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Abstract
Lower Limb Exoskeletons (LLEs) are receiving increasing attention for supporting activities of daily living. In such active 
systems, an intelligent controller may be indispensable. In this paper, we proposed a locomotion intention recognition system 
based on time series data sets derived from human motion signals. Composed of input data and Deep Learning (DL) algo-
rithms, this framework enables the detection and prediction of users’ movement patterns. This makes it possible to predict 
the detection of locomotion modes, allowing the LLEs to provide smooth and seamless assistance. The pre-processed eight 
subjects were used as input to classify four scenes: Standing/Walking on Level Ground (S/WOLG), Up the Stairs (US), Down 
the Stairs (DS), and Walking on Grass (WOG). The result showed that the ResNet performed optimally compared to four 
algorithms (CNN, CNN-LSTM, ResNet, and ResNet-Att) with an approximate evaluation indicator of 100%. It is expected 
that the proposed locomotion intention system will significantly improve the safety and the effectiveness of LLE due to its 
high accuracy and predictive performance.
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1 Introduction

In recent years, wearable robots have a promising future and 
can physically assist humans in locomotion [1]. In particu-
lar, LLEs are increasingly used and noticed by the public. 
Although wearable technology is promising, its control sys-
tem needs to be further developed. Humans and robots need 
to work together to perform repetitive activities in applica-
tions, such as robot-assisted rehabilitation, leg exoskeletons, 
and others [2, 3]. The human–robot system may pose a seri-
ous problem. In fact, even an occasional wrong action while 
wearing a LLEs can cause irreversible damage to the human 
body [4]. Therefore, automatic recognition of the current 
state of human movement is a prerequisite for LLEs.

However, most current commercial exoskeletons, such 
as the Össur Power Knee prosthesis, ReWalk, and Indego 
exoskeletons [5, 6], generally communicate the intention to 
move by pressing the control button or performing abnormal 
body movements. This technique is not real-time capable 
and usually carries a risk of physical harm. By overcom-
ing the interruptions from people and the environment, the 
metabolic cost of a person can be decreased by employing an 
effective control approach [7]. A complete intelligent inten-
tion detection system needs to be applied to LLEs to achieve 
safe performance.

Based on the data obtained from the wearer's movements, 
intention recognition can predict upcoming movements. Sev-
eral works have completed intention recognition with sensor 
fusion to improve performance [8, 9]. This method relies on 
manual extraction, especially expert knowledge, to extract 
useful features.

DL can automatically extract features and is suitable for 
intent detection. In many researches, cameras are used to 
collect environmental data and apply a set of image classi-
fication algorithms [4, 10]. While this method can provide 
the desired classification, it wastes computational resources 
and requires expensive hardware and a long time to train 
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the model. However, time series data can respond quickly to 
classification problems and save memory. Therefore, in this 
study, time series data are adopted to predict human move-
ment intentions, and the DL method is used to improve the 
prediction accuracy.

The contributions of this work include:

(1) Processing unbalanced label data.
(2) Applying the ResNet model to time series data sets.
(3) Comparing the performance of different models and 

identifying the best performance for classifying human 
motion intentions.

The rest of the paper is organized as follows: Section 2 
describes the related work. The proposed methods and 
experiments are described in Sects. 3 and 4, respectively. 
The conclusion of this paper is presented in Sect. 5.

2  Related Work

Most of the research on human intention recognition 
involved using collected images for classification predic-
tion and human motion signals for time series classification 
prediction, fusing these data to achieve high accuracy, and 
converting images into time series or translating the latter 
into the former.

Laschowski et al. [10] also collected the “ExoNet” image 
dataset, which contains real indoor and outdoor walking 
environments. They then trained and tested more than ten 
state-of-the-art deep CNN based on the dataset. Zhang et al. 
[24] develop an end-to-end unsupervised cross-subject adap-
tation with time series datasets. Based on the MCD [25], the 
feature generator aligns the features of the source and target 
domains to fool the domain classifier until it is unable to 
detect which domain the features originated from. To stabi-
lize the point cloud of the environment, a depth camera and 
an IMU are used together. The original 3D point cloud was 
reduced to 2D and classified by a neural network [26]. Hur 
et al. [27] used a novel encoding technique to convert an 
inertial sensor signal into an image with minimal distortion 
and a CNN model for image-based intention classification.

A time series dataset (human motion signal) was used to 
study intention recognition of LLE. A variety of DL network 
models were used for training and testing. In general, LSTM 
or CNN-LSTM models are applied for prediction. Table 1 
shows that LSTM is widely used for human motion signals, 
while ResNet classifies image data. We found that fewer 
studies have used ResNet in the time series datasets of LLE. 
Therefore, the following experiment was proposed to apply 

ResNet to the intention recognition of LLE, and compare it 
with CNN and CNN-LSTM.

3  Proposed Methods

In this paper, we analyze several common network struc-
tures, including CNN, CNN-LSTM, ResNet, and the exten-
sion of ResNet-Att. Recently, CNN-LSTM seems to be the 
most widely used for time series processing [17, 28]. How-
ever, ResNet could also be applied to time series data. We 
would choose the highest prediction accuracy by comparing 
several algorithms.

3.1  Overall Framework

Our proposed framework is illustrated in Fig 1. We take 
the processed time series data as input. CNN, CNN-LSTM, 
ResNet, and ResNet-Att were selected as model objects 
for comparison. ResNet, although not commonly used for 
time series data, has surprisingly achieved excellent results. 
Recently, the attention mechanism has gained great popular-
ity in DL. It refers to the human thinking mode that is able 
to scan data and focus on the desired part in the target field. 
However, we have found that the superposition of multilayer 
networks can lead to overfitting, and the attention mecha-
nism is not suitable for all network models.

3.2  Data Processing

In this paper, the public datasets in [4] are processed. 
ZHONG B et al. organized seven healthy subjects and one 
trans-tibial amputee to participate in this study. Differ-
ent locations for wearable cameras were chosen to collect 
images of the subject in the environment. IMU signals 
were also collected from sensors attached to the lower 
limbs. The lower limb device was attached to the shin 
area of the subjects. For the amputee subject, the device 
was attached to the top of the pants around the prosthetic 
socket of a passive lower limb prosthesis. A time series 
dataset containing accelerometer and gyroscope sensor 
readings and timestamps was used to predict human loco-
motion intentions.

In this dataset, we obtained four categories including flat 
ground, grass with special terrain, up and down stairs. These 
scenes are representative and have wide applicability, which 
can be used not only in LLE rehabilitation scenarios but also 
in assistive situations. In Table 2, we have labeled the ter-
rains and described the distribution of the data labels.
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Table 1  Previous recognition systems used algorithms for classification

Dataset Category References Method Description

Image Kurbis et al. [11] MobileNetV2 The development of a large-scale automated stair recognition system 
powered by MobileNetV2 was proposed to recognize indoor and 
outdoor real-world stair environments

Kemaev et al. [12] ResNet ResNet architecture and its modifications produce state-of-the-art 
results in image classification problems

Human motion signal Wang et al. [13] Hidden Semi-Markov Models The prediction method is based on Hidden Semi-Markov Models. 
The orientation of the dataset is collected by the Inertial Measure-
ment Unit

Patzer et al. [14] Hidden Markov Model Online classifications of a human wearing a LLE in two directions 
were extended

Wu et al. [15] GCN The GCNM can recognize four leg phases between the foot and 
ground, including heel strike, foot flat, heel off, and swing

Ren et al. [16] LSTM A wearable joint angle measurement device was designed for gait 
trajectory prediction, which can be used for predictive control 
through machine learning methods

Chen et al. [17] CNN—LSTM The IMU is installed on the exoskeleton to collect motion informa-
tion, which is used for gait pattern classification

Su et al. [18] LSTM LSTM was tested for generalization across participants and designed 
to learn lower limb segment trajectories using training samples

Li et al. [19] LSTM LSTM was designed for pattern recognition, such as level ground 
walking, stair ascending, stair descending, ramp ascending, and 
ramp descending

Zhu et al. [20] CNN-LSTM The feasibility of the method was verified by analyzing the gait 
prediction results of different subjects

Lu et al. [21] CNN-LSTM The model estimated the hip, knee, and ankle joint angles from 
sEMG signals in locomotion modes including walk, run, stair 
descent, stair ascent, stand-to-sit, sit-to-stand, and jump

Fusion Guo et al. [22] Machine Learning Exploring a multi-source information fusion model for exoskeleton 
gait pattern transition recognition in terms of two aspects of multi-
source information fusion strategy and multi-classifier fusion

Zhang et al. [23] CNN-LSTM A precise fusion method of EEG and sEMG using the CNN-LSTM 
model was investigated to detect lower limb active movement

Fig. 1  Experimental network framework structure
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Table 2 shows that the distribution of labels is unbal-
anced. S/WOLG labels have a high proportion, which could 
lead to dilution of some features and affect the experimental 
effect. To ensure that each label datapoint contains the same 
number (100,000), we performed a balanced resampling of 
the accelerometer and gyroscope signal data. The window 
size and the sliding window were set to 60 and 4, respec-
tively. Thus, a single prediction is made for all four points.

From Fig. 2, we can see that the accelerometer and the 
gyroscope data of S/WOLG (Label 0) are relatively stable, 
and the data of US (Label 1) is the most volatile, which is 
also related to the increase in the motion amplitude when 
walking up the stairs. DS (Label 2) is much more stable 
than the US. Compared to S/WOLG, WOG (Label 3) pro-
duces noisy data when the road surface becomes uneven 
and unstable.

3.3  Model Proposed

(1) CNN-Based

The CNN consists of several different layers. We designed 
a structure that was suitable for this experiment. Three 1D 
convolutional layers were added. Given the input signal x(n) , 
the output y(n) can be obtained by convolving the signal x(n) 
with the convolution kernel �(n) of size l [29].

To reduce overfitting, we added the dropout layer. The 
batch-normal layer could facilitate the stabilization of the net-
work during training. The framework of the convolution layer 
is shown in Table 3.

(2) CNN-LSTM-Based

The CNN-LSTM is composed of CNN and LSTM. The 
gate structure of LSTM [30] mainly consists of a forgetting 
gate, an input gate, and an output gate in Fig. 3. The forgetting 
gate simulates the action of the human brain and represents the 
discarded information.

(1)y(n) = x(n) × �(n) =

l−1
∑

m=0

x(m) ⋅ �(n − m)

Table 2  Labels of terrains and data points

Locomotion intention labels Data points

0: Standing/walking on level ground (S/WOLG) 251,292
1: Up the stairs (US) 13,811
2: Down the stairs (DS) 18,266
3: Walking on grass (WOG) 51,609

Fig. 2  The raw data related to detailed presentations
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Using the input parameters, each layer is calculated by the 
following functions:

(2)it = �(�iixt + bii + �hiht−1 + bhi)

(3)ft = �(�if xt + bif + �hf ht−1 + bhf )

(4)c̃t = tanh(�ĩcxt + bĩc + �hc̃ht−1 + bhc̃)

CNN-LSTM takes advantage of CNN to extract spa-
tial features, and LSTM promotes the extraction of input 
information [31]. The network structure we designed is 
shown in Table 4.

(3) ResNet-Based

The ResNet [32] is widely used for feature extraction. 
With the continuous depth of CNN, this phenomenon may 
cause the convergence of the network to be degraded, the 
accuracy to deteriorate, and overfitting to occur. To solve 
this problem, ResNet has been proposed. In this work, we 
selected ResNet-50 to realize the recognition of human 
locomotion intention.

Attention mechanisms [33] have been used by many 
researchers to improve the performance of the network. 
Therefore, in this paper, we also propose the possibility 
that attention mechanisms can improve the model accu-
racy. However, we also found that the additional atten-
tion mechanisms would cause an overfitting phenomenon 
when the accuracy of the original model reached a high 
level, which is not applicable to this experiment. The cor-
responding evidence is provided in the following part.

The proposed framework is described in Fig. 4.
The Channel Attention Module (CAM) [34] was added 

to ResNet, its description can be found in Fig. 5, which 
is composed of ResNet-Att. Channel attention refers to a 

(5)ot = �(�ioxt + bio + �hoht−1 + bho)

(6)ct = ft ⊙ ct−1 + it ⊙ gt

(7)ht = ot ⊙ tanh
(

ct
)

Table 3  Layer parameters of the CNN architecture

 “In_channels” means the number of channels in the input. “Out_
channels” is the number of channels produced by the convolution. 
“Kernel size” is the size of the convolution kernel. “Stride” is the 
convolution stride. A “–” indicates that the specified parameter is not 
available

Name In_channels Out_channels Kernel size Stride

1D convolution 1 6 12 5 1
1D BatchNorm 1 – – – –
Relu1 12 – – –
1D convolution 2 12 24 5 1
1D BatchNorm 2 – – – –
Relu2 24 – – –
1D convolution 3 24 48 5 1
1D BatchNorm 3 – – – –
Relu3 48 – – –
Full connection 1 2304 256 – –
1D BatchNorm 4 – – – –
Relu4 256 – – –
Full connection 2 256 64 – –
1D BatchNorm 5 – – – –
Dropout – – – –
Full connection 3 64 4 – –

Fig. 3  LSTM cell structure
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mechanism that allows a network to weight feature map-
pings according to context in order to achieve better per-
formance [35, 36]. We restrict ourselves to channel atten-
tion in this work since its execution typically requires less 
computation.

As shown in Fig.  5, given an input F ∈  RC×H×W, MC 
and MS are obtained through MaxPool, AvgPool, and then 
through Shared MLP, which are calculated by the following 
functions:

where �0 ∈ R
C

r
×C
, b0 ∈ R

C

r ,�1 ∈ R
C×

C

r , b1 ∈ RC, r is the 
reduction ratio, BN is defined as a batch normalization 
operation, and σ is a sigmoid function.

The input F is the feature extracted by ResNet, CAM 
directly weighted F. The overall process can be concluded:

where ⊗ represents element-wise multiplication., F′′ is the 
final refined output.

4  Experiments

4.1  Experimental Setting

In contrast to Zhong et al., we did not use images for dataset 
[4], but decided to use the IMU signal and the time stamp. 
The train-test split is 8:2. Data from healthy individuals were 
used for the training set, while the test set included trans-
tibial amputees. The performance of CNN, CNN-LSTM, 
ResNet, and ResNet-Att was compared.

The network was trained with an Adam optimizer. The 
epoch and the batch sizes were 20 and 64, respectively, and 

(8)
Mc(F) = BN(MLP(MaxPool(F)))

= BN(�1(�0MaxPool(F) + b0) + b1))

(9)
Ms(F) = BN(MLP(AvgPool(F)))

= BN(�1(�0AvgPool(F) + b0) + b1))

(10)M(F) = �(Mc(F) +Ms(F))

(11)F� = Mc(F)⊗ F

(12)F
��

= Ms(F)⊗ F�

Table 4  Layer parameters of the LSTM-CNN structure

Name In_channels Out_channels Kernel size Stride

1D convolution 1 6 12 5 1
1D BatchNorm 1 – – – –
Relu 1 12 – – –
1D convolution 2 12 24 5 1
1D BatchNorm 2 – – – –
Relu 2 24 – – –
Dropout 1 – – – –
1D convolution 3 24 48 5 1
1D BatchNorm 3 – – – –
Relu 3 48 – – –
Dropout 2 – – – –
LSTM 48 128 – –
Full connection 1 7680 256 – –
1D BatchNorm 4 – – – –
Relu 4 256 – – –
Dropout 3 – – – –
Full connection 2 256 64 – –
1D BatchNorm 5 – – – –
Relu 5 64 – – –
Dropout 4 – – – –
Full connection 3 64 4 – –

Fig. 4  The basic structure of Resnet50 and attention mechanisms have been added. The green module is the bottleneck of the ResNet, and each 
layer is constructed by a number of blocks. The dotted box is where we would insert the attention mechanism
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Fig. 5  The structure of the CAM. The input features are subjected 
to maximum and average pooling, respectively. Then, the results 
are used as input to the shared MLP layer. The processed results 

are added and activated with sigmoid. The weight of each CAM is 
obtained, which would be multiplied by the features

Fig. 6  The confusion matrix test accuracy of the CNN (a), LSTM-CNN (b), ResNet (c), and ResNet-Att (d)
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the dropout rate was set to 0.1. The network was imple-
mented using PyTorch and tested on a computer with an 
AMD Ryzen 7 5800H with Radeon Graphics, a 16 GB mem-
ory chip, and a graphics card (NVIDIA GeForce RTX3070).

4.2  Results on Datasets

A comparative experiment was performed with CNN, CNN-
LSTM, ResNet, and ResNet-Att. The accuracy of the confu-
sion matrix is shown in Fig. 6a–d, which is high in Fig. 6a–c. 
ResNet outperformed the competition in the four algorithms, 
achieving 99%, 99%, 99%, and 98%, respectively. WOG can 
be easily identified as S/WOLG, which was selected because 
some research [37] pointed out that the special terrain has 
not been studied yet. We believe that it is necessary for LLE 
to detect in special terrain, which is of great help for auxil-
iary. The performance of recognition in special terrain can 
help LLE to adapt to different walking speeds. Accuracy, 
precision, recall, F1 score and loss were chosen as evalua-
tion criteria.

As shown in Fig. 6d, the ResNet-Att performed worse, 
which made the network and the optimization process more 

complex. The ResNet performed well, and the additional 
attention mechanism could lead to overfitting.

From Fig. 7, it can be seen that the loss curve of ResNet 
decreases compared to the other models and has the best 
performance. The loss is almost 0. However, the loss of 
ResNet-Att is around 1.4, so it is not suitable to add an atten-
tion mechanism to this experiment. ResNet has achieved a 
higher classification in the intention recognition of LLE. 
Therefore, after the experimental demonstration, we would 
use ResNet network for the subsequent deployment on the 
lower computer.

As shown in Table 5, precision is the positive category 
that takes into account the prediction of all samples. Recall 
is the correctly predicted positive categories with all actual 
positive samples and measures the number of actual posi-
tive cases that can be recalled. The F1 score considers both 
precision and recall. It is high only when both precision and 
recall rates are in high proportion.

According to the above evaluation criteria, ResNet per-
forms outstandingly in this dataset, which confirms the 
future applications of intention recognition in LLE. Com-
pared to most current studies using CNN and CNN-LSTM 
networks, ResNet also has a great advantage in recognition.

However, future studies need to make more improve-
ments. We should not use only the kinematic data, which 
may have limitations in the complex real-world conditions. 
Research is needed in the area of multi-sensor data fusion, 
where data from the vision system can be used to comple-
ment automatic motion pattern control decisions based on 
mechanical, inertial, and/or neuromuscular sensors. This is 
because the single environmental feature does not clearly 
express the user's motion intentions in real life. Fusion of 
camera data with kinematic data could improve perfor-
mance. Although data fusion is currently insufficient, we 
will investigate this aspect further in future.

5  Discussion

In this work, an offline dataset was used to train and evaluate 
the framework. The offline dataset was collected from seven 
healthy subjects and one trans-tibial amputee. The training 
and testing procedure is described as follows: (1) Divid-
ing the offline dataset into a training, and a test dataset; (2) 
Balancing the training dataset of data points with different 
labels to obtain the same number of 100,000 each; (3) Set-
ting the window size (60) and sliding window (4). The data 
is normalized at the interval of (0, 0.5); (4) Training the 
locomotion prediction network with the training dataset. The 
input of the network is the human motion signal, and the 
output of the prediction network is the locomotion category; 
(5) Perform dropout sampling to obtain predictions from the 

Fig. 7  The test loss of CNN, CNN-LSTM, ResNet, and ResNet-Att

Table 5   Classification report of models

Bold values show our experimental results, which are intended to 
attract readers’ attention and represent the outstanding performance 
of the algorithm

Model Precision Recall F1 score Accuracy

CNN 0.96 0.92 0.94 0.96
CNN-LSTM 0.98 0.96 0.97 0.98
ResNet 0.99 0.98 0.98 0.99
ResNet-Att 0.61 0.60 0.61 0.61



232 D. Wang et al.

1 3

trained terrain prediction network for the test dataset; (6) 
Evaluate the trained framework with the test datasets.

We performed a balanced resampling of the data to avoid 
the large impact on the accuracy after the softmax layer 
caused by the label imbalance problem, and carried out a 
series of normalizations to map the data to the same range.

As shown in Fig. 6, the highest classification accuracy 
for the classification algorithm presented in this paper can 
reach almost 99% in the experiments, which is about 3% 
higher than the accuracy of CNN classifier. Compared with 
CNN, ResNet added a shortcut connection, namely the 
residual unit, which makes the network not too deep. How-
ever, ResNet-Att made the networks more complex, which 
reduced the accuracy by approximately 30% compared to 
ResNet. CNN-LSTM was often used to classify a time series 
dataset into different motion patterns, and performed 1% 
lower than ResNet. ResNet appears to have great potential.

According to Table 6, when compared to [38, 41], CNN 
performs similarly to our experimental part in recognizing 
human motion intention, and the present CNN-LSTM fusion 
algorithm in the state of detection, which has a good per-
formance. Its performance is indeed significantly improved 
compared to CNN. However, the performance is still inferior 
to ResNet. Therefore, our proposed application of ResNet for 
human activity recognition is successful.

We believe that the application of ResNet in the field 
of intention recognition is feasible. Compared to CNN, 
ResNet is an improved algorithm with better performance 
than CNN. However, most current studies focus on the 
improved performance of CNN-LSTM, which undoubtedly 
complicates the network. This is an undesirable measure. 
Considering that the real-time performance of intention 
recognition is significant, the complexity of the model will 

greatly reduce the real-time performance of the recogni-
tion system. Therefore, we proposed that ResNet is more 
suitable for intention recognition than CNN and CNN-
LSTM, and our results also show that ResNet will have 
better performance. At the same time, we also assumed 
that the attention mechanism would improve the perfor-
mance. Contrary to our expectation, the attention module 
by ResNet would reduce the accuracy and make the results 
overfitting. In future experiments, we will reconsider and 
further discuss the addition of attention mechanisms. In 
this work, we conclude that ResNet has the best perfor-
mance in the time series of intention recognition. We will 
classify ResNet as the algorithm of our intention recogni-
tion system in an actual prototype experiment.

In addition, the four common types of locomotion 
intentions were accurately estimated in this paper. Most 
of the estimation errors in this paper were less than 4%. 
Data fusion could enable improvement of the system. In 
[4], the lower limb camera is combined with an on-glasses 
camera, which can facilitate the prediction of distant ter-
rain. The result showed that the accuracy was significantly 
improved. However, since the camera is not self-contained 
in the wearable robots, adding an on-glasses camera may 
increase the number of frames to be processed, resulting 
in lower system efficiency. Therefore, in [44], two cameras 
were used to capture the images simultaneously. The fea-
ture vectors of the images from both cameras were concat-
enated by feature-level fusion, but this is not the best solu-
tion. The two cameras can be activated asynchronously to 
dynamically combine the advantages of both cameras for 
different scenarios. However, the camera can cause pri-
vacy issues, so most current research does not provide an 
effective processing method in data fusion. Some studies 

Table 6  Compared with 
previous research that used 
different neural networks for 
human locomotion classification

Bold values show our experimental results, which are intended to attract readers’ attention and represent 
the outstanding performance of the algorithm

Reference Datasets Model Performance

Precision Recall F1 Accuracy

[38] UCI-HAR[39] CNN 0.93 0.93 0.93 0.93
LSTM 0.89 0.89 0.89 0.89
MLP 0.87 0.87 0.87 0.87

Pamap2[40] CNN 0.92 0.91 0.91 0.91
LSTM 0.87 0.85 0.85 0.86
MLP 0.83 0.82 0.82 0.82

[41] UCI-HAR CNN – – 0.92 –
CNN-LSTM – 0.96 0.96 0.96

WISDM[42] CNN – – 0.93 –
CNN-LSTM – 0.96 0.96 0.96

OPPORTUNITY[43] CNN – – 0.85 –
CNN-LSTM – 0.93 0.92 0.93

Ours [4] ResNet 0.99 0.98 0.98 0.99
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simply spliced datasets to achieve low-level data fusion, 
while the mainstream is feature-level fusion, which may 
cause relatively large feature loss in real processing, so 
decision-level fusion is increasingly perceived by the pub-
lic compared to the previous two situations. In future, we 
will conduct a series of comparative experiments on these 
three fusion methods to verify the appropriate method and 
improve the performance of the algorithm. We believe 
that data fusion will have a positive impact on recognition 
accuracy. We will continue to explore the limitations of 
this aspect.

6  Conclusion

A time series-based locomotion recognition was developed 
for LLE. In this study, we used the dataset of seven healthy 
subjects and one trans-tibial amputee. Four locomotion 
modes, including S/WOLG, US, DS, and WOG, were 
analyzed during the experiment. To facilitate compara-
tive experiments, four models were proposed in this study 
and an attention mechanism was added. We conclude that 
ResNet has great potential for processing time series data-
sets. The promising results are expected to significantly 
improve the decision making in locomotion recognition 
of LLE. The high classification accuracy in this work 
provides a good theoretical illustration for the intention 
recognition of LLE. In the subsequent experiments of the 
lower computer, we will also use ResNet for experimental 
demonstration. Although it has not yet been verified on an 
actual prototype, we will use it in follow-up experiments 
to prove its performance in further studies.

We are concerned that in the field of intention recogni-
tion, the realistic environment of the exoskeleton is com-
plex, and it is not enough to process only homogeneous 
data. The reality is composed of multi-source, heteroge-
neous data [45]. Therefore, in future, we will develop a 
series of multi-source information acquisition devices in 
the design laboratory, which are not limited to kinematic 
data. In addition, in-depth research on multi-source het-
erogeneous fusion [46, 47] methods and algorithms will be 
conducted, which is also lacking in many current studies.
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