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Abstract
Feature Subset Selection (FSS) is an NP-hard problem to remove redundant and irrelevant features particularly from medical 
data, and it can be effectively addressed by metaheuristic algorithms. However, existing binary versions of metaheuristic 
algorithms have issues with convergence and lack an effective binarization method, resulting in suboptimal solutions that 
hinder diagnosis and prediction accuracy. This paper aims to propose an Improved Binary Quantum-based Avian Navigation 
Optimizer Algorithm (IBQANA) for FSS in medical data preprocessing to address the suboptimal solutions arising from 
binary versions of metaheuristic algorithms. The proposed IBQANA’s contributions include the Hybrid Binary Operator 
(HBO) and the Distance-based Binary Search Strategy (DBSS). HBO is designed to convert continuous values into binary 
solutions, even for values outside the [0, 1] range, ensuring accurate binary mapping. On the other hand, DBSS is a two-
phase search strategy that enhances the performance of inferior search agents and accelerates convergence. By combining 
exploration and exploitation phases based on an adaptive probability function, DBSS effectively avoids local optima. The 
effectiveness of applying HBO is compared with five transfer function families and thresholding on 12 medical datasets, with 
feature numbers ranging from 8 to 10,509. IBQANA's effectiveness is evaluated regarding the accuracy, fitness, and selected 
features and compared with seven binary metaheuristic algorithms. Furthermore, IBQANA is utilized to detect COVID-19. 
The results reveal that the proposed IBQANA outperforms all comparative algorithms on COVID-19 and 11 other medical 
datasets. The proposed method presents a promising solution to the FSS problem in medical data preprocessing.

Keywords  Feature subset selection · Optimization · Binary metaheuristic algorithms · Bioinspired · Machine learning · 
Medical datasets

1  Introduction

During the past years, with the increasing volume of data, 
the role of data mining techniques for extracting patterns and 
ultimately discovering hidden knowledge has become more 
prominent. Knowledge discovery involves searching a large 
amount of data to identify hidden patterns and extract rel-
evant insights [1]. Applying data mining techniques to medi-
cal data has increasing benefits for medical diagnosticians 

and can minimize the potential errors of inexperienced phy-
sicians [2]. An accurate and reliable diagnosis in the early 
stages of the disease can significantly impact the patient's 
life and expenses. Since medical datasets are often collected 
from multiple sources and for different purposes, besides 
relevant features, they may contain many irrelevant and 
redundant ones. Relevant features include essential infor-
mation and can be used to discover knowledge and hidden 
patterns. Redundant features comprise necessary informa-
tion already offered by another feature; as a result, these 
features don't provide the prediction model any extra useful 
data and only cause the computational cost for the classifica-
tion algorithm. Features that do not provide useful informa-
tion are irrelevant, and their presence causes a decline in 
the precision of prediction models' classification ability. As 
a result, the existence of irrelevant and redundant features 
not only imposes an additional computational cost to data 
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mining algorithms but also degrades the accuracy of the 
predictions [3].

Feature Subset Selection (FSS) is a common way to 
overcome the mentioned challenges by selecting a set of 
M effective and relevant features from an original set of N 
features where M < N. Generally, there are three main types 
of FSS techniques: filter-based methods, wrapper-based 
methods, and embedded-based methods [4, 5]. Without 
utilizing machine learning techniques, filter-based methods 
evaluate the relevance of features based on criteria including 
consistency, correlation, similarity, distance, information, 
variance, and statistical criteria to select features [6]. Filter-
based feature selection using ant colony optimization [7] 
and filter-based binary particle swarm optimization [8] are 
two prominent FSS algorithms that employ the filter-based 
method. Although filter-based FSS techniques are generally 
less computationally expensive than other methods due to 
their independence from classification algorithms, they usu-
ally do not yield adequate performance. The wrapper-based 
method, popularized by Kohavi and John [9], evaluates 
the selected feature subset's quality using a classification 
algorithm. Despite outperforming the filter-based method 
in accuracy, the frequent usage of the classification algo-
rithm makes it computationally more expensive and requires 
more execution time than the filter-based methodology. [10]. 
Embedded-based methods are another category of FSS algo-
rithms, performing selection during training and specific to 
certain learning machines [11]. They are more efficient by 
avoiding retraining predictors for each subset but are limited 
to specific machines and can be intricate. Examples include 
FSS based on support vector machine [12, 13] and embed-
ded-based genetic programming [14].

As the wrapper-based approach yields better results [15], 
three search strategies have been used to generate numer-
ous FSS algorithms: sequential, exponential, and random 
search. The features are progressively added or removed in 
the sequential search strategy [16, 17], but this search strat-
egy is prone to trap in local optima solutions [18]. The expo-
nential search strategy makes sure to find the optimal fea-
tures subset by evaluating all possible feature subsets [19]; 
however, they are computationally costly and inapplicable 
for many real-world datasets [18]. The random search strat-
egy begins with a random feature subset and then proceeds 
with a sequential search strategy. Metaheuristic algorithms, 
a prominent class of random search methods, use stochastic 
techniques to solve optimization problems. They explore 
the search space, promote population diversity, and bypass 
local optimum solutions by embedding randomness into 
their search procedures. Additionally, they locally search 
promising areas to enhance solution quality [20]. Particle 
Swarm Optimization (PSO) [21], Genetic Algorithm (GA) 
[22], Differential Evolution (DE) [23], Ant Colony Optimi-
zation (ACO) [24], Artificial Bee Colony (ABC) [25], Grey 

Wolf Optimizer (GWO) [26], Moth-Flame Optimization 
(MFO) [27], Whale Optimization Algorithm (WOA) [28], 
and Harris Hawks Optimization (HHO) [29] are some well-
known metaheuristic algorithms proposed to tackle different 
optimization problems such as task scheduling [30–32], opti-
mal power flow [33, 34], and engineering design [35–40]. 
Researchers continue developing new metaheuristic algo-
rithms to cover some flaws of previous algorithms, such as 
low convergence rate due to randomization in their methods 
[41, 42] and the lack of mechanisms to maintain population 
diversity and the imbalance between search strategies [43]. 
For instance, the Marine Predators Algorithm (MPA) [44], 
Colony Predation Algorithm (CPA) [45], Aquila Optimizer 
(AO) [46], Starling Murmuration Optimizer (SMO) [47], 
dwarf mongoose optimization algorithm [48], and Quantum-
based Avian Navigation Optimizer Algorithm (QANA) [49] 
are among the recent metaheuristic algorithms proposed for 
continuous problem-solving [50, 51]. Among these, QANA 
is a scalable population-based metaheuristic algorithm 
inspired by migratory bird navigation.

Since the FSS is a binary problem that deals with select-
ing or discarding features, researchers have developed dif-
ferent binary metaheuristic algorithms to solve various 
real-world optimization problems [52]. For instance, the 
Binary Particle Swarm Optimization (BPSO) [53], Binary 
Gravitational Search Algorithm (BGSA) [54], Binary Differ-
ential Evolution (BDE) [55], Binary Bat Algorithm (BBA) 
[56], Binary Grey Wolf Optimization (bGWO) [57], Binary 
Dragonfly Algorithm (BDA) [58], Binary Salp Swarm 
Algorithm (BSSA) [59], and Binary Artificial Bee Colony 
(BABC) [60] are some well-known binary metaheuristic 
algorithms developed by applying different binarization 
methods including, transfer functions and crossover opera-
tor. Although metaheuristic algorithms have their benefits, 
the No-Free-Lunch (NFL) theorem [61] asserts that no indi-
vidual algorithm can solve all problems [62, 63]. As a result, 
in FSS domain, new binary metaheuristic algorithms, such 
as Binary Arithmetic Optimization Algorithm (BAOA) [64], 
Binary Simulated Annealing-Based Dynamic Step Shuffled 
Frog Leaping Algorithm (BDSSRLFLA) [65], Binary Cor-
onavirus Disease Optimization Algorithm (BCOVIDOA) 
[66], binary enhanced gaussian bare-bones grasshopper opti-
mization [67], and Binary Quantum-based Avian Navigation 
Optimizer Algorithm (BQANA) [68] are still developing.

This paper aims to propose IBQANA, an improved 
binary quantum-based avian navigation optimizer algo-
rithm, to select an effective feature subset from differ-
ent medical datasets. First, we propose a binarization 
method by introducing a novel Hybrid Binary Operator 
(HBO) to map continuous values produced by the QANA 
into binary solutions. This method combines a threshold 
approach with Boolean operators, addressing the limita-
tions of existing binarization techniques. Consequently, 
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the binary version of QANA, called BQANA-HBO, is 
developed, enabling more efficient and accurate binary 
solutions. Then, an improved version of BQANA-HBO, 
named IBQANA is developed to tackle the issues of 
local optima entrapment and low convergence rate. This 
improvement is achieved by introducing the Distance-
Based Binary Search Strategy (DBSS), consisting of 
exploration and exploitation phases. In the exploration 
phase, which mostly happen in the early iterations, infe-
rior search agents are updated by crossing over their 
positions with the farthest search agent's position in the 
archive. Conversely, in the final iterations, the exploita-
tion phase is employed to update the inferiors’ position 
by crossing over with the best position. It is expected that 
these contributions enhance the performance and effec-
tiveness of IBQANA for FSS problems.

The efficacy of the proposed IBQANA was tested on 
12 medical datasets with different numbers of features. 
First, the effectiveness of BQANA-HBO developed by 
the introduced binarization method is investigated and 
compared with BQANA developed using variable thresh-
olding and five representatives of 20 binary versions of 
QANA developed by incorporating five distinct trans-
fer function categories, including S-shaped, V-shaped, 
U-shaped, Z-shaped, and quadratic transfer functions. The 
performance evaluation of IBQANA includes assessing 
its effectiveness by considering accuracy, fitness, and the 
selected features quantity. To determine its competitive-
ness, IBQANA is compared with seven well-known algo-
rithms commonly used in the literature for FSS, includ-
ing Binary Differential Evolution (BDE) [55], Binary 
Bat Algorithm (BBA) [56], V-shaped Binary Particle 
Swarm Optimization (VPSO) [69], hybrid Binary Parti-
cle Swarm Optimization and Gravitational Search Algo-
rithm (BPSOGSA) [70], Binary Dragonfly Algorithm 
(BDA) [58], Quadratic Binary Harris Hawk Optimiza-
tion (QBHHO) [71], and Improving Whale Optimization 
Algorithm for FSS with a Time-Varying transfer function 
(BWOA-TV) [72]. In addition, the proposed IBQANA 
is also compared with two other algorithms, namely the 
Binary Quantum-based Avian Navigation Optimizer 
Algorithm based on the thresholding approach (BQANA) 
[68] and the introduced BQANA-HBO. Moreover, a case 
study was conducted where IBQANA was employed as a 
diagnostic tool for Coronavirus Disease 2019 (COVID-
19). To demonstrate the superiority of the proposed algo-
rithm, the findings were statistically analyzed using the 
Friedman test. Based on the experimental and statistical 
results, it was discovered that the proposed IBQANA per-
forms better than other comparative algorithms in iden-
tifying relevant features from COVID-19 and 11 other 
medical datasets.

2 � Related Works

Due to the exponential growth in the number of potential 
solutions when dealing with datasets containing N fea-
tures, evaluating all 2N possible solutions becomes an NP-
hard problem. As a result, researchers have extensively 
addressed the problem of FSS by turning to metaheuristic 
algorithms, which have proven successful in approximat-
ing solutions. In this section, we review several prominent 
metaheuristic algorithms used in the wrapper approach, 
listed in the order of their appearance in the literature.

Kennedy and Eberhart [53] proposed a Binary version of 
the Particle Swarm Optimization (BPSO) algorithm using 
a sigmoid transfer function to tackle discrete optimization 
problems [73]. Sigmoid and its other three versions [69] are 
known as S-shaped transfer functions, frequently used in 
the literature. Marandi et al. [74] proposed Boolean Par-
ticle Swarm Optimization (BPSO) to solve a dual-band 
dual-polarized planar antenna design problem. This algo-
rithm uses three Boolean operators, including and (∧), or 
(∨), and xor ( ⊕), to generate binary solutions. Binary Dif-
ferential Evolution (BDE), proposed by Gong et al. [55], 
utilizes discrete mutation and crossover operators to solve 
binary problems. Rashdi et al. [54] proposed the V-shaped 
transfer function and developed the Binary Gravitational 
Search Algorithm (BGSA) accordingly. Nakamura et al. 
[56] introduced the Binary Bat Algorithm (BBA) by map-
ping continuous search agents’ velocity into binary solutions 
utilizing the S-shaped transfer function. Mirjalili et al. [69] 
proposed the VPSO algorithm as another binary version 
of PSO by applying four V-shaped transfer function fam-
ily variants. The comparison between applying S-shaped 
and V-shaped transfer functions to the PSO algorithm indi-
cates that the V-shaped transfer function provides superior 
results compared to the S-shaped transfer function. Mirjalili 
et al. [70] proposed a hybridization of binary PSO and GSA 
algorithms (BPSOGSA) to solve FSS problems by apply-
ing a V-shaped transfer function. Mirjalili [58] proposed a 
Dragonfly Algorithm (DA) inspired by the natural swarming 
patterns of dragonflies. Its binary version, named BDA was 
also developed using V-shaped transfer function.

Aslan et al. [75] introduced Jayax, a binary form of the 
Jaya algorithm [76] that generates binary solutions using 
the xor ( ⊕) Boolean operator. The results reported in this 
research show that the Jayax predominantly provides more 
optimal solutions than the binary form of the Jaya algorithm 
based on the transfer function. Jordehi [77] proposed three 
versions of the quadratic transfer function to develop the 
quadratic binary PSO for solving scheduling shiftable appli-
ance problems in smart homes. The reported results show 
that the binary PSO developed using the S-shaped trans-
fer function can generate better results than the V-shaped 
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transfer function. Furthermore, the introduced quadratic 
transfer function outperforms all other binary versions of 
PSO developed using different transfer functions. Too et al. 
[71] proposed the Quadratic Binary Harris Hawk Optimiza-
tion (QBHHO) by introducing a new variant of the quadratic 
transfer function. The findings demonstrate that the intro-
duced transfer function provides superior results for most 
investigated FSS problems. Sayed et al. [78] developed a 
Chaotic Crow Search Algorithm (CCSA) to tackle the draw-
backs of the crow search algorithm in solving FSS problems, 
including entrapment in local optima and low convergence 
speed. CCSA employs ten chaotic maps to alleviate the men-
tioned flaws and boost its performance. The reported find-
ings demonstrate that the sine map improves the CSA's per-
formance in the FSS field. The authors in [79] proposed an 
effective binary version of PSO using the U-shaped transfer 
function (UBPSO). The results demonstrate that the UBPSO 
algorithm could generate superior binary solutions compared 
to the S-shaped and V-shaped binary PSO.

The Whale Optimization Algorithm (WOA) proposed by 
Mirjalili and Lewis [28] inspired by the hunting behavior 
of humpback whales is a well-known metaheuristic algo-
rithm for finding the optimal solution with high speed using 
Simple but powerful search mechanisms [80]. To address 
the FSS problem, Mohammadzadeh and Gharehchopogh 
[81] introduced a hybridization of WOA and flower pol-
lination algorithms based on opposition-based learning for 
email spam detection. In another study, Kahya et al. [72] 
developed a binary version of WOA, named BWOA-TV, 
incorporating a time-varying transfer function. Turkoglu 
et al. [82] proposed a binary artificial algae algorithm for 
FSS, inspired by the behavior of algae in nature. Piri et al. 
[83] developed a Discrete Artificial Gorilla Troop Optimi-
zation (DAGTO) algorithm to solve FSS problems in the 
healthcare sector. The authors implemented four variants 
of the DAGTO for different numbers and types of objective 
functions. Abualigah and Diabat [84] proposed a chaotic 
binary group search optimizer to solve the FSS problem by 
combining chaotic maps and a binary group search opti-
mizer. Shaddeli et al. [85] introduced an improved African 
vulture optimization algorithm to alleviate convergence to 
local optima when solving discrete problems by hybridiz-
ing it with SCA and applying four strategies. Moreover, the 
authors used S-shaped and V-shaped transfer functions to 
map continuous solutions into binary ones.

Helmi et al. [86] proposed three binary versions of MPA 
using S-shaped and V-shaped transfer functions to address the 
problem of FSS in human activity recognition (HAR). HAR 
refers to identifying a person's actions based on measurements 
obtained from various mechanisms, including cameras, inte-
rior sensors, radars, wireless signals, and other sources [87]. A 
new method for diagnosing brain tumors was put out by Ren 
et al. [88], employing a step-by-step process based on a deep 

learning-based Water Strider Algorithm (WSA). The proposed 
method involves feature extraction, FSS, and classification 
steps, using the WSA. Specifically, the WSA is employed to 
select the most relevant features that contribute to the clas-
sification of brain tumors. A Binary QANA (BQANA) algo-
rithm was presented by Nadimi-Shahraki et al. [68] to solve 
the FSS problem in the medical data field using two different 
approaches: the first employs various transfer functions to con-
vert the canonical QANA to binary, while the second maps 
continuous solutions to binary by setting a variable threshold 
for each dimension. The results revealed that BQANA devel-
oped using the threshold method generates better solutions 
than transfer functions. The results also demonstrated that S4, 
V1, U4, Z3, and Q3 transfer functions are the representatives 
of their groups. In a similar study, Nadimi-Shahraki et al. [89] 
employed transfer functions and variable threshold approaches 
to develop Binary Starling Murmuration Optimizer (BMSO) 
by mapping continuous solutions of the Starling Murmuration 
Optimizer (SMO). Like the previous research, the results show 
that the variable threshold approach provides superior results.

3 � Quantum‑based Avian Navigation 
Optimizer Algorithm

The Quantum-based Avian Navigation Optimizer Algorithm 
(QANA) proposed by Zamani et al. [49] is a recent DE algo-
rithm inspired by migrating birds' remarkable accuracy in 
long-distance aerial navigation. QANA utilizes multiple oper-
ators such as population partitioning, a qubit-crossover, two 
mutation strategies, and self-adaptive quantum orientation 
to achieve competitive results in continuous search spaces. 
Moreover, the V-echelon communication topology facilitates 
information sharing among search agents. Therefore, as seen 
in Algorithm 1, the QANA pseudocode includes four basic 
steps: initialization and multi-flock construction, movement 
strategy, fitness evaluation, and updating positions.

3.1 � Initialization and Multi‑flock Construction

To distribute the entire population of birds represented by 
matrix A in Eq. (1), the population is divided into k dif-
ferent geographical areas using random centers. This par-
titioning creates k flocks, each consisting of n search fac-
tors, where n = N/k. As a result, the position of each bird 
in the D-dimensional problem space is denoted by vector 
Xi = [xi1,xi2,…,xiD].

(1)A =

⎡⎢⎢⎢⎣

x11 x12 ⋯ x1D
x21 x22 ⋯ x2D
⋮ ⋮ ⋮ ⋮

xN1 xN2 ⋯ xND

⎤⎥⎥⎥⎦
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After the flock construction, in subsequent iterations, the 
search agents simultaneously use the knowledge shared by the 
V-echelon topology. Furthermore, utilizing the Success-based 
Population Distribution (SPD) policy, the search agents trav-
erse the search space by using a mutation strategy rooted in 
quantum mechanics.

3.2 � V‑Echelon Communication Topology

The flight formation of migrating birds patterns the V-echelon 
communication construction and allows search agents of each 
flock to communicate knowledge that has been obtained. A 
Header (H) and two subsets for Left (L) and Right (R) lines 
make up this communication structure. The aerial navigation 
of migrating birds utilizing V-echelon topology is depicted in 
Fig. 1.

3.3 � Quantum‑based Navigation

Bird flocks utilize a quantum-based navigation system for 
exploring the search space. This system comprises a Success-
based Population Distribution (SPD) policy, qubit-crossover, 
and two mutation strategies named "DE/quantum/I" and "DE/
quantum/II". The assignment of a specific mutation strategy 
to a flock is based on the policy defined in Eq. (2),

where SRm denotes the success rate of mutation strategy 
Mm, and τij is equal to 1 if Mm improved aj of the i-th flock; 
else, τij equals to 0.

The DE/quantum/I and DE/quantum/II are two quantum 
mutation strategies represented by mathematical Eqs. (3) and 
(4), respectively. These equations utilize several variables 
such as xi (t) which refers to the i-th search agent, xVechelon (t) 
representing the position of the search agent followed by ai, 
xj and xj are two random positions selected from Long-Term 

(2)SRm(t) =

���
i∈fm

∑n

j=1
�ij

n

�
∕��fm��

�
× 100

Memory (LTM) and Short-Term Memory (STM). In addition, 
the variable vH (t + 1) indicates the position of the header in 
the V-echelon topology, and is computed using Eq. (5). The 
quantum orientation for avian ai, denoted by Si, is also utilized 
in the computation and is presented in [49, 90]. LB and UB are 
the search space's lower and upper boundaries.

By crossing the mutant vector vi (t + 1) with its parent 
xi (t), the trial vector ui (t + 1) is generated, where |ψi⟩d is 
a qubit-crossover probability for the d-th dimension [49].

Algorithm 1. The pseudocode of QANA.
Input: Number of search agents (N), Maximum Iterations 
(MaxIt), Number of flocks (k), and Dimension size (D).
Output: The global best solution.
1.Begin
2.  Initialize the population
3.  Set t = 1.
4. While t ≤ MaxIt
5. Constructing K flocks.
6. Calculating fitness value for each search agent.
7.      Constructing LTM and STM.
8.      Forming the V-echelon topology.
9. Assigning each flock to a mutation strategy using SPD 

policy based on Eq. (2). 
10. For j = 1:K
11. For i = 1:N/K
12. Generating mutant vector vi (t+1) for search agent ai

of flock fj based on Eqs. (3–5).
13. Generating trial vector ui (t+1) using Eq. (6).
14. If F(ui (t+1)) ≤ F(Xi (t))
15. xi (t+1) = ui (t+1)
16. Else
17. xi (t+1) = xi (t).
18.          End If
19.        End For
20.     End For
21. Updating the global best solution.
22. t = t + 1.
23.End while

(3)

vi(t + 1) = xbest(t) + Si(t)
×
(

x�echelon
(t) − xj∈LTM(t)

)

+ Si(t) ×
(

x�echelon
(t) − xbest(t)

)

+ Si(t) ×
(

xj∈LTM(t) − xj∈STM(t)
)

(4)
vi(t + 1) =Si(t) ×

(

xbest(t) − x�echelon
(t)
)

+ Si(t) ×
(

xi(t) − xj∈LTM(t) − xj∈STM(t)
)

(5)
v
H(t + 1) = S

i(t) × xbest + (LB + (UB − LB) × rand(0, 1))

(6)uid(t + 1) =

⎧⎪⎨⎪⎩

xid(t + 1), ��� i d
< rand

vid(t + 1), ��� i d
≥ rand

Fig. 1   The V-shaped formation
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4 � Improved Binary Quantum‑based Avian 
Navigation Optimizer Algorithm (IBQANA)

As stated earlier, ineffective binarization methods, prolonged 
convergence, and local optimum entrapment are the main 
problems of most binary metaheuristic algorithms that limit 
their performance in the FSS problem. First, this section 
introduces a novel binarization method, namely the Hybrid 
Binary Operator (HBO), to effectively map the continuous 
values into binary solutions and develop the binary version 
of the QANA, named BQANA-HBO, accordingly. Then, an 
improved version of BQANA-HBO, named IBQANA is pro-
posed to cope with local optimum trapping and slow conver-
gence rate by introducing a Distance-Based Binary Search 
Strategy (DBSS), which includes two different phases to 
adjust the position of the inferior search agents.

4.1 � Hybrid Binary Operator (HBO)

As stated in Sect. 2, although the most popular binariza-
tion technique for metaheuristic algorithms is the transfer 
function, it cannot produce efficient binary solutions for 
certain metaheuristic methods [68]. On the other hand, the 
thresholding method presented in Eq. (7) is more effective 
in developing a binary version of the QANA [68]; how-
ever, this method has a major drawback that hinders the 
metaheuristic algorithm from utilizing its full potential in 
finding the optimal solution.

The issue lies in the thresholding method, which can 
only produce valid binary solutions for continuous values 
within the range of [0, 1]. Consequently, this approach 
fails to appropriately map continuous values outside these 
boundaries, such as negative values and values exceeding 
1. Therefore, this section proposes a new binary method, 
Hybrid Binary Operator (HBO), for effectively mapping 
continuous solutions into binary space.

In the proposed HBO, if the continuous solution pro-
duced by the QANA is in the interval [0, 1], the thresh-
olding method is used to convert it into a binary solution. 
However, if the generated continuous solution violates the 
lower bound (lb) or the upper bound (ub), according to its 
binary position in the current iteration, the logical opera-
tor AND (∧) is used to update the binary solution based 
on Eq. (8).

(7)bd
i
(t + 1) =

{
1, ifxd

i
(t) > 0.5

0, ifxd
i
(t) ≤ 0.5

(8)bd
i
(t + 1) =

{
b ∧ bd

i
(t), if xd

i
(t + 1) > ub

lb ∧ bd
i
(t), if xd

i
(t + 1) < lb

The procedure of the HBO to determine the binary solu-
tion for each dimension of a search agent in the BQANA-
HBO algorithm is depicted in Fig. 2.

Despite the effective binary mapping provided by HBO, 
the developed BQANA-HBO still cannot offer high-accu-
racy solutions with fast convergence. Therefore, in the 
following, we propose IBQANA to enhance the solution 
quality and convergence rate of the BQANA-HBO algo-
rithm by introducing DBSS. This innovative combination 
is expected to yield more efficient and accurate results, 
making it a promising avenue for advancing the field.

4.2 � Distance‑based Binary Search Strategy (DBSS)

This section proposes the IBQANA by introducing a DBSS 
to improve the performance of inferior search agents and 
speed up the convergence rate. The proposed search strat-
egy consists of two phases of exploration and exploitation. 
In each iteration, if the new fitness of i-th search agent is 
equal or greater than its fitness in the current iteration, a 
new binary position is generated based on one of two differ-
ent phases. As mentioned in Sect. 3, the QANA algorithm 
has STM and LTM to preserve the obtained solutions. In 
the proposed DBSS, two memories are merged and form an 
Archive. Then, according to the obtained value of P through 
Eq. (9), a new binary position is generated based on one of 
the exploitation and exploration phases,

where t represents the present iteration, and MaxIt is the 
maximum number of iterations. According to this equation, 
the value of P gradually decreases from 1 to 0 as the number 
of iterations progresses.

(9)P(t) = 1 −
t

MaxIt

Fig. 2   Process of updating the binary positions using the HBO
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4.2.1 � Exploration Phase

If a random number between 0 and 1 is determined to be 
bigger than the P value in the current iteration, a new binary 
solution is generated based on the uniform crossover opera-
tor according to Eq. (10),

where r1 and r2 are random numbers within the range of 
(0,1), and Archivefar (t) indicates the binary position of 
the farthest member of the Archive from the position of bi 
(t + 1), which is determined based on Eq. (11),

where HDik (t) is the Hamming distance between bi (t + 1) 
and the archive members, the Hamming distance is defined 
in Eq. (12), where M represents the total number of positions 
stored in the archive.

4.2.2 � Exploitation Phase

Suppose the P value is determined to be less than or equal 
to a randomly generated number in the range (0, 1). In that 
case, the new binary solution is generated using the exploi-
tation phase. This phase enhances the solutions’ quality 
without degrading the algorithm’s exploration capability. 
To achieve this, a fitness-dependent weight factor is cal-
culated based on Eq. (13) [91],

where F(.) denotes the fitness value of a binary position, 
since according to the fitness function definition presented 
in the next section, the FSS is a minimization problem; the 
value produced by this equation is always in the range [0, 
1]. Therefore, Eq. (14) generates new binary position during 
the exploitation phase.

Finally, after calculating the fitness of the new position 
produced by each of the two introduced phases, a greedy 
selection between bnew (t + 1) and bi (t + 1) determines 
the value of bi (t + 1). The pseudocode of the proposed 

(10)bd
new

(t + 1) =

{
Archived

far
(t), ifrd

1
≥ rd

2

bd
i
(t + 1), otherwise

(11)Archived
far
(t) = max

(
HDik(t)

)

(12)
HDik(t) =

D∑
d=1

(
bd
i
(t + 1) − Archived

k
(t)
)

i = [1, 2,… ,N], k = [1, 2,… ,M]

(13)�(t) =
F
(
bbest(t + 1)

)

F
(
bi(t + 1)

)

(14)bd
new

(t + 1) =

{
bd
best

(t), if�d ≥ rd
3

bd
i
(t + 1), otherwise

DBSS is presented in Algorithm 2, and the pseudocode 
of the proposed Improved Binary Quantum-based Avian 
Navigation Optimizer Algorithm (IBQANA) is shown in 
Algorithm 3.

Algorithm 2. The pseudocode of the proposed DBSS.
Input: bi (t), bi (t+1), F(bi (t+1)), LTM (t), STM (t), P (t), bbest (t+1).
Output: bi (t+1).
1.Begin
2. Archive (t) = Merge STM and LTM.
3. If P(t) > rand
4.      For j = 1:D
5.           Computing the HD between bi (t+1) and members of Archive

(t) based on Eq. (12).
6.           Crossover bi (t+1) and the farthest archived member using Eq. 

(10) to generate bnew.
7.      End For
8. Else
9.      For j = 1:D
10.           Computing ѡ using Eq. (13).
11.           Crossover bi (t+1) and bbest (t+1) using Eq. (14) to generate bnew(t+1).
12.      End For
13. End If
14. Computing fitness value of bnew (t+1).
15.  If F(bnew (t+1)) ≤ F(bi (t+1))
16.      F(bi (t+1)) = F(bnew (t+1)).
17. bi (t+1) = bnew (t+1).
18. End If

Algorithm 3. The pseudocode of the proposed IBQANA.
Input: Maximum Iterations (MaxIt), Number of search agents (N), 
Number of flocks (k), and Dimension size (D).
Output: The global best solution.
1.Begin
2. Initialize the population
3. Set t = 1.
4.  While t ≤ MaxIt
5.     Constructing K flocks.
6.     Calculating fitness value for each search agent.
7.     Constructing LTM and STM.
8.     Forming the V-echelon topology.
9.     Assigning each flock to a mutation strategy using SPD policy 

based on Eq. (2). 
10. For j = 1:K
11.        For i = 1:N/K
12.          Generating mutant vector vi (t+1) for ai of flock fj based on Eqs. 

(3–5).
13.          Generating trial vector u

i
 (t+1) using Eq. (6).

14.          Converting ui (t+1) to a binary vector bi (t+1) using Eqs. (7) and 
(8).

15.          Calculating fitness of bi (t+1).
16.          If F(bi (t+1)) ≥ F(bi (t))
17.               Updating the position of bi (t+1) using Algorithm 2.
18.          End If
19.        End For
20.     End For
21.     Updating the global best solution.
22. t = t + 1.
23.  End while

4.3 � Computational and Time Complexity

As shown in Algorithm 3, the proposed IBQANA consists of 
four phases: initialization, multi-flock construction, move-
ment, and fitness evaluation. In the initialization phase (line 
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2), N search agents are randomly distributed into a D-dimen-
sional search space with an O(ND) computational complex-
ity. In the multi-flock construction phase (line 5), k flocks 
with population size n (where n = N/k) are constructed with 
the computational complexity of O(kn). Then, the fitness 
value of each search agent is computed with the computa-
tional complexity of O(ND). The movement phase consists 
of memory construction, V-echelon topology formation, and 
three types of movement vectors: mutant, trial, and binary. 
The long-term and short-term memories with K′ and K˝ 
capacities are constructed with an O(K′D) + O(K˝D) com-
putational complexity. Then, the V-echelon topology (line 8) 
for each k flock is formed with an O(kn) complexity. Finally, 
line 9 computes the SPD policy with an O(kn) complexity 
to assign mutant vectors to each flock. Mutant vectors (line 
12) defined in Eqs. (3–5) are computed with O(ND) com-
plexity, and the trial vectors and binary vector (lines 13 and 
14) defined in Eqs. (6–8) are calculated with complexity of 
O(2ND). In the fitness evaluation phase (line 15), the fitness 
value of each search agent is computed with the computa-
tional complexity of O(ND), and Algorithm 2 runs with a 
computational complexity of O(ND). The algorithm repeats 
these phases until it reaches the maximum iteration T. Thus, 
the total computational complexity of IBQANA can be O
(ND + T(kn + ND + (K′D + K˝D) + kn + kn + ND + 2ND + N
D + ND). Since kn = N, we can simplify the computational 
complexity of IBQANA to O(ND + T(3N + 5ND + (K′D + K
˝D)). The computational complexity can be qual to O(TND), 
because N is always bigger than K′ and K˝.

To compute the time complexity, the Average Time (AT) 
required to find the solution, known as the run time, is com-
puted using Eq. (15) [49, 92]. This equation considers the 
total number of runs (M) and the computational time of algo-
rithm A for each run (RTA,i).

Table  1 compares the run times (in seconds) of the 
IBQANA algorithm and comparative algorithms on differ-
ent datasets. It can be seen that, while it may not be the 
fastest algorithm, it consistently has an acceptable run time 
across most datasets. However, it's worth noting that using 
IBQANA for real-time applications might be a limitation 
due to its relatively longer run times in certain datasets. 
Nevertheless, IBQANA proves to be a promising candidate 
for accuracy-critical applications, particularly in medical 
datasets, making it a promising choice for researchers and 
practitioners in this domain.

5 � Experimental Assessment

This section evaluates the IBQANA algorithm's perfor-
mance through experiments to tackle the FSS problem on 12 
medical datasets with various feature sizes. First, to evaluate 
the effectiveness of the suggested binarization technique, 
the Hybrid Binary Operator (HBO) is applied to develop 
the binary QANA (BQANA-HBO) algorithm and compare 
its performance with the binary QANA developed using 
thresholding method, and representatives of 20 binary ver-
sions of QANA developed using five groups of transfer func-
tions. In the second experiment, we evaluate the improved 
version of this algorithm called IBQANA and contrast 
the obtained results with BQANA-HBO, as well as seven 
other comparative algorithms, including BBA [56], VPSO 
[69], BPSOGSA [70], QBHHO [71], BDA [58], BWOA-
TV [72], and BQANA [68]. These algorithms encompass 
highly cited, recent, and diverse approaches, allowing for a 
comprehensive comparison.

(15)ATA =
1

M

M∑
i=1

RTA,i

Table 1   Run times of IBQANA and comparative algorithms for different datasets

Datasets BDE BBA VPSO BPSOGSA BDA QBHHO BWOA-TV2 BQANA-HBO IBQANA

Diabetes 228.71 192.23 325.14 315.83 313.98 722.32 280.89 356.04 531.87
Heart 211.50 138.77 305.35 1202.50 299.87 657.31 294.54 382.46 577.41
Hepatitis 127.44 136.85 364.33 377.75 277.61 511.56 273.59 349.55 516.37
Lymphography 191.82 200.85 310.30 317.58 374.62 608.53 431.12 392.69 669.24
SPECT 234.79 191.67 294.90 299.09 269.56 623.83 336.92 355.57 568.02
WBCD 147.93 234.68 286.84 299.97 235.68 608.38 272.97 382.46 696.49
LSVT 1649.80 283.82 340.28 394.37 236.99 580.31 268.67 342.02 606.52
Parkinson 578.99 460.48 655.25 503.13 542.52 1159.90 452.18 530.73 838.72
Colon 252.61 147.31 361.11 333.09 398.17 668.22 285.93 325.98 711.72
SRBCT 302.10 1169.10 376.33 367.96 419.11 736.59 446.87 378.46 526.11
Leukemia 496.74 370.78 499.84 481.91 677.64 922.33 468.28 501.57 791.43
Prostate tumor 687.45 315.02 625.87 543.36 1187.20 1070.10 5263.80 563.14 966.49
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5.1 � Parameter Settings

To verify that the comparisons are accurate and fair, the 
parameters for the comparative algorithms were set to 
the values stated in their respective original publications, 
which are provided in Table 2, while the initial values for 
the shared parameters, such as maximum number of itera-
tions (MaxIt) and population size (N), were set to 20 and 
300, respectively, for all algorithms. In this study, all experi-
ments, including those for the other algorithms used in the 
comparison, were conducted 20 times independently on a 
laptop with an Intel Core i7-10750H CPU and 24.0 GB of 
RAM using MATLAB R2022a.

In this work, the K-Nearest Neighbor (K-NN) classifier 
with Euclidean distance and K = 5 is used to determine the 
classification accuracy of produced feature subsets based 
on Eq. (16),

where TP represents the count of accurately identified posi-
tive samples, while TN refers to the count of correctly clas-
sified negative samples. FN indicates the count of positive 
samples incorrectly classified as negative, and FP represents 
the number of negative samples incorrectly classified as 
positive. Also, the Classification Error (CE) is calculated 
using Eq. (17).

The goals of this study, including maximization of the 
classification accuracy and minimization of the number of 
features, are aggregated in an objective function given in 
Eq. (18),

where α denotes the significance of classification accuracy, 
Ntf, and Nsf are the total number of features of the dataset 
and the number of selected features, respectively. Since 

(16)Accuracy =
(TP + TN)

(TP + FN + TN + FP)

(17)CE = 1 − Accuracy

(18)Fitness = � × CE + (1 − �)
Nsf

Ntf

classification accuracy is the most crucial metric for medical 
datasets, following related studies [57, 71], we considered 
α = 0.99.

5.2 � Description of Medical Datasets

This research evaluates the effectiveness of IBQANA and 
competing algorithms in selecting effective features using 
12 medical benchmark datasets, primarily from the UCI 
machine learning repository [93]. Table 3 presents statistical 
information on the datasets under consideration. The K-fold 
cross-validation method was employed to prevent overfitting 
issues, with kfold = 10. This method divides the dataset into 
k folds, with the classifier utilizing k-1 folds as training sets 
and one fold as the testing set.

5.3 � Evaluation of the Proposed Hybrid Binary 
Operator (HBO)

This section investigates the effectiveness of the introduced 
HBO binarization method on the developed binary QANA 
(BQANA-HBO) to select effective features from the medical 
datasets and compare the obtained results with the results 
obtained from the binary QANA using the thresholding 
method (BQANA) and five representatives of S-shaped, 
V-shaped, U-shaped, Z-shaped, and quadratic transfer func-
tions [68]. The results are tabulated in Table 4, where the 
best average fitness value achieved for each medical dataset 
is emphasized in bold font. Also, the last row shows the 
average of Friedman test ranking results for each algorithm.

The reported results in Table 4 signify that the introduced 
HBO provides the superior mapping of continuous values of 
QANA into binary solutions in contrast to other binarization 
methods in terms of average fitness value. The findings also 
reveal that the binary QANA developed using the thresh-
olding method (BQANA) provides better solutions than the 
investigated transfer functions and is ranked second. Among 
the investigated transfer functions, Q3 provides competitive 
results. Conversely, it was found that the S-shaped trans-
fer function yields the poorest performance when used to 

Table 2   Parameters of the 
algorithms

Algorithm Parameter settings

BBA A = 0.9, r = 0.9, Qmin = 0, Qmax = 2
VPSO c1 = c2 = 2, w is linearly decreased from 0.9 to 0.4
BPSOGSA c′1 = (-2t3/MaxIt3) + 2, c′2 = (2t3/MaxIt3), G0 = 1, α = 20
QBHHO β = 1.5, Q4 transfer function, and xmax = 5
BDA Dmax = 6
BWOA-TV Time-varying transfer function = TV2, a is linearly decreased from 2 to 0
BQANA The number of flocks (k) = 2, LTM size (K′) = 2, and STM size (K″) = 10
IBQANA k = 2, K′ = 2, K″ = 10, P is linearly decreased from 1 to 0
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convert continuous QANA values into binary solutions to 
select effective features from medical datasets.

5.4 � Evaluation of the Proposed IBQANA

This section undertakes an evaluation and investigation of 
the efficacy of the proposed IBQANA on 12 medical data-
sets, followed by a comparison of the results with those gen-
erated by seven well-established metaheuristic algorithms. 
The outcomes are comprehensively presented in Tables 5 
and 6, providing details on the average (Avg), minimum 
(Min), standard deviation (Std), or maximum (Max) fitness 
and classification accuracy.

Table 5 compares the fitness values of investigated FSS 
algorithms on 12 medical datasets, where the bold values 
represent the best average fitness value achieved for each 
medical dataset. The fitness function, described in Eq. (18), 
considers classification accuracy and the number of selected 
features. IBQANA consistently outperforms other algo-
rithms in fitness values, with the lowest fitness value and 
standard deviation among all comparatives. Comparing 
IBQANA and BQANA-HBO highlights the effect of the 
introduced DBSS to make IBQANA a promising choice 
for FSS in medical datasets. It is also noticeable that the 
BQANA-HBO ranks second, demonstrating an advantage 
over competitors for one medical dataset. The achievements 
of IBQANA are mostly because of its strengths in the effec-
tive mapping of continuous solutions to binary ones using 
the introduced HBO and updating inferiors’ position using 
the introduced DBSS.

From the results tabulated in Table 6, it can be observed 
that IBQANA outperforms other algorithms in terms of aver-
age classification accuracy on most datasets. For example, 
on the Pima dataset, IBQANA achieved an average accuracy 
of 77.459, which is higher than the average accuracy of other 
algorithms. Similar trends are observed on different datasets, 

such as Heart, Hepatitis, Lymphography, SPECT, WBCD, 
LSVT, Parkinson, Colon, and SRBCT, where IBQANA con-
sistently demonstrates competitive or superior performance 
compared to other algorithms.

Figure 3 visually depicts the comparative convergence 
behavior analysis between IBQANA and other relevant 
algorithms for FSS purposes in the context of 12 medical 
datasets. The average of the fitness function in 20 separate 
runs has been used to plot the convergence curves. The plot-
ted curves demonstrate that the proposed IBQANA has the 
quickest convergence towards optimal solutions compared 
to other algorithms for most datasets. Also, by comparing 
the performance of IBQANA against other algorithms on 
colon, leukemia, and prostate tumor datasets, it can be con-
cluded that as the quantity of features grows, the proposed 
algorithm maintains its scalability and reaches better solu-
tions than the comparative algorithms. The ability of the 
IBQANA to bypass local optimum solutions can be seen in 
the curves related to diabetes, lymphography, WBCD, colon, 
leukemia, and prostate tumor datasets. It is also noticeable 
that the IBQANA demonstrates significant advantages over 
BQANA-HBO primarily due to its innovative approach of 
updating the positions of inferior search agents using the 
introduced DBSS. This improvement empowers IBQANA to 
achieve accelerated convergence and effectively evade being 
trapped in local optima in various scenarios.

Since in medical datasets, the accuracy of classification 
is considered the most crucial criterion, the classification 
accuracy results of IBQANA and comparative algorithms 
are shown in the form of a boxplot in Fig. 4. In general, the 
plots demonstrate that the proposed IBQANA can enhance 
the classification accuracy by selecting effective features 
and discarding irrelevant ones. The plots indicate that the 
IBQANA achieved higher median classification accuracy 
for eight datasets and higher maximum accuracy rate for 
six datasets. It can also be noticed that the BQANA-HBO 

Table 3   The description of the 
medical datasets

No Medical datasets No. samples No. features Classes Missing values

1 Pima Diabetes 768 8 2 Yes
2 Statlog (Heart) 270 13 2 No
3 Hepatitis 155 19 2 Yes
4 Lymphography 148 18 4 No
5 Single-photon emission computed tomogra-

phy (SPECT)
267 22 2 No

6 Wisconsin breast cancer diagnosis (WBCD) 569 30 2 No
7 LSVT voice rehabilitation 126 309 2 No
8 Parkinson 756 754 2 No
9 Colon 62 2000 2 No
10 Small round blue-cell tumor (SRBCT) 83 2308 4 No
11 Leukemia 72 7129 4 No
12 Prostate tumor 102 10,509 2 No
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Table 4   The comparison 
between the BQANA-HBO and 
representatives of each transfer 
function family

Datasets Metrics S4 V1 U4 Z3 Q3 BQANA BQANA-HBO

Pima Fitness Avg 0.2386 0.2386 0.2393 0.2345 0.2380 0.2316 0.2292
Min 0.2343 0.2330 0.2318 0.2319 0.2319 0.2291 0.2228

Accuracy Avg 76.505 76.462 76.397 76.955 76.500 77.208 77.380
Max 76.962 77.093 77.093 77.228 77.076 77.486 77.997

HeartEW Fitness Avg 0.1493 0.1518 0.1493 0.1435 0.1509 0.1384 0.1394
Min 0.1395 0.1411 0.1432 0.1387 0.1416 0.1329 0.1358

Accuracy Avg 85.333 85.093 85.278 85.963 85.074 86.426 86.278
Max 86.296 86.296 85.926 86.296 85.926 87.037 86.667

Hepatitis Fitness Avg 0.1243 0.1227 0.1223 0.1225 0.1231 0.1051 0.1033
Min 0.1132 0.1118 0.1056 0.0996 0.1061 0.0981 0.0934

Accuracy Avg 87.871 88.008 88.038 88.129 87.917 89.775 89.946
Max 89.042 89.083 89.708 90.417 89.708 90.500 91.042

Lymphography Fitness Avg 0.1434 0.1422 0.1423 0.1313 0.1432 0.1128 0.1162
Min 0.1324 0.1263 0.1258 0.1132 0.1303 0.1008 0.0974

Accuracy Avg 86.060 86.152 86.169 87.407 85.995 89.131 88.736
Max 87.191 87.857 87.857 89.238 87.286 90.381 90.667

SPECT Heart Fitness Avg 0.2503 0.2468 0.2468 0.2416 0.2453 0.2231 0.2216
Min 0.2415 0.2225 0.2260 0.2167 0.2326 0.2038 0.2080

Accuracy Avg 75.171 75.496 75.462 76.120 75.565 77.873 77.949
Max 76.097 77.935 77.536 78.618 76.823 79.786 79.402

WBCD Fitness Avg 0.0501 0.0494 0.0490 0.0488 0.0480 0.0463 0.0455
Min 0.0475 0.0477 0.0469 0.0459 0.0451 0.0427 0.0438

Accuracy Avg 95.389 95.404 95.356 95.617 95.415 95.550 95.515
Max 95.611 95.602 95.598 95.777 95.777 95.952 95.783

LSVT Fitness Avg 0.2947 0.2896 0.2602 0.2824 0.2790 0.1915 0.1462
Min 0.2789 0.2796 0.2219 0.2321 0.2471 0.1169 0.0852

Accuracy Avg 70.776 71.196 73.894 72.038 72.157 80.881 85.301
Max 72.372 72.244 77.628 77.051 75.513 88.205 91.410

Parkinson Fitness Avg 0.2341 0.2115 0.2011 0.2355 0.2049 0.1604 0.1647
Min 0.2160 0.1805 0.1865 0.1931 0.1838 0.1279 0.1235

Accuracy Avg 76.883 78.956 79.947 76.800 79.607 83.976 83.551
Max 78.702 82.000 81.488 80.958 81.746 87.181 87.558

Colon Fitness Avg 0.1012 0.1008 0.0995 0.1019 0.0947 0.0775 0.0686
Min 0.0949 0.0849 0.0916 0.0827 0.0809 0.0481 0.0468

Accuracy Avg 90.321 90.298 90.417 90.345 90.798 92.500 93.298
Max 90.952 91.905 91.190 92.143 92.143 95.238 95.476

SRBCT Fitness Avg 0.0129 0.0135 0.0101 0.0132 0.0047 0.0040 0.0007
Min 0.0053 0.0031 0.0021 0.0041 0.0018 0.0003 0.0002

Accuracy Avg 99.236 99.069 99.382 99.243 99.833 99.833 100.000
Max 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Leukemia Fitness Avg 0.1010 0.0974 0.0960 0.0984 0.0915 0.0638 0.0548
Min 0.0884 0.0837 0.0690 0.0716 0.0702 0.0426 0.0254

Accuracy Avg 90.339 90.607 90.714 90.696 91.071 93.920 94.705
Max 91.607 91.786 93.393 93.214 93.214 96.250 97.500

Prostate Tumor Fitness Avg 0.1219 0.1206 0.1147 0.1146 0.1113 0.0534 0.0476
Min 0.1044 0.1030 0.0984 0.1004 0.0882 0.0199 0.0200

Accuracy Avg 88.232 88.291 88.714 89.036 89.082 94.777 95.305
Max 90.000 90.091 90.091 90.364 91.273 98.000 98.000

Friedman test 5.86 5.67 4.63 4.54 4.22 1.74 1.35
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represents the potential for increasing classification accuracy 
by selecting effective features as a low computational cost 
algorithm.

Given that a primary objective of FSS is to minimize 
the number of features utilized, Fig. 5 presents a compari-
son of the algorithms based on the rate of feature reduction 
achieved for each medical dataset, as determined through 
Eq. (19). In this equation, Nsf denotes the number of features 
selected by the algorithm, and Ntf represents the total number 
of features in the dataset of interest.

The results in Fig. 5 demonstrate that the BDE algo-
rithm has the weakest performance in minimizing the 
number of features in all 12 datasets. In contrast, QBHHO, 
BQANA-HBO, and IBQANA have performed best in 
reducing the number of features. Although QBHHO pre-
dominantly minimizes the number of features more than 
IBQANA, it should be noticed that discarding effective 

(19)R(%) = 1 −

(
Nsf

Ntf

)
× 100

Table 5   Comparison in terms of fitness values of algorithms

Datasets Metrics BDE BBA VPSO BPSOGSA BDA QBHHO BWOA-TV2 BQANA-HBO IBQANA

Pima Avg 0.2324 0.2350 0.2308 0.2314 0.2317 0.2337 0.2388 0.2292 0.2286
Std 0.0022 0.0022 0.0032 0.0035 0.0018 0.0033 0.0037 0.0028 0.0023
Min 0.2292 0.2318 0.2216 0.2229 0.2280 0.2266 0.2280 0.2228 0.2228

Heart Avg 0.1390 0.1416 0.1396 0.1379 0.1386 0.1417 0.1524 0.1394 0.1378
Std 0.0056 0.0037 0.0027 0.0018 0.0030 0.0031 0.0040 0.0024 0.0016
Min 0.1308 0.1366 0.1345 0.1351 0.1308 0.1351 0.1468 0.1358 0.1358

Hepatitis Avg 0.1177 0.1146 0.0999 0.1027 0.1013 0.1108 0.1246 0.1033 0.0983
Std 0.0133 0.0093 0.0070 0.0087 0.0074 0.0051 0.0078 0.0056 0.0063
Min 0.0931 0.1043 0.0876 0.0924 0.0924 0.0998 0.1056 0.0934 0.0924

Lymphography Avg 0.1246 0.1547 0.1138 0.1136 0.1154 0.1266 0.1420 0.1162 0.1061
Std 0.0151 0.0119 0.0074 0.0110 0.0082 0.0057 0.0087 0.0124 0.0073
Min 0.1050 0.1372 0.1044 0.0990 0.1054 0.1130 0.1254 0.0974 0.0979

SPECT Avg 0.2298 0.2360 0.2200 0.2161 0.2230 0.2308 0.2448 0.2216 0.2116
Std 0.0103 0.0116 0.0098 0.0083 0.0129 0.0066 0.0072 0.0066 0.0081
Min 0.1994 0.2181 0.2081 0.2049 0.2012 0.2150 0.2266 0.2080 0.1994

WBCD Avg 0.0506 0.0481 0.0463 0.0461 0.0464 0.0459 0.0497 0.0455 0.0449
Std 0.0045 0.0022 0.0011 0.0011 0.0015 0.0004 0.0013 0.0007 0.0010
Min 0.0465 0.0450 0.0437 0.0444 0.0434 0.0448 0.0471 0.0438 0.0431

LSVT Avg 0.2845 0.2864 0.2730 0.2765 0.2803 0.1515 0.2524 0.1462 0.1939
Std 0.0087 0.0173 0.0258 0.0203 0.0155 0.0184 0.0301 0.0412 0.0540
Min 0.2647 0.2458 0.2182 0.2217 0.2249 0.1254 0.1637 0.0852 0.1073

Parkinson Avg 0.2512 0.2238 0.1972 0.2168 0.1938 0.1673 0.2156 0.1647 0.1498
Std 0.0038 0.0231 0.0373 0.0354 0.0388 0.0075 0.0159 0.0322 0.0114
Min 0.2429 0.1896 0.1554 0.1689 0.1549 0.1546 0.1778 0.1235 0.1219

Colon Avg 0.1020 0.0954 0.0848 0.0907 0.0925 0.0821 0.0983 0.0686 0.0599
Std 0.0071 0.0073 0.0070 0.0062 0.0087 0.0099 0.0043 0.0134 0.0065
Min 0.0882 0.0804 0.0778 0.0710 0.0776 0.0501 0.0816 0.0468 0.0458

SRBCT Avg 0.0097 0.0075 0.0046 0.0052 0.0052 0.0006 0.0147 0.0007 0.0003
Std 0.0051 0.0082 0.0001 0.0025 0.0029 0.0003 0.0035 0.0007 0.0001
Min 0.0057 0.0038 0.0044 0.0045 0.0039 0.0002 0.0046 0.0002 0.0001

Leukemia Avg 0.0937 0.0943 0.0773 0.0775 0.0768 0.0706 0.1028 0.0548 0.0406
Std 0.0076 0.0099 0.0118 0.0100 0.0094 0.0081 0.0064 0.0188 0.0104
Min 0.0766 0.0740 0.0579 0.0668 0.0560 0.0560 0.0879 0.0254 0.0259

Prostate Tumor Avg 0.1024 0.1143 0.0987 0.0920 0.1009 0.0561 0.1200 0.0476 0.0386
Std 0.0082 0.0132 0.0099 0.0105 0.0143 0.0176 0.0066 0.0157 0.0170
Min 0.0828 0.0895 0.0833 0.0643 0.0806 0.0289 0.1012 0.0200 0.0001

Friedman 7.16 7.41 4.39 4.43 4.86 4.54 8.05 2.83 1.33
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features degrades the accuracy of the classifier, which is 
not acceptable in medical datasets.

The nonparametric Friedman test [94] is conducted to 
compare and rank the performance of the algorithms in 
selecting effective features from the investigated datasets 
based on their obtained fitness value in 20 runs. The find-
ings reported in Table 7 reveal that the proposed IBQANA 
is ranked first for 11 datasets and third for one dataset. It is 
also noticeable that the IBQANA is scalable as it performs 
best for high-dimensional datasets, including Parkinson, 
colon, SRBCT, leukemia, and prostate tumor. Further-
more, BQANA-HBO is ranked first for one dataset, second 

for eight datasets, fourth for one dataset, and fifth for two 
datasets.

6 � Applicability of the Proposed IBQANA 
on a COVID‑19 Case Study

The infectious disease, COVID-19, attributed to the viral 
agent SARS-CoV-2, has garnered immense attention on a 
global scale since its initial emergence in January 2019, as 
corroborated by reference [95]. This virus causes severe 
acute respiratory syndrome. Due to its quick spread around 

Table 6   Comparison in terms of classification accuracy of algorithms

Datasets Metrics BDE BBA VPSO BPSOGSA BDA QBHHO BWOA-TV2 BQANA-HBO IBQANA

Pima Avg 77.210 76.827 77.278 77.249 77.159 76.933 76.493 77.380 77.459
Std 0.182 0.239 0.301 0.314 0.152 0.310 0.338 0.280 0.241
Max 77.481 77.216 78.122 77.987 77.474 77.614 77.471 77.997 78.124

Heart Avg 86.537 86.111 86.296 86.481 86.426 86.037 85.019 86.278 86.444
Std 0.514 0.407 0.360 0.190 0.346 0.342 0.407 0.306 0.186
Max 87.407 86.667 87.037 86.667 87.407 86.667 85.556 86.667 86.667

Hepatitis Avg 88.700 88.835 90.317 90.035 90.179 89.146 87.810 89.946 90.454
Std 1.311 0.930 0.719 0.867 0.818 0.540 0.764 0.608 0.648
Max 91.125 89.833 91.625 91.042 91.083 90.292 89.708 91.042 91.042

Lymphography Avg 88.100 84.855 89.031 89.069 88.871 87.650 86.171 88.736 89.779
Std 1.514 1.210 0.774 1.134 0.852 0.598 0.864 1.321 0.780
Max 90.000 86.476 89.905 90.619 89.952 89.095 87.952 90.667 90.619

SPECT Avg 77.344 76.555 78.179 78.584 77.900 76.971 75.677 77.949 78.988
Std 1.004 1.130 0.989 0.848 1.304 0.669 0.706 0.734 0.854
Max 80.228 78.248 79.387 79.772 80.185 78.647 77.521 79.402 80.228

WBCD Avg 95.505 95.582 95.687 95.724 95.654 95.462 95.369 95.515 95.620
Std 0.420 0.236 0.154 0.171 0.193 0.064 0.181 0.141 0.173
Max 95.959 95.962 95.956 95.959 95.962 95.611 95.774 95.783 95.952

LSVT Avg 72.051 71.538 72.920 72.564 72.176 84.724 74.571 85.301 80.599
Std 0.877 1.719 2.598 2.052 1.564 1.851 3.020 4.094 5.346
Max 74.103 75.513 78.462 78.077 77.756 87.372 83.526 91.410 89.167

Parkinson Avg 75.354 77.886 80.569 78.607 80.902 83.154 78.427 83.551 85.019
Std 0.429 90.845 91.929 91.345 91.143 91.929 90.548 93.298 94.131
Max 76.323 0.739 0.703 0.619 0.876 0.958 0.417 1.268 0.638

Colon Avg 90.536 90.845 91.929 91.345 91.143 91.929 90.548 93.298 94.131
Std 0.720 0.739 0.703 0.619 0.876 0.958 0.417 1.268 0.638
Max 91.905 92.381 92.619 93.333 92.619 95.000 92.143 95.476 95.476

SRBCT Avg 99.715 99.715 100.00 99.944 99.938 100.00 98.979 100.00 100.00
Std 0.507 0.824 0.000 0.248 0.280 0.000 0.353 0.000 0.000
Max 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Leukemia Avg 91.304 90.964 92.688 92.679 92.732 93.018 90.089 94.705 96.080
Std 0.762 0.989 1.188 1.005 0.950 0.794 0.652 1.743 1.042
Max 93.036 93.036 94.643 93.750 94.821 94.464 91.607 97.500 97.500

Prostate Tumor Avg 90.486 88.936 90.536 91.209 90.300 94.350 88.341 95.305 96.214
Std 0.795 1.326 1.003 1.062 1.437 1.775 0.667 1.478 1.670
Max 92.273 91.455 92.091 94.000 92.364 97.091 90.273 98.000 100.00
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the globe, World Health Organization (WHO) recognized 
it as a global crisis. Reportedly, COVID-19 has infected 
619,429,000 and killed nearly 6,537,236 people worldwide 
ever since [96]. Machine learning has recently emerged as 
an effective approach to solve many problems and can be 

used to combat COVID-19 through screening [97], moni-
toring [98], prediction [99], and diagnosis [83, 100, 101]. 
To make this possible, medical feature selection techniques 
extract useful features from clinical datasets, which are then 

Fig. 3   Convergence comparison of the IBQANA and comparative algorithms
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used to develop diagnosis algorithms to identify COVID-19 
disease [102].

In this section, an evaluation of the potential applicabil-
ity and performance of the proposed IBQANA is conducted 
on the preprocessed version [103] of the COVID-19 data-
set [104], which is described in Table 8. This table shows 
that the dataset contains 13 features to predict the patient's 

condition. The categorical columns in the preprocessed data-
set have been converted to numerical values by assigning a 
unique number to each category. The experimental environ-
ments and parameters of the algorithms have been set to the 
values specified in Sect. 5.

The experimental results illustrated in the first plot of 
Fig. 6 reveal that the proposed IBQANA generates the best 

Fig. 4   Boxplot of the classification accuracy obtained by the IBQANA and comparative algorithms



441An Improved Binary Quantum‑based Avian Navigation Optimizer Algorithm to Select Effective…

1 3

solutions with minimum fitness value among the investi-
gated algorithms, and the BQANA-HBO attained the second 
rank with a similar convergence behavior (Fig. 6a). It is also 
noticeable that IBQANA achieves the quickest convergence 
towards optimal solutions and can generate optimal solu-
tions faster than other algorithms. The boxplot in Fig. 6b 
shows that BQANA-HBO provides the highest maximum 

classification accuracy, while IBQANA and BDE algorithms 
have the highest median accuracy. Ultimately, Fig. 6c pre-
sents each algorithm's minimum and average number of 
selected features, where IBQANA has the shortest bar for 
the average number of features. In contrast, QBHHO has the 
shortest bar for the minimum number of features.

Fig. 5   The feature reduction 
rate of algorithms for each 
dataset

Diabetes Heart Hepatitis Lymphogr
aphy SPECT WBCD

BDE 32.50% 42.69% 41.58% 32.50% 45.23% 38.83%
BBA 40.63% 50.77% 49.74% 51.39% 44.32% 52.83%
VPSO 41.25% 61.15% 59.47% 47.78% 60.00% 64.33%
BPSOGSA 38.75% 59.23% 59.47% 46.39% 59.32% 62.17%
BDA 44.38% 58.08% 59.21% 47.50% 58.18% 66.33%
QBHHO 46.88% 65.77% 66.58% 57.50% 72.27% 90.83%
BWOA-TV2 40.00% 59.62% 61.05% 49.72% 59.55% 62.67%
BQANA-HBO 47.50% 64.23% 62.89% 53.61% 67.05% 89.17%
IBQANA 45.63% 64.23% 62.63% 50.83% 64.55% 85.50%
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LSVT Parkinson Colon SRBCT Leukemia Prostate
tumor

BDE 21.41% 28.37% 17.43% 30.80% 23.96% 17.50%
BBA 51.41% 51.53% 51.73% 52.48% 50.81% 51.00%
VPSO 50.83% 51.49% 51.10% 54.29% 50.45% 50.16%
BPSOGSA 50.66% 50.07% 50.12% 53.15% 50.32% 50.17%
BDA 51.00% 52.47% 52.29% 54.59% 51.58% 51.19%
QBHHO 97.15% 95.03% 78.41% 94.26% 84.95% 98.04%
BWOA-TV2 93.01% 80.07% 53.07% 54.43% 53.33% 54.47%
BQANA-HBO 93.37% 81.45% 77.72% 93.14% 76.51% 88.98%
IBQANA 82.07% 84.77% 81.84% 97.17% 82.21% 89.04%
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7 � Conclusion and Future Work

FSS is crucial in data analysis, identifying relevant fea-
tures, and reducing the computational burden. Existing 
literature suggests that metaheuristic algorithms effec-
tively find optimal feature subsets quickly. However, cur-
rent binary metaheuristic algorithms suffer from slow 
convergence and lack an effective binarization method, 
resulting in suboptimal solutions. This paper introduces 
the Improved Binary Quantum-based Avian Navigation 
Optimizer Algorithm (IBQANA) specifically designed for 
FSS on medical datasets. The algorithm employs a Hybrid 
Binary Operator (HBO) to effectively convert continuous 
values into binary solutions. In addition, a Distance-Based 

Binary Search Strategy (DBSS) is introduced to enhance 
the performance of inferior search agents and accelerate 
convergence. DBSS operates through a two-phase search 
strategy, combining exploration and exploitation phases 
based on an adaptive probability function. This innovative 
approach effectively steers clear of local optima, ensuring 
optimal results. Experimental evaluation on 12 medical 
datasets demonstrates that IBQANA outperforms seven 
established algorithms regarding fitness, classification 
accuracy, and the number of selected features. It exhib-
its scalability in selecting features from high-dimensional 
datasets and demonstrates the fastest convergence among 
the tested algorithms. The application of IBQANA for 
COVID-19 detection underscores its practical significance 
and potential impact on the medical community. This 

Table 7   The Friedman test for the fitness obtained by each algorithm

Datasets BDE BBA VPSO BPSOGSA BDA QBHHO BWOA-TV2 BQANA-HBO IBQANA

Diabetes 5.75 6.60 3.53 4.33 5.10 7.65 8.95 1.80 1.30
Heart 3.55 7.15 4.98 2.48 3.55 7.40 9.00 4.65 2.25
Hepatitis 7.90 7.10 2.25 3.88 3.35 6.10 8.80 4.35 1.28
Lymphography 6.25 9.00 3.38 2.95 4.08 6.30 8.00 4.00 1.05
SPECT 6.25 7.55 3.45 2.40 4.45 6.55 9.00 4.25 1.10
WBCD 8.45 7.10 4.63 3.95 4.85 3.95 8.45 2.45 1.18
LSVT 7.60 8.55 5.95 6.10 6.80 2.00 4.00 1.25 2.75
Parkinson 8.95 6.90 4.55 6.90 5.05 2.90 6.10 2.60 1.05
Colon 8.70 7.00 4.20 5.25 5.80 3.10 7.95 2.00 1.00
SRBCT 8.30 6.60 4.65 5.95 4.90 2.58 8.60 2.43 1.00
Leukemia 7.75 7.25 5.55 4.80 4.50 2.95 9.00 2.15 1.05
Prostate tumor 6.45 8.15 5.55 4.15 5.90 3.00 8.80 2.00 1.00
Average ranks 7.16 7.41 4.39 4.43 4.86 4.54 8.05 2.83 1.33
Overall rank 7 8 3 4 6 5 9 2 1

Table 8   Description of the novel coronavirus 2019 dataset

No Features name Description

F1 Patient location The geographic location of each patient included in the dataset
F2 Country of origin The country where each patient was living at the time of their diagnosis
F3 Patient gender The gender of each patient included in the dataset
F4 Patient age The age range of patients included in the dataset
F5 Visited Wuhan Whether each patient had visited Wuhan, China prior to their diagnosis (1 = yes, 0 = no)
F6 From Wuhan Whether each patient was from Wuhan, China (1 = yes, 0 = no)
F7 Fever Whether each patient presented with fever as a symptom of COVID-19 (1 = yes, 0 = no)
F8 Cough Whether each patient presented with cough as a symptom of COVID-19 (1 = yes, 0 = no)
F9 Cold Whether each patient presented with cold-like symptoms as a symptom of COVID-19 (1 = yes, 0 = no)
F10 Fatigue Whether each patient presented with fatigue as a symptom of COVID-19 (1 = yes, 0 = no)
F11 Body pain Whether each patient presented with body aches or pain as a symptom of COVID-19 (1 = yes, 0 = no)
F12 Malaise Whether each patient presented with a general feeling of malaise as a symptom of COVID-19 (1 = yes, 0 = no)
F13 Time to hospitalization The number of days between symptom onset and hospitalization for each patient in the dataset
F14 Patient outcome Whether each patient either recovered from COVID-19 or died as a result of the illness
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research offers a promising solution to the FSS problem in 
medical data preprocessing, with implications for diagnos-
tic tool development. Future research can explore HBO as 
a binarization method for other continuous metaheuristic 
algorithms and implement DBSS to mitigate limitations in 
other binary metaheuristic algorithms, such as slow con-
vergence and local optima trapping.

Data Availability  The datasets used during the current study are avail-
able from the corresponding author upon reasonable request.
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