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Abstract
This paper comprehensively analyzes the Manta Ray Foraging Optimization (MRFO) algorithm and its integration into 
diverse academic fields. Introduced in 2020, the MRFO stands as a novel metaheuristic algorithm, drawing inspiration from 
manta rays’ unique foraging behaviors—specifically cyclone, chain, and somersault foraging. These biologically inspired 
strategies allow for effective solutions to intricate physical challenges. With its potent exploitation and exploration capabili-
ties, MRFO has emerged as a promising solution for complex optimization problems. Its utility and benefits have found 
traction in numerous academic sectors. Since its inception in 2020, a plethora of MRFO-based research has been featured 
in esteemed international journals such as IEEE, Wiley, Elsevier, Springer, MDPI, Hindawi, and Taylor & Francis, as well 
as at international conference proceedings. This paper consolidates the available literature on MRFO applications, covering 
various adaptations like hybridized, improved, and other MRFO variants, alongside optimization challenges. Research trends 
indicate that 12%, 31%, 8%, and 49% of MRFO studies are distributed across these four categories respectively.
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1 Introduction

The process of finding the optimum value for a fitness func-
tion while subjecting it to several restrictions is known as 
optimization [1]. The growing complexity and variety of 
engineering applications demand the evolution of optimiza-
tion problems that can handle large-scale variable dimen-
sions and intricate functional objectives. Traditional algo-
rithms, including Newton’s method, the steepest descent 
approach, and integer programming, often falter and become 
trapped in local optima for such multifaceted optimization 
issues. This is primarily because these canonical algorithms 
lack random operators in their formulation. Moreover, they 

impose rigorous conditions on the continuity and differ-
entiability of the fitness function. Consequently, there is a 
consensus that these traditional methods fall short of pro-
moting modern global optimization techniques. This has led 
to the infusion of stochastic methods into the optimization 
process, paving the way for the emergence of metaheuristic 
algorithms that aptly tackle today’s optimization challenges.

Metaheuristics can be characterized as high-level algo-
rithmic strategies inspired by nature. Essentially, these 
algorithms, rooted in natural phenomena, often incorporate 
an element of randomness. This intelligent randomness 
facilitates the generation or evolution of solutions, drawing 
them closer to the optimal outcome using tactics inspired 
by nature. Thus, compared to traditional optimization meth-
ods, nature-inspired metaheuristics are better equipped to 
evade situations of suboptimal outcomes [2]. Hence, such 
metaheuristics do not heavily rely on extensive problem-spe-
cific details. Instead, they employ diverse heuristic models 
to define the spectrum of potential solutions. Metaheuristic 
algorithms that take their natural cues are excellent replace-
ments for canonical algorithms since they do not rely on gra-
dient information and have a simple central principle [3, 4].

The optimization process of population-based metaheuris-
tics begins with a population of potential solutions that serve 
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as a jumping-off point for the algorithm’s search mechanism. 
The technique may yield many solutions in a single iteration. 
It can avoid local minima in the search space by utilizing 
a portion of the randomized process to update the starting 
population [5]. Complex numerical functions and real-world 
optimization issues are typical applications for many pop-
ulation-based metaheuristic algorithms. Genetic algorithm 
(GA) [6] and differential evolution (DE) [7] are all examples 
of well-known population-based methods. In GA, natural 
selection and reproduction are modeled after the processes 
described by Darwinian phenomena and simulated using 
GA. The population is represented by a set of chromosomes, 
and new candidate solutions are generated by determining 
which genetic operators should be used. The optimization 
method for DE uses operators that are analogous to those 
used by GA. These operators include mutation, crossover, 
and selection. The mutation and crossover operators locate 
new areas inside the search space. The selection operator 
is utilized to preserve the superior individual. The social 
dynamic of the swarm serves as an inspiration for PSO (fish, 
birds, bees, etc.). The potential solutions are particles and 
each particle is given an update that causes it to move toward 
a new location. The fitness function is then used to deter-
mine the new search paths that each particle will take.

Metaheuristic algorithms may solve complicated, nonlin-
ear, and high-level optimization problems in a fair amount 
of time and resources, unlike deterministic and statistical 
techniques [8]. Many problems in the real world are ame-
nable to being recast as combinatorial, multi-objective, or 
single-objective optimization issues. Because of these intri-
cate qualities, conventional mathematical methods such as 
gradient descent and conjugate gradient are incapable of pro-
viding an effective solution to these situations [9]. However, 
algorithms that take their cues from nature have been shown 
to have superior performance, particularly when it comes to 
solving non-continuous, large-scale, and non-differentiable 
real-world optimization problems [10].

A strategy likely to produce an exceptional possible ser-
vice but may not necessarily deliver the optimal service for a 
particular specific situation is an example of a metaheuristic 
approach [11]. There is no assurance that the answer that 
is found will be of an exceptionally high standard. Despite 
this, a well-designed metaheuristic technique may frequently 
yield a near-optimal answer. The method should also be 
efficient enough to handle major concerns. Metaheuristics 
are usually thought of as iterative algorithms that seek a 
better alternative than the best option identified in previous 
iterations.

The design of many different systems makes heavy use 
of these methodologies. In addition, the effectiveness of 
metaheuristic algorithms is shown by the fact that they 
can solve various issues in various domains [12]. At the 
same time, one of the most important recent breakthroughs 

in optimization is the increasing emphasis placed on the 
interdisciplinary nature of the subject matter. Several novel 
swarm intelligence algorithms have been proposed in recent 
years, such as the Artificial Gorilla Troops Optimizer 
(AGTO) [13], Starling Murmuration Optimizer (SMO) 
[14], African Vultures Optimization Algorithm (AVOA) 
[15], Farmland Fertility Algorithm (FFA) [16], etc. The 
MRFO was created by Zhao et al. [17]. After witnessing the 
intelligent foraging behavior of manta rays, a metaheuristic 
approach to optimization was conceived and developed as 
a result of these observations. Manta rays have three dis-
tinct foraging motions that they use when they are search-
ing for food. These maneuvers are known as the chain, the 
cyclone, and the somersault. The MRFO algorithm functions 
similarly to these foraging behaviors to develop a globally 
optimum solution. In recent years, the research community 
has shown increased interest in the MRFO as a result of its 
straightforward construction; as a result, a significant num-
ber of papers have been presented to enhance the MRFO's 
operational capabilities. In Sect. 3, we comprehensively 
analyze the most recent developments concerning MRFO. 
It has come to our attention that MRFO does not maintain a 
healthy equilibrium between the phases of exploration and 
exploitation in its operations. Therefore, additional work is 
required to achieve the proper equilibrium in the system.

This review paper's principal purpose is to thoroughly 
examine all features of the MRFO and how it is luring schol-
ars all over the globe to employ this algorithm in various 
challenges in multidisciplinary areas. The following is a list 
of the most important contributions that this paper makes:

• A comprehensive review of MRFO has been done. A 
thorough and rigorous examination of MRFO and its 
variations is offered. The limits of current MRFO varia-
tions are recognized, and some intelligent proposals for 
overcoming these shortcomings are presented.

• All modifications to the main MRFO have been high-
lighted.

• The current review considers two variants of MRFO for 
review, including Binary and Multi-objective.

• All applications and fields that employed MRFO have 
been summarized and presented.

• The benefits and drawbacks of MRFO have been exam-
ined.

• Several difficulties and concepts have been proposed as 
potential future work.

The following is the structure of this paper: Sect.  2 
describes the motivation for MRFO as well as its mathe-
matical model. In Sect. 3, we will discuss all of the MRFO 
versions and changes. MRFO methods will be classified into 
the following four categories: hybridization, improvement, 
variations of MRFO, and optimization concerns. In Sect. 4, 
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we will talk about MRFO, including its capabilities, benefits, 
and drawbacks. In the fifth and last section, we shall sum-
marize the upcoming works.

2  MRFO

2.1  Inspiration

Even though they seem terrifying, manta rays are rather 
beautiful and fascinating animals. They are one of the most 
significant marine organisms that are currently known. 
Manta rays have a body that is flat from top to bottom, and 
they have a pair of pectoral fins that they utilize to propel 
themselves through the water with the same elegance as 
birds have when they are flying. In addition to this, each of 
their large terminal mouths is preceded by a pair of cephalic 
lobes that project forward in front of the mouth. Figure 1A 
portrays a manta ray in the process of feeding. and Fig. 1B 
illustrates the anatomy of a manta ray. They can direct water 
and prey into their mouths while hunting by using the horn-
shaped cephalic lobes on their heads. The modified gill rak-
ers are then used to remove the captured prey from the water. 
Two different kinds of manta rays may be distinguished from 
one another. One of them is the reef manta ray, or manta 
alfredi, which lives in the Indian Ocean as well as the west-
ern and southern Pacific and may grow up to 5.5 m wide. 
The second type is the manta birostris, also known as the 
giant manta ray. These rays can get as wide as seven meters 
and live in tropical, subtropical, and mild temperate waters. 
They have probably been around for at least 5 million years. 
The average lifespan is 20 years, it does not make it to that 
age because fishermen are after them [17]. Manta rays feed 
on plankton daily. Adult manta rays ingest 5 kg of plankton 
daily. Plankton is most abundant in seas. Plankton is not 
always concentrated in one place. Tides and seasons cre-
ate these places. Manta rays are great at finding plankton. 
Manta rays’ food hunting is intriguing. These creatures have 
evolved numerous impressive foraging methods.

The first method of wild food gathering is called chain 
foraging. When there are more than 50 manta rays forag-
ing together, they create an organized line by lining up one 
after the other in a sequential sequence. Smaller male manta 
rays can ride on top of the backs of more extensive female 
manta rays and swim in time to the rhythm of the female’s 
beating pectoral fins when they do so. As a direct result of 
this, manta rays that come after them will be able to con-
sume any plankton that was missed by manta rays that came 
before them. They receive more food by working together 
to increase plankton in their gills.

The second method of scavenging that may be carried out 
is referred to as the cyclone foraging strategy. When there 
is an unusually high concentration of plankton in the water, 
a large number of manta rays will congregate together. The 
water that has been filtered is brought to the surface when 
their tails come together with their heads to form a swirling 
vertex in the eye of the cyclone. The plankton is pulled into 
their open mouths and consumed by them.

Somersault foraging is the last kind of foraging that may 
be done. It is undoubtedly one of the most beautiful sights 
that nature has to offer. Manta rays circle plankton and do 
somersaults backward to attract it. The manta ray’s ability 
to do a movement known as a somersault, unpredictable, 
frequent, local, and cyclical, allows them to maximize the 
amount of food they consume. Even though foraging activi-
ties like this are uncommon in the wild, their utility cannot 
be overstated. These foraging habits have been mathemati-
cally described, and a novel metaheuristic method called 
MRFO has been developed to carry out global optimization.

2.2  Mathematical Model

Foraging techniques such as chain foraging, cyclone for-
aging, and somersault foraging served as inspiration for 
MRFO. The mathematical models are outlined in the fol-
lowing paragraphs.

Chain foraging: manta rays can use MRFO to pin-
point the exact location of plankton and maneuver their 
way there. If there is a high concentration of plankton at 

Fig. 1  A A foraging manta ray, 
and B structure of a manta ray 
[17]
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a specific location, that location is in a superior position. 
MRFO hypothesizes that the plankton with the great atten-
tion that manta rays desire to approach and consume is the 
best answer identified so far, even though the optimal solu-
tion is unknown. The manta rays will construct a chain of 
forage by aligning themselves head to tail. Everyone else, 
except the person who was first, advances towards not just 
the meal that is currently being served, but also the one that 
is currently in front of it. That is to say, throughout each 
iteration, each individual is provided with an up-to-date ver-
sion of the optimal solution that has been found up to this 
point as well as the solution that is currently in front of it. 
the mathematical model of chain foraging is characterized 
by Eq. (1), and the components of this model are Eqs. (1) 
and (2) [17].

xd
i
(t) is the location of the ith individual at a time t in the 

dth dimension. r is a random vector with values between 0 
and 1. � is a weight coefficient, and xd
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with the highest concentration. Figure 2 shows this forag-
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√
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conjunction with the position xbest of the food to calculate 
the position update for the ith individual.

Cyclone foraging: manta rays will form a long chain of 
foragers and spiral toward a plankton concentration in deep 
water. In the cyclone foraging method used by manta ray 
swarms, in addition to moving in a spiral motion toward 
the food, each manta ray swims in the direction of the one 

in front of it. In other words, manta rays produce a spiral 
pattern by swarming in lines while they hunt for food. The 
behavior of a cyclone as it tracks in the problem region is 
seen in Fig. 3. An individual not only walks in the same 
direction as the one in front of it but also moves in a spiral 
pattern as it approaches the food source. The mathematical 
equation that may be developed to depict the spiral-shaped 
movement of manta rays across only two-dimensional space 
can be found by referring to Eq. (3).

In Eq. (3), � is a number chosen at random from the range 
[0, 1]. This kind of motion pattern may be generalized to 
n-dimensional space.

Equation (4) describes this cyclone foraging model only.

(3){
Xi(t + 1) = Xbest + r ×

(
Xi−1(t) − Xi(t)

)
+ eb� × cos(2��) × (Xbest − Xi(t))

Yi(t + 1) = Ybest + r ×
(
Yi−1(t) − Yi(t)

)
+ eb� × sin(2��) × (Ybest − Yi(t))

.

Fig. 2  Chain foraging behavior 
in a 2-D space [17]

Fig. 3  Cyclone foraging behavior in problem space [17]
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In Eq. (5), � is the weight factor, T  is the maximum num-
ber of iterations, and r1 is the rand number in the range of 0 
to 1. All of the agents search haphazardly, using the location 
of the food as their point of reference. The cyclone forag-
ing method, the most effective yet, exploits the region heav-
ily. This tendency also boosts exploration. Assigning each 
person’s reference position to a random place in the search 
region forces them to find a position considerably different 
from the best one. This mechanism places an emphasis on 
exploration and gives MRFO the ability to search the entire 
world; the mathematical equation that describes it is Eq. (7).

xd
rand

 is a point generated at random inside the search 
space, Lbd and Ubd are the lower and upper bounds of the 
dth dimension, respectively, and dth is the dimension being 
measured.

Somersault foraging: the meal’s location is considered 
the most critical factor in this behavior pattern. Every solu-
tion swims in a circle around the pivot before somersaulting 
into a new position. As a result, they ensure that their loca-
tions are continually updated to revolve around the best posi-
tion identified thus far. One may construct the mathematical 
model using Eq. (8) as a guide.
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In Eq. (8), S is the somersault factor that determines how 
far manta rays can flip. r2, and r3 are two random numbers 
in the range [0, 1], and S = 2 is the somersault factor. Once 
the somersault range is known, each person is free to move 
to any point in a new search domain between where they are 
now and where they would be if they were in the best posi-
tion so far, as shown by Eq. (8). This can be accomplished 
by moving to any location in the new search domain. The 
magnitude of the disturbance imposed on the present loca-
tion is decreasing with the shrinking distance between the 
individual location and the best location discovered to date. 
Every solution gets closer to the best possible answer as 
they explore the search area. Consequently, the somersault 
foraging range becomes more constrained as the number of 
iterations increases. The preliminary sketch of somersault 
foraging behavior in MRFO is shown in Fig. 4.

According to Eq. (8), Fig. 5 demonstrates that three dif-
ferent solutions developed one hundred times in the search 
space. The sampled points have a random distribution 
between their present locations and their symmetrical posi-
tions around xbest , and as the distance decreases, the sampled 
points become sparser. Both the dense and the sparse spots 
in the vicinity of xbest have the potential to contribute to the 
exploitation or exploration of the area significantly.

MRFO begins its process by producing a random popula-
tion inside the domain of the issue, just as other metaheuris-
tic optimizers do. At the start of each process iteration, each 

Fig. 4  MRFOs’ somersault foraging techniques [17]
Fig. 5  Three animals foraging somersault-style in a two-dimensional 
environment
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solution changes its position relative to the one in front of it 
and the reference position. The value of t∕T must be reduced 
from 1∕T  to 1 before proceeding to do both exploratory and 
exploitative searches. When t∕T is less than or equal to rand, 
the current best solution is selected as the reference position 
for the exploitation. If it is greater than or equal to rand, a 
random position in the search space is chosen at random to 
be the exploration's starting point.

To locate food, MRFO can switch between chain forag-
ing and cyclone foraging depending on the random number. 
Afterward, individuals will revise their placements about the 
optimal position discovered so far via somersault foraging. 
Every single computation and update is carried out interac-
tively up to the point when the stop condition is reached. In 
the end, the position and fitness value of the solution with 
the highest overall fitness is restored. Figure 6 shows the 
fake code for MRFO.

In a broad sense, the following is a list of the properties 
of the MRFO and the flowchart is shown in Fig. 7.

(a) The three distinct methods of food acquisition utilized 
by manta rays, including somersault foraging, chain 

foraging, and cyclone foraging, served as the impetus 
for the development of the MRFO. Each of these dis-
tinct foraging techniques has the potential to effectively 
increase the optimization abilities of the MRFO in sev-
eral different ways, which is something that should be 
considered before deciding to use any of them.

(b) MRFO can switch between chain and cyclone foraging 
based on the value of the rand at the moment.

(c) Each solution in chain foraging must update the loca-
tion of the person in front of them and the optimal 
global solution.

(d) As the value of t/T steadily becomes higher over time, 
MRFO is encouraged to make a seamless transition 
from exploratory search to exploitative search.

(e) Cyclone foraging requires each solution to update its 
location relative to the person in front of it and the 
reference position. The reference point will be the 
best location so far or a random search space position 
depending on t/T. Both aid in exploitation and explora-
tion.

Fig. 6  Pseudocode of the MRFO algorithm [17]
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(f) Individuals can explore in an adaptive manner using 
the somersault foraging method despite changes in the 
available search range.

(g) Implementing MRFO is quite simple, as it only requires 
minor tweaks to a small number of variables.

2.3  Time Complexity MRFO

The amount of time needed to finish MRFO is proportional 
to the number of participants, as well as the number of vari-
ables, and the number of possible iterations. Each cycle 
includes the execution of the somersault foraging technique 

Fig. 7  Flowchart of MRFO 
algorithm [17]



960 F. S. Gharehchopogh et al.

in addition to either the cyclone foraging or the chain forag-
ing technique. As a result, the total amount of time that the 
MRFO method requires follows Eq. (10) [17].

In Eqs. (10) and (11), d represents the total number of 
variables, T is the maximum number of iterations, and n 
represents the total number of solutions.

The steps involved in collecting and sorting MRFO 
papers are illustrated in Fig. 8.

Table 1 lists the crucial search queries for MRFO papers.

(9)
O(MRFO) = O(T(O(cycloneforaging + chainforaging)

+O(somersaultforaging))),

(10)O(MRFO) = O(T(nd + nd)) = O(Tnd).

Fig. 8  The steps of collecting and dividing MRFO papers

Table 1  The most crucial queries to search for MRFO papers

No Keywords to search

1 MRFO + hybrid algorithm
2 MRFO + combining algorithm
3 MRFO + improved algorithm
4 MRFO + modified algorithm
5 MRFO + advanced algorithm
6 MRFO + binary algorithm
7 MRFO + multi-objective algorithm
8 MRFO + optimization problems
9 MRFO + deep learning algorithm
10 MRFO + chaotic algorithm
11 MRFO + levy flight algorithm
12 MRFO + OBL
13 MRFO + fuzzy method
14 MRFO + neuro-fuzzy inference system
15 MRFO + feature selection
16 MRFO + machine learning
17 MRFO + Artificial Neural Networks(ANNs)
18 MRFO + function optimization problems
19 MRFO + continuous optimization problems
20 MRFO + global optimization problems
21 MRFO + global optimization and engineering problems
22 MRFO + strategy search algorithm
23 MRFO + benchmark of global search algorithms
24 MRFO + adaptive local search
25 MRFO + quantum optimization
26 MRFO + structural design optimization
27 MRFO + unimodal and multimodal optimization problems
28 MRFO + Network + Clustering + Routing
29 MRFO + Optimal Parameter
30 MRFO + industrial + analysis

Fig. 9  The average number of publications published by MRFO each 
year

Fig. 10  Number of papers published MRFO in different publications
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The total number of papers related to MRFO published 
in certain years is shown in Fig. 9. The total number of 
MRFO papers that were published in the year 2020 was 
19. Beginning in the year 2020 and continuing beyond, 
several studies focusing on the application of MRFO 
to the resolution of optimization issues have been con-
ducted. First, all of the papers that MRFO has worked 
on have been downloaded. After that, the reliability of a 
category that was established based on the proportion of 
documents that were included in a variety of publications 
and the amount of MRFO papers that were distributed 

each year were evaluated. MRFO paper counts can be 
calculated. Figure 9 illustrates an annual rise in published 
documents after 2020. It is not hard to see that the number 
of papers published in the year 2022 (up to September 
of that year) is much larger than that of prior years. The 
number of papers published until 5 September 2023 is 
about 31 paper.

Figure  10 displays the total number of papers that 
MRFO has released in a variety of publications over the 
years (10). The number of papers published in the Sci-
enceDirect publication is much higher than that of other 
publications in Fig. 10.

Figure 11 depicts the categorization of MRFO papers 
by year and publisher.

3  Methods of MRFO

This paper's principal objective is to provide a com-
prehensive synopsis of the fundamental technique fol-
lowed by the MRFO and its sources. The several MRFO 
approaches are broken down and categorized in Fig. 12. 
MRFO’s methodologies are offered in hybridization, 
enhanced, variant, and optimization issues.

Fig. 11  Separation of papers of MRFO based on year and publisher

Fig. 12  Classification of MRFO 
methods
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3.1  Hybridization

3.1.1  MRFO‑Simulated Annealing (SA)

A model of the visual question answering (VQA) system has 
been suggested. The model has two attention modules. These 
two modules collaborated to create more powerful attention 
modules that extracted features from the foreground object 
and background region. These characteristics can answer 
queries about both. The hybrid Simulated Annealing-MRFO 
(SA-MRFO) [18] finds the best weight parameter for the 
specified model, improving the proposed architecture’s per-
formance. This is accomplished by selecting the optimal 
weight parameter. The use of simulated annealing, which 
is incorporated in the very first step of the MRFO method, 
helps to cut down on the amount of time spent on analysis 
by the optimization process. The accuracy of the suggested 
VQA was increased due to this hybridization.

The rotational speed of a direct current (DC) motor was 
controlled by a fractional-order proportional-integral-deriva-
tive (FOPID) controller. Using a novel metaheuristic method 
known as the OBL hybrid MRFO with Simulated Anneal-
ing (SA) [19] algorithm, the variables of the controller have 
been optimally set so that they can perform their intended 
functions. This algorithm that has been suggested aims to 
enhance the performance of the traditional MRFO algorithm 
in two different ways. To begin, it enhances MRFO’s poten-
tial for exploration by providing support for OBL. By doing 
so, it is possible to prevent the stagnation of the local mini-
mum. Second, it allows MRFO to have a higher exploitation 
capacity by using hybridization in conjunction with a simu-
lated annealing process. It benefits the organization in two 
ways. The hybridization contributes to hastening the pace 
of convergence achieved by MRFO. It outperforms other 
optimization algorithms in exploration and exploitation.

A hybrid metaheuristic approach was used to tune four 
PID controllers for an automated voltage regulator (AVR) 
system. The MRFO, combined with the SA algorithm, 
serves as the foundation for this strategy [20]. The results 
of the simulations give irrefutable proof that every kind of 
controller tuned using the proposed SA–MRFO algorithm 
achieves more excellent performance compared to control-
lers tuned utilizing other approaches. This conclusion can 
be drawn from the outcomes of the simulations. In addi-
tion, a comparison investigation is carried out to identify 
the ideal controller for use in AVR systems. The model 
achieves a significant acceleration of convergence. A modi-
fied MRFO, or MMRFO, is a methodology that improves 
the characteristics of the MRFO method [21]. SA was added 
to the MRFO strategy to improve exploitation. It created a 
modified MRFO. Second, the technology is used to size and 
place Multiple Photovoltaic (PV) and Wind Turbine (WT) 
units in a Radial Distribution System (RDS). A single-fitness 

function minimizes system loss due to stochastic PV and 
WT output production and variable load demand. To mini-
mize value. QLSF is used to find sites for up to 50% of 
system buses to narrow the search. PV and WT alone or 
together have been extensively studied to improve system 
performance. The solution method addresses IEEE 69 bus 
RDS. Installing PV and WT in RDS together offers better 
results than installing either PV or WT individually. The 
simulation showed that reactive power-capable PV invert-
ers could reduce system losses. The convergence feature 
demonstrates that the modified MRFO generates solutions 
of greater quality than those generated by the conventional 
MRFO.

3.1.2  MRFO‑PSO

To achieve a healthy balance between exploitation and 
exploration capabilities, MRFO-PSO, a novel hybrid 
MRFO with PSO, has been developed [22]. The idea of 
velocity from the PSO is implemented into the MRFO-
PSO algorithm so that it may drive the searching pro-
cess of the MRFO. This algorithm’s velocity is updated 
based on the first-best and second-best answers. The dif-
ficulty of balancing the exploratory phase and the capac-
ity to utilize resources has been significantly reduced. 
The MRFO-PSO is evaluated based on its performance 
on 23 benchmark equations to show its robustness and 
efficiency. The MRFO-PSO is compared against six con-
temporary metaheuristic approaches using a variety of 
statistical measures in addition to a non-parametric test 
based on Wilcoxon’s test. The results of these comparisons 
are shown below. Consequently, the performance evalu-
ations that were carried out validated the superiority of 
the suggested MRFO-PSO and the achieved competitive 
outcomes.

It is recommended that a hybrid MRFO algorithm with 
PSO should be used [23]. The PSO algorithm is well-
known and regarded for its excellent performance. The 
elitism and social interaction processes in PSO have been 
included in MRFO via the hybrid algorithm introduced in 
this study. The methods assist the search agents in deter-
mining the new path that they should take in their search. 
Tests using completions on evolutionary computing (CEC) 
2014 benchmark function dimensions and fitness land-
scapes confirm the proposed technique. Optimizing a PD 
controller for an inverted pendulum system solves an engi-
neering problem. The strategy improved the accuracy of 
most test functions. The proposed technique outperformed 
MRFO in PD control optimization.

An essential component of environmentally responsible 
groundwater management of productive aquifers is mode-
ling the groundwater’s reliable and accurate quality. In this 
topic, individual and integrative machine learning, Adaptive 
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Neuro-Fuzzy Inference Systems (ANFIS), and nonlinear 
mathematical models estimate groundwater-specific con-
ductance. The well-known PSO and the innovative MRFO 
heuristic algorithms have been included in the models to 
facilitate the development of integrative models [24]. The 
models were developed and validated using groundwater 
level, salinity, and water temperature at a Florida city obser-
vation site. Univariate, bivariate, and multivariate scenarios 
are described. ANFIS models predict SC more accurately 
than mathematical models (IA = 0.933). PSO and MRFO 
algorithms improved ANFIS models' prediction accuracy 
by 13 and 5 percentage points, respectively, as evaluated by 
Root-Mean-Squared Error (RMSE).

3.1.3  MRFO‑Rider Optimization Algorithm (ROA)

Early glaucoma detection reduces the risk of irreversible 
visual loss. An excellent glaucoma detection approach is the 
ROA-MRFO-based general adversarial network [25]. Seg-
menting optical discs uses fuzzy local information C-means 
clustering (FLICM clustering). This glaucoma detection 
method uses sparking to identify blood vessels. As a result, 
the Rider MRFO-based GAN model possesses the highest 
accuracy, with a score of 0.96, the highest sensitivity, with 
a score of 0.94, and the highest specificity, with a score of 
0.89.

3.1.4  MRFO‑DE

The challenge of economic load dispatch (ELD), which has 
to be solved to realize the thermal units’ cleaner and more 
economical purpose, led to the development of an improved 
IMRFO algorithm [26]. The following are some of the dis-
tinguishing features of the innovative method: The MRFO 
method's adaptability was presented by introducing sine and 
cosine adaptations, the algorithm’s convergence speed was 
presented by introducing a nonlinear convergence factor, and 
its robustness was presented by introducing a DE algorithm. 
To demonstrate that the IMRFO-based solution technique 
is effective, three typical ELD testing systems were chosen. 
According to the findings, the IMRFO algorithm provided 
the most advantageous scheduling technique when compared 
to the other possible methods that were taken into consid-
eration. To accomplish cleaner and more sustainable power 
generation, improving the economics of the operation of 
power systems is important.

3.1.5  MRFO–Artificial Ecosystem‑Based Optimization (AEO)

A unique hybrid approach based on MRFO and AEO has 
been presented to determine the variables of the battery [27]. 
The MRFO–AEO algorithm eliminates the MRFO cyclone 

foraging operator's random search operation to improve 
battery parameter identification precision and stability. The 
MRFO–AEO algorithm dynamically coordinates the AEO 
decomposition operator and the improved MRFO tumble 
foraging operator with the iterative process. This is done 
to strike a balance between exploration and exploration 
throughout the global search. The validity of the battery 
model, as well as the method's practicability, are evaluated 
and validated with the use of experimental data on battery 
discharge gathered at the Kunbei converter station in Yun-
nan, China.

3.1.6  MRFO–GA

It is proposed to combine MRFO and GA using a pseudo 
parameter [28]. The GA can assist the MRFO in staying 
above the local minimum. When combined with MRFO, 
it is referred to as a pseudo-GA (PGA–MRFO). The pro-
posed method is not a traditional MRFO–GA fusion. Each 
algorithm must be performed on all system variables, con-
ventional hybridization would make the search procedure 
lengthy. Additionally, traditional hybridization produces an 
extended search algorithm, which is particularly problem-
atic in settings with many variables. The PGA–MRFO algo-
rithm is a hybrid that hybrids the pseudo-parameter-based 
GA with the MRFO algorithm to provide a more efficient 
approach that includes the benefits of both algorithms with-
out becoming caught in a local minimum or requiring a great 
deal of time to do computations. Because the GA only has 
to be applied to a subset of the system’s variables thanks to 
the pseudo parameter, the amount of time spent computing 
and the required work are cut down significantly. The tech-
nique that was made also used an estimate for the fitness 
function’s gradient. It made it possible to skip the deriva-
tives calculations. Also, the PGA–MRFO algorithm uses 
the pseudo-inverse of matrices that are not square, which 
makes calculations go faster. After testing the suggested 
algorithm on the test functions, the principal MRFO could 
not find the optimal solution, which is needed to prove the 
algorithm’s competence and efficacy. As further evidence of 
the method’s usefulness, it was used to the resolution of the 
unit commitment issue, which was one of the most signifi-
cant challenges facing the power systems.

A revised version of the MRF, the O algorithm that 
uses GA's building blocks has been suggested [29]. This 
optimization technique, however, has room for improve-
ment in its approach, which would increase its accuracy. 
As a result, in this suggested enhancement, the mutation 
and crossover technique used in GA was implemented into 
MRFO. The crossover operation lures agents to an optimal 
location. Mutation diverges agents to a wider viable range 
during this time. The algorithms were then tested on sev-
eral benchmark functions using the Wilcoxon signed-rank 
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test. The algorithms were tested with a real-world scenario 
on an interval type 2 fuzzy logic controller of an inverted 
pendulum system. GMRFO outperformed MRFO and GA 
on benchmark functions. It shows a superior control system 
parameter and excellent response.

3.1.7  MRFO–Salp Swarm Algorithm (SSA)

The fast development of applications that are based on the 
Internet of Things (IoT) has contributed to the increased 
demand for cloud computing services. To effectively utilize 
the other potential of cloud computing, advanced scheduling 
techniques are required. IoT services must also be sched-
uled on cloud resources optimally using these approaches. 
In this paper, a task scheduler is used as a substitute for 
the CCE in arranging IoT application jobs. A hybrid swarm 
intelligence strategy using MRFO and SSA is presented 
as a solution for scheduling IoT tasks in cloud computing 
[30]. MRFOSSA approach is predicated on the use of SSA 
to enhance the local search capability of MRFO, which in 
most cases accelerates the pace of convergence towards the 
global solution. In numerous experimental series, various 
real-world and synthetic datasets of varying sizes are uti-
lized. MRFOSSA is verified after it has been constructed. It 
is evaluated and compared with several other metaheuristics. 
Several performance metrics, including the makespan time 
and cloud throughput, show that MRFOSSA is superior to 
its competitors.

3.1.8  MRFO–Elephant Herding Optimization (EHO)

EHO algorithm is a revolutionary metaheuristic optimizer 
inspired by elephant populations’ behavior regarding renew-
ing their clans and separating groups [31]. It contains a mini-
mal number of variables and is easy to build, but it suffers 
from under-exploitation, which causes delayed convergence. 
MRFO and Gaussian mutation-based EHO (MGEHO) and 
for global optimization, an enhanced version of the EHO 
method, have been presented as solutions [31]. It included 
in the first version of the EHO algorithm has been replaced 
with the somersault foraging technique used by manta rays. 
It seeks to alter patriarch placements in the most effective 
way possible. Additionally, a dynamic convergence factor 
is established to preserve a healthy balance between explo-
ration and exploitation. MGEHO can maintain its robust 
local search capabilities by adopting the Gaussian mutation 
to increase population diversity and satisfy this demand. 
Thirty-three traditional benchmark functions have been 
selected to determine how well various algorithms work. 
These functions will prove MGEHO's superiority. The 
enhanced paradigm is evaluated using 32 benchmark func-
tions from the IEEE CEC 2014 and CEC 2017 conferences 
and several advanced metaheuristic algorithms. Scalability, 

convergence, statistical, diversity, and running time analyses 
show that MGEHO is beneficial in multiple contexts and 
context-specific ways. MGEHO outperforms other algo-
rithms in precision and stability, according to the findings. 
Finally, MGEHO solves three engineering problems. The 
comparison shows that this approach helps solve complex 
problems.

3.1.9  MRFO–Harris Hawk Optimization (HHO)

The scheduling of tasks in the cloud is a challenging prob-
lem for optimization. The load distributed over the cloud 
system is determined by the design of the cloud as well as 
the requirements of the users. On the other hand, under-
loading or overloading scenarios may lead to several system 
failures, including increased power consumption, broken 
machines, and other issues. As a result, task load-balancing 
on Virtual Machines (VMs) is regarded as an essential com-
ponent of cloud task scheduling. As a dynamic load bal-
ancing algorithm, MRFO-Modified Multi-objective HHO 
(MMHHO) was presented as a hybrid optimization approach 
[32]. The hybridization procedure updates the search space 
of HHO by using the MRFO and taking into account, among 
other things, cost, reaction time, and resource consumption. 
The hybrid scheme proposed in this study improves system 
performance by increasing VM throughput, balancing VM 
load, and maintaining task priority balance by adjusting the 
waiting time of the functions involved. The recommended 
model's efficiency has been examined in terms of several 
factors, and the results have been compared to those of other 
algorithms already in use. According to the findings of the 
simulations, the MMHHO load-balancing scheme performs 
better than other algorithms in terms of overall performance.

3.1.10  MRFO–Equilibrium Optimization (EO)

Cancers of the lung and colon are fatal illnesses that may 
appear in organs simultaneously and negatively impact 
human life in some exceptional circumstances. Even 
though the likelihood of having both of these forms of 
cancer simultaneously is low, there is a significant risk of 
metastasis occurring between the organs if the disease is 
not detected in its early stages. Examining histopathological 
images and making diagnoses of cancer patients has tradi-
tionally been a laborious and time-consuming process for 
specialists; however, with the advancements in technology 
that have been made in recent years, it is now possible to 
complete this procedure in a shorter amount of time. To 
classify the histopathological pictures of lung and colon can-
cer, researchers turned to methodologies backed by artificial 
intelligence models and optimization techniques. The data-
set that was employed has five classes of histopathological 
pictures. There are two classes dedicated to colon cancer 
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and three classes devoted to lung cancer. According to the 
suggested strategy, the picture classes were trained using 
the DarkNet-19 model, one of the deep learning models. 
The EO and MRFO algorithms were used to pick the inef-
ficient features from the feature set taken from the Dark-
Net-19 model [33]. After that, the collection that included 
the ineffective features was separated from the remainder 
of the features, resulting in an efficient feature set (comple-
mentary rule insets). A technique known as Support Vector 
Machine (SVM) is used to aggregate and classify the effec-
tive features produced by combining the results of the two 
applied optimization methods. The categorization procedure 
yielded an average accuracy rating of 99.69 percent across 
all categories. According to the findings of this investigation, 
it was found that using the complementary approach in con-
junction with various optimization methods resulted in an 
improvement in the classification performance of the dataset.

3.1.11  MRFO–Gradient‑Based Optimizer (GBO)

A grand strategy based on MRFO merged with GBO is 
developed [34] to handle the Economic Emission Dispatch 
(EED) issues effectively. This strategy is given the name 
MRFO–GBO. The objective of the MRFO–GBO that has 
been designed is to hasten the process of finding a solu-
tion while simultaneously lowering the likelihood that the 
original MRFO would get mired in a local optimum. The 
best EED delivers all necessary electrical loads at the low-
est cost while reducing emissions and meeting operational 
equality or inequality constraints. Both single- and multi-
objective EED issues may be handled using the suggested 
MRFO–GBO in conjunction with the traditional MRFO. The 
fuzzy set theory is modified in the process of multi-objective 
EED to figure out which of the Pareto optimum solutions 
is the best compromise option. Well-known CEC 2017 test 
functions first verify the suggested approach. After that, 
it is implemented to address numerous scenarios of EED 
issues for three electrical systems with three generators, five 
generators, and six generators, respectively. The suggested 
method’s resilience is tested by applying varying amounts of 
load to the systems being examined as part of the validation 
process. Comparisons are made between the results achieved 
by the newly suggested MRFO–GBO and those obtained 
by previously published optimization approaches, in addi-
tion to the results obtained by the traditional MRFO and 
GBO. The MRFO–GBO solved single and multi-objective 
EED problems with accuracy, robustness, and convergence 
characteristics.

Table 2 shows the primary motivation for combining 
MRFO with metaheuristic algorithms. Each algorithm has 
its own set of benefits, which collectively contribute to an 
improved MRFO.

3.2  Improved

In this subsection, we examine the procedures associated 
with improvement. These techniques include Fuzzy, Levy 
Flight, Mutation, Spiral, OBL, Quantum, Deep Learning, 
Elite Search Pool (ESP), Q-Learning, Chaotic, and Machine 
Learning. All of these techniques aim to enhance the MRFO. 
The proportion of strategies based on improved MRFO is 
seen in Fig. 13.

3.2.1  Chaotic

Even though the native MRFO has shown strong competi-
tive capacity compared to popular metaheuristic algorithms, 
it still tends to become stuck in local optima. It has a poor 
convergence rate when dealing with certain complex issues. 
A new elite chaotic MRFO has been created and given the 
name of the CMRFO algorithm to make up for the MRFO’s 
flaws. This method incorporates the population’s chaotic ini-
tialization and an OBL technique. To start the population, 
fourteen distinct types of chaotic maps, each with a distinc-
tive set of attributes, are employed. This way, the chaotic 
map that produces the most significant effect is chosen. The 
elite confusing searching strategy’s sensitivity analysis to 
the CMRFO is being worked on in the meantime [36]. The 
MRFO is benefiting from the coordinated efforts of these 
strategies to improve efficiency.

Several methods, including chaotic sequences, have 
been tried and tested to address this deficiency and 
enhance the capability of doing global searches. In MRFO, 
ten distinct chaotic maps are offered. The effectiveness 
of the suggested messy method CMRFO was initially 
assessed using the IEEE CEC 2017 benchmark func-
tions [37]. Chaotic searching is carried out to improve the 
MRFO’s ability for exploitation. It involves carrying out 
chaotic operations on people to achieve additional renewal.

It is hypothesized that a real-world design challenge 
may be solved using chaos-MRFO augmented versions 
[38]. MRFO is a bio-inspired swarm intelligence-based 
metaheuristic program that replicates the various food-
seeking behaviors of manta rays. It has several inherent 
algorithmic flaws, such as delayed and premature con-
vergence as well as unforeseen trapping to the search 
domain’s local optimum points, which causes it to be 
inefficient overall. Recent developments in chaos theory 
have led to the incorporation of random number genera-
tion into the metaheuristic algorithms used to tackle these 
issues. The basic algorithm is given more than twenty cha-
otic maps to apply, and the ten approaches that perform 
the best on high-dimensional optimization test issues are 
considered for performance assessment. A comprehensive 
statistical study is carried out, and chaotic forms of MRFO 
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have been used to successfully handle all forty test issues, 
including unimodal and multimodal functions. The chaotic 
MRFO variants also preserve the thermo-economic design 
optimization of an air-fin cooler to test their optimiza-
tion skills across complex engineering design constraints. 
Ten important air fin cooler design variables are tuned 
for total annual cost rates. Comparing the preliminary 
design to the five best chaotic MRFO algorithms’ opti-
mum solutions. MRFO with chaotic operators improves 
this thermal design issue’s fitness function. The MRFO 
chaotic algorithm was used to estimate transformer vari-
ables in the model presented [39]. The assessed variables 
acquired using the suggested optimization methods and 
fitness function are compared to the values obtained using 
the IEEE-recommended traditional test approach. The 
related values are derived using the approaches previously 
described in the literature. It is done to see if there is a 
statistically significant difference between the two sets of 
findings. The fitness function given guarantees that the 
natural copper and no-load losses are reflected in the pre-
dicted transformer variables and that the estimated trans-
former output characteristics coincide with the empiri-
cally acquired curves. This is accomplished by ensuring 
that the estimated transformer variables are represented 
accurately. Experimental parameter identification tests are 
carried out to demonstrate that the proposed parameter 
estimation algorithms are practical. The experimentally 
determined transformer variables are then compared to 
the estimated variables, and the correlation between the 
two is examined.

3.2.2  Deep Learning

Deep learning neural networks using MRFO are broken 
down and discussed in this section. The convolutional neu-
ral network (CNN), long short-term memory (LSTM) net-
work, and gated recurrent units (GRU) networks are broken 

down and examined in this section. CNN is analogous to 
ANNs, which often use multi-layered perceptron to reduce 
the amount of data that must be processed beforehand. This 
kind of network comprises neurons with weights and biases 
that may be modified via training (adjusted) [40]. Each neu-
ron takes many inputs, calculates the product of the conse-
quences associated with those inputs, and then eventually 
uses a nonlinear transformation function to provide a result. 
A loss function, often an SVM or a Softmax, is typically 
implemented in the topmost layer of this kind of network 
(fully connected). CNN often includes convolutional lay-
ers, pooling layers, and fully linked layers in its structure. 
The purpose of the convolution process is to extract patterns 
from the input data; as the number of layers increases, the 
network can extract more difficult habits from the practices 
it has already extracted. The characteristics derived from 
the convolutional layer have many dimensions in total. The 
pooling layer is in charge of lowering the number of dimen-
sions. The fully connected layer combines all the local fea-
tures and produces the final feature as the output. In a broad 
sense, an LSTM is understood to be a modified form of RNN 
that circumvents the restrictions of the conventional RNN. 
LSTM can learn dependencies and memorize vast volumes 
of data for extended periods [41]. It also has a significant 
potential for learning new information. Table 3 outlines the 
benefits and drawbacks of using MRFO for Deep Learning.

3.2.3  Elite Search Pool (ESP)

The random selection of reference locations hinders the 
exploitation potential of MRFO during the early iterations 
of the process. When used, chain foraging often leads the 
algorithm to a locally optimal solution. Furthermore, the 
method has the disadvantage of decreasing population diver-
sity in subsequent iterations of the procedure. A modified 
version of the MRFO that uses three different techniques is 
being presented as a solution to these issues [56]. This study 
establishes an elite search pool (ESP) to increase exploita-
tion. Using adaptive control parameter (ACP) techniques, 
MRFO’s exploration range was broadened in early iterations 
while exploitation precision was increased in later iterations, 
balancing exploring and exploiting capabilities. A distribu-
tion estimating approach (DES) was employed to assist con-
vergence by shifting evolutionary change utilizing dominant 
population information. Twenty-three conventional test func-
tions and the CEC 2017 test suite validated the M-MRFO. 
The Friedman, Wilcoxon, and Iman-Davenport tests verified 
the findings. By tackling three engineering design obstacles, 
they showed that M-MRFO could solve real-world prob-
lems. Its findings show that the performance of MRFO may 
be significantly enhanced by using the enhancement tech-
nique outlined in this study. The M-MRFO market is quite 
competitive.

Fig. 13  Number of papers by improved MRFO
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3.2.4  Fuzzy

In recent years, several techniques for frequent item sets and 
association rule mining (ARM) have been shown; neverthe-
less, the performances based on scalability and processing 
time are still regarded to be a severe shortcoming, which 
results in the solutions obtained having inferior quality. 
This paper presents three key stages as a solution to such 
drawbacks. These phases are the pre-processing data phase, 
frequent item set mining, and ARM. Each of these phases 
is designed to overcome a specific limitation. During the 
pre-processing data phase, the acquired Twitter datasets 
are pre-processed to eliminate excessive data and trans-
form them into a suitable format for further mining. The 
data mining phase follows this phase. An Apriori algorithm 
mines frequent item sets during the process phase. It allows 
for the precise mining of standard item sets. The Fuzzy 
MRFO (FMRF) [57] optimization technique is used dur-
ing the ARM phase of the process. This approach includes 
the development of association rules from the enormous 
item sets, with the end goal being to achieve the lowest 
confidence and minimum support value. The experimental 
analysis and the comparative performances are carried out 
for various simulation measures, and the findings indicated 
that the suggested technique gives compelling performances 
when compared with a variety of other current approaches.

It is necessary to have a method that is both effective 
and capable of producing precise results when classifying 
cancers. Enhanced ANFIS (EANFIS) is employed to detect 
cancer genes to circumvent this problem. The amount of 
time it takes for ANFIS to converge on a solution increases 
throughout the learning process; hence, to circumvent this 
issue and enhance the overall classification performance, 
MRFO is hybridized along with ANFIS. The MRFO, like 
the ANFIS, is a hybrid to select the optimum variables [58]. 
The performance of the ANFIS-based cancer detection 
was significantly improved due to these ideal settings. The 
Ensemble Kalman Filter (ENKF) method is used in the first 
phase of the classification procedure to perform pre-process-
ing on the data that will later serve as an input to the process. 
After the preprocessing stage has been completed, an adap-
tive density-based spatial clustering with noise (ADBSCAN) 
clustering method is applied to group genes with similar 
features. In the final phase, the performance of the developed 
and improved ANFIS is evaluated using a variety of metrics, 
such as f-measure, recall, accuracy, sensitivity, precision, 
and specificity. The findings demonstrated that ANFIS-
MRFO is superior to the competition. As a result, Maximum 
PowerPoint Tracking (MPPT) control is significant to con-
tinually monitor the ideal operating point despite changes 
in operating conditions. A Maximum Power Point Tracking 

(MPPT) method based on enhanced fuzzy logic control 
(FLC) is proposed [59]. The freedom and flexibility offered 
by FLC systems are used in the suggested technique, which 
aims to produce an accurate and quick-tracking controller of 
maximal PowerPoint for TEG applications. Through the use 
of MRFO, the variables of the optimal FLC have been deter-
mined. The gains of the membership functions are employed 
as choice variables throughout the optimization method, and 
the integral of the error is used as a cost function. To demon-
strate the improved FLC’s dependability, many situations in 
which the differential temperature is altered are run through. 
The results that were acquired through the use of the opti-
mized FLC are compared to those that were obtained via 
the use of traditional FLC and hill-climbing techniques. The 
preliminary results demonstrate that the suggested design, 
which incorporates characteristics of both MRFO and FLC, 
provides a potential solution for MPPT in TEG systems. 
The proposed improved FLC technique delivers higher per-
formance by reducing the variations in the output power in 
the different analyzed situations. It allows the approach to 
be used in a broader range of applications. In addition, the 
suggested improved FLC approach can continuously moni-
tor the maximum power from TEG at various temperatures 
on both the hot and cold sides, in addition to fluctuations in 
the output load.

An improved version of the MRFO is offered as a method 
for estimating the Optimal Power Flow (OPF) in electric 
power networks, with or without the inclusion of newly 
designed VSC stations. The planned IMRFO has as its goal 
the reduction of total expenditures on fuel, as well as total 
emissions into the environment and actual losses in electri-
cal output [60]. The manta ray feeding activities are mod-
eled in the MRFO so researchers can study them. MRFO 
has been enhanced to deal with several goals by adding an 
outer store for those whom Pareto does not dominate. Adap-
tive variation in the shape of the fitness function is achieved 
by repeatedly altering the participants’ weights. To select 
an appropriate operating point from the Pareto set that was 
generated, a TOPSIS method is also implemented. Both the 
traditional IEEE 30-bus system, which operates as an AC 
meshed power system, and the modified IEEE 30-bus sys-
tem, which operates as a hybrid AC/MDC interwoven power 
system that incorporates developing VSC stations, are used 
here to demonstrate several applications of the proposed 
IMRFO. The traditional IEEE 30-bus system functions as 
an AC meshed power system. The simulation findings indi-
cate that the suggested algorithm has superior efficiency and 
resilience characteristics compared to the other algorithms. 
In addition, the proposed method may find several well-
distributed Pareto solutions that meet the necessary criteria 
regarding technology, economics, and the environment.
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3.2.5  Levy Flight

Accurate short-term load forecasting has the potential to 
cut down on the shutdown reserve and rotational reserve of 
generating units, which has direct repercussions on the eco-
nomic advantages, stability, and safety of the power system. 
A load forecasting technique based on an enhanced manta 
ray algorithm to optimize the BP neural network is suggested 
to address the drawbacks of BP neural networks, which 
include their sensitivity to beginning value and propensity to 
slip into local optimization easily. The Levy Flight strategy 
[61] is used to improve the MRFO location update formula, 
the algorithm’s regional and global search performance, the 
algorithm’s ability to leap out of the local optimization, the 
weight and threshold of the BP network, and the creation of 
an optimization model for short-term load forecasting. The 
results show that the updated prediction model has higher 
accuracy and faster convergence.

Image segmentation is beneficial in many aspects of 
day-to-day living. The problem of unpredictability plagues 
traditional K-means image segmentation. It is prone to set-
tling into a local optimum, decreasing the quality of the seg-
mentation generated by the approach somewhat. A K-means 
picture segmentation approach using Improved MRFO 
(IMRFO) has been offered as a means of making the occur-
rences that were discussed before more accessible. IMRFO 
employs Levy Flight as a means of enhancing the adapt-
ability of individual manta rays and then proposes random 
walk learning as a means of preventing the algorithm from 
arriving at its optimal local state [62].

In conclusion, the learning principle of PSO is incorpo-
rated to increase the model’s convergence accuracy. This, 
in turn, significantly enhances the algorithm’s capacity to 
optimize both globally and locally at the same time. Because 
there is less of a chance that K-means may settle on a local 
optimum, the optimized version of K-means maintains a 
higher level of stability. Within the context of the 12 stand-
ard test functions, comparisons are made between IMRFO, 
seven fundamental algorithms, and four variation algo-
rithms. IMRFO has a better ability for optimization, accord-
ing to the results of both the optimization index and the 
statistical test. In the course of the investigation, they looked 
at eight different underwater pictures using eleven different 
algorithms. The PSNR, FSIM, and SSIM of IMRFO in each 
picture, are all greatly improved, according to the findings. 
In the meanwhile, the performance of the enhanced K-means 
picture segmentation is much improved.

In [63], they propose a novel technique for MRFO that 
employs Latin hypercube sampling and collaborative learn-
ing to overcome the challenges caused by the MRFO’s 
faults. A sluggish convergence rate and trouble breaking 
out of a local optimum are two examples of these issues. 
Latin hypercube sampling, often known as LHS, is applied 

first to the population. The results of the testing show that 
the improved algorithm can significantly improve the initial 
method’s convergence time and optimization accuracy. In 
addition, the revised approach is used to optimize the cover-
age of wireless sensor networks (WSNs). The findings of the 
experiments show that the modified form enhances network 
coverage by about 3% compared to the technique used ini-
tially. Additionally, the improved approach leads to a more 
appropriate optimized node distribution.

An improved MRFO, abbreviated IMRFO, has been 
suggested to more precisely determine MR damper models’ 
control variables. The new algorithm constructs a searching 
control factor following MRFO’s limited capacity for explo-
ration, which has the potential to expand the algorithm's 
worldwide exploration effectively. An adaptive weight coef-
ficient based on the Levy Flight has been created [64] to 
avoid the early convergence of the optimal local solution. 
The IMRFO is also used to determine the control variables 
of MR dampers. The simulation results confirmed the IMR-
FO's efficiency and usefulness in a wide range of technologi-
cal applications.

A better method than the one currently in use has been 
developed to model and simulate a proton exchange mem-
brane fuel cell (PEMFC) system. The primary goal is to 
attain the highest possible level of agreement between the 
experimental and predicted output voltages by reducing the 
sum of squared error (SSE) as much as possible. A modi-
fied metaheuristic with the working title Balanced MRFO 
(BMRFO) has been devised to reduce the error value to its 
absolute minimum. It is likely that, in certain cases, prema-
ture convergence happened as a result of the random popula-
tion selection in each iteration, causing the running time to 
rise. The MRFO algorithm may be improved via the use of a 
variety of different approaches. The Levy Flight mechanism 
is the first one that is used [65]. The provision of the local 
search location is accomplished via the use of this mecha-
nism utilizing a random walk behavior. It is recommended 
that the devised algorithm be used to resolve the issue of pre-
mature convergence and increase the method’s variety. After 
executing 30 separate iterations of the suggested BMRFO 
algorithm and contrasting it with other algorithms found in 
the literature, it was discovered that the proposed technique 
produced greater convergence in speed and accuracy. In 
most studies, Levy Flight has been used for optimization 
[66, 67]. Levy Flight leads to finding the best solutions by 
fully searching the problem space [68].

The most important Levy Flight objectives in MRFO are 
illustrated in Fig. 14.

3.2.6  Machine Learning

To simulate the ultrasonic welding of a polymeric material 
mix, a novel approach based on a hybrid kind of artificial 
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intelligence has been devised. In the proposed approach, an 
Ensemble Random Vector Functional Link (ERVFL) model 
is combined with a GBO. A series of welding studies were 
carried out on injection-molded combinations of Acryloni-
trile Butadiene Styrene (ABS) and polycarbonate. The tests 
were planned using the L27 orthogonal array, which took 
into account three process variables (vibration amplitude, 
welding duration, and applied pressure,) and two reactions 
(joint strength and average temperature). The data from the 
trials were then used to “train” the model that had been cre-
ated. It was compared to both pure ERVFL and two fine-
tuned ERVFL models (ERVFL-SCA and ERVFL-MRFO), 
in which ERVFL is paired with either the Sine Cosine 
Algorithm (SCA) or the MRFO [69]. It was done so that 
the correctness of the model could be verified. Five differ-
ent statistical methods were used to assess the four models. 
ERVFL-GBO has the highest coefficient of determination, 
the lowest root-mean-square error, and the lowest mean rela-
tive error, coefficient of variance, and mean absolute error 
when compared to other models. It indicates that it has a 
higher level of accuracy than other models that have been 
tested.

In other areas, such as solar generating units, MRFO has 
achieved success that augurs well for the company's future. 
SVM provides findings with a high level of accuracy, this 
classification technique is the one that is used the most often 
in cancer research, mainly when dealing with microarray 
data. A hybrid approach is presented to choose the best pre-
dictive and informative genes for cancer classification [70]. 
It is done to capitalize on the benefits offered by both the 
MRFO and the SVM algorithms. The great dimensionality 
and complexity of the microarray data provide particular 

challenges for the MRFO optimization method, just as they 
do for other optimization approaches. The minimal redun-
dancy maximum relevance (MRMR) approach is used as a 
preprocessing step to resolve issues of this kind and enhance 
overall performance. The experiments' results show that our 
proposed method delivers the most significant degree of pre-
cision with the least amount of labor required and the fewest 
number of informative genes.

Fiber-reinforced polymer, also known as FRP, in addition 
to its high tensile strength and low self-weight, also pos-
sesses several additional benefits. These advantages include 
resistance to corrosion, high durability, and ease of construc-
tion, which positions FRP as one of the ideal choices for 
restoring concrete structures. Calculating the bond strength 
between the two materials is difficult due to the complicated 
binding behavior of the FRP-Concrete (FRPC) interface. 
As a result, a good modeling framework is required. The 
accuracy of these models in predicting binding strength is 
evaluated using a large database of 969 distinct experimental 
samples. The RUN-ANN model more precisely evaluates 
interfacial-bond strength than the BES-ANN and DFDB-
MRFO techniques. Furthermore, the Shapley Additive 
Explanations (SHAP) approach is employed to aid compre-
hension of the best model and to study how the model’s 
features influence its output[71]. The RUN-ANN algorithm 
outperformed mechanically based methods. According to 
SHAP and the sensitivity analysis technique, the length and 
width of FRP linkages have a greater effect on the final pre-
diction conclusions.

The model in question is the Extreme Learning Machine 
(ELM) optimized by MRFO, referred to in the following as 
MRFO-ELM [72]. Following the guidelines of this hybrid 

Fig. 14  The most critical Levy 
Flight goals in MRFO
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model, the mean impact value approach is used to assess 
and distinguish the significance of the thirteen elements 
that influence the outcome. In addition, three different sce-
narios will be used to undertake the projection of China’s 
CO2 emissions from its transportation sector. According 
to the empirical findings, the suggested MRFO-ELM has 
outstanding performance in terms of both the optimization 
seeking velocity and the prediction accuracy. While this is 
happening, it has been shown that the degree to which vehi-
cles are electrified is one of the main elements determining 
China’s total CO2 emissions from transportation. Under the 
conditions of the baseline model, the CO2 emissions from 
transport in China would reach their highest point in 2039. 
Under sustainable development and fast growth scenarios, 
emissions would peak by 2035 or 2043. The peak years put 
China under enormous pressure to cut its existing carbon 
emissions from transportation. At the same time, active 
policy modifications can potentially encourage the emis-
sion peak to occur sooner and successfully. These results 
demonstrated that China must improve its energy mix and 
encourage the replacement of traditional energy sources with 
electric energy in line with urbanization to reduce transport 
sector CO2 emissions.

It was suggested that a feed forward neural network 
(FFNN) model based on the MRFO algorithm be used to 
predict the rates of electric energy consumption in Bursa, a 
Turkish industrial city with a rapidly rising economy [73]. 
Data collection is required for the proposed model, which 
includes mean values for environmental conditions, days of 
the week, and electric energy consumption rates. The results 
of these simulations determined the appropriate weight 
and bias coefficient values for the various network topolo-
gies. The proposed technique was validated by applying it 
to five categorization difficulties reported in recent years, 
which varied in complexity. The findings of the simulation 
were statistically examined and compared to those of other 
approaches. Simulation findings from both datasets reveal 
that the MRFO-trained neural network model outperformed 
the other strategies in the five classification tasks and the 
prediction of electrical energy consumption.

For feature extraction, many electrocardiogram signal 
descriptors based on one-dimensional local binary patterns, 
and higher-order statistical, wavelet, and morphological 
information have been presented. A novel hybrid elec-
trocardiogram arrhythmia classification technique called 
MRFO–SVM has been developed for use in feature selec-
tion and classification procedures [74]. These approaches 
combine the MRFO metaheuristic algorithm and the SVM. 
The novel MRFO–SVM approach was trained using data 
from the MIT-BIH Arrhythmia database, which included 
six aberrant and one normal heartbeat. In experimental 
findings of electrocardiogram arrhythmia classification, 
the MRFO–SVM demonstrated superior performance than 

seven well-known metaheuristic algorithms, with an overall 
classification accuracy of 98.26%.

3.2.7  Mutation Strategy

The primary challenge in several metaheuristic strategies is 
becoming stuck in local solutions. A changed search strat-
egy becomes a more appealing method as a solution to such 
limitations since it improves the performance of the search 
agents. It offers a novel update to MRFO to address that 
algorithm's most significant flaws while simultaneously 
addressing engineering and global optimization issues. The 
recommended version depicts an integrated form of MRFO 
that comprises the triangular mutation operator and an 
orthogonal learning technique [75]. This variant is given the 
name MRTMO. It is believed that the two strategies will pro-
duce a stable equilibrium between the algorithm cores and 
provide a dependable mechanism for directing the search 
agents during optimization. Six engineering problems and 
CEC 2005 and CEC 2017 benchmark functions were used 
to show the performance of the proposed MRTMO. In addi-
tion, many evaluation criteria were employed to ensure the 
efficacy and robustness of the proposed MRTMO. In addi-
tion, a comprehensive analysis was conducted to evaluate 
MRTMO against other optimization algorithms already in 
existence to validate its superiority. The computational stud-
ies demonstrated that the MRTMO offered a competitive 
performance in resolving all investigated CEC optimization 
and engineering issues.

An updated MRFO is employed to provide optimal out-
comes in the form of Complex Composite Cubic Gener-
alized Ball (CCG-Ball) curves. First, a new class of cubic 
generalized Ball basis was developed to address the issues 
of form optimization for Ball curves. Next, the CCG-Ball 
curves with various shape variables based on the devel-
oped basis functions were displayed. One can modify and 
optimize the curves' shapes using the shape variables. Sec-
ond, the optimization of the form of CCG-Ball curves is 
mathematically an issue of optimization, which a swarm 
intelligence algorithm is perfectly capable of solving in a 
timely and effective manner. An improved version of the 
MRFO known as WMQIMRFO has been developed for this 
purpose. It uses control parameter modification, wavelet 
mutation, and a quadratic interpolation method to improve 
the accuracy of the native algorithm’s computations and its 
ability to escape local minima [76]. In addition, the supe-
riority of the WMQIMRFO is proven by comparisons with 
nature-inspired optimization algorithms on the well-known 
CEC 2014 and CEC 2017 test suites and four engineering 
optimization tasks, respectively. These experiments were 
conducted to validate the performance of the WMQIMRFO.

The MRFO algorithm is an effective technique for per-
formance optimization in terms of finding a theoretically 
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optimal solution to several different optimization bench-
mark functions. Compared to other algorithms consid-
ered to be state-of-the-art, it performs quite well in terms 
of accuracy. An adaptive position update sine-based for-
mula was included to make the original MRFO's explora-
tion and exploitation techniques more effective [77]. It is 
evaluated using evolutionary benchmark functions known 
as CEC to demonstrate the proposed algorithm’s accuracy 
performance. A flexible manipulator system is also used 
to improve proportional-derivative (PD) control. The per-
formance test results showed that the proposed adaptive 
algorithm performed much better in terms of accuracy than 
the MRFO that was previously used. The technique of PD 
control optimization has been used, and the results dem-
onstrate that the control strategy improved by the recom-
mended adaptive-somersault algorithm surpasses the strat-
egy improved by the original algorithm.

The efficiency of a high-temperature proton exchange 
membrane fuel cell was investigated. This was accomplished 
by estimating the output voltage of the cell under a vari-
ety of different operating circumstances by making use of 
semi-experimental relationships. A customized iteration of 
the MRFO is responsible for carrying out the system opti-
mization. However, it has been created in certain instances. 
In certain cases, The MRFO exhibited excellent results in 
addressing the optimization problems, but this was a cause 
for concern. The self-adaptive weighting strategy is used as 

the mutation mechanism [78]. The rate at which the algo-
rithm converged was sped up by this method. The early can-
didates swim by a big step size in the MRFO, but the later 
iterations lower the step size to conduct a local search inside 
the solution space. Balances local and worldwide searches. 
The newly developed method is then evaluated in light of 
previously published algorithms and the outcomes of com-
puter simulations, both of which demonstrated a high level 
of congruence with one another.

3.2.8  Opposition‑Based Learning (OBL)

Tizhoosh [79] came up with the idea for the machine learning 
technique known as OBL. To improve an algorithm’s capac-
ity for optimization, OBL may acquire knowledge in the 
opposite direction of a present solution and investigate areas 
of search space unfamiliar to it. When using OBL, it is pos-
sible to increase the variety of solutions within a population, 
and the algorithm has a greater chance of breaking free from 
a locally optimal solution. Numerous research has shown 
that OBL–MRFO can improve both the convergence rate 
of algorithms and the quality of the solutions they produce. 
The objective of presenting the OBL approach is to provide 
a method that can improve the performance of optimiza-
tion algorithms. It is required for the candidate solutions 
generated by a stochastic iteration technique as well as their 

Table 4  A general review of OBL-MRFO in the optimization problems

Refs Application Advantages Disadvantages Publisher Year

[80] The magnetic ball suspension system It has been suggested that OBL-
MRFO might be a suitable solution 
and an accelerated coefficient

High execution time Springer 2022

[81] PID Control Utilizing OBL to improve local 
search capabilities (exploitation) to 
get optimal and more appropriate 
solutions

High iterations, High execution time Springer 2022

[82] Global Optimization Exceptional performance and rapid 
convergence toward discovering the 
best solution

High iterations Springer 2022

[83] Detection of fault location in the 
Distribution Network

Combining the MRFO algorithm's 
strengths of robust exploitation and 
high exploration capacity in the 
search space to provide a competi-
tive edge

High iterations, High execution time MDPI 2022

[84] Multi-level threshold using COVID-
19 CT images

This one has a rapid convergence rate 
compared to previous optimization 
methods published

High execution time Springer 2021

[85] Minimization of energy consumption Utilizing OBL to improve local 
search capabilities (exploitation) to 
get optimal and more appropriate 
solutions

High execution time, High iterations ScienceDirect 2021

[86] Optimization Problems superior functionality and quick 
convergence while selecting the 
best option

High execution time IEEE 2020
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inverse solutions identified in contrasting parts of the search 
space. These solutions approach the global optimum more 
closely than a random solution. Table 4 provides a detailed 
review of OBL-role MRFOs in optimization algorithms.

The most important OBL targets for the MRFO are dis-
played in Fig. 15.

3.2.9  Q‑Learning

In the Q-Learning algorithm, the agent uses a value-based 
method to determine what would be the most beneficial 
course of action given the present state of the system. The 
agent acquires new knowledge as a result of its activities 
and conditions. Because an agent conducts random acts, and 
then receives a reward or penalty. Eventually, an experience 
is formed for the agent based on the behaviors that lead to 
rewards; this algorithm eliminates the need for a predefined 
policy. In the Q-Learning method, a table with the name 
Q-Table is constructed. The agent then makes an effort to 
update its state so that it can choose the optimal action based 
on the values in the Q-Table, taking into account the many 
activities it can do. As a result, every agent in action must 
choose whether to investigate or benefit from the surround-
ing environment.

3.2.10  Quantum Computing

The increased usage of photovoltaic systems in recent years 
has sparked interest in investigating their efficiency, particu-
larly in manufacturing these systems. In [87], a modification 
of the MRFO technique is provided to extract the variables 
of the Three-Diode photovoltaic Model (TDM). In the evalu-
ation process, many assessment methods are utilized, such 

as the Root-Mean-Square-Error (RMSE) metric for accu-
racy and statistical analysis for establishing robustness. The 
results produced by MRFO and any other optimization tech-
nique explored are not as accurate as those obtained by a 
modification of the MRFO technique.

3.2.11  Spiral

A spiral-based MRFO (SMRFO) was developed to maximize 
the efficacy of PID control over a flexible manipulator [88]. 
The first version of MRFO offers performance comparable 
to others regarding its precision in determining the best pos-
sible solution. The system’s performance may improve even 
more if the balanced exploration and exploitation strategies 

Fig. 15  Shows the most impor-
tant OBL targets for the MRFO

Fig. 16  Two distinct approaches are used to calculate the proportion 
of MRFO variations
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utilized throughout a search operation can be improved. It 
has been suggested that the MRFO's Somersault phase might 
need some revisions. A spiral approach is employed as part 
of the procedure during the Somersault phase of the MRFO. 
It is done to direct all agents in a spiral-based trajectory 
toward the best agent in each trajectory iteration. The spiral 
approach also offers a dynamic step size scheme that may 
be used by all search agents throughout the process. The 
SMRFO is evaluated based on benchmark functions, each 
comprising a different fitness landscape. A PID controller 
for a flexible manipulator system is optimized using the 
SMRFO to resolve an engineering issue. It is carried out 
to enhance the system. The SMRFO performs significantly 
better than the original MRFO, according to the accuracy 
performance test results on benchmark functions. SMRFO 
and MRFO both optimize the PID control to an acceptable 
level to address the technical problem. Compared to the 
MRFO-PID, the SMRFO-PID control does a better job of 
following the bang-bang test input. This evidence shows the 
advantage of the SMRFO over the MRFO.

3.3  Variants of SSA

In this section, Binary and Multi-objective are checked with 
the MRFO algorithm. Figure 16 displays the proportion of 
MRFO variations using two alternative approaches. It indi-
cates that the binary and multi-objective percentages are 
31% and 69%, respectively.

3.3.1  Binary

There is a unique time-varying modified sigmoid transfer 
function with two time-varying updating techniques that 
have been offered as a strategy for binarization for WOA, 
PSO, GWO, and HHO, in addition to MRFO. This function 
can be used for all of these things. The unique binary algo-
rithms BWOA, BPSO, BGWOA, and BMRFO have been 
implemented to solve the problem of choosing descriptors 
for the supervised Amphetamine Type Stimulants (ATS) 
drug classification task. This was done to address the prob-
lem [89]. These algorithms are all of the binary variety. This 
investigation aims to enhance both the rate of convergence 
and the precision of categorization. Experiments were run 
on a particular chemical dataset comprising molecular 
descriptors of non-ATS and ATS medications to assess the 
performance of the proposed algorithms. The compiled find-
ings provided evidence that the suggested methods displayed 
promising performances on the chemical dataset. One of 
these outcomes was near-optimal convergence, as well as 
enhanced classification accuracy, quicker processing, and a 
size decrease in the descriptors that was rather significant.

The intrusion detection system (IDS) is one of the most 
important fundamentals for establishing and maintaining 

security measures in network settings. It is typically used 
to identify, monitor, and detect malicious threats. The most 
current trend delivers an enhanced detection rate by detect-
ing intruders using metaheuristics and machine-learning 
approaches. Consequently, the objective of this study was 
to develop an enhanced binary MRFO approach for intrusion 
detection based on an adaptive S-shape function and a Ran-
dom Forest (RF) classifier [90]. It is intended to determine 
which characteristics are the most important for intrusion 
detection and then exclude features from the datasets that 
are redundant or not relevant. In addition, the RF is used in 
the process of feature assessment as well as the construction 
of the IDS model. The suggested technique was verified and 
compared to existing methods by utilizing two benchmark 
IDs, namely CIC-IDS2017 and NSL-KDD datasets. The 
researchers used these datasets. According to the findings, 
the given model picked 38 features for the CIC-IDS2017 
dataset with an accuracy of 99.3 percent, 99.6 percent pre-
cision, 94.3 percent recall, and 96.9 percent f-measure. In 
addition, the given model chose 22 features for the NSL-
KDD dataset with precision, recall, F-measure, and accu-
racy scores of 98.8 percent, 96.2 percent, and 96.5 percent, 
respectively.

This study implements swarm intelligence-based feature 
selection strategies to boost classifier performance when 
classifying medicines as amphetamine-type stimulants 
(ATS). A recent study has recommended that 3D Exact Leg-
endre Moment Invariants (3D-ELMI) molecular descriptors 
be used to show the 3D molecular structure of anti-tubercu-
lous drugs. These characteristics make up the dataset that is 
used. However, a classifier's performance could degrade if it 
has a lot of descriptors. Three swarm methods are integrated 
with a K-Nearest Neighbor (KNN) classifier in the wrapper 
feature selection technique. This technique selects only per-
tinent descriptors for the ATS drug categorization challenge 
[91]. In this work, three swarm algorithms are employed. 
Binary versions of swarm algorithms, such as the new 
Binary MRFO and the binary whale optimization Algorithm 
(BWOA), have been developed for feature selection. These 
binary swarm methods are aided by an S-shaped or sigmoid 
transfer function. Their performance is reviewed and graded 
using seven distinct performance evaluation criteria. In addi-
tion, the best feature subset was tested using a total of seven 
distinct classifiers. The findings of this research have shown 
that BWOA is superior to other methods because it achieves 
maximum classification accuracy while maintaining a mod-
est feature size.

In machine learning and data mining, feature selection 
is regarded as one of the most popular fundamental con-
cepts because of its significant influence on the classifica-
tion model's overall performance. Eliminating characteristics 
that are unimportant or just partly relevant may be accom-
plished by feature selection, which, in turn, contributes to an 
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improvement in the model's overall performance. Research-
ers have used various metaheuristic optimization methods 
during their careers for the aim of feature selection because 
these strategies circumvent the restrictions associated with 
traditional optimization methodologies. A new approach to 
feature selection has been created based on a newly pre-
sented metaheuristic algorithm termed MRFO [92]. MRFO 
is helpful for problems involving continuous search space, 
they modified a binary version of MRFO so that it could be 
applied to the problem of feature selection. They utilized 
eight different transfer functions, each of which belonged 
to either the S-shaped family or the V-shaped family. They 
tested the eight different binary variants of MRFO on the 18 
different standard datasets from UCI. MRFO is superior to 
other approaches considered to be state-of-the-art in terms of 
both the classification accuracy and the number of features 
chosen.

3.3.2  Multi‑Objective Optimization

Low measurement frequency trend prediction data are often 
needed by wind power plants, however, the old multi-step 
prediction approach had poor forecast accuracy due to error 
accumulation. They offer a novel approach for predicting 
future trends in wind speed that employs fuzzy informa-
tion granulation for data preprocessing and coupled neural 
network prediction, an enhanced Multi-Objective MRFO 
(MOMRFO) based on Tent chaotic mapping and T-dist. This 
system is intended to predict wind speeds in the future. The 
improved MOMRFO demonstrates that breaking out of the 
local optimum solution is possible and provides theoretical 
evidence that the Pareto optimal solution has been reached 
[93]. As a result of simulating four sets of tests, it has been 
abundantly clear that the model satisfies the requirements 
for stability, generalization, and accuracy. As a result of 
testing the model’s capacity to produce point and interval 
predictions, it has been demonstrated that the model greatly 
improves the accuracy of trend forecasts, and it also makes a 
contribution, however little, toward finding a solution to the 
problem of accurately forecasting wind speeds.

Search algorithms that use a strategy based on Pareto’s 
archival hierarchy are the most successful ways to resolve 
multi-objective problems characterized by high degrees of 
complexity. Recently, the crowding distance method has 
been used to enhance the efficiency of the Pareto-based 
archiving technique. The MOMRFO is a technique that can 
determine the optimal solution set for a Multi-Objective 
Optimal Power Flow (MOOPF) problem [94], even when 
the fitness functions of the problem are at odds with one 
another. A technique using the Pareto archiving strategy 
based on crowding distance that is both powerful and effi-
cient was created to accomplish this goal. The effective-
ness of the newly devised approach was evaluated using 

twenty-four benchmark problems with varying structures 
and degrees of challenge, and the results were compared to 
those produced by competing algorithms. Statistical testing 
techniques were used to analyze the data gathered from the 
experimental trials and the four distinct performance indi-
cators. The investigation demonstrated that the MOMRFO 
generated competitive results on a variety of multi-objective 
optimization problems and discovered the best solutions in 
the literature for the practical MOOPF problem. In addition, 
the MOMRFO found the best solutions in the literature.

It is suggested to create a MOMRFO using components 
from the Non-dominated Sorting GA (NSGAII) [95]. It is 
only capable of solving problems with a single objective, but 
it has the potential to handle situations with multiple objec-
tives as well. Therefore, Crowding Distance (CD) tactics 
and non-dominated sorting (NS) strategies were included 
in MRFO. The NS method is a sorting strategy derived 
from Pareto’s Front. It is a quick method that may help you 
establish a positive quality of Pareto’s Front (PF). The CD 
is a mechanism that assures a good distribution of solutions 
along the PF while this is occurring. NSMRFO is the name 
of the algorithm that has been proposed. Its performance is 
evaluated using a variety of benchmark functions, and by 
statistically analyzing the hypervolume indicator, its perfor-
mance is contrasted with that of its parent. Then, to evaluate 
its performance in a real-world setting, it is put via a propor-
tional-derivative controller for an inverted pendulum system. 
When applied to benchmark functions, the NSMRFO beats 
NSGAII and optimizes proportional-derivative control for 
the inverted pendulum system to a satisfactory degree.

The MOMRFO method is used to tackle the Energy 
Management (EM) problem [65]. This approach is uti-
lized for posture prediction and incorporates an uncer-
tainty-weighted measurement error of the target feature. 
An enhanced strategy for the management of energy is pro-
vided by the multi-objective optimization problem, which 
takes into account the reduction of both costs and pollution 
as fitness functions. The model reduces overall cost and 
emissions by 3.5% and 21.33.3%, respectively. MOMRFO 
is the starting point for developing a novel algorithm for 
managing multi-objective engineering design problems 
[96]. The elitist notion has been used to preserve the whole 
list of Pareto solutions by including an external archive 
in the conventional MRFO to accomplish this objective. 
This archive is also regarded as a repository. Depending 
on the degree of density, a search agent is selected from 
it to manage the convergence and variety of the manta ray 
population. In the first step of the MOMRFO efficiency 
validation process, comprehensive experiments are per-
formed on ten test functions. The results of these studies 
were highly satisfying in terms of convergence and diver-
sity in virtually all situations. After that, it was applied to 
four engineering challenges with numerous objectives. The 
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results revealed that it had a lot of potential for addressing 
real-world problems with multiple goals.

MOMRFO employs a population archive to keep the 
non-dominated solutions discovered thus far in the explo-
ration phase [97]. The population archive is combed 
through to pick the solutions proposed by the leader to 
direct the Manta Rays population towards potentially 
fruitful search zones. Crowding distance and -dominance 
balanced variation and convergence in the likely Pareto 
set. Five bi-objective and seven three-objective test func-
tions confirmed the MOMRFO. It has also been used for 
structural design challenges such as the design of welded 
beams, speed reduction designs, and disk brake designs. 
The method is evaluated in light of its performance com-
pared to four established multi-objective metaheuristics. 
According to the study's findings, the MOMRFO surpasses 
existing multi-objective metaheuristics by giving superior 
convergence behavior with a broader variety of solutions.

A unique MRFO algorithm is proposed based on a 
non-dominated sorting strategy and calls it NSMRFO 
[98]. This strategy aims to solve optimization issues with 
several criteria. In the search and target space, the strong 
optimizer may achieve high convergence and dispersion. 
The NSMRFO algorithm uses an exclusive technique for 
sorting data. The Pareto front is archived, and the coverage 
of optimal solutions is increased by including a crowd-
ing distance and a non-dominated ranking strategy. They 
put it through a battery of tests on a variety of issues, 
including classic unconstrained and restricted functions; a 
recent benchmark suite dubbed Completions on Evolution-
ary Computing 2020 (CEC 2020) includes 24 multimodal 
optimizations and a few engineering design tasks. Wind/
solar/small-hydro power generation is used in a modified 
real-world problem known as the IEEE 30-bus optimum 
power flow.

The adoption of a MO-MRFO is recommended to 
improve the efficiency of hybrid alternating current and 
Multi-Terminal DC (MTDC) power grids [99]. The MO 
framework aims to achieve economic, technical, and envi-
ronmental reasons in the AC/MTDC transmission systems 
by reducing overall production fuel costs, transmission 
power losses, and environmental pollutants. These three 
objectives can be met by environmental pollutants, and envi-
ronmental pollutants, lowering transmission power losses, 
and lowering overall production fuel costs. The MRFO is 
modeled after three unique and autonomous manta ray forag-
ing groups. It has been improved by incorporating an addi-
tional Pareto archive to keep the non-dominated solution 
possibilities. It is modifying the form of the fitness function 
being employed repeatedly, resulting in the dynamic adapta-
tion of the fitness characteristic. Furthermore, a fuzzy deci-
sion-making technique is employed to determine the ideal 
operating point of the AC/MTDC power grids. The apps 

are evaluated on three distinct platforms. These systems, 
in addition to being an integral component of the Egyptian 
grid in the West Delta area, are also tested power systems 
for the IEEE 30-bus and IEEE 57-bus standards. Accord-
ing to the numerical results, the proposed MO-MRFO has 
much greater effectiveness and robustness indices than the 
other choices. The IEEE 33-bus and 69-bus systems, two 
well-known radial distribution power systems, have been 
integrated with Distributed Generation (DG) to be optimized 
[100]. These radial distribution power systems are examples. 
The simulation results were compared to many alternative 
optimization methodologies, depending on the circumstance. 
The MRFO produced satisfactory outcomes while requiring 
a reduced number of iterations, which resulted in significant 
time and resourced savings throughout the issue resolution 
process.

3.4  Optimization Problems

Academics study high-precision algorithms for optimization 
problems because they can explain a wide range of compli-
cated biological issues. For traditional mathematical opti-
mizations (TMO), the fitness function of the optimization 
problem must frequently satisfy both convexity and differ-
entiability. This need assures, at least in theory, that TMO 
approaches may get closer and closer to the best possible 
answer [101]. TMO cannot handle more complex optimiza-
tion problems because their fitness functions are multimodal, 
discontinuous, non-differentiable, and non-convex. Swarm 
intelligence algorithms are computer programs that replicate 
the behavior of species found in nature and are frequently 
used to solve optimization problems to achieve predeter-
mined goals.

The optimization issues are of utmost importance from 
a scientific and manufacturing point of view. It is an essen-
tial and demanding field, particularly in engineering design, 
which focuses on creating precise and efficient forms [102]. 
In addition, the viable area could only make up a small part 
of the search domain. In addition, optimization issues are 
separated into restricted and unconstrained problems accord-
ing to whether or not they include equality or inequality 
restrictions. The various approaches for solving uncon-
strained optimization issues were classified as direct search 
and gradient-based methods. Simultaneously, strategies for 
constrained optimization problems may be separated into 
indirect and natural approaches. These traditional optimi-
zation algorithms are not robust enough to perform well in 
discontinuous, multimodal, huge, and noisy search spaces. 
MRFO was developed as an alternative to more conventional 
optimization strategies to deal with optimization issues due 
to the inadequacies of such methods. The use of MRFO for 
various optimization issues is outlined in Table 5.
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Table 5  Application of MRFO to various optimization problems

Refs Application Convergence speed exploration exploitation Changing Position Publisher Year

[103] Engineering problems High High Medium Extra high ScienceDirect 2023
[104] Economic Dispatch Medium Medium Extra high Medium ScienceDirect 2023
[105] solar photovoltaic High High High Low ScienceDirect 2023
[106] Engineering problems Medium High High High ScienceDirect 2023
[107] Engineering problems High High High High ScienceDirect 2023
[108] image processing High Extra high Low Medium ScienceDirect 2023
[109] prediction High High Medium Extra high ScienceDirect 2023
[110] Engineering problems Medium Medium Extra high Medium ScienceDirect 2023
[111] Engineering problems Medium Low Medium Medium ScienceDirect 2023
[112] Engineering problems High High Low Extra high ScienceDirect 2023
[113] Engineering problems High High High Extra high ScienceDirect 2023
[114] Engineering problems High Extra high Extra high High ScienceDirect 2023
[115] solar photovoltaic Medium Low High Medium ScienceDirect 2023
[116] Engineering problems Medium Medium High Medium IEEE 2022
[117] Engineering problems Low Low High High ScienceDirect 2022
[118] Energy Management High High High Extra high MDPI 2022
[119] PID controlled Low Low Low Medium Springer 2022
[120] Engineering problems Low Low Medium High Springer 2022
[121] prediction Low Low High High ScienceDirect 2022
[122] solar photovoltaic High High Extra high Extra high ScienceDirect 2022
[123] image processing Low Low Medium High IEEE 2022
[124] Scheduling Medium Medium Low High IEEE 2022
[125] Engineering problems High High Extra high Medium tandfonline 2022
[126] optimal Allocation Low Low Medium High IEEE 2022
[127] Energy Management Low Low High Medium IEEE 2022
[128] Engineering problems Extra high Extra high High High IEEE 2022
[129] solar photovoltaic High High Extra high Extra high ScienceDirect 2022
[130] Feature Selection High High High High MDPI 2022
[131] WSNs High High High Extra high Hindawi 2022
[132] Image processing Low Medium Medium Medium Hindawi 2022
[133] cryptanalysis Medium Low High High ScienceDirect 2022
[134] Engineering problems High High Medium High IEEE 2022
[135] Engineering problems Extra high Medium High High IEEE 2022
[136] Engineering problems Medium High Extra high Low MDPI 2022
[137] Engineering problems Low Extra high High Medium MDPI 2022
[138] Engineering problems High High Extra high High MDPI 2022
[139] Engineering problems High High Medium Extra high ScienceDirect 2022
[140] Classification Medium Medium Extra high Medium ScienceDirect 2022
[141] Solar photovoltaic High High High Low MDPI 2022
[142] Engineering problems Medium Medium High High Others 2022
[143] Prediction High High High High ScienceDirect 2021
[144] Engineering problems Medium Extra high Low Medium ScienceDirect 2021
[145] Engineering problems High High Medium High Springer 2021
[146] Energy management high Extra high High High IEEE 2021
[147] Estimation Low Medium Extra high High ScienceDirect 2021
[148] solar photovoltaic High Extra high Medium High MDPI 2021
[149] Estimation Medium Medium High Extra high IEEE 2021
[150] Energy Management High High High High ScienceDirect 2021
[151] Engineering problems Medium Extra high High High IEEE 2021
[152] Engineering problems High High High Medium ScienceDirect 2021
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To perform global numerical optimization, many MRFO 
models have been presented in the research literature; each 
model seeks to profit from certain subdimensions of the 
search space intelligently. In every one of the difficulties, 
optimization methods have been used to locate the best pos-
sible design and save costs in some way (such as the amount 
of material, operational cost, precision, and reduced error). 
The number of papers that pertain to optimization issues in 
various domains is shown in Fig. 17. Most of the publica-
tions found on optimization problems are related to engi-
neering issues.

4  Results and Discussion

Even though MRFO is often regarded as the best method for 
a wide variety of optimization applications, it cannot strike 
a healthy equilibrium between exploration and exploitation. 
When it comes to multimodal functions, MRFO does not 
adequately investigate the whole area, and as a result, it often 
suffers from early convergence or loss of variety. Several 
different models have been proposed as a solution to this 
issue to address it. Most strategies, including exploration 
and exploitation, may be altered by the appropriate control 

Table 5  (continued)

Refs Application Convergence speed exploration exploitation Changing Position Publisher Year

[153] Engineering problems Low Extra high High High ScienceDirect 2021
[154] solar photovoltaic Medium Medium Low Medium ScienceDirect 2021
[155] complex problems High Medium Medium Extra high Wiley 2021
[156] Engineering problems Extra high High High High ScienceDirect 2021
[157] Optimal allocation High Extra high Extra high High ScienceDirect 2021
[158] Engineering problems Low High Medium Medium ScienceDirect 2021
[159] complex problems Medium Extra high Low High ScienceDirect 2021
[160] Image processing Low medium High Medium ScienceDirect 2021
[161] Estimation High Medium Extra high High MDPI 2021
[162] Estimation High High High Extra high MDPI 2021
[163] PID controlled Low High High High Wiley 2021
[164] prediction Medium High Extra high Extra high Others 2021
[165] Global optimization problems Medium Low Medium Medium ScienceDirect 2021
[166] Energy Management High Medium High Extra high IEEE 2021
[167] Engineering problems High High High Extra high ScienceDirect 2021
[168] Estimation High Extra high Extra high High MDPI 2021
[169] Optimal allocation Medium Medium High High MDPI 2021
[170] Engineering problems High Low High Medium MDPI 2021
[171] Economic Dispatch High High Medium High IEEE 2021
[172] Engineering problems Extra high High High High ScienceDirect 2021
[173] Energy Management Medium Medium Medium High IEEE 2021
[174] solar photovoltaic High High High Low ScienceDirect 2021
[175] Energy Management Extra high High Extra high Medium online library.Wiley 2021
[176] Economic Dispatch Medium High High High IEEE 2021
[177] Energy Management High High Extra high Extra high online library.Wiley 2021
[178] Engineering problems High High Medium Medium Springer 2021
[179] image processing Extra high Low Extra high Low ScienceDirect 2021
[180] solar photovoltaic High Medium Medium High ScienceDirect 2020
[181] Energy Management Medium Extra high High Medium IEEE 2020
[182] Energy Management High Medium Extra high High MDPI 2020
[183] Engineering problems Medium Low High High IEEE 2020
[184] Economic Dispatch High High High High IEEE 2020
[185] Engineering problems Extra high High Medium High IEEE 2020
[186] solar photovoltaic High Medium High Low IEEE 2020
[187] Engineering problems Extra high High Medium Medium IEEE 2020
[188] Engineering problems Medium High High High ScienceDirect 2020
[189] Estimation High High Extra high Extra high Online library.Wiley 2020
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variables, affecting the algorithm’s search capabilities. 
Exploration should be the initial focus of MRFO’s strategy, 
with exploitation coming later on as a natural progression. 
It is a systematic approach. In other models, the population 
size is used to alter the proportion of resources allocated to 
exploration and use. A lower population size necessitates 
a more focused investigation, whereas a more significant 
population needs a more comprehensive one. Although this 
method provides a more straightforward means to maintain 
variety, its answer is often unsatisfying. Incorrect manage-
ment of huge populations may cause data to converge to a 
single point, despite adding more function evaluations. In 
Fig. 18, the categories with the most significant percentages 
are Optimization and Improved, which both have a value of 
49 percent. Improved came in third with a value of 31 per-
cent. In light of this, the MRFO algorithm is more beneficial 
in these two domains.

The most current research in this field demonstrates that 
MRFO can tremendously resolve intricate engineering opti-
mization issues. The current research community in a variety 

of fields, including engineering problems, electrical and 
power systems, training ANNs, prediction, applied math-
ematics, WSNs, path planning, data mining and machine 
learning, and structure design, has shown an outstanding 
amount of interest in this method due to its apparent ben-
efits, which include simplicity, flexibility, a fast convergence 
speed, and stochastic nature. These benefits include the fol-
lowing: simplicity, flexibility, a fast convergence speed, and 
stochastic nature. It has received an extraordinary amount of 
attention from the scientific community. The MRFO is nota-
ble for several reasons, including that it implements both the 
exploration (global search) and exploitation (local search) 
searching strategies equitably and that it can successfully 
carry out its operations despite having a smaller number of 
variables. Consequently, it constructs a highly robust frame-
work that takes advantage of a special convergence rate.

In contrast to many other metaheuristic algorithms, 
MRFO is known to have a few shortcomings. According to 
the current body of research, the global exploration phase 
of basic MRFO is where its strength rests. However, there 
are instances when it may get mired in an optimal local solu-
tion and fail to perform the global search fully. Due to these 
limitations, researchers are urged to modify it and combine 

Fig. 17  Shows the number of 
papers belonging to optimiza-
tion problems in different fields

Fig. 18  A percentage breakdown of MRFO procedures according to 
four distinct categories

Fig. 19  Graph of the number of papers based on the year and type of 
publisher for optimization problems
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it with other tactics or metaheuristics to address high-dimen-
sional problems. The graph of the number of papers for opti-
mization problems is shown in Fig. 19. The chart is based on 
the year and the kind of publication.

They summarize the most significant advantages and dis-
advantages connected with the MRFO. Advantages of the 
MRFO algorithm are:

Low parameter count and simple implementation
Other than the population size and the number of 
repeats, there are no specific control elements. In addi-
tion, the structure is simple, and its implementation 
takes low computational work.
The straightforwardness of MRFO may be seen by 
examining the amount of computing complexity it 
entails.
High-quality solutions
Low generating costs and good convergence qualities
SSA is highly competitive in finding optimal values
balance rule between exploration and exploitation
Diversity of the population
Obtaining reliable answers efficiently while spending less 
time computing
Prevent premature convergence
Contributes to a better overall balance between local and 
global searches
short computational time computational time

And disadvantages of the MRFO algorithm are:

Inconsistency in the local and global search
premature convergence
Increase iteration with increasing the size of the problems
trapping into the local optima

However, in the same way, that other metaheuristics do, 
MRFO has a few flaws, the most notable of which are its 
early convergence, the propensity to become stuck in an 
optimal local solution, and lackluster exploration. Many 
researchers have resorted to diverse methodologies, includ-
ing chaotic, fuzzy, Lévy flight, and OBL, to increase the 
effectiveness of MRFO in the current field of research.

The chaotic MRFO is offered to attain a more incred-
ible convergence speed to preserve the variety of particles 
and produce an initial population that is evenly distributed. 
During the exploration phase, chaotic unpredictability and 
ergodicity may be used to prevent becoming stuck in local 
optimum places. It is one of the ways that the shortcomings 
of the basic MRFO algorithm can be mitigated. One of the 
most typical issues confronted by group intelligence algo-
rithms is the coordination between global and local investi-
gations. A strong capacity for global exploration may help 
guarantee a community's demographic variety. In addition, 

the high local exploration capability may help to ensure that 
the findings are accurate and precise. Therefore, it is vital to 
compromise the MRFO algorithm's global exploration and 
local exploration capabilities. The linear convergence factor 
is unable to provide an accurate representation of the actual 
optimization process. Therefore, a nonlinear convergence 
factor such as chaos has been established to achieve an equi-
librium between global and local investigation capabilities. 
The MRFO method is improved to include the chaotic algo-
rithm to preserve population variance and provide an initial 
population with uniform distribution. This modification ulti-
mately results in a higher convergence speed. An increased 
capacity to explore globally indicates that the population 
has the appropriate amount of variety, and a solid ability to 
explore locations leads to greater accuracy.

Two primary benefits come along with using Lévy Flight 
for MRFO. The Lévy Flight is a variation of a unique kind of 
random walk with many small excursions interspersed with 
a few longer ones. The Lévy flight follows a power-law step-
length distribution with a long tail, allowing MRFO to build 
possibly improved solutions. It enables MRFO to develop 
solutions that are far removed (i.e., by large jumps) from 
the present best answer. A significant number of iterations 
allows the Lévy fly to discover every critical point in the 
search region, which means that it always finds the best solu-
tion. Second, there are fewer control variables in MRFO than 
in other optimization algorithms; this implies that MRFO-
LF is significantly better suited to a wider variety of optimi-
zation issues than other optimization techniques.

In machine learning, feature selection has proven to be 
a substantial difficulty. Feature selection is regarded as an 
NP-hard task because of the ever-increasing amount of 
time needed to find the most relevant characteristics within 
a dataset with a high dimension. MRFO is a highly effec-
tive and efficient method for selecting the optimal subset of 
a dataset, and they can do it while preserving the model's 
accuracy.

5  Conclusion and Future Works

The advantages and disadvantages of the MRFO for 
metaheuristic optimization algorithm researchers have been 
collected from over 154 research articles. The references 
published between the beginning of 2020 and the beginning 
of 2022 are summarized in this study in an all-encompassing 
and complete manner. The majority of these papers detailed 
the various iterations of the MRFO, where the proposed ver-
sions of the MRFO support enhancing the original MRFO’s 
ability to address various types of optimization problems, 
including multi-objective, binary, chaotic, modification, 
hybridization, and optimization problems. The majority of 
these papers were written in the form of academic papers. In 
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addition, describe how the MRFO can be utilized in a variety 
of contexts and engineering applications. In the areas where 
researchers considered it helpful and advantageous to handle 
optimization problems, the findings gained through stud-
ies and evaluations of these references provide supporting 
evidence. As a result of this, it is considered that this review 
paper might be suitable and valuable for students, academic 
researchers, professionals, and engineers. In addition to this, 
it has the potential to serve as an original and exhaustive ref-
erence for forthcoming academic papers and books that deal 
with the MRFO, optimization techniques, and metaheuristic 
optimization algorithms.

In conclusion, it can be said that there is still room or 
chance for performance enhancement and that the MRFO 
has the potential to be expanded into other hybridizations, 
modifications, modified versions, and variations depending 
on the requirements of the specific challenges. As a con-
sequence, the findings of this review paper could be used 
by interested researchers to demonstrate various methods 
for achieving an improvement goal. These methods need to 
consider the applications, benefits, and drawbacks of other 
methodologies that researchers have introduced. There are 
some limitations to this paper, which are as follows:

Lack of empirical studies: although the paper mentions 
the effectiveness of the MRFO algorithm in solving real-
world problems, it does not provide any empirical studies 
to validate its claims. The paper only provides a statis-
tical analysis of the studies that have used the MRFO 
algorithm.
Limited scope: the paper only focuses on the MRFO 
algorithm and does not compare it with other meta-
heuristic algorithms. It also does not provide a com-
prehensive analysis of the strengths and weaknesses of 
the MRFO algorithm. Limited discussion on parameter 
tuning: The paper briefly mentions the impact of dif-
ferent parameters and operators on the performance of 
the MRFO algorithm. However, it does not provide a 
detailed discussion on how to tune these parameters to 
achieve better results.
Lack of practical examples: the paper does not provide 
practical examples of the MRFO algorithm's applica-
tion in solving real-world problems. It only provides a 
brief overview of the engineering applications of the 
MRFO algorithm.

This paper suggests that researchers should focus on 
developing hybrid versions of the MRFO algorithm by 
combining it with other meta-heuristic algorithms to 
improve its performance and overcome its limitations. 
The paper also recommends exploring the application of 
the MRFO algorithm in dynamic environments and multi-
objective optimization problems. Additionally, the paper 

suggests that researchers should investigate the impact of 
different parameters and operators on the performance 
of the MRFO algorithm. In terms of potential paths for 
the future, we propose making use of and improving the 
MRFO by including additional method components to 
make more advancements in the resolution of a variety of 
optimization issues. In our following study, we are going 
to concentrate on the following points of view:

Using MRFO to solve multi-objective optimization 
problems.
Changing the MRFO to address outstanding optimiza-
tion problems
MRFO adaptation to address unsolvable optimization 
problems via MRFO
The MRFO is used to address multi-objective optimiza-
tion problems.
It involves adopting the MRFO to deal with real-world 
challenges such as NP-hard and discrete optimization 
problems.
It combines the MRFO with additional metaheuristic 
algorithms to meet real-world challenges such as NP-
hard and discrete optimization problems.
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