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Abstract
The Whale Optimization Algorithm (WOA) is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic 
of humpback whales. In spite of its popularity due to simplicity, ease of implementation, and a limited number of param-
eters, WOA’s search strategy can adversely affect the convergence and equilibrium between exploration and exploitation 
in complex problems. To address this limitation, we propose a new algorithm called Multi-trial Vector-based Whale Opti-
mization Algorithm (MTV-WOA) that incorporates a Balancing Strategy-based Trial-vector Producer (BS_TVP), a Local 
Strategy-based Trial-vector Producer (LS_TVP), and a Global Strategy-based Trial-vector Producer (GS_TVP) to address 
real-world optimization problems of varied degrees of difficulty. MTV-WOA has the potential to enhance exploitation and 
exploration, reduce the probability of being stranded in local optima, and preserve the equilibrium between exploration and 
exploitation. For the purpose of evaluating the proposed algorithm's performance, it is compared to eight metaheuristic 
algorithms utilizing CEC 2018 test functions. Moreover, MTV-WOA is compared with well-stablished, recent, and WOA 
variant algorithms. The experimental results demonstrate that MTV-WOA surpasses comparative algorithms in terms of the 
accuracy of the solutions and convergence rate. Additionally, we conducted the Friedman test to assess the gained results 
statistically and observed that MTV-WOA significantly outperforms comparative algorithms. Finally, we solved five engi-
neering design problems to demonstrate the practicality of MTV-WOA. The results indicate that the proposed MTV-WOA 
can efficiently address the complexities of engineering challenges and provide superior solutions that are superior to those 
of other algorithms.

Keywords  Swarm intelligence algorithms · Metaheuristic algorithms · Optimization · Engineering design problems · 
Whale optimization algorithm

1  Introduction

The development of science and technology has led to an 
increase in the complexity of optimization problems, and 
the emergence of new optimization problems has necessi-
tated the deployment of the most appropriate optimization 

algorithms. Deterministic algorithms are successful when 
dealing with linear, convex, and simple optimization prob-
lems; nevertheless, these methods are inefficient when 
handling non-differentiable objective functions, nonlinear 
search spaces, non-convex, complicated, and NP-hard issues 
[1, 2]. On the other hand, these are the key features that 
optimization issues exhibit in real applications. As a result of 
the inefficiency of deterministic algorithms, stochastic algo-
rithms, including metaheuristic algorithms, were developed 
[3]. Metaheuristic algorithms that employ random opera-
tors, trial-and-error methods, and random exploration of 
the search space are effective tools for tackling optimization 
issues. The widespread usage of metaheuristic algorithms 
can be attributed to their basic concepts and straightforward 
implementations, as well as their effectiveness in solving 
high-dimensional problems [4, 5].
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Metaheuristic Algorithms (MAs) have been proposed to 
handle non-linear, multimodal, and high-dimensional opti-
mization problems [6–8]. Using MAs to tackle complicated 
problems has shown to be an effective alternative to conven-
tional optimization algorithms [9, 10]. Although approxima-
tion algorithms such as MAs are not guaranteed to produce 
the best solution, they are developed to provide solutions as 
close as possible to the optimal one in a reasonable period 
of time [1, 11]. The early phases of the search are devoted 
to exploring the search space, and the promising regions 
are then exploited in later iterations to improve the quality 
of the solutions. In addition, by utilizing multiple search 
agents, these algorithms demonstrate superior performance 
in avoiding local minima and finding near-optimum solu-
tions [12, 13].

Among the various categories of MAs, evolutionary and 
swarm intelligence algorithms stand out as the most promi-
nent and have been effectively applied to various real-world 
challenges. Evolutionary algorithms simulate natural evo-
lution by adapting reproduction, crossover, and mutation 
operators, whereas swarm intelligence algorithms imitate the 
collective intelligence of natural groupings, such as birds' 
flocks, fish's schools, and ants’ colonies. Some of the well-
known evolutionary algorithms are Genetic Algorithm (GA) 
[14], Differential Evolution (DE) [15], and Evolution Strate-
gies (ES) [16]. The act of seeking food and the strategies of 
fighting and hunting that occur naturally among creatures 
provided a fundamental motivation for the development of 
a variety of swarm intelligence algorithms, such as Particle 
Swarm Optimization (PSO) [17], Bat Algorithm (BA) [18], 
Cuckoo Search (CS) [19], Krill Herd (KH) [20], Grey Wolf 
Optimizer (GWO) [21], Moth-Flame Optimization (MFO) 
[22], Butterfly Optimization Algorithm (BOA) [23], Salp 
Swarm Algorithm (SSA) [24], Honey Badger Algorithm 
(HBA) [25], and Liver Cancer Algorithm (LCA) [26].

The Whale Optimization Algorithm (WOA) [27] is a 
swarm intelligence algorithm that emulates humpback 
whales' intelligence bubble-net hunting behavior. The 
WOA's simplicity, ease of implementation, and few param-
eters have attracted many researchers to use it for solving 
optimization problems, including intrusion detection sys-
tems [28], disease detection [29], robotics [30], and signal 
processing [31]. However, WOA tends to be trapped in local 
minima due to a deficiency in maintaining a balanced explo-
ration and exploitation. This is because, in the early itera-
tions, WOA merely conducts global exploration and entirely 
switches to local exploitation, reducing the balance between 
exploration and exploitation. Due to the absence of global 
exploration in later iterations, the population leads to fast 
convergence toward local optima without ensuring global 
optimality with poor solution accuracy [32, 33]. Therefore, 
a number of adjustments have been made to the canonical 
WOA in order to address these flaws [34, 35]. According to 

the No-Free Lunch (NFL) theorem [36], there is no algo-
rithm that is superior to all other algorithms for dealing 
with problems with various challenges. Thus, it is required 
to suggest new algorithms or make improvements to those 
already in use by altering their operators to tackle optimiza-
tion issues more efficiently.

The WOA concept, while straightforward, holds the 
potential to emerge as a leading optimization algorithm. This 
has led researchers to give it increased attention, leading to 
numerous enhancements and diverse applications of WOA. 
Despite the significant improvements of WOA, it still needs 
more developments that can handle problems with complex 
characteristics. Therefore, the proposed modifications aim 
to enhance the overall performance of the WOA, specifically 
addressing issues where the algorithm demonstrates subop-
timal behavior or slow convergence rates. These changes 
introduce adaptability features, enabling the algorithm to 
navigate various problem landscapes more effectively. This 
adaptability becomes crucial, especially when the tradi-
tional WOA encounters challenges in efficiently discovering 
optimal solutions. Moreover, the introduced modifications 
enhance the WOA's versatility, extending its applicability 
across various optimization problems.

In our earlier research [37], we developed the Multi-trial 
Vector (MTV) approach to address an extensive range of 
optimization issues. The MTV approach includes the fol-
lowing four components: winner-based distributing, multi-
trial vector producing, evaluating and population updating, 
and lifetime archiving. This approach incorporates several 
search strategies by specifying distribution policies across 
the population to improve the algorithms' performance. 
To prevent getting stuck in a local optimum, to prevent the 
search from converging too quickly, and to strike a proper 
balance between exploiting and exploring solutions, the 
MTV approach allows for the definition of multiple strate-
gies that can be adapted to the particular problem character-
istics at each stage. The study aims to improve the efficiency 
of the WOA in addressing complex real-world optimization 
problems by introducing three new additional trial vectors 
that leverage the advantages of the MTV approach.

This paper introduces a Multi-trial Vector-based Whale 
Optimization Algorithm (MTV-WOA) that utilizes the 
Multi-trial Vector (MTV) approach. The MTV-WOA 
employs three new Trial Vector Producers (TVPs) during 
the multi-trial vector producing step of the MTV approach, 
each designed to address optimization challenges with 
varying characteristics while preserving specific search 
behavior. The three proposed TVPs include a Balanc-
ing Strategy-based Trial-vector Producer (BS_TVP), a 
Local Strategy-based Trial-vector Producer (LS_TVP), 
and a Global Strategy-based Trial-vector Producer (GS_
TVP). The MTV approach's winner-based distributing is 
utilized to apply each TVP to a subset of the population 
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corresponding to that TVP. In MTV-WOA, incorporating the 
MTV approach involves adopting a winner-based distribut-
ing policy. This policy leads to dividing the main population 
into three distinct subpopulations. The rationale behind this 
design is rooted in the advantages of the MTV approach, 
specifically in enhancing exploration and exploitation capa-
bilities. The winner-based distribution strategy allows for a 
more effective and dynamic allocation of resources across 
these subpopulations, contributing to the algorithm's overall 
performance. The proportion of the dedicated population is 
adjusted regularly based on the number of whales each TVP 
improves. Additionally, the MTV-WOA utilizes a lifetime 
archive to store inferior whales to transfer their knowledge 
to future generations of whales. The proposed algorithm is 
designed to enhance the performance of the WOA algorithm 
when applied to complex real-world optimization problems.

The proposed MTV-WOA's performance is validated using 
29 benchmark functions of CEC 2018 [38] in 10, 30, and 50 
dimensional space. The gained results are compared to state-of-
the-art and newly proposed metaheuristic algorithms consists 
of Krill Herd (KH) [20], Grey Wolf Optimizer (GWO) [21], 
Moth-Flame Optimization (MFO) [22], Whale Optimization 
Algorithm (WOA) [27], Salp Swarm Algorithm (SSA) [24], 
Harris Hawks Optimization (HHO) [39], Butterfly Optimiza-
tion Algorithm (BOA) [23], and Arithmetic Optimization Algo-
rithm (AOA) [40]. Afterwards, the gained results on benchmark 
functions by MTV-WOA and comparative algorithms are sta-
tistically analyzed by use of the Friedman test [41] to confirm 
the superiority of the proposed algorithm. In another experi-
ment set against CEC 2017 winners LSHADE-SPACMA [42], 
LSHADE-cnEpSin [43], well-established algorithm PSO [17], 
recent algorithms Snake Optimizer (SO) [44] and Coati Optimi-
zation Algorithm (COA) [45], and improved variant enhanced 
whale optimization algorithm (E-WOA) [46], the proposed 
MTV-WOA consistently outperforms these algorithms, securing 
its position as the third-best algorithm after the CEC winners. 
Results, reinforced by the Wilcoxon signed-rank test, highlight 
MTV-WOA's statistically significant superiority over other algo-
rithms. Furthermore, the study extends its impact by evaluating 
enhancements introduced by BS_TVP, LS_TVP, and GS_TVP 
on other algorithms, such as PSO and LSHADE-SPACMA, 
as demonstrated by the effectiveness of Adapted-PSO and 
Adapted-LSHADE-SPACMA. This analysis provides insights 
into the broader applicability of the proposed TVPs in enhancing 
the performance of diverse optimization algorithms.

Furthermore, the application of MTV-WOA was proved 
through the resolution of engineering issues. The proposed 
MTV-WOA demonstrates superiority over comparative algo-
rithms, as evidenced by thorough comparisons and statistical 
analyses. Equipping WOA with multi-movement strategies 
significantly strengthens its effectiveness in solving diverse 
and complex optimization problems, particularly shifted or 
rotated problems. The advantage of the proposed improved 

algorithm lies in its ability to enhance the WOA's performance. 
Leveraging the MTV approach allows simple metaheuristic 
algorithms like WOA to integrate complementary search strat-
egies. This adaptation uniquely positions the MTV-WOA to 
excel in addressing various optimization challenges.

The outline of the paper is as follows: Sect. 2 provides a 
literature survey of relevant works, while the WOA's math-
ematical model and flowchart are presented in Sect. 3. The 
proposed MTV-WOA is presented in Sect. 4. Section 5 pre-
sents the experimental assessment and statistical analysis 
of the proposed and comparative algorithms, while Sect. 6 
showcases the solution to engineering problems. Section 7 
delves into the primary factors contributing to the achieve-
ments of the MTV-WOA. The final section summarizes the 
findings and suggestions for further research.

2 � Related Work

Metaheuristic algorithms are popular and powerful algo-
rithms that have been proposed to provide near-optimal 
solutions to real-world problems. MAs can be categorized 
into four main groups evolutionary, swarm intelligence, 
physics-based, and human behavior-based according to 
the inspiration source. Evolutionary Algorithms (EAs) 
draw inspiration from Darwin's theory, which simulates 
the evolutionary behaviors of living things by utilizing 
concepts of competence and survival. Evolutionary algo-
rithms rely on mechanisms such as mutation and crossover 
to ensure the best possible solutions survive and evolve. 
This category's popular algorithms are Evolution Strat-
egy (ES), Genetic Algorithm (GA), Differential Evolu-
tion (DE), and Genetic Programming (GP). Among these, 
DE and its variants' effectiveness and performance have 
been demonstrated in a number of studies, particularly in 
a variety of disciplines, such as medical [47], engineering 
[48], industry [49], economics [50], and data mining [51].

The behavioral model of animals, plants, and birds 
serves as the basis for Swarm Intelligence (SI) algorithms 
classified under the second category of metaheuristics. 
SI algorithms rely on influential population members to 
guide other solutions to reach the optimal solution. The 
most popular and recently proposed SI algorithms are 
Particle Swarm Optimization (PSO) [17], Krill Herd (KH) 
[20], Grey Wolf Optimizer (GWO) [21], Whale Optimi-
zation Algorithm (WOA) [27], Butterfly Optimization 
Algorithm (BOA) [23], Salp Swarm Algorithm (SSA) 
[24], Monarch Butterfly Optimization (MBO) [52], Cha-
meleon Swarm Algorithm (CSA) [53], Horse Herd Opti-
mization Algorithm (HOA) [54], Orca Predation Algo-
rithm (OPA) [55], White Shark Optimizer (WSO) [56], 
Snake Optimizer (SO) [44], and Artificial Hummingbird 
Algorithm (AHA) [57]. Even though the vast majority of 
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SI algorithms are intended to deal with continuous prob-
lems, a variety of techniques can be used to adapt these 
algorithms to deal with difficulties of a discrete nature 
[58]. Utilizing the adapting techniques has allowed for the 
successful resolution of a number of real-world problems.

In physics-based algorithms, individuals' movements 
and relationships are modeled by applying physical laws, 
including gravity, inertia force, and electrical charges. 
The Big Bang Big-Crunch (BB-BC) [59] is a well-known 
physics-based algorithm inspired by the big bang and 
crisis theory. The coulomb law of physics and Newto-
nian mechanical motion led to the design of Charged 
System Search (CSS) [60] algorithm. Some other phys-
ics-based algorithms are Ray Optimization (RO) [61], 
Colliding Bodies Optimization (CBO) [62], Atom Search 
Optimizer [63], Nuclear Reaction Optimization (NRO) 
[64], and Plasma Generation Optimization (PGO) [65]. 
Human cultural and political activities such as learn-
ing, competitiveness, political campaigns, and cultural 
influence inspire algorithms based on human behavior. 
Teacher Learning Based Optimization (TLBO) [66] is 
a practical example of these algorithms which is model 
teaching and learning behavior between humans. Poor 
and Rich Optimization (PRO) [67], Seeker Optimization 
Algorithm (SOA) [68], Dual-Population Social Group 
Optimization (DPSGO) [69], and Human Eye Vision 
Algorithm (HEVA) [70] are well-known and recently 
proposed physics-based algorithms.

Numerous real-world problems in continuous and discrete 
domains have been resolved using metaheuristic algorithms, 
such as image segmentation [71–74], feature selection 
[75–80], solar power system optimization [81–84], engineer-
ing [85–88], planning and scheduling [89–92], disease diag-
nosis [93–95], continuous optimization problems [96–104], 
optimal power flow [105, 106], routing problem [107, 108], 
community detection [109–111], and cloud manufactur-
ing [112–114]. Among the population-based metaheuristic 
algorithms, the WOA is well-known and has been used in 
various applications. Meanwhile, WOA possesses significant 
flaws, including inadequate exploration and low variability, 
resulting in local optimum trapping, inability to jump out of 
local optimal, and poor global searchability. Thus, a variety 
of variants were suggested to tackle its deficiencies. In the 
following, some improved variants of the whale optimization 
algorithm are discussed.

In Ref. [32], WOAGWO, a hybridized GWO with WOA 
was suggested to address global numerical optimization 
issues. By improving the exploitation of WOA and prevent-
ing stagnation within local optima, the WOAGWO sig-
nificantly enhanced the performance of WOA. A modified 
WOA named m-SDWOA was proposed in Ref. [33], which 
combines modified Symbiotic Organisms Search (SOS) 
[115] with a mutation strategy from the DE algorithm. The 

proposed m-SDWOA mitigates the shortcomings of the 
WOA involving insufficient exploitation and the inability to 
maintain a steadiness between exploring and exploiting. In 
Ref. [116], an enhanced WOA integrated with SSA named 
ESSAWOA was proposed to solve global optimization prob-
lems. In ESSAWOA, the lens opposition-based learning strat-
egy was utilized to change the position of search agents. Also, 
the SSA’s convergence parameter and the leader mechanism 
are used to strengthen the exploitation and maintain diversity. 
Experiments show that ESSAWOA is more accurate in find-
ing the optimal solution than WOA and SSA.

In Ref. [117], a Laplacian whale optimization algorithm 
was developed known as LXWOA. A Laplace crossover oper-
ator was utilized to enhance the WOA algorithm's population 
variability and address the issue of early convergence that 
arises during the optimization phase. The results of the experi-
ments demonstrated that the suggested algorithm converges 
faster than comparative algorithms. In Ref. [118], an enhanced 
whale optimization algorithm was proposed to overcome the 
WOA's flaws, such as fast convergence to a local optimum, 
low computation accuracy, and stagnation. Levy flight strat-
egy and ranking-based mutation operator were added to the 
WOA to improve the global and local search abilities. Experi-
mental results show that the proposed algorithm has a fast 
convergence speed and high calculation accuracy.

In Ref. [119], IWOSSA which is a hybridized improved 
WOA with SSA, was proposed to solve optimization prob-
lems. In this regard, IWOA presented a variation of WOA 
that uses exponential relations rather than linear ones. Then, 
IWOA or SSA conducts the search based on a particular 
condition. Experiments using benchmark functions and PID 
controllers demonstrated that the suggested IWOSSA could 
achieve superior results and fine-tune the engineering prob-
lem's parameters. To address the inadequacies of WOA in 
tackling high-dimensional problems, a hybrid WOA with sev-
eral techniques was developed [34]. The proposed algorithm 
uses individual learning instead of learning dimensions, as 
well as a random opposition learning strategy to enable the 
algorithm to find the desired solution in high dimensions. The 
gained results from diverse experiments have demonstrated 
that the suggested algorithm effectively solves benchmark 
functions and clusters high-dimensional datasets.

HS-WOA and HS-WOA + are two algorithms that were 
proposed in Ref. [120] such that they are the hybridization 
of WOA and a human-based algorithm Social Group Opti-
mization (SGO) [121]. The suggested algorithm finds the 
optimal balance between exploration and exploitation by 
integrating the capabilities of WOA and SGO, which are 
primarily focused on convergence and exploitation, respec-
tively. Experimental results prove that the hybrid perfor-
mance is more efficient than the WOA. In Ref. [122], a new 
variant of WOA named OBCWOA was proposed that uses 
a chaos mechanism based on quasi-opposition. The purpose 
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of the improved version is to overcome the poor convergence 
speed of the original WOA and to prevent becoming stuck 
in a local optimum while dealing with problems with a high 
dimension. In order to speed up the convergence and create 
initial values, OBCWOA takes advantage of the turbulence 
mechanism. In opposition-based learning, balancing explo-
ration with the development of an algorithm to get out of 
local optimizations is achieved by applying the opposition-
based learning approach.

In Ref. [123], an improved WOA with a joint search mecha-
nism named JSWOA was proposed to tackle the high-dimen-
sional optimization problems. In the proposed algorithm, the 
initial population diversity is maintained using a tent chaotic 
map. Then, an inertia weight is utilized to boost the conver-
gence speed and escape from the local optima of the JSWOA. 
A final opposition-based learning mechanism is utilized to 
constantly upgrade the population's members throughout each 
iteration in order to improve the quality and variety of the whale 
population and raise the chance of reaching a globally optimum 
solution. The proposed JSWOA was evaluated by benchmark 
functions and the gained results prove the better performance 
in terms of solution accuracy and convergence speed. Another 
modified whale optimization algorithm named MWOA-CEE 
was proposed in Ref. [124] such that the proposed algorithm is 
suitable for tackling WOA's flaws. In this regard, the proposed 
MWOA-CEE algorithm utilized three operators consisting of 
opposition-based learning, exponentially decreasing function, 
and elite-guided Cauchy mutation. The suggested MWOA-CEE 
was assessed using benchmark functions, and the results dem-
onstrate its higher solution precision.

A modified whale optimization algorithm with a cross-
optimization algorithm named MWOA-CS [125] was sug-
gested for large-scale optimization issues. Random execu-
tion of the WOA or cross-optimization algorithm is used to 
update each problem dimension during the search process. 
The exploitation and exploration capabilities are enhanced 
by using the improved WOA algorithm's new nonlinear con-
vergence coefficient and nonlinear weight of inertia. The 
findings, obtained by evaluating the proposed and compara-
tive algorithms on test functions with dimensions ranging 
from 300 to 1000, demonstrated that the MWOA-CS pro-
vided superior performance compared to other algorithms. 
In Ref. [126], a multi-strategy whale optimization algorithm 
named MSWOA was proposed for solving complex engi-
neering optimization problems. In this regard, a high-quality 
initial population is formed by employing a random cha-
otic logistics map, and the balance between exploitability 
and exploration is maintained using adaptive weight modi-
fication. Additionally, using a Lévy flight ensures that the 
population diversity is preserved during each iteration. The 
effectiveness of the algorithm was demonstrated through 
experiments conducted on the CEC 2017 benchmark set and 
by comparisons with other algorithms.

3 � Whale Optimization Algorithm (WOA)

The WOA [27] is one of the population-based algorithms 
belongs to the category of swarm intelligence algorithms 
which is inspired by humpback whales' natural hunting 
behavior. In nature, a humpback whale stalks krill or tiny 
fish near the water's surface using bubble-net hunting 
strategy. Supposing there is a population of N whales as 
X = {X1, X2, …, XN} in a search space and each whale 
characterized with a D-dimensional vector Xi = {x1, x2, 
…, xD}. In WOA, whales estimate the position of their 
prey which is the position of the best candidate solution 
or the closest candidate to the optimal solution. Conse-
quently, population members modify their position based 
on the location of the prey. The WOA simulates three 
types of hunting behavior in whales, including encircling 
prey, bubble-net attacking, and seeking prey, as described 
below and its flowchart shown in Fig. 1.

Encircling Prey: The initial stage of a whale's hunting 
strategy is to encircle its prey. During this phase, the 
whales have located their prey and are closing in for the 
attack. In the algorithm, X*, the current best whale, is 
regarded as the prey, and other whales modify their posi-
tions relative to this position using Eqs. (1) and (2).

Fig. 1   The flowchart of WOA
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where D is the estimated distance between X* and X in the 
t-th iteration, C and A are coefficients determined by Eqs. 
(3) and (4), respectively.

where a is gradually decreased from two to zero through 
the iterations, and r is a random number in the range zero 
and one.

Bubble-Net Attacking: As the whales whirl around their 
prey, they update their position in a spiral pattern or engage 
in a shrinking encirclement strategy. The spiral position 
updating is modeled in Eq. (5),

where D' is the distance between the position of whale X 
and the position of X* calculated by Eq. (6), b is a constant 
coefficient by value set to one, and l is a uniform random 
number in range [− 1, + 1].

The bubble-net attacking is modeled by Eq. (7),

where the variable p is a random integer that ranges from 
0 to 1 and is used to determine the likelihood of updating 
whale positions using either the shrinking encircling strategy 
(when p is less than 0.5) or the spiral updating technique 
(when p is greater than or equal to 0.5). The shrinking encir-
cling strategy involves a random variable A, which ranges 
from -a to a, where the value of a linearly decreases from 
two to zero with each iteration. The spiral updating strat-
egy, on the other hand, relies on a distance measuring D' 
that indicates the distance between X and X* in the spiral 
updating position. The constant b determines the form of 
the spiral movement, while the variable l is a random value 
between -1 and 1.

Searching for Prey: Whales search the whole search space 
to find potential prey. When |A|≥ 1, a whale conduct global 
search or exploration by using the search for prey strategy. 
During the exploration phase, which is determined by Eqs. 
(8) and (9), the whale shifts its location relative to a random 
whale Xrand instead of the best whale X*:

(1)D = |C × X∗(t) − X(t)|

(2)X(t + 1) = X∗(t) − A × D

(3)A = 2 × a × r − a

(4)C = 2 × r

(5)X(t + 1) = D
�

+ ebl × cos(2�l) + X
∗
(t)

(6)D� = |X∗(t) − X(t)|

(7)X(t + 1) =

{
X∗(t) − A × D if p < 0.5

D� × ebl × cos(2𝜋l) + X∗(t) if p ≥ 0.5

where Xrand is a randomly chosen whale from the current 
population.

4 � Multi‑Trial Vector‑Based Whale 
Optimization Algorithm (MTV‑WOA)

The WOA is a widely used optimization algorithm with a 
straightforward implementation; however, the algorithm's 
performance is insufficient when dealing with complex prob-
lems. The canonical WOA suffers from low exploration and 
slow convergence speed, which significantly affect its per-
formance [122]. The canonical WOA's performance can be 
improved by altering its search strategy that incorporates 
multiple search strategies when dealing with complex prob-
lems with diverse characteristics. Motivated by this, a Multi-
trial Vector-based Whale Optimization Algorithm (MTV-
WOA) is proposed such that the simple WOA search strategy 
is replaced by the Multi-trial Vector (MTV) approach [37]. 
Integrating the MTV approach into the WOA facilitates the 
development of a variety of Trial Vector Producers (TVPs) 
so that each can maintain a distinct behavior throughout the 
optimization process. Additionally, according to MTV's 
winner-based distributing policy, each TVP is applied to a 
specific portion of the population. Thus, information sharing 
between whales from distinct subpopulations during popula-
tion dispersion can increase the effectiveness of the proposed 
algorithm.

As depicted in Fig. 2, the MTV-WOA has five steps con-
sists of: initializing, winner-based distributing, multi-trial 
vector producing, evaluating and population updating, and 
lifetime archiving. Following initializing N whales in the 
search space, the subpopulation size of each TVP is calcu-
lated and altered within every sections of iterations named 
WinIter in the winner-based distributing step. After initial-
izing the main population (X), the population is then parti-
tioned into three subpopulations, namely X_BT, X_LT, and 
X_GT. Each of these subpopulations corresponds to one of 
the TVPs. This partitioning ensures a diverse and balanced 
distribution of whales across the subpopulations, facilitating 
a more comprehensive exploration of the search space. Then, 
in the multi-trial vector producing step, for each whale a can-
didate position is produced according to one of the three trial 
vector producers. In MTV-WOA, three new search strategies 
are proposed, namely Balancing Strategy-based Trial-vec-
tor Producer (BS_TVP), Local Strategy-based Trial-vector 
Producer (LS_TVP), and Global Strategy-based Trial-vec-
tor Producer (GS_TVP). These new search strategies are 

(8)D = ||C × Xrand − X(t)||

(9)X(t) = ||Xrand − A × D||
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incorporated to prevent local optima entrapment, increase 
exploration and exploitation, and maintain a balance between 
them. BS_TVP ensures an equilibrium between exploration 
and exploitation, and avoidance of the optimal local solution, 
LS_TVP enhances the exploitation ability, and GS_TVP pro-
motes exploration. Finally, in the evaluating and population 
updating step inferior whales preserves in a lifetime archive 
to use their information to propagate the current popula-
tion. Table 1 gives a nomenclature of the used parameters 
in the proposed algorithm. The following section provides a 
detailed explanation of the algorithm's steps.

Initializing Step: In the proposed algorithm, the whale’s 
position is represented by a vector Xi = {xi,1, xi,2, …, xi,D} 
where Xi is the position of i-th whale and D is the problem's 
number of dimensions. Between the search space's lower 
and upper limit borders, N whales are distributed at random 
by Eq. (10).

where xi,j is the j-th dimension of the i-th whale, Lj and Uj 
are the lower and upper bound values of the j-th dimension, 
and rand is the random number generated in the range [0, 
1], respectively. N-generated whales’ position is stored in 
matrix XN×D shown in Eq. (11).

On the t-th iteration, the objective function f(Xt
i) assesses 

the fitness value of each whale Xt
i, respectively.

Winner-Based Distributing Step: Through this step, the 
number of iterations is split into k WinIter sections, each 
of which contains nIt iterations. The winning TVP is the 
TVP with the highest value of improved rate in the previous 
WinIter. The subpopulation size of each TVP is calculated at 
the conclusion of each WinIter by calculating the improved 
rate given by ImpRate using Eq. (12).

where ImpRateBS-TVP, ImpRateLS-TVP, and ImpRateGS-TVP 
are the improved rate calculated for each TVP. IFBSTVP, 
IFLS-TVP, and IFGS-TVP are the number of whales whose fit-
ness is improved by BS_TVP, LS_TVP, and GS_TVP. Also, 
FEBS-TVP, FELS-TVP, and FEGS-TVP are the number of function 
evaluations in the previous WinIter. In the MTV-WOA, the 
reward-penalty distribution policy is considered to deter-
mine the subpopulation size of each TVP by using Eqs. (13) 
and (14),

(10)xi,j = Lj +
(
Uj − Lj

)
× rand(0, 1)

(11)Xt =

⎡
⎢⎢⎢⎣

x1,1 x1,2 … x1,D
x2,1
⋮

xN,1

x2,2
⋮

xN,2

…

⋮

…

x2,D
⋮

xN,D

⎤
⎥⎥⎥⎦

(12)ImpRateBS_TVP =
IFBS_TVP

FEBS_TVP

ImpRateLS_TVP =
IFLS_TVP

FELS_TVP

ImpRateGS_TVP =
IFGS_TVP

FEGS_TVP

Fig. 2.   The model of the proposed Multi-trial Vector-based Whale 
Optimization Algorithm (MTV-WOA)

Table 1   The nomenclature used 
in MTV-WOA

Parameter Description

X The whales' population
M, M̅ The transformation matrix and its reverse
ImpRateBS-TVP, ImpRateLS-TVP, 

ImpRateGS-TVP

The improved rate of BS_TVP, LS_TVP, and GS_TVP

X_BT, X_LT, X_GT The subpopulation of BS_TVP, LS_TVP, and GS_TVP
C_BT, C_LT, C_GT The candidate subpopulation of BS_TVP, LS_TVP, and GS_TVP
X_Upop The union population of X and lifetime archive
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where NWin-TVP, NLoser-TVP and N are subpopulation size 
of winner TVP, loser TVP and the total number of whales, 
respectively.

Multi-Trial Vector Producing Step: In the proposed algo-
rithm, in each iteration, the position of whale Xi changes by 
one of the proposed strategies including Balancing Strat-
egy-based Trial-vector Producer (BS_TVP), Local Strategy-
based Trial-vector Producer (LS_TVP), and Global Strat-
egy-based Trial-vector Producer (GS_TVP). Specifically, 
the BS_TVP strikes an equilibrium between exploration and 
exploitation, the LS_TVP is designed to boost exploitation 
capability, and the GS_TVP provides a significant capability 
for enhancing the exploration of the proposed MTV-WOA.

Some preliminary information is presented first, followed 
by a comprehensive explanation of the proposed TVPs. In 
the proposed BS_TVP and GS_TVP, two transformation 
matrices M and M ̅ are used to generate the trial vectors of 
each subpopulation. Matrix M with dimensions N × D is 
constructed from a D × D lower triangular matrix with val-
ues one, by replicating the square matrix (N/D) times. The 
remaining rows of M, if there exist, are filled with the first 
rows of the square matrix. Then, a random permutation is 
applied to the rows of M. Afterward, by replacing the inverse 
value of each element of M, the M ̅matrix is obtained. More-
over, in the proposed LS_TVP and GS_TVP, scale factor 
F ϵ [0, 1] is a real number that is utilized for scaling the 
difference vectors. The Cauchy distribution is employed to 
generate and update the value of F for each whale [37].

Balancing Strategy-Based Trial-Vector Producer (BS_
TVP): Since one of the significant drawbacks of WOA is the 
inability to strike a proper balance, the BS_TVP is proposed 
to tackle the imbalance between exploring and exploiting 
and the need to prevent local optimums.

For each whale X_BTi belongs to the subpopulation of 
BS_TVP, a trial vector V_BTi is calculated by Eq. (15),

where p is a convergence coefficient that decreases from 
two to zero as the number of iterations increases and is cal-
culated by Eq. (16), Disti indicates the distance of the i-th 

(13)Reward rule ∶ If BS_TVP or LS_TVP isWin − TVP, thenNWin−TVP = 0.6 × N and NLoser−TVPs = 0.2 × N

(14)Penalty rule ∶ If GS_TVP isWin − TVP, thenNWin−TVP = 0.2 × N and NLoser−TVPs = 0.4 × N

(15)
V_BTt+1

i
= p ×

(
X_BTt

rnd
− A × Distt

i

)
+ p × (X_Upopt

rnd
− X_BTt

i
)

whale and X_BTrnd a randomly selected whale from X_BT 
subpopulation and is calculated by Eq. (17), and coefficient 
A is calculated by Eq. (3).

where t and MaxIter represent the current and maximum 
number of iterations. X_BTrnd and X_BTi are a randomly 
selected and the i-th whale from the subpopulation X_BT, 
respectively. The candidate trial vector of the i-th whale 
C_BTi is calculated by Eq. (18),

where Mi and M ̅i are corresponding values of the i-th whale 
and V_BTi

t+1 is the candidate trial vector generated for the 
i-th whale of BS_TVP subpopulation.

Local Strategy-Based Trial-Vector Producer (LS_TVP): 
This strategy is designed with the intention of enhancing 
the exploitation efficiency of the proposed MTV-WOA. The 
current location of whale X_LTi is taken into account when 
calculating the new trial position for the i-th whale of the 
LS_TVP subpopulation. Additionally, half of the distance 
between randomly picked whales from X_Upop and X_LT 
is factored into the calculation. Equation (19) is utilized to 
produce the candidate trial vector for the LS_TVP whale 
members.

where ω is a constant value set by 2, Fi is the scale factor 
for the i-th whale of LS_TVP subpopulation, X_Upoprnd 
is a random individual selected from the union of current 
and lifetime archive populations, and X_LTrnd is a random 
selected whale from the X_LT subpopulation.

Global Strategy-Based Trial-Vector Producer (GS_TVP): 
In introducing this TVP, the objective is to improve the 
exploration capability of the MTV-WOA. When developing 

(16)p = 2 − t × (2∕MaxIter)

(17)Distt
i
= X_BTt

rnd
− X_BTt

i

(18)C_BTt+1
i

= Mt
i
× X_BTt

i
+M

t

i
× V_BTt+1

i

(19)
C_LTt+1

i
= X_LTt

i
+ (1 − � × Fi) ×

X_Upopt
rnd

− X_LTt
rnd

2
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GS_TVP, we used the advantages provided by the move-
ments of the classical WOA and improved upon those 
advantages by using the disparity between the best and worst 
whales in the X_GT subpopulation. The trial vector of the 
i-th whale V_GTi is calculated by Eq. (20),

where Dist' is the distance of the i-th whale in the GS_TVP 
subpopulation from the global best position of the entire 
population calculated by Eq. (21). The spiral motion param-
eters b and l are the same as the classical WOA. Xbest, X_
GTbest and X_GTworst are the best member of X, and best and 
worst members of the GS_TVP subpopulation, respectively.

The candidate trial vector of the i-th whale of GS_TVP 
subpopulation C_GTi is calculated by Eq. (22),

where Mi and Mi̅ are corresponding values of the i-th whale, 
X_GTi and V_GTi are the i-th member of the X_GT sub-
population and the generated trial vector for the i-th whale 
of GS_TVP subpopulation.

Evaluating and Population Updating: During each itera-
tion of the proposed MTV-WOA, the three new trial vectors, 
BS_TVP, LS_TVP, and GS_TVP, generate candidate trial 
vectors C_BTt+1, C_LTt+1, and C_GTt+1. The fitness value 
of each candidate trial vector is then evaluated and compared 
with the previous fitness value of the whales. If the fitness 
value of a candidate trial vector is better than the whale's 
previous fitness value, the whale's position is updated with 
the candidate trial vector. However, if the fitness value of 
the candidate trial vector is worse than the whale's previous 
fitness value, the position of the whale remains unchanged 
in the population. This process is repeated for each whale in 
the population at every iteration.

Lifetime Archiving: Since the whales that are updated and 
replaced by their respective candidate trial vectors offer 
valuable information about previously explored poten-
tial regions, it is advantageous to store them. The lifetime 
archive is used to preserve inferior whales for the purpose 
of propagating their information to the next generation of 
whales in subsequent iterations. This archive is initially 
empty; however, it is capable of storing the position and life-
time of N inferior whales. The life-time value of archived 
whales is increased by one at the end of each iteration. When 
the number of archive members exceeds the maximum size, 

(20)V_GTt+1
i

=
(
Dist� × ebl × cos(2�l)

)
+
(
Xbest − A × Dist�

)
+ Fi × (X_GTt

best
− X_GTt

worst
)

(21)Dist� = ||Xbest − X_GTt
i
||

(22)C_GTt+1
i

= Mt
i
× X_GTt

i
+M

t

i
× V_GTt+1

i

inferior whales will be discarded, considering the higher 
value of life-time to limit the number of solutions below the 
maximum size. MTV-WOA receives a boost to its diversity 
due to this lifetime archive, which also helps prevent early 
convergence.

Finally, the search procedure is repeated up until the point 
where it has reached the maximum number of possible rep-
etitions. The pseudo-code for the proposed MTV-WOA is 
shown in Algorithm 1.

5 � Experimental Evaluation and Results

In this section, the performance of the proposed MTV-WOA 
is experimentally and statistically evaluated using bench-
mark functions from CEC 2018 [38] with varying dimen-
sions 10, 30, and 50. The quantitative assessment of the 
proposed algorithm includes the mean of fitness error. The 
purpose of these experiments is to demonstrate the explo-
ration and exploitation capabilities and the local optima 
avoidance of the MTV-WOA. Further, the performance 
of MTV-WOA was evaluated and compared to that of the 
state-of-the-art as well as recently developed metaheuristic 
algorithms including Krill Herd (KH) [20], Grey Wolf Opti-
mizer (GWO) [21], Moth-Flame Optimization (MFO) [22], 
Whale Optimization Algorithm (WOA) [27], Salp Swarm 
Algorithm (SSA) [24], Harris Hawks Optimization (HHO) 
[39], Butterfly Optimization Algorithm (BOA) [23], and 
Arithmetic Optimization Algorithm (AOA) [40]. Finally, 
the gained results on benchmark functions by MTV-WOA 
and comparative algorithms are statistically evaluated by the 
Friedman test [41] for the purpose of establishing the supe-
riority of the suggested algorithm.

5.1 � Benchmark Functions

The proposed algorithm was tested using the benchmark 
functions of CEC 2018 [38]. Note that the test functions 
used in CEC 2018 were identical to those in CEC 2017, with 
the exception that the function F2 was excluded from the 
comparison. These test functions are challenging and have 
diverse characteristics. It is worth noting that the CEC 2018 
test functions are the same as those of CEC 2017, except 
for F2, which was excluded. The benchmark functions are 
categorized into unimodal, multimodal, hybrid, and com-
position functions. The unimodal functions F1 and F3 are 
suitable to evaluate the algorithms' exploitation ability since 
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they have one optimum. On the other hand, the multimodal 
functions F4-F10 contain many local optima, which are used 
to assess the algorithms' ability to explore the search space 
and avoid local optima. The hybrid and composition func-
tions are more intricate and difficult than the unimodal and 
multimodal functions. They assess the algorithm's capacity 
to solve real-world problems and strike a suitable equilib-
rium between exploring and exploiting.

5.2 � Experimental Setting and Environment

The experiments were conducted on a computer with an 
Intel Core™ i7-6500U 2.50 GHz processor and 16.00 GB 
RAM using MATLAB R2018a. The population size and 
the Maximum Number of Iterations (MaxIter) were set to 
100 and D × 10,000/N, respectively. Each algorithm was 
run 20 times, and the fitness error (f—f*) was used to report 
the results, where f is the fitness value of the optimization 
achieved by the respective algorithm and f* is the global best 
value of the optimization problem. Mean fitness error was 
used to measure the performance of the algorithms. Table 2 
presents the parameter settings of the comparative and sug-
gested MTV-WOA algorithms. The comparative algorithms' 
parameter values were set according to their respective arti-
cles' recommendations. The results of the experiments are 
tabulated in Tables 8, 9, 10, 11 in Appendix A, with the 
values of the best-gained error highlighted in bold. The num-
ber of wins (w), ties (t), and losses (l) for each algorithm in 
each dimension are listed in the last three rows of each table, 
which are labeled "w/t/l". 

5.3 � Exploration and Exploitation Evaluation

As previously mentioned, unimodal functions are use-
ful for evaluating an algorithm's exploitation capabilities, 
while multimodal functions are more appropriate for testing 

exploration capabilities. Thus, these two categories of func-
tions are helpful in assessing an algorithm's exploration and 
exploitation abilities. The results of the MTV-WOA on the 
F1 and F3 functions in Table 8 in Appendix A demonstrate 
that the proposed algorithm produces more competitive 
results than the canonical WOA and the other comparative 
algorithms, particularly on the F1 function. Therefore, it 
concludes that the suggested MTV-WOA can converge to the 
best possible global solution for problems with a single opti-
mum. Additionally, the results presented in Table 9 confirm 
that the proposed algorithm outperforms the comparative 
algorithms in all dimensions when solving the benchmark 
functions F4-F10, which contain multiple local optima. Due 
to the GS_TVP's random movements of trapped whales, it 
can be asserted that the proposed MTV-WOA algorithm has 
an effective exploration ability based on the provided results 
and comparisons.

5.4 � Local Optima Avoidance Evaluation

In this experimental assessment, a set of benchmark func-
tions are utilized to compare the proposed algorithm with 

Algorithm 1   Multi-trial vector-
based Whale Optimization 
Algorithm (MTV-WOA)

Table 2   Parameters settings

Algorithms Setting

KH Vf = 0.02, Dmax = 0.005, Nmax = 0.01
GWO a = [2 0]
MFO a = [− 2 − 1]
WOA a = [2 0], l = [− 1 1]
SSA c2 = rand [0 1], c3 = rand [0 1]
HHO E = [2 0], r1, r2, r3 = rand [01], beta = 1.5
BOA p = 0.8, a = [0.1 0.3], c = 0.01
AOA Alpha = 5, Mu = 0.499
MTV-WOA nIt = 20, ω = 2, b = 1, l = [− 1 1]
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other algorithms in terms of their ability to avoid local 
optima and balance exploration and exploitation, taking 
into consideration the results obtained from hybrid and 

composition functions. Table 10 demonstrates that MTV-
WOA outperforms comparative algorithms for solving 
hybrid functions in three dimensions. The primary reason 
for this superiority is the exploitation efficiency provided by 
LS_TVP, which, in combination with BS_TVP, ensures an 
optimal balance between local and global search, prevent-
ing premature convergence of the functions. Additionally, 
Table 11 presents detailed results of composition functions, 
where MTV-WOA achieves superior results compared to 
other algorithms. MTV-WOA achieves an equilibrium 
between discovery and extraction by utilizing each TVP's 
improved rate to determine subpopulation sizes. The results 
indicate that MTV-WOA strikes an appropriate balance 
between exploring and exploiting, enhancing its ability to 
avoid local optima in composition functions. It is inferred 
that the proposed MTV-WOA effectively balances explora-
tion and exploitation. Based on the gained results presented 
in Tables 10 and 11, it can be deduced that MTV-WOA in 
dimensions 10, 30, and 50 is more effective than the com-
parative algorithms.

5.5 � Convergence Evaluation

In this experiment, the performance of MTV-WOA is ana-
lyzed and compared to that of comparative algorithms on 
various functions of dimensions 10, 30, and 50, to exam-
ine their convergence behavior. The convergence curves for 
MTV-WOA and comparative algorithms are generated based 
on the average of the best obtained fitness values over 20 
runs. The obtained curves for unimodal, multimodal, hybrid, 
and composition functions are presented in Figs. 3 and 4 in 
Appendix A.

The analysis reveals that MTV-WOA exhibits diverse 
convergence characteristics for test functions with different 
features. Three distinct convergence patterns are observed 
during the optimization process. Firstly, there is acceler-
ated convergence in the early iterations, followed by abrupt 
changes during the first half of the generations, indicating 
the efficient balance between exploration and exploitation. 
Subsequently, the estimation of the optimal global solution 
becomes more precise. Finally, a gradual improvement in 
convergence towards optimal solutions is observed. These 
convergence patterns demonstrate that MTV-WOA is more 
effective than the comparative algorithms in establishing an 
equilibrium between exploring and exploiting through the 
iterations.

5.6 � Statistical Analysis

The experimental evaluation of the proposed MTV-WOA 
algorithm showed better performance compared to the com-
parative algorithms. However, the statistical significance of 
these results has not been established. To demonstrate the 

Table 3   The pressure vessel problem's results

Best results among all algorithms are indicated in bold

Alg. Optimum values Optimum 
cost

Ts Th R L

KH 0.82249 0.40560 42.50602 171.76174 5978.8767
GWO 0.77835 0.38520 40.32066 200.00000 5888.4298
MFO 0.77817 0.38465 40.31962 200.00000 5885.3328
WOA 0.84449 0.51762 43.44377 160.64982 6382.9115
SSA 0.78191 0.38650 40.51336 197.52133 5896.1188
BOA 2.71211 0.67304 66.84383 10.00000 16463.1326
HHO 0.90413 0.44326 46.33028 130.42676 6181.1408
AOA 0.84712 0.48061 40.50221 200.00000 6703.8860
MTV-

WOA
0.77817 0.38465 40.31962 200.00000 5885.3328

Table 4   The three-bar truss problem's results

Best results among all algorithms are indicated in bold

Alg. Optimum values Optimum weight

x1 x2

KH 0.78836 0.40914 263.8960
GWO 0.78905 0.40719 263.8963
MFO 0.78873 0.40808 263.8958
WOA 0.78896 0.40743 263.8959
SSA 0.78550 0.41729 263.8959
BOA 0.78991 0.40708 264.1292
HHO 0.78924 0.40667 263.8961
AOA 0.79423 0.39327 263.9702
MTV-WOA 0.78868 0.40825 263.8958

Table 5   The welded beam problem's results

Best results among all algorithms are indicated in bold

Alg. Optimum values Optimum cost

h l t b

KH 0.20468 3.49450 9.05463 0.20569 1.72924
GWO 0.20553 3.47493 9.03912 0.20572 1.72551
MFO 0.20572 3.47076 9.03662 0.20573 1.72487
WOA 0.19981 3.52844 9.22570 0.20565 1.75554
SSA 0.20633 3.46270 9.02329 0.20634 1.72705
BOA 0.23307 4.85155 6.42587 0.41698 2.72129
HHO 0.20253 3.55228 9.00765 0.20777 1.74135
AOA 0.19653 3.37508 10.00000 0.20435 1.85219
MTV-WOA 0.20573 3.47049 9.03662 0.20573 1.72485
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statistical superiority of MTV-WOA, the Friedman test [41] 
was conducted using Eq. (23) to rank the algorithms based 
on their fitness values.

Where q indicates the number of algorithms, m is the 
number of case tests, and Pk is the mean rank of the k-th 
algorithm. The ranking was done by calculating the average 
rank for each algorithm/problem pair, and then determining 
the final ranking for each algorithm. The algorithm with the 
smallest overall rank is considered to be better. In Table 12, 
the results of the Friedman rank test are reported, revealing 
that the non-parametric test yielded a significant p-value at 
a 95% confidence level. According to the overall rankings 
of the algorithms, it was determined that the MTV-WOA 
outperformed the comparative algorithms in dimensions 10, 
30, and 50. Therefore, it can be concluded that the proposed 
MTV-WOA is statistically significant and superior to the 
comparative algorithms.

5.7 � Impact Analysis of Using the Proposed TVPs

In this section, the analysis focuses on evaluating the indi-
vidual performance of the proposed search strategies, BS_
TVP, LS_TVP, and GS_TVP, and their collective impact 
on the performance of the MTV-WOA. The results of this 
experiment are illustrated in Fig. 5 in Appendix B, depict-
ing the algorithm's performance on selected functions 
across diverse categories within CEC 2018. BS_TVP exhib-
its steady convergence and low objective values, showcas-
ing its prowess in balancing exploration and exploitation. 
It effectively prevents entrapment in local optima, reaching 
optima comparable to MTV-WOA for certain functions. 
LS_TVP, with its slower but consistent convergence, pri-
oritizes exploration over exploitation, exploring more of 
the search space and favoring diversity over fine-tuning 
solutions. GS_TVP undergoes initial fluctuations followed 
by smoothing, indicating a transition from exploration to 
exploitation and highlighting enhanced exploitation effi-
ciency with competitive optima reached. MTV-WOA, as 
a combination of these strategies, adeptly balances both 
exploration and exploitation. It matches or surpasses indi-
vidual variants in optimum reached, validating its superior 
exploration and exploitation capabilities. The faster and 
more stable convergence of MTV-WOA compared to BS_
TVP, LS_TVP, and GS_TVP algorithms underscores the 
effective complementary effects of the balance in explora-
tion and exploitation.

(23)Ff =
12 × m

q × (q + 1)

[∑
k

p2
k
−

q × (q + 1)2

4

]

5.8 � Comparison of MTV‑WOA with Well‑stablished, 
Recent, and WOA Variant Algorithms

In this experiment, the proposed MTV-WOA is compared to 
that of the CEC 2017 winners, LSHADE-SPACMA [42] and 
LSHADE − cnEpSin [43], well-established algorithm PSO 
[17], recent algorithms Snake Optimizer (SO) [44] and Coati 
Optimization Algorithm (COA) [45], and improved variant 
enhanced whale optimization algorithm (E-WOA) [46]. The 
experiments conducted here are based on a maximum popu-
lation size of 428 and minimum size 4 for the LSHADE-
SPACMA and LSHADE − cnEpSin. The maximum number 
of iterations and population size for the other algorithms are 
set according to their previously defined values. The results 
of the experiment, presented in terms of mean fitness error, 
are tabulated in Table 13 in Appendix B. These algorithms 
were independently applied 20 times to the CEC 2018 test 
functions with a dimensionality of 10. Moreover, the Wil-
coxon signed-rank test is utilized to illustrate the distinc-
tion in performance achieved by the proposed MTV-WOA 
compared to other algorithms [41]. Table 14 presents the 
outcomes of this pairwise statistical test with a significance 
level α = 0.05. The p-value analysis results confirm that the 
proposed MTV-WOA's superiority is statistically signifi-
cant compared to the comparative algorithms. In the con-
vergence analysis of the MTV-WOA algorithm, plotted in 
Fig. 6, it becomes evident that its convergence curves share 
striking similarities with those of the LSHADE-SPACMA 
and LSHADE − cnEpSin algorithms which illustrates their 
proficiency in adapting their search throughout the iterative 
optimization process.

5.9 � Applicability of the Proposed TVPs 
for Improving Other Algorithms

In this section, a dedicated experiment set is conducted 
to show the potential performance improvements of well-
established algorithms, such as PSO and DE-based ones, 
through adapting proposed enhancements. This experiment 
set investigates the impact of incorporating the proposed 
BS_TVP, LS_TVP, and GS_TVP with well-established 
algorithms through the MTV approach. Two new algo-
rithms, Adapted-PSO and Adapted-LSHADE-SPACMA, 
were meticulously designed for incorporating PSO and 
LSHADE-SPACMA algorithms with the proposed TVPs. 
The comparative results, detailed in Table 15 in Appendix B, 
provide valuable insights into the performance of PSO and 
DE when enhanced with BS_TVP, LS_TVP, and GS_TVP 
in the context of MTV. By incorporating these improve-
ments, Adapted-PSO and Adapted-LSHADE-SPACMA are 
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illustrative examples of the adaptability and effectiveness 
of the proposed enhancements across different optimization 
algorithms.

6 � Solving Engineering Design Problems

In this section, five engineering problems defined in Appen-
dix C were used to test the MTV-WOA's capability for 
handling actual engineering issues. Pressure vessel [127], 
three-bar truss [128], welded beam [129], tension/compres-
sion spring [130], and speed reducer [131] have all been 
solved using MTV-WOA and other comparative algorithms. 
As MTV-WOA is intended to be used for optimization pur-
poses, it should be able to handle the equality and inequality 
constraints included in these engineering design problems. 
In this paper, the death penalty function [1] used to handle 
constraints which is one of the simplest multi-constraint 

problem-solving procedures among the many constraint-
handling methodologies. In order to eliminate infeasible 
solutions, the death penalty function provides a high fitness 
value to solutions that break one or more restrictions. In 
this experiment, each algorithm is executed 30 times, with 
N and MaxIter set to 20 and (D × 10^4) / N, respectively. 
The results of the engineering design problems shown in 
Table 3, 4, 5, 6, 7 indicate that the MTV-WOA is better to 
other methods for addressing real-world mechanical engi-
neering issues.

7 � Discussion

This study introduced the MTV-WOA algorithm across 
diverse dimensions and function categories, showcasing its 
superior performance in unimodal and multimodal func-
tions, as indicated by the results in Tables 8 and 9. MTV-
WOA excels in hybrid and composition functions based on 
the reported results in Tables 10 and 11, leveraging specific 
search strategies for efficient exploration and exploitation. 
The Friedman test's overall rankings across dimensions 10, 
30, and 50 establish the clear superiority of MTV-WOA, 
supported by its statistical significance. In the comparative 
analysis, MTV-WOA outperforms well-established, recent, 
and WOA variant algorithms, positioning it as the third-
best algorithm after the CEC winners, LSHADE-SPACMA 
and LSHADE − cnEpSin algorithms, in the Friedman test. 
The Wilcoxon signed-rank test further proves MTV-WOA's 
superiority, revealing statistically significant differences 
from other algorithms. The convergence analysis in Fig. 6 
in Appendix B illustrates remarkable similarities with 
LSHADE-SPACMA and LSHADE − cnEpSin algorithms, 
emphasizing their proficiency in balancing exploration and 
exploitation. Beyond MTV-WOA, the study assesses the 

Table 6   The tension/compression spring design problem's results

Best results among all algorithms are indicated in bold

Alg. Optimum values Optimum weight

d D N

KH 0.051766 0.358574 11.181423 0.012666
GWO 0.050926 0.338577 12.442653 0.012682
MFO 0.051705 0.357113 11.265845 0.012665
WOA 0.052225 0.369739 10.564506 0.012670
SSA 0.050000 0.315082 14.343035 0.012668
BOA 0.050000 0.311363 15.000000 0.013233
HHO 0.052122 0.367235 10.698016 0.012669
AOA 0.050000 0.310446 15.000000 0.013194
MTV-WOA 0.051694 0.356828 11.282512 0.012665

Table 7   The speed reducer 
problem's results

Best results among all algorithms are indicated in bold

Alg. Optimum values Optimum cost

b m p l1 l2 d1 d2

KH 3.5001971 0.700013 17.000 7.301146 7.716256 3.350220 5.286671 2994.65080
GWO 3.5002272 0.700000 17.000 7.490734 7.780589 3.350865 5.286804 2997.93584
MFO 3.5 0.700000 17.000 7.300000 7.715320 3.350215 5.286654 2994.47107
WOA 3.517224 0.700000 17.000 7.300000 8.041813 3.350215 5.295570 3014.09775
SSA 3.5000216 0.700000 17.000 7.604074 7.807178 3.351558 5.286686 2999.54113
BOA 3.5258583 0.700000 17.000 7.300000 8.129062 3.418148 5.386728 3096.43410
HHO 3.5 0.700000 17.000 7.300000 7.875596 3.354856 5.289104 3000.73394
AOA 3.5051134 0.700000 17.000 7.300000 8.300000 3.465051 5.339268 3073.58747
MTV-WOA 3.5 0.700000 17.000 7.300000 7.715320 3.350215 5.286654 2994.47107
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usage of BS_TVP, LS_TVP, and GS_TVP on other algo-
rithms, such as PSO and LSHADE-SPACMA.

Moreover, MTV-WOA showcased remarkable profi-
ciency in handling equality and inequality constraints 
within different engineering design problems, as evi-
denced by Table  3, 4, 5, 6, 7 results. In engineering 
design contexts, MTV-WOA emerges as a valuable tool, 
streamlining design processes, reducing development 
time, and enhancing project efficiency. Moreover, the 
algorithm's risk mitigation capabilities make it an asset 
in navigating uncertain decision-making landscapes. With 
cross-industry applicability, managers across diverse sec-
tors can leverage MTV-WOA to optimize processes and 
address industry-specific challenges. Implementing MTV-
WOA can also elevate operational efficiency, allowing 
managers to fine-tune processes, optimize workflows, and 
achieve improved performance metrics. This adaptability 
extends to resource-intensive sectors, where the algorithm 
proves instrumental in optimizing resource allocation, 
contributing to overall cost-effectiveness in operational 
workflows.

As in all studies, the proposed algorithm has some 
limitations. The MTV-WOA proposed in this research is 
designed to solve single-objective and continuous opti-
mization problems. It is acknowledged that there exists 
a notable gap in addressing multi-objective and discrete 
problems, prompting a recognition of the need for future 
research to extend the algorithm's applicability to these 
domains. The winner-based distribution policy, designed 
for the three TVPs employed in this study, may necessi-
tate adaptation for handling new trial vectors in different 
problems. Furthermore, the MTV-WOA was not evaluated 
for large-scale global optimization (LSGO) problems, and 
its performance may be limited when the dimension is 
increased. To address this issue, it is essential to deter-
mine the size of the lifetime archive and establish a suitable 
policy for high-dimensional problems. Pre-experimental 
investigations are necessary to optimize these parameters 
and enhance the algorithm's performance in problems with 
increased problem dimensions.

8 � Conclusion

This study addresses the limitations of stochastic algorithms, 
particularly swarm intelligence metaheuristic algorithms, in 
dealing with complex problems. It introduces the Multi-trial 
Vector-based Whale Optimization Algorithm (MTV-WOA) 
as an enhancement over the canonical Whale Optimiza-
tion Algorithm (WOA). The conventional WOA exhibits 
challenges such as an imbalance between exploration and 
exploitation, leading to premature convergence. In response, 
the study employs the Multi-trial Vector (MTV) approach, 
incorporating three TVPs to replace the WOA search 
strategy. The MTV-WOA introduces three new strategies, 
BS_TVP, LS_TVP, and GS_TVP, to address diverse prob-
lems with distinct characteristics. Experimental validation 
using the CEC 2018 test suite demonstrates the superiority 
of MTV-WOA over three classes of existing optimization 
algorithms: recently published, well-established, and highly 
performing algorithms that are winners of CEC competitions 
in terms of exploration, exploitation, local optima avoidance, 
and convergence. The Friedman and Wilcoxon signed-rank 
tests establish the statistical significance of MTV-WOA's 
performance, affirming its efficacy in maintaining a balanced 
exploration–exploitation trade-off. Additionally, the study 
showcases MTV-WOA's practical applicability by address-
ing five engineering design problems, where it consistently 
outperforms alternative algorithms.

The MTV-WOA is designed for continuous problems with 
a single objective. In future study, discrete and multi-objective 
real-world issues can be addressed by modifying MTV-WOA 
to handle binary and multi-objective problems, depending on 
the problem's nature. It is also beneficial to try to tackle issues 
in other fields, such as disease diagnosis by feature selection, 
image processing, and community identification.

Appendix A

See Tables 8, 9, 10, 11, 12; Figs. 3, 4.  
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Table 12   The Friedman test results

Alg. D F1 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17

KH 10 2.45 6.5 4.35 4 3.9 2.05 3.75 1.95 6.1 4.05 5.85 5.1 5.8 5.85 7.3 5.5
30 2.85 5.95 2.95 3.50 5.00 2.50 3.30 3.35 3.85 5.75 2.75 3.30 6.90 2.95 4.40 4.45
50 3 6 3.05 3.5 4.2 3.3 3.7 3.3 4.15 7.25 2.3 2.2 6.45 2.3 3.4 4.1

GWO 10 5.6 5.9 5.7 2.15 2.25 2.5 2.25 4.1 2.3 3.45 3.95 4.6 3.4 5.1 4.05 3
30 6.05 4.70 5.45 2.15 2.00 2.75 2.10 2.30 1.45 4.70 5.45 5.30 5.20 5.40 2.65 1.80
50 6.05 4.95 5.85 1.95 2 2.15 1.9 2.1 1.4 5.65 5.45 6.15 5.45 6.05 2.05 1.95

MFO 10 4.45 5.55 4.25 4.25 2.2 4.35 4.7 2.65 4.4 3.5 4.35 4.2 6.7 5.7 3.4 4.65
30 7.20 7.55 6.35 5.10 3.45 5.00 6.00 6.35 4.65 6.85 5.90 4.75 5.35 5.25 4.90 5.45
50 7.25 7.5 7.1 6.45 3.85 6.3 6.3 5.4 3.5 7.25 6.95 6.35 5.6 6.35 5.7 6.9

WOA 10 5.5 5.6 6.15 7.2 7.95 7 7.6 7.9 5.8 6.5 6.6 5.1 5.15 5.9 5.7 6.75
30 4.00 8.30 4.65 7.15 8.15 7.20 6.75 8.10 7.00 5.10 5.95 6.05 8.60 6.30 6.50 6.55
50 4 4.75 4.85 6.1 7.8 6.85 6.4 7.1 6 3.9 5.4 3.8 7.2 5.65 6.85 6.4

SSA 10 2.9 1.4 2.75 3.9 5 3.85 4.1 3.35 3.25 5.9 5.95 6.4 3.4 3.7 3.7 4.15
30 2.15 1.00 2.75 3.50 4.55 3.35 4.35 4.05 3.55 3.00 2.90 5.75 2.70 5.75 2.70 3.50
50 2 1 2.05 3.55 4.15 3.25 3.5 3.85 3.35 2.35 2.8 3.4 2.4 4.6 3.1 3.6

HHO 10 6.2 3.4 4.8 6.4 7 6.75 6.05 8.05 6.4 5.95 4.7 5.5 4.35 3.75 6 5.2
30 5.00 3.00 4.35 5.60 7.30 7.05 5.05 6.55 4.55 2.35 4.25 7.05 3.55 6.05 5.75 6.40
50 5 3 3.75 5.25 6.85 7.25 4.95 6 3.6 2.8 4.15 5.6 4.75 6.8 5.2 5.3

BOA 10 7.9 5.85 7.35 8.55 5.9 7.05 8.4 5.85 8.3 8.25 7.25 7.8 6.9 5.55 5.7 6.3
30 7.75 4.90 7.95 8.45 5.50 7.10 8.90 6.90 9.00 8.05 7.80 8.95 6.60 8.90 8.80 8.30
50 7.7 8.35 7.9 8.8 6.65 6.35 8.45 8.4 9 5.85 7.95 8 6.9 8.65 8.6 8.4

AOA 10 9 8.4 8.6 7.3 8.4 8.9 6.15 8 6.5 6.25 5.35 5.3 8.3 8.45 8.05 8.3
30 9.00 7.60 9.00 8.15 8.05 8.20 7.25 6.40 6.80 8.20 9.00 2.85 5.10 3.40 7.90 7.15
50 9 7.45 9 8.2 8.5 8.25 8.5 7.85 7.95 8.95 9 8.5 5.25 3.6 8.1 6.9

MTV-WOA 10 1 2.4 1.05 1.25 2.4 2.55 2 3.15 1.95 1.15 1 1 1 1 1.1 1.15
30 1.00 2.00 1.55 1.40 1.00 1.85 1.30 1.00 4.15 1.00 1.00 1.00 1.00 1.00 1.40 1.40
50 1 2 1.45 1.2 1 1.3 1.3 1 6.05 1 1 1 1 1 2 1.45

Alg. D F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 Avg. rank Overall ranl

KH 10 4.4 4.35 6.7 3.1 3.45 5.15 4.35 4.25 4.3 6.7 3.3 5.8 5.55 4.69 5
30 3.55 2.7 5.55 4.5 3.2 5.4 6.1 4.05 5.4 7.4 3.2 4.7 4.45 4.27 4
50 5.85 2.95 5.25 3.95 3.7 5.35 5.55 3.05 6.25 7.55 3.2 5.2 4.75 4.30 4

GWO 10 5.9 4.05 4 5.5 4.65 2.65 3.35 5.85 4.3 3.55 7.1 3.3 5.85 4.15 3
30 4.55 4.15 2.45 2.8 5.05 2 2.45 5.5 3.55 3.2 5.95 2.2 6 3.77 3
50 4.45 5.3 2.1 2.2 1.85 1.65 2.1 5.8 2.8 3.25 6 2.2 5.85 3.68 3

MFO 10 6.25 5.85 2.95 6.65 3.95 4.5 5.95 6.4 5.5 2.75 5.6 3.5 5.5 4.64 4
30 6.55 3.35 5.35 6.35 6.75 4.15 4.45 6.45 5.3 3 7.4 3.45 2.25 5.34 5
50 6.25 4.4 6.1 6.05 4.6 3.9 3.85 7.15 4.4 3.7 8 4.6 3.65 5.70 6

WOA 10 4.55 6.85 6.8 6.3 6.85 6.85 6.65 6.25 6.9 6.6 6.75 7.4 5.55 6.44 8
30 7.60 8.15 7.2 7.85 6.8 7.1 6.75 5.35 7.65 6.5 4.85 7.2 6.65 6.76 8
50 6.95 7.05 6.65 7.85 6.25 6.95 5.6 4.75 8 7.25 4.7 7.2 6.7 6.17 7

SSA 10 4.7 3 4.7 3.5 4.35 3.8 4.35 4.1 2.05 1.9 3.25 3.1 3.05 3.78 2
30 3.20 5.7 3.7 3.85 2.95 2.45 3.2 2.9 3.1 2.35 2.5 3.75 4.75 3.45 2
50 2.3 5.85 3.75 4.05 2.9 2.75 2.4 2 1.55 2.3 2.35 3.65 3.85 3.06 2

HHO 10 4.65 5.95 6.6 6.45 6.7 7.3 7.5 4.6 7.25 7.5 5.75 7.2 4.8 5.96 6
30 6.05 4.65 5.25 7 6.15 7.4 7.85 3 6.2 5.9 3.6 5.65 3.75 5.39 6
50 5.5 4.3 5.7 6.9 4.7 7.1 7.3 4.25 6.1 6 3.75 4.35 2.5 5.13 5

BOA 10 8.8 4.35 6.7 3.1 3.45 5.15 4.35 4.25 4.3 6.7 3.3 5.8 5.55 6.09 7
30 7.75 2.7 5.55 4.5 3.2 5.4 6.1 4.05 5.4 7.4 3.2 4.7 4.45 6.92 7
50 4.4 2.95 5.25 3.95 3.7 5.35 5.55 3.05 6.25 7.55 3.2 5.2 4.75 7.21 8

AOA 10 4.75 4.05 4 5.5 4.65 2.65 3.35 5.85 4.3 3.55 7.1 3.3 5.85 7.60 9
30 4.75 4.15 2.45 2.8 5.05 2 2.45 5.5 3.55 3.2 5.95 2.2 6 7.60 9
50 8.3 5.3 2.1 2.2 1.85 1.65 2.1 5.8 2.8 3.25 6 2.2 5.85 8.04 9
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Fig. 3   Convergence curves for some unimodal and multimodal functions

Alg. D F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 Avg. rank Overall ranl

MTV-WOA 10 1 5.85 2.95 6.65 3.95 4.5 5.95 6.4 5.5 2.75 5.6 3.5 5.5 1.66 1

30 1.00 3.35 5.35 6.35 6.75 4.15 4.45 6.45 5.3 3 7.4 3.45 2.25 1.51 1

50 1 4.4 6.1 6.05 4.6 3.9 3.85 7.15 4.4 3.7 8 4.6 3.65 1.60 1

Table 12  (continued)
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Fig. 4   Convergence curves for some hybrid and composition functions
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Appendix B

See Figs. 5, 6; Tables 13, 14, 15.

Fig. 5   The impact analysis of using the proposed TVPs
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Fig. 6   Convergence comparison of MTV-WOA with flagship, recent, and WOA variant algorithms
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Table 13   The comparison of MTV-WOA with well-stablished, recent, and WOA variant algorithms

F Alg.
PSO

Alg.
LSHADE-
SPACMA

Alg.
LSHADE − cnEp-
Sin

Alg.
SO

Alg.
COA

Alg.
E-WOA

Alg.
WOA

Alg.
MTV-WOA

F1 4.4224E + 08 0.0000E + 00 0.0000E + 00 2.0241E + 03 5.4568E + 09 2.3740E + 03 3.4908E + 05 6.3349E-02
F3 3.0775E + 03 0.0000E + 00 0.0000E + 00 7.0486E-03 7.4050E + 03 5.4001E-14 2.1480E + 02 2.8278E-06
F4 3.9140E + 01 0.0000E + 00 0.0000E + 00 3.0997E + 00 4.3521E + 02 1.7239E + 00 3.1464E + 01 1.3075E-01
F5 3.5604E + 01 1.2088E + 00 1.6322E + 00 1.4932E + 01 6.8975E + 01 2.1641E + 01 5.1795E + 01 8.0668E + 00
F6 1.8216E + 01 0.0000E + 00 0.0000E + 00 4.2757E-02 3.7022E + 01 2.8874E-01 2.8575E + 01 1.8199E-01
F7 1.1527E + 02 1.1111E + 01 1.1698E + 01 2.7238E + 01 8.2306E + 01 3.3476E + 01 7.5273E + 01 2.3383E + 01
F8 4.7964E + 01 7.0721E-01 1.8685E + 00 1.4079E + 01 4.2276E + 01 2.1640E + 01 3.6691E + 01 1.0561E + 01
F9 3.4860E + 02 0.0000E + 00 0.0000E + 00 2.6614E + 00 4.8198E + 02 5.5407E + 00 4.2953E + 02 1.4452E-01
F10 1.2032E + 03 5.0832E + 00 9.2189E + 00 5.2960E + 02 1.4048E + 03 5.4098E + 02 9.8924E + 02 4.3022E + 02
F11 1.3798E + 02 0.0000E + 00 0.0000E + 00 1.1676E + 01 3.8259E + 02 1.4543E + 01 8.3171E + 01 4.1487E + 00
F12 1.4391E + 07 1.0200E + 02 3.0013E + 01 1.1028E + 04 8.5496E + 07 1.4299E + 04 3.7211E + 06 1.1532E + 02
F13 3.1259E + 04 2.4529E + 00 4.2083E + 00 2.7952E + 03 4.1749E + 04 8.3379E + 03 1.2535E + 04 8.0730E + 00
F14 1.1781E + 02 0.0000E + 00 3.9448E-04 1.1096E + 02 1.2682E + 02 5.5201E + 01 1.6319E + 02 6.3600E + 00
F15 9.8117E + 02 3.4751E-01 1.0804E-01 2.7290E + 02 3.7018E + 03 2.5516E + 01 2.6962E + 03 1.7435E + 00
F16 8.6093E + 01 5.7989E-01 8.3820E-01 1.0218E + 02 3.9174E + 02 8.6024E + 01 1.8929E + 02 3.2250E + 00
F17 9.0496E + 01 1.8265E-01 5.3922E-01 5.1639E + 01 7.2665E + 01 4.3098E + 01 9.4911E + 01 2.1762E + 01
F18 4.8868E + 04 4.4659E-01 1.9594E-01 5.1035E + 03 3.2572E + 05 3.6984E + 03 1.0826E + 04 5.0234E + 00
F19 4.3338E + 02 4.8829E-02 1.7289E-02 6.5010E + 02 3.1624E + 03 2.6790E + 01 2.5756E + 04 1.7015E + 00
F20 8.8842E + 01 9.3652E-02 2.0584E-01 4.7299E + 01 1.7210E + 02 2.0649E + 01 1.3996E + 02 1.5589E + 01
F21 1.9905E + 02 1.0000E + 02 1.3061E + 02 2.1560E + 02 2.0872E + 02 1.0041E + 02 1.7375E + 02 1.4504E + 02
F22 1.8207E + 02 1.0000E + 02 1.0000E + 02 1.0168E + 02 5.1722E + 02 1.0209E + 02 1.1533E + 02 4.9060E + 01
F23 3.2982E + 02 3.0067E + 02 3.0116E + 02 3.1690E + 02 3.9515E + 02 3.2174E + 02 3.5025E + 02 3.0722E + 02
F24 3.6091E + 02 2.5563E + 02 2.7188E + 02 3.3871E + 02 3.9419E + 02 2.1233E + 02 3.5455E + 02 3.1359E + 02
F25 4.6689E + 02 4.1840E + 02 4.1611E + 02 4.2835E + 02 7.2501E + 02 4.2667E + 02 4.1910E + 02 3.8883E + 02
F26 4.2237E + 02 3.0000E + 02 3.0000E + 02 6.8831E + 02 1.1089E + 03 3.2017E + 02 6.6093E + 02 2.8221E + 02
F27 4.1132E + 02 3.8952E + 02 3.8878E + 02 3.9959E + 02 4.5248E + 02 3.9681E + 02 4.1864E + 02 3.9056E + 02
F28 5.3254E + 02 3.0000E + 02 3.4061E + 02 5.3939E + 02 8.4818E + 02 3.9668E + 02 5.8402E + 02 2.8077E + 02
F29 2.9916E + 02 2.3572E + 02 2.3361E + 02 2.7189E + 02 4.3012E + 02 3.0173E + 02 4.2334E + 02 2.5370E + 02
F30 7.6090E + 05 4.0659E + 02 4.0412E + 02 1.1937E + 05 2.3849E + 06 2.3389E + 05 8.4594E + 05 4.9674E + 02
Friedman
rank

7 1 2 5 8 4 6 3

Table 14   Results of Wilcoxon's test on D = 10

MTV-WOA vs R+ R− p-value α = 0.05

PSO 435 0 2.5631E-06 Yes
LSHADE_SPACMA 92 343 6.6534E-03 Yes
LSHADE_cnEpSin 94 341 7.5746E-03 Yes
SO 433 2 3.1652E-06 Yes
COA 435 0 2.5631E-06 Yes
E-WOA 395 40 1.2398E-04 Yes
WOA 435 0 2.5631E-06 Yes
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Appendix C

C.1. Pressure Vessel Design Problem

The major aim of this problem, represented in Fig. 7, is opti-
mizing the cost of material, forming, and welding a vessel. The 
problem has four variables Ts, Th, R, and L. The mathematical 
representation of this problem is provided in Eq. (24) (Figs. 7, 
8, 9, 10, 11).

Table 15   The results of using proposed TVPs for improving PSO and 
LSHADE-SPACMA algorithms

Best results among all algorithms are indicated in bold

F Alg.
PSO

Alg.
Adapted-PSO

Alg.
LSHADE-
SPACMA

Alg.
Adapted-
LSHADE-
SPACMA

F1 4.4224E + 08 3.3207E + 01 0.0000E + 00 0.0000E + 00
F3 3.0775E + 03 2.8003E-03 0.0000E + 00 0.0000E + 00
F4 3.9140E + 01 7.0774E-01 0.0000E + 00 0.0000E + 00
F5 3.5604E + 01 9.7764E + 00 1.2088E + 00 2.6376E + 00
F6 1.8216E + 01 1.4046E-01 0.0000E + 00 0.0000E + 00
F7 1.1527E + 02 2.6463E + 01 1.1111E + 01 1.0986E + 01
F8 4.7964E + 01 1.1972E + 01 7.0721E-01 2.7822E + 00
F9 3.4860E + 02 1.9261E-01 0.0000E + 00 0.0000E + 00
F10 1.2032E + 03 4.6846E + 02 5.0832E + 00 3.9631E + 01
F11 1.3798E + 02 5.3970E + 00 0.0000E + 00 0.0000E + 00
F12 1.4391E + 07 2.2300E + 02 1.0200E + 02 9.6750E + 01
F13 3.1259E + 04 1.1249E + 01 2.4529E + 00 1.3955E + 00
F14 1.1781E + 02 8.5272E + 00 0.0000E + 00 5.7333E-01
F15 9.8117E + 02 2.2870E + 00 3.4751E-01 2.8087E-01
F16 8.6093E + 01 3.9902E + 00 5.7989E-01 4.7542E-01
F17 9.0496E + 01 2.3996E + 01 1.8265E-01 1.7779E-01
F18 4.8868E + 04 8.2109E + 00 4.4659E-01 3.8985E-01
F19 4.3338E + 02 2.0126E + 00 4.8829E-02 4.5107E-02
F20 8.8842E + 01 1.9011E + 01 9.3652E-02 1.5609E-02
F21 1.9905E + 02 1.0010E + 02 1.0000E + 02 1.0000E + 02
F22 1.8207E + 02 8.2793E + 01 1.0000E + 02 4.4892E + 01
F23 3.2982E + 02 3.0754E + 02 3.0067E + 02 3.0412E + 02
F24 3.6091E + 02 3.1481E + 02 2.5563E + 02 1.3652E + 02
F25 4.6689E + 02 3.9833E + 02 4.1840E + 02 4.0025E + 02
F26 4.2237E + 02 3.0004E + 02 3.0000E + 02 3.0000E + 02
F27 4.1132E + 02 3.9033E + 02 3.8952E + 02 3.9068E + 02
F28 5.3254E + 02 3.0288E + 02 3.0000E + 02 3.0000E + 02
F29 2.9916E + 02 2.5373E + 02 2.3572E + 02 2.4120E + 02
F30 7.6090E + 05 7.1209E + 02 4.0659E + 02 4.0252E + 02

Fig. 7   Pressure vessel design

Fig. 8   Three-bar truss design

Fig. 9   Welded beam design

Fig. 10   Tension/compression spring design
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Subject to g1
(

x⃗
)

= −x1 + 0.0193x3 ≤ 0, g2
(

x⃗
)

= −x2 + 0.00954x3 ≤ 0,

g3
(

x⃗
)

= −�x23x4 −
4
3
�x33 + 1, 296, 000

≤ 0, g4
(

x⃗
)

= x4 − 240 ≤ 0 , 

C.2. Three‑Bar Truss Problem

This issue's purpose is to manufacture a truss with the least 
amount of weight while still adhering to three limitations. 
Regarding Fig. C.2, two design variables, x1 and x2, should 
be chosen while taking into account limits on stress, deflec-
tion, and buckling. Equation (25) is the mathematical repre-
sentation of this problem.

 

Consider x⃗ =
[
x1x2x3x4

]
=
[
TsThRL

]

Minimize f
(

x⃗
)

= 0.6224x1x3x4 + 1.7781x2x23
+ 3.1661x21x4 + 19.84x21x3

(24)
where 0 ≤ xi ≤ 100 for i = 1, 2 and 10 ≤ xi ≤ 200 for i = 3, 4

Consider x⃗ =
[
x1x2

]
=
[
A1A2

]

Minimize f
�
x⃗
�
=
�
2
√
2x1 + x2

�
× l

Subject to g1
(

x⃗
)

=

√

2x1 + x2
√

2x21 + 2x1x2
P − σ ≤ 0, g2

(

x⃗
)

=
x2

√

2x21 + 2x1x2
P − σ ≤ 0,

g3
�
x⃗
�
=

1√
2x2 + x1

P − σ ≤ 0

(25)
where 0 ≤ x1, x2 ≤ 1, l = 100 cm,P = 2 kN∕cm2, � = 2 kN∕cm2

C.3. Welded Beam Problem

Determining the minimum cost to fabricate a welded beam is 
the subject of this design problem. It has four design factors 
that need to be optimized as shown in Fig. C.10 and four 
restrictions that should be considered. Equation (26) is the 
mathematical representation of this problem.

Subject to g1
(

x⃗
)

= τ
(

x⃗
)

− �max ≤ 0, g2
(

x⃗
)

= σ
(

x⃗
)

− �max
≤ 0, g3

(

x⃗
)

= δ
(

x⃗
)

− �max ≤ 0,

g7
(
x⃗
)
= 1.10471x2

1
+ 0.04811x3x4 ×

(
14.0 + x2

)
− 0.5 ≤ 0

C.4. Tension/compression Spring Design Problem

The major goal of this design problem is to reduce the 
weight of the tension/compression spring. This problem has 
three design factors, as shown in Fig. C.11. Equation (27) is 
the mathematical representation of this problem.

g3
(
x⃗
)
= 1 −

140.45x1

x2
2
x3

≤ 0, g4
(
x⃗
)
=

x1+x2

1.5
− 1 ≤ 0

Consider x⃗ =
[
x1x2x3x4

]
= [hltb]

Minimize f
(
x⃗
)
= 1.10471x2

1
x2 + 0.04811x3x4 ×

(
14.0 + x2

)

g4
(
x⃗
)
= x1 − x4 ≤ 0, g5

(
x⃗
)
= P − Pc

(
x⃗
)
≤ 0, g6

(
x⃗
)
= 0.125 − x1 ≤ 0

(26)
where 0.1 ≤ xi ≤ 2 for i = 1, 2 and 0.1 ≤ xi ≤ 10 for i = 3, 4

Consider x⃗ =
[
x1x2x3

]
= [dDN]

Minimize f
(
x⃗
)
=
(
x3 + 2

)
x2x

2
1

Subject to g1
(

x⃗
)

= 1 −
x32x3

71785x21
≤ 0, g2

(

x⃗
)

=
4x22 − x1x2

12566
(

x2x31 − x41
) + 1

5108x21
≤ 0

Fig. 11   Speed reducer design
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C.5. Speed Reducer Design Problem

Taking into consideration the bending stress of the gear 
teeth, the surface stress, the transverse deflections, and the 
stresses in the shafts, the goal of this restricted optimiza-
tion issue is to minimize the weight of the speed reducer. 
This problem has seven variables, as shown in Fig. C.3. 
The mathematical representation of this problem shown in 
Eq. (28).

Consider

Subject to g1
(

x⃗
)

= 27
x1x22x3

− 1 ≤ 0, g2
(

x⃗
)

= 397.5
x1x22x

2
3
− 1 ≤ 0.

g3
(

x⃗
)

=
1.93x34
x2x46x3

− 1 ≤ 0

,

g4
(

x⃗
)

=
1.93x35
x2x47x3

− 1 ≤ 0, g5
(

x⃗
)

=

[

(745(x4∕x2x3))2+16.9×106
]1∕2

110x36
− 1 ≤ 0 , 

g7
(

x⃗
)

= x2x3
40 − 1 ≤ 0, g8

(

x⃗
)

= 5x2
x1

− 1 ≤ 0, g9
(

x⃗
)

= x1
12x2

− 1 ≤ 0

g10
(
x⃗
)
=

1.5x6+1.9

x4
− 1 ≤ 0, g11

(
x⃗
)
=

1.1x7+1.9

x5
− 1 ≤ 0,
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