Incorporation of RGD
sequences into PEG enhances the cell growth and attach-
ment [86]. Similarly, Acr–PEG–RGD has also helped to
improve the mineral distribution and osteoblast attachment
for rat caldaria [106]. The mixture of PEG–RGD leads to
the improvement of implanted seed cells in their growth
and reduces the danger of thrombus formation by non-
specific absorbing of fibrinogen and proteins from plasma
and serum, respectively [87]. Recently, researchers have also
worked for more biocompatible synthetic PEG, PEG–chi-
tosan, PEG–polypeptides and multi-arm PEG hydrogels [88,
89].

Polycaprolactone-based hydrogels

Polycaprolactone (PCL), biodegradable, semicrystalline and
hydrophobic polyester, allowed by the Food and Drug
Administration (FDA) is used as drug delivery and inmedical
devices [107]. The application of PCL in bone tissue engi-
neering is an integration of bioactive glasses and calcium
phosphate-based ceramics which improves its mechanical
properties, bioactive nature and degradation rates [108]
because PCL lacks such properties originally [109, 110].
Some other applications of the PCL-based products are cor-
rection of facial aging including long-lasting and nourishing
effects, decrease in volume and enhancing the clearness of
skin via tissue engineering [90, 91]. The biocompatibility
response of PCL for periosteal cell culture systems and
human fibroblasts is outstanding [92].

The combination of PCL and other biomaterials also pro-
vides a great degree of range for the researchers to provide
more suitable environment for protein growth and other
bioactivities. The blend of PCL and chitosan at a ratio of
3:1 with 8% and 1%, respectively, improves the response of
seeded tissues and enhances the protein observing capacity
ofmixture [93]. The blend of heparin and curdlan sulfatewith
PCL efficiently reduces thrombus formation due to the sur-
face engineering, and similarly, biocompatibility can also be
improved by combining PCL with PEG employing the tech-
niques of electrospinning and cross-linking [94]. However,
further enhancement in biocompatibility of PCL can be done
via two-step modification using air plasma and carbodiimide
[67].

Fig. 2 Overview of different types of bioprinting techniques

Overview of hydrogel bioprinting technologies

The fabrication of biological organs and artificial tissue with
the help of additive manufacturing (AM) is one the greatest
milestone achieved by the researchers. Three dimensional
(3D) printing of biomaterials commonly known as bioinks is
to manufacture 3D structures like bones and tissues. These
bioinks are composed of specific biocompatible materials so
that they can support cellular attachments, proper growth and
their function during and after printing. Biocompatibility of
these materials is very important for the bioprinting because
they are supposed to interact directly during extrusion, so the
main focus of the researchers is on the rheological behaviors
and cross-linking methods for these materials to get precise
and accurate deposition [111, 112]. The combination of bio-
materials with living cells also provides a potential mixture
for the bioprinting of self-supporting designs. Secondly, the
biocompatible materials also support cell viability as non-
cytotoxic and show appropriate swelling properties for short
term [113]. Hydrogels are the best selection for bioinks as
they are biocompatible, biodegradable and structurally sim-
ilar to naturally existing extracellular matrix (ECM) with
hydrophilic environmentwhich promote the cell growth.Due
to hydrophilic nature, hydrated structures and channels are
created with help in encapsulation of cells.

Both types of hydrogels including naturally existed or
synthetically prepared can be employed for biofabrication.
Collagen [114], gelatin [115], alginate [116] and chitosan
[117] are efficiently used for bioprinting because of their high
biocompatibility. But, structurally they are naturally very
weak which limits their application in biofabrication [118].
On the other hand, synthetic hydrogels have better mechani-
cal support, but degradation may prevent their utilization for
bioprinted products [118, 119]. Bioprinting is divided three
main categories: inkjet bioprinting, robotic dispensing and
laser-assisted bioprinting [120, 121] on the basis of printing
processes as shown in Fig. 2 and further explained by rhe-
ological, biological, interfacial and degradation properties.

Along with the characteristics of the bioinks and their
biocompatibility, bioprinting also depends on the different
parameters which decide the printing technique and suitable
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Table 3 Different characteristics
and parameters of bioprinting
techniques

Types of
bioprinting

Working
principle

Cell viability
(%)

Size of the
nozzle

Resolution
(μm)

Study/references

Robotic
dispensing

Contact 40–95 20 μm–mm >100 [118, 120, 122]

Inkjet Non-contact >85 20–150 μm 50–300 [111, 118, 122,
123, 124]

Laser-assisted Non-contact >95 Nozzle-free 20–80 [111, 118, 122]

Fig. 3 Schematic demonstration of three robotic dispensing systems
[120]

optimization needed for successful fabrication of tissue con-
structions. Some parameters of the respective techniques are
listed in Table 3.

Robotic dispensing

Robotic dispensing 3D printer with a disposable syringe
(plastic or metallic depending on the bioink) extrudes the
biomaterial (bioink) through the nozzle with the help of
mechanical screw or piston mechanism or pneumatic sys-
tem as shown in Fig. 3. The pneumatic control system allows
the pressurized air to extrude the bioink which may show
some delay time during the compression of air [122], but the
piston-driven system provides direct interaction of pressur-
ized surface and bioink material which provides sufficient
control and smooth printing. Both of these systems are very
feasible for the printing of cells and tissues [121, 122]. In
mechanical driven screw system, the extrusion and feed of the
bioink is controlled with the rotational motion of the screw
having specialized designs [120]. High-viscosity bioinks are
favorable for printing through screw control system, but the
problem of pressure drop may harm the cells. Main feature
of these systems is the continuous extrusion of the material
in the form of filaments.

The important hydrogels typically used as bioinks in
robotic dispensing 3D printing are collagen [125], fibrin
[126], alginate [116, 127, 128],GelMA[129, 130] andhydro-
gel blends [131, 132]. The application of such hydrogels for
biological means is difficult because they changed into gel
form so quickly and collapse due to their own weight after
printing [133]. The researchers have worked to improve the
supporting techniques by fast curing [134, 135] and using
support baths during the printing of such biomaterials [133,
136].Geo et al. [137] employed robo-dispensing technique to
manufacture an organwithmicro-channels inside it as shown
in Fig. 4.

The design of the nozzle is coaxial, and alginate of 2%
solution and solution of CaCl2 of 4% were extruded with
varying flow rates. The hollow filament was extruded due
the coaxial arrangement with an average inner diameter of
892 μm. Further, the results of perfusion test explained that
the printed structure provides sufficient perfusion without
any blockage. Another alginate-based material prepared by
adding methylcellulose (MC) in 3% alginate solution hav-
ing improved viscosity characteristics is used for bioprinting
via robotic dispensing 3D plotting technique [138], and these
scaffolds showed high elasticity, stability,microporositywith
cross-linkage. Lee et al. [139] demonstrated an innovative
technique with the combination of robot-dispensing system
and aerosol spraying of surface gelation to fabricate 3D
alginate hydrogel scaffold with 100% connected pores in a
controlled fashion as shown in Fig. 5. The alginate-based
scaffold implanted with cell-laden micro-beads showed cell
viabilitymore than 90%after several days of periodic culture.
Ang et al. [140] utilized the robotic dispensing technique
equipped with pneumatic system to manufacture 3D scaf-
folds of chitosan–hydroxyapatite solution. The bioink was
prepared by mixing chitosan and chitosan–hydroxyapatite
solution with acetic acid and extruded through teflon-lined
nozzle to fabricate the scaffold according to CAD model
with layer deposition. The results showed that good adhe-
sive forces are present between the layers which enable the
chitosan matrix to create well-interconnected layering pat-
tern.

The mechanical strength of hydrogel scaffolds is also one
of the issues which limits their applications. To improve the
mechanical properties, reinforcementmaterials are coated on
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Fig. 4 Schematic explanation of
a cross-sectional view of the
coaxial nozzle assembly, b
manufacturing process of a 3D
alginate structure with built-in
micro-channels and c networks
formed after fabrication [137]

Fig. 5 Schematic diagram of fabrication process of micro-bead (MB)
and cell-laden 3D scaffolds using a three-axis robot system supple-
mented with an aerosol process [139]

the scaffolds. Kim et al. [141] employed the robotic dispens-
ing bioprintingmethod to fabricate PCL (cell-laden)/alginate
scaffolds with reinforced coating of alginate-based biomate-
rial. The results revealed great improvement in mechanical
strength with homogeneous dispersal of cells.

Inkjet bioprinting

Inkjet bioprinting enables the printing of low-viscosity bio-
materials in small fractions nearly 1–100 picolitres on the
substrate [142]. Inkjet printing is droplet deposition-based
process using piezoelectric actuators [143, 144] or thermal
heaters [123] as driving force as shown in Fig. 6. Gen-
erally, these printers have two operating modes including

Fig. 6 Schematic drawing of inkjet printing with two different types
[120]

continuous and drop on demand inkjet bioprinting [122]. In
piezoelectric-based inkjet printers, the pulses generated by
the piezoelectric actuators apply a voltage change accord-
ing to computerized design, which extrude the biomaterial
according to computerized design in drop-wise manner
[145]. But in thermal-based inkjet printers, the heaters are uti-
lized to convert the biomaterial into droplets by evaporating
and then ejecting it on the printing-base platform [146]. The
resolution of inkjet bioprinting ranges from 50 to 300 μm
[111, 124] with the advantages of cost-effectiveness [111,
147] and high printing speeds [111, 120].

Recently, a lot of work has been done on inkjet technique
for cell printing which allows to manufacture 3D hydro-
gel structures. There are several examples of such printings
which provided desired mechanical and chemical properties
with efficient porosity factor. Boland et al. [148] employed
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Fig. 7 Schematic view of manufacturing of alginate-based scaffolds
using modified HP DeskJet [148]

inkjet printing method to 3D scaffolds of alginate/gelatin
hydrogels by spraying CaCl2 on to the alginic acid (un-
gelled) as shown in Fig. 7. The cartridge of the printer was
filledwith 2%alginic acid solution to fabricate the 3Dprinted
scaffold which was further processed for specific properties
by spraying 0.25 M CaCl2 on the scaffolds. These printed
scaffolds possess uniform pore size and well-adhesion of
endothelial cells. Many other biomaterials can also be used
to manufacture such kind of scaffolds in the form of tubes,
branched or unbranched [149].

Researchers worked on commercially available inkjet
printers for modifying them for the bioprinting [150]. Xu
et al. [123] worked on the modification of commercial inkjet
printer for printing sterile hydrogel specimen. Before using
the inkjet printer, the chamber was sterilized with UV light
and then washed several times with 70% ethanol. The quality
of the samples proved that these modifications were accept-
able after number of sterilizations. These inkjet printing
techniques are very advantageous because the desired fac-
tors including deposition of living cells, growth rates after
printing, right printing on exact location cross-linking and
transfer of nutrients could be achievable [151] with cost-
effectiveness and high efficiency. Inkjet printing technique
also integrates with fields of biomedical applications like
biosensors, drug screening and genomics [152]. The physical
structure of these hydrogels and DNA structures is very del-
icate, but these could be printed directly using inkjet printers
on glass slides for study and analysis purposes [153].

Fig. 8 Schematic illustration of laser-assisted bioprinting depositing
bioink in the form of micro-droplets using pulsed laser source [111]

Fig. 9 Schematic representation of top–bottom and top–down visible
light source for SLA

Laser-assisted bioprinting

The laser-assisted bioprinting employs laser beam to print
biological structures [154]. The technique consists of main
three components, the donor slide, pulsated laser beamsource
and a layer for absorbing laser energy [155] as shown in
Fig. 8. The mechanism includes the deposition of the bioink
on the donor slide which further converted into high-pressure
bubbles through pulsed laser beam. When these micro-scale
bubbles expand, they eject from the surface in the form of
droplets [121]. There are two major AM techniques, stere-
olithography (SLA) [156] and two-photon polymerization
(2PP) [122] which can be utilized for the fabrication of 3D
biomaterial structures using laser assistance. SLA allows the
printing of such structures range in centimeters and its reso-
lution is very high up to 6 μm [157], while 2PP gives great
resolution up to 100 nm which provides efficient interfaces
between cells and printed substrate [156]. Usually two setups
of light source are used in SLA including top–bottom and
top–down as shown in Fig. 9.

For the very first time, Odde demonstrated the 3D printing
of biological structureswith laser assistance usingfibronectin
clustering the individual cells [158]. There are many other
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Fig. 10 Schematic
demonstration of bioprinting of
cross-linked cell-laden hydrogel
cells [166]

biomaterials that can be used for such kind of printings
including living cells [155], DNA [159] and peptides [160].
Karina et al. [161] fabricated the complex 3D structures of
polyethylene glycol (PEG) hydrogels using stereolithogra-
phy (SLA). The utilization of such cross-linked photo-active
polymer PEG-dma MW 1000 up to 10% (w/v) with 0.5%
of I-2959 enhanced the biofabrication attributes. These scaf-
folds had great importance in tissue engineering applications
because SLA provides strong, smooth and precise struc-
tures with accurate placement of cells and other biological
agents during fabrication. Some other biomaterials like
photo-curable polymers offer controllable adhesive bonding
between the cells because they can cure easily during the
process of SLA [162]. PEG hydrogels also provide suitable
strength for soft tissue and swelling due to their hydrophilic
nature [163].

The light source of the SLA technique can also affect
the cells composition and damage them. The main muta-
tions and disorders are produced by UV light and laser lights.
SLA techniques that employ visible light as a source are use-
ful for tissue engineering application because they eliminate
the dangerous effects of UV light and help in homogenous
dispersion of polymers [164, 165]. Few polypeptides-based
scaffolds also showed improved mechanical properties fab-
ricated using SLA technique. Elomaa et al. [166] fabricated
poly(ethylene glycol-co-depsipeptide) (PEG-co-PDP) scaf-
folds employing SLA with visible light source as shown in
Fig. 10. The cross-linking between PEG-co-PDP and RGD-
functionalized PEG acrylate enhanced the proliferation and
cellular adhesive bonding. The results showed that mechan-
ical stiffness depends on the curing time of the layer and the
values range from 3±1 to 38±13 kPa. In another study, for
semilunar cartilage structures,MeGEL is utilized to fabricate
porous scaffolds [167].

Conclusion and future outlooks

The potential of the hydrogels is very positive for the future
development of tissue engineering because they possess the
resemblance with naturally existed ECM chemically as well
as structurally. The innovation in the methodologies and
conditions for providing biocompatible environments would
be the key to success in future. The major focus of the
researchers is to increase the biocompatibility of these hydro-
gels as this is the most important factor for developing new
hydrogel-based scaffolds. Still, we have to understand the
complexities of the process by which these hydrogel ECM
seeded cells mediate their composition with the existing liv-
ing cells. Exploring more information about ECM hydrogels
could provide newpossibilities to architecture and reprogram
the chemical nature of hydrogels so that after implantation
they should have the ability to repair and reconstruct the
tissues if some variation happens in the actual living tis-
sues. Secondly, the improvement in the fabrication methods
of these hydrogel-based scaffolds is also developing very
rapidly. These improvements could lead us to incorporate
advanced manufacturing techniques like big data to opti-
mize the process parameters [168] and designs of these
hydrogel-based scaffolds to be more effective and sustain-
able. Some novel and innovative designswith their functional
applications are reviewed above. The gradient techniques
could provide more accurate and precise methods for the
production of mimic ECM with enhanced biocompatibility
and mechanical strength. As it is an innovative method that
will change the mechanical properties of scaffolds patterns,
researchers attempted to test these methods experimentally
[169, 170], but still for functional applications and best
approaches, they need more investigation [171]. There could
be a possibility for analyzing the details about the interaction
forces and cross-linking structures of hydrogels at nanoscale
that can influence polymerization processes and drive the
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self-assembling mechanism. Multiple cells printing at one
time is still a challenge for researchers and scientists which
can be done through combination of materials or employing
different printing techniques spontaneously. This combina-
tion of various printing methods will provide a facility for
more innovative designs and structures. For example, Kim
et al. [172] explained the technique for printing the scaffold
with combination of electrospinning and bioplotting tech-
niques.

Despite this development in the field of tissue engineering,
including reproduction of ECM using hydrogels and implan-
tations, there are enormous factors yet to be explored that will
allow TE to broad range of biomedical and clinical appli-
cations. The properties of hydrogel-based scaffolds can be
improved through combination of different natural existing
or synthetic hydrogels and fabricating the structures using
different 3D printing techniques.
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