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Abstract
From the end of 2019 until now, the Coronavirus Disease 2019 (COVID-19) has been rampaging around the world, posing 
a great threat to people's lives and health, as well as a serious impact on economic development. Considering the severely 
infectious nature of COVID-19, the diagnosis of COVID-19 has become crucial. Identification through the use of Com-
puted Tomography (CT) images is an efficient and quick means. Therefore, scientific researchers have proposed numerous 
segmentation methods to improve the diagnosis of CT images. In this paper, we propose a reinforcement learning-based 
golden jackal optimization algorithm, which is named QLGJO, to segment CT images in furtherance of the diagnosis of 
COVID-19. Reinforcement learning is combined for the first time with meta-heuristics in segmentation problem. This 
strategy can effectively overcome the disadvantage that the original algorithm tends to fall into local optimum. In addition, 
one hybrid model and three different mutation strategies were applied to the update part of the algorithm in order to enrich 
the diversity of the population. Two experiments were carried out to test the performance of the proposed algorithm. First, 
compare QLGJO with other advanced meta-heuristics using the IEEE CEC2022 benchmark functions. Secondly, QLGJO 
was experimentally evaluated on CT images of COVID-19 using the Otsu method and compared with several well-known 
meta-heuristics. It is shown that QLGJO is very competitive in benchmark function and image segmentation experiments 
compared with other advanced meta-heuristics. Furthermore, the source code of the QLGJO is publicly available at https:// 
github. com/ Vang-z/ QLGJO.
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1 Introduction

COVID-19 was an unprecedented human pandemic in recent 
decades [1, 2]. The first case of COVID-19 was reported in 
Wuhan, China, in December 2019, but there is no conclusive 

evidence as far as its origin is concerned [3]. Due to its severe 
transmissibility, 600 million infections have accumulated 
worldwide to date, with irreversible effects on the global 
economy and human lives [4]. Cough, fever, sore throat, 
headache, and physical fatigue are all symptoms of COVID-
19 [5]. In addition, COVID-19 can cause fibrosis of the 
lung tissue and lead to various complications that seriously 
threaten the health of patients [6]. Therefore, according to the 
above, healthcare providers need to have the means to detect 
this disease in time to prevent and interrupt the spread of 
the epidemic. The most common assay is Polymerase Chain 
Reaction (PCR), which is frequently used by medical insti-
tutions all over the world [7]. However, this work is time-
consuming, costly, and most importantly, it has the potential 
for false-positive results. Considering that COVID-19 causes 
fibrosis in patients' lung tissues, chest CT has become a more 
reliable means of detection [8]. CT images can clearly reflect 
the internal anatomy of the body tissues and also the nature of 
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the lesions, which is a great help for the clinical counterpart 
treatment. The reasonable segmentation of CT images can 
further improve the efficiency of disease diagnosis by medi-
cal personnel. Therefore, image segmentation has become a 
common technique in medical imaging [9].

Segmentation is a key step in image processing and it 
plays an indispensable role in different fields such as remote 
sensing [10], feature selection [11], computer vision [12], 
medical imaging [13], and cryptography [14], etc. The main 
goal of image segmentation is to find a suitable threshold 
to segment an image into multiple regions containing the 
same features based on texture, color, brightness, or contrast. 
There are numerous approaches to solving the segmentation 
problem, such as edge-based [15], region-based [16], thresh-
old-based [17], and feature clustering-based [18]. However, 
according to a large literature summary, the threshold-based 
segmentation method relies on its simplicity and efficiency 
to be the preferred solution [19–21]. Threshold segmentation 
is divided into two types in terms of broad categories: one is 
bi-level threshold segmentation and the other is multi-level 
threshold segmentation. Bi-level threshold segmentation is 
the simplest segmentation method and is now well estab-
lished. It segments an image region into two classes by deter-
mining an optimal threshold value. On the other hand, mul-
tilevel thresholding is used to segment an image into several 
different parts by maximizing or minimizing the objective 
function for a given number of thresholds to determine the 
threshold value. The most common multilevel thresholding 
methods include Fuzzy entropy [9], Kapur’s entropy [22], 
Tsallis entropy [23], and Otsu method [24]. Although multi-
level thresholding is theoretically an upgraded version of bi-
level threshold segmentation, it is constrained by the practical 
problem that as the number of thresholds increases and the 
image size becomes larger, it becomes impractical to rely 
on the computing power to exhaust every possible solution. 
Therefore, more and more scholars are using meta-heuristics 
instead of traditional mathematical computational methods to 
reduce the time cost in complex image processing problems.

In recent decades, meta-heuristics have made a splash in 
industry with their simple and efficient performance, espe-
cially for a variety of challenging optimization problems. 
Many researchers have worked to improve the performance 
of meta-heuristics, and a large number of meta-heuristics 
have emerged during this period. The most common meta-
heuristics for multilevel threshold image segmentation 
problems include: Particle Swarm Optimization (PSO) 
[25], Differential Evolution (DE) [26], Grey Wolf Optimizer 
(GWO) [27], Monarch Butterfly Optimization (MBO) [28], 
Whale Optimization Algorithm (WOA) [29], Multi-Verse 
Optimizer (MVO) [30], Harris Hawk Optimization (HHO) 
[31], Black Widow Optimization Algorithm (BWOA) 
[32], Slime Mould Algorithm (SMA) [33], Hunger Games 
Search (HGS) [34], RUNge Kutta Optimizer (RUN) [35], 

Marine Predators Algorithm (MPA) [36], Weighted Mean 
of Vectors (INFO) [37], and Rime Optimization Algorithm 
(RIME) [38] etc. In addition, the recently proposed Golden 
Jackal Optimization (GJO) [39] has also shown superior 
performance. For the GJO, Rezaie et al. [40] used the GJO 
algorithm to solve the model parameter estimation problem 
for fuel cells, and the experimental results showed that the 
proposed improved method outperformed other classical 
algorithms in terms of optimal model estimation. Houssein 
et al. [41] introduced the opposition-based learning mecha-
nism into the GJO which is named IGJO. The experimen-
tal results show that IGJO outperforms WOA, SOS, SSA, 
HHO, GTO, and MPA in multilevel threshold segmentation. 
Zhang et al. [42] proposed an enhanced GJO algorithm and 
used it to solve the adaptive infinite impulse response system 
identification problem, and the experimental results showed 
that the enhanced GJO algorithm was able to obtain higher 
computational accuracy in this problem. By investigating 
the above literature, we can observe that, due to its flex-
ibility and versatility, the GJO has received much attention 
from scholars in various fields since it was proposed, and 
has solved various complex engineering problems. How-
ever, these literatures also reflect the disadvantages of GJO. 
Firstly, the convergence speed is slow in high-dimensional 
complex problems. Then, GJO is easily influenced by the 
initial population. At last, like most meta-heuristics, it is 
easy to fall into local optimum.

The following is a review of some recent outstanding 
contributions in the field of image segmentation using 
meta-heuristics. Huo, Sun, and Ren [43] used the improved 
Bloch Quantum Artificial Bee Colony Algorithm for multi-
level thresholding of images and verified the comprehensive 
performance of the algorithm on grayscale images. In [44], 
Xing used Gaussian mutation, Lévy flight, and opposition-
based learning to improve the Emperor Penguin Optimi-
zation, and the performance of the improved algorithm 
was enhanced for multilevel thresholding segmentation of 
color images. Upadhyay et al. [45] used the Crow Search 
Algorithm to optimize the objective function for comput-
ing Kapur entropy, and experimented on different threshold 
values of 2, 4, 8, 16, and 32, which obtained superior results. 
Elaziz et al. [46] proposed a hybrid algorithm to determine 
the optimal threshold for threshold segmentation, which 
combines the Whale Optimization Algorithm and the Vol-
leyball Premier League Algorithm. The experimental results 
show that the proposed algorithm outperforms other methods 
in several performance metrics such as Peak Signal to Noise 
Ratio and Structural Similarity Index. Meanwhile, Elaziz 
et al. [47] improves the Marine Predators Algorithm using 
quantum theory, which greatly enhances the global search 
capability of the algorithm. Better results were obtained in 
the multilevel threshold segmentation task. Houssein et al. 
[12] proposed an image segmentation method based on the 
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Black Widow Optimization Algorithm, the Kapur entropy 
and the Otsu method were used as the objective function, 
respectively. The experimental results show that the pro-
posed algorithm has more reliable performance compared 
with the classical algorithm. Meanwhile, the application of 
meta-heuristics in the field of image segmentation is inves-
tigated in more depth by Houssein et al. in the following 
literature. In [48], a local escaping operator is combined 
with the Tunicate Swarm Algorithm to propose a method 
for global optimization and image segmentation. In [49], 
the opposition-based learning mechanism is introduced for 
the Marine Predators Algorithm. The proposed algorithm 
is applied to the multilevel threshold segmentation prob-
lem. Experimental results show that the proposed algorithm 
outperforms other algorithms being compared in terms of 
performance. In [50], an effective multilevel thresholding 
segmentation method is proposed using an improved Equi-
librium Optimizer, which is used for segmentation of medi-
cal images. The experimental results show that the proposed 
method can effectively solve the segmentation problem of 
medical images. In [51], the Salp Swarm Algorithm is com-
bined with the Marine Predators Algorithm to determine the 
optimal threshold for the multilevel thresholding segmenta-
tion problem. In [13], the Chimp Optimization Algorithm 
is enhanced based on opposition-based learning and Lévy 
flight, and the improved algorithm outperforms other algo-
rithms in multilevel threshold segmentation. Liu et al. [52] 
proposed a novel Ant Colony Optimization for COVID-19 
image segmentation, and the experimental results show that 
the algorithm can further improve the diagnosis of COVID-
19. Bhandari [53] proposed an algorithm using two objec-
tive functions of a multilevel threshold segmentation method 
based on Beta-difference Evolution, which can retrieve the 
best threshold accurately and efficiently. Wu et al. [54] pro-
posed an improved Teaching–learning-based Optimization 
Algorithm for the multilevel threshold segmentation prob-
lem. The experimental results show that the algorithm can 
segment high-resolution X-ray images perfectly. He and 
Huang [55] proposed a Krill Herd Algorithm for solving 
multilevel thresholding segmentation of color images by 
using the Otsu method, Kapur entropy, and Tsallis entropy 
as the objective function. The experimental results show that 
the proposed algorithm has more accurate and stable per-
formance on Kapur’s entropy. Ren et al. [56] improved the 
differential evolution (DE) and proposed an algorithm called 
MDE. This algorithm can improve the convergence accu-
racy and the ability to leap out of local optimum to some 
extent. And the segmentation experiments were conducted 
on breast cancer and skin cancer pathology images, and the 
experimental results illustrate that the proposed method can 
provide an efficient segmentation procedure for pathology 
medical images. Hosny et al. [57] combine Coronavirus 
Optimization Algorithm (COVIDOA) and Harris Hawks 

Optimization Algorithm (HHOA) to solve the segmentation 
problem, and the proposed method compensates the short-
comings of COVIDOA and HHOA mutually to some extent, 
and the improved performance of the proposed algorithm 
over the COVIDOA and HHOA algorithms was demon-
strated by five test problems in the IEEE CEC 2019 bench-
mark problem, and the quality of the segmented images of 
the proposed algorithm was better than the other methods 
in the segmentation experiments. Zhu et al. [58] proposed 
an improved WOA with Levy operator and chaotic random 
variation strategy to improve the ability of the algorithm to 
jump out of the local optimum and explore the search space, 
and the proposed method has excellent performance in both 
benchmark test sets and image segmentation experiments 
compared with other variants of WOA. Emam et al. [59] 
proposed an improved RSA algorithm by integrating Reptile 
Search Algorithm (RSA) and RUN algorithm, which intro-
duced the ESQ mechanism of RUN into RSA, improved the 
convergence speed and the ability to jump out of the local 
optimal. Through CEC2020 benchmark test set and brain 
magnetic resonance imaging segmentation experiments, it is 
proved that the proposed algorithm has strong optimization 
ability. Han et al. [60] used an improved MVO to maximize 
the Kapur’s entropy, and the experimental results proved 
that the proposed method is highly competitive with other 
meta-heuristics for benchmark functions and image segmen-
tation experiments. Xing et al. [61] improved WOA by intro-
ducing a Quasi-Opposition-Based Learning and Gaussian 
Barebone Mechanism, and the improved method beat other 
algorithms in the image segmentation experiments. Accord-
ing to the above literature, we can further understand that 
the meta-heuristics has been widely used in image segmenta-
tion. However, at present, there are still many shortcomings, 
most meta-heuristics converge slowly and easy to fall into 
local optimality. Therefore, we need to further improve the 
meta-heuristic algorithm to improve the efficiency of the 
algorithm to deal with problems.

In recent years, many researchers have combined machine 
learning methods and meta-heuristics to improve the perfor-
mance of meta-heuristics. Among them, combining methods 
such as Support Vector Machine (SVM) [62], Self-Organ-
izing Maps (SOM) [63], and Reinforcement Learning (RL) 
[64] with meta-heuristics has achieved amazing success 
and provided a new direction for the development of meta-
heuristics. In addition, RL has become more popular among 
research scholars in recent studies [65]. RL enables an agent 
to learn autonomously by interacting with the environment, 
and the combination with metaheuristics often leads to bet-
ter performance. For example, Qu et al. [66] combined Grey 
Wolf Optimizer with RL and succeeded in achieving unex-
pected success in the UAV 3D path planning problem. In 
[67], the authors used Policy Iteration (PI) and Grey Wolf 
Optimizer to train the Neural Networks (NNs). Experimental 
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results show that the proposed method has a better solution. 
Sadeg et al. [68] proposed a Reinforcement Learning based 
Bee Swarm Optimization for feature selection. Experimental 
results show that the proposed algorithm can yield satisfac-
tory results for large instances. Chen et al. [69] introduced a 
method for solving the flexible job-shop scheduling problem, 
combining RL with the Genetic Algorithm for the first time, 
and achieved satisfactory results in this problem.

As mentioned above, at this present, meta-heuristics have 
been widely used in the field of image segmentation, and the 
combination of RL and meta-heuristics has been recognized 
by a wide range of researchers. However, as far as we know, 
there is a lack of research that combines RL with meta-heu-
ristics to solve image segmentation. Therefore, in view of the 
problem that golden jackal optimization algorithm is easy 
to fall into local optimality, in this study, we propose a rein-
forcement learning-based improved golden jackal optimiza-
tion to advance the research of medical image segmentation. 
The main contributions of this paper are as follows:

(1) QLGJO: An enhanced version of the GJO based on 
reinforcement learning (Q-Learning), which is named 
QLGJO, is proposed to be used to advance the research 
of CT images of COVID-19.

(2) Three mutation strategies are proposed to improve the 
exploration performance of GJO. In addition, a new 
update strategy is introduced in the original algorithm 
to further balance the exploration and exploitation.

(3) The performance comparison experiment of QLGJO 
and other advanced meta-heuristics were conducted on 
IEEE CEC2022. The experimental data reveal that the 
performance of QLGJO is better than the others.

(4) The Otsu method (maximum interclass variance 
method) is used as the objective function, and it is opti-
mized using QLGJO.

(5) Peak Signal to Noise Ratio ( PSNR ) [70], Structural 
Similarity Index ( SSIM ) [71], and Feature Similarity 
Index ( FSIM ) [72] are used as metrics for the segmen-
tation experiments to verify the effectiveness of the dif-
ferent algorithms.

(6) The performance of the proposed method was evalu-
ated with six different meta-heuristics at thresholds of 
8, 12, 16, and 20. Experimental results show that the 
proposed method has superior advantages and can be 
further extended to other classes of medical imaging 
diagnostics.

The rest of this paper is organized as follows: Sect. 2 
contains the materials and methods. Section 3 suggest the 
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QLGJO algorithm. Section 4 introduces, discusses and 
analyzes the performance of the proposed method. At last, 
Sect. 5 summarizes the study and provides suggestions for 
future work.

2  Preliminaries

In this section, we introduced the main framework of the 
GJO algorithm and some basic concepts of reinforcement 
learning. In addition, the objective function used in this 
study and the dataset of COVID-19 are also described.

2.1  Golden Jackal Optimization

GJO was proposed by Chopra and Ansari [39] in 2022 as 
a meta-heuristic based on swarm intelligence. Compared 
with other meta-heuristics, GJO provides a fresh strategy 
to solve optimization problems. The GJO is inspired by the 
collaborative hunting behavior of golden jackals, which 
hunt in pairs. Generally, the male jackal leads the female 
jackal in hunting, first finding and approaching the prey, 
then surrounding and chasing the prey, and finally hunting 
the prey. GJO simulates the hunting process of the golden 
jackal in two phases: first, the search phase, which involves 
finding and tracking the prey. Next is the exploitation phase, 
in which the golden jackal surrounds the prey and hunts it. 
The mathematical description of GJO will be discussed in 
the following subsections.

2.1.1  Initialization

As mentioned above, GJO is a meta-heuristic based on 
swarm intelligence. Therefore, the initialization process of 

GJO is similar to most meta-heuristics. Equation (1) depicts 
the initialization process of the GJO.

where Pos represents the positions of all individuals in the 
population, 

⇀

Posk stands for the position of the k th individual, 
n is the population size, ⇀

LB and 
⇀

UB denote the upper and 
lower boundaries of the environment, respectively. 

⇀

rand is 
a n-dimensional random vector between 0 and 1. Moreover, 
the symbol ◦ indicates the Hadamard product [73].

2.1.2  Exploration

In the exploration phase, male golden jackals lead female 
golden jackals to find and track their prey. The positions of 
the male and female golden jackets are shown by Eq. (2) 
and Eq. (3), respectively. The position update scheme for 
individual k is shown in Eq. (7).

where t is the current iteration, 
⇀

Posk(t) stands for the posi-
tion of the t th iteration for the k th individual. 

⇀

Posm(t) and 
⇀

Posfm(t) denote the male and female jackals of the current 
iteration, respectively, which are best and second-best indi-
viduals of the population. ⇀

RL is a n-dimensional random 
vector which is based on Lévy flight [74], which is discussed 

(1)
�������⃗Posk = ����⃗LB + �������⃗rand◦

(
�����⃗UB − ����⃗LB

)
, k = 1, 2,… , n

Pos =
[
�������⃗Pos1,

�������⃗Pos2,… , �������⃗Posn

]T

(2)
−−−−−−⇀

Pos
�
(t) =

−−−−−−⇀

Posm(t) −
−−−−−−⇀

E ◦

||||
⇀

Posm(t) −
−−−−−−⇀

RL ◦

−−−−−−⇀

Posk(t)
||||

(3)
−−−−−−⇀

Pos
�
(t) =

−−−−−−⇀

Posfm(t) −
−−−−−−⇀

E ◦

||||
−−−−−−⇀

Posfm(t) −
−−−−−−⇀

RL ◦

−−−−−−⇀

Posk(t)
||||

Algorithm 2 Pseudo-code of the Q-Learning

Inputs: The max iterations .

Outputs: The Q-table.

1: Initialization the Q-table.

2: Choose a random initial state .

3: while ( )

4: Choose the best action with the current state according Q-table.

5: Verify the reward value based on action .

6: Find the new state .

7: Update the Q-table according Eq.(10), and update the state 

8: end while
9: return the Q-table.
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in detail in [36]. 
⇀

E is the Evading Energy of individual which 
is calculated as Eq. (4), Eq. (5), and Eq. (6).

where E1 stands for the decreasing energy of the individual, 
⇀

E0 denotes the initial value of the decreasing energy. T is the 
maximum number of the iterations.

2.1.3  Exploitation

In the exploitation phase, the golden jackal attacks the prey 
tracked in the exploration phase, and when the evading 
energy of the prey decays to 0, the golden jackal will hunt 
the prey. The mathematical model of this phase is similar to 
that of the exploration phase, which is shown below.

Please note that all the definitions in this section have 
the same meanings as those mentioned in the previous sec-
tion. Therefore, it will not be repeated any further. And the 
pseudo-code of the GJO is given in Algorithm 1.

2.2  Reinforcement Learning

Reinforcement Learning (RL), also referred to as reactive 
learning, evaluative learning, or augmented learning, which is 
one of the paradigms and methodologies of machine learning 
[75]. RL is a learning mechanism that learns how to map from 
states to actions in order to maximize the obtained reward. 
As scientific research continues to advance, RL can currently 
be divided into two main categories: policy-based methods 
and value-based methods. While policy-based methods do not 
include value functions, the opposite is true for value-based 
methods. A typical representative of value-based methods is 
the Q-Learning algorithm. This algorithm uses a matrix called 
the Q-table to record the Q-values for different states ( S ). The 
Q-table is randomly initialized, and before each iteration, the 

(4)
⇀

E = E1 ⋅

⇀

E
�

(5)E1 = 1.5 × (1 − t∕T)

(6)
−−−⇀

E
�
= 2 ⋅

−−−−−−⇀

rand − 1

(7)−−−−−−⇀

Posk(t + 1) =

−−−−−−⇀

Pos
�
(t) +

−−−−−−⇀

Pos
�
(t)

2

(8)
−−−−−−⇀

Pos
�
(t) =

−−−−−−⇀

Posm(t) −
−−−−−−⇀

E ◦

||||
−−−−−−⇀

RL ◦

−−−−−−⇀

Posm(t) −
−−−−−−⇀

Posk(t)
||||

(9)
−−−−−−⇀

Pos
�
(t) =

−−−−−−⇀

Posfm(t) −
−−−−−−⇀

E ◦

||||
−−−−−−⇀

RL ◦

−−−−−−⇀

Posfm(t) −
−−−−−−⇀

Posk(t)
||||

algorithm selects the best action to maximize the Q-value 
among all actions ( A ) for state ( S ) to obtain the best reward. 
In addition, Eq. (10) shows the Bellman Equation [76], which 
is the specific update formula for the Q-table.

where st and st+1 represent the current state and the next 
state, respectively. � stands for the learning rate, and � is 
the discount factor, which all of them are between 0 and 
1. rt+1 denotes the reward or penalty which is the agent 
receives depending on the current action. Qt(st, at) indi-
cates the Q-value of the selected action in the current state. 
max(Qt(st, a)) represents the maximum Q-value of all actions 
in the current state. Finally, Qt+1(st, at) is the Q-value which 
is pre-estimated for the next state. Therefore, three compo-
nents are required to solve the problem with Q-Learning: the 
reward table (R-table), the Q-table, and the Bellman Equa-
tion. In addition, the pseudo-code of the Q-Learning is shown 
in Algorithm 2.

2.3  Thresholding Methods

2.3.1  Otsu’s Methods

The Otsu method was proposed in 1979 [77], which seg-
mented images by maximizing variance between classes. In 
other words, the Otsu method is a nonparametric segmentation 
method that divides an image into different regions based on 
the intensity of the pixels. Assume that L is the pixel intensity 
levels of an image which has size of M × N.

where n indicates the total number of image pixels, ni is the 
number of pixels for intensity level i , and probability distri-
bution of all intensity levels is represented by Phi.

Assume there is a threshold th , in which th is between 0 
and L − 1 , then the image can be divided into two classes 
according to th. The first class, C1 , contains all pixels with 
pixel intensity levels between [0, th] , while C2 contains the rest 
of the pixels.

where �1(th) and �2(th) represent the cumulative probability 
distributions for C1 and C2 , respectively.

(10)
Qt+1(st, at) ← Qt(st, at) + �[rt+1 + � max(Qt(st+1, a)) − Qt(st, at)]

(11)n = n0 + n1 + ... + nL−1

(12)Phi =
ni

n
,

L−1∑
i=0

Phi = 1

(13)�1(th) =

th∑
i=0

Phi, �2(th) =

L−1∑
i=th+1

Phi = 1 − Ph1(th)
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where �1(th) and �2(th) indicate the mean intensity levels 
for C1 and C2 , respectively. �th denotes the mean intensity 
level from 0 to th . �T represents the mean intensity level for 
the whole image. In summary, Eq. (17) is derived without 
difficulty. Hence, the objective function of the maximizing 
variance between classes can be expressed by Eq. (18).

Therefore, according to Eq. (18), we are able to compute a 
th∗ to maximize the �2

B
 , which can be further expressed using 

Eq. (19). In conclusion, the Otsu method can be considered as 
a maximization problem, which means that the Otsu method 
could be further optimized using the meta-heuristics.

2.3.2  Kapur’s Entropy

Kapur's entropy was proposed by Kapur in 1985 [78], which 
segmented the image based on the probability distribution of 
the image histogram. Also considering the bi-level thresh-
old segmentation problem, the objective function of Kapur's 
entropy is defined as shown below:

where H1 and H2 represent the Kapur’s entropy of the pixel 
intensity at [0, th] and [th, L − 1] , respectively, which are 
computed as follows:

(14)

�1(th) =

th∑
i=0

iP(i|C1) =

th∑
i=0

iP(C1|i)P(i)
P(C1)

=
1

�1(th)

th∑
i=0

iPhi

(15)

�2(th) =

L−1∑
i=th+1

iP(i|C2) =

L−1∑
i=th+1

iP(C2|i)P(i)
P(C2)

=
1

�2(th)

L−1∑
i=th+1

iPhi

(16)�th =

th∑
i=0

iPhi, �T =

L−1∑
i=0

iPhi

(17)
�1(th) + �2(th) = 1

�1(th) ⋅ �1(th) + �2(th) ⋅ �2(th) = �G

(18)
�2
B
=

(�G�1(th) − �th)
2

�1(th)(1 − �1(th))

= �1(th)(�1(th) − �T )
2 + �2(th)(�2(th) − �T )

2

= �1(th)�2(th)(�1(th) − �2(th))
2

(19)�2
B
(th∗) = max

0≤th≤L−1
�2
B
(th)

(20)maxFKapur(th) = H1 + H2

(21)

H1 =

th∑
i=0

Phi

�1(th)
ln

(
Phi

�1(th)

)
, H2 =

L−1∑
i=th+1

Phi

�2(th)
ln

(
Phi

�2(th)

)

where ln is the natural logarithm, and the rest definitions in 
this formula have the same meanings as those mentioned in 
the previous section.

2.4  The COVID‑19 Dataset

As mentioned in the previous section, this study was con-
ducted to promote the scientific research for COVID-19. 
Therefore, we evaluated the performance of the proposed 
algorithm using chest CT images of COVID-19. CT images 
were obtained from the dataset [79], which has 349 CT 
images containing clinical findings of COVID-19 from 216 
patients. In this study, the proposed algorithm and other 
comparison algorithms were evaluated on 12 randomly 
selected images from this dataset in order to test and com-
pare the performance between each algorithm.

3  The Proposed Algorithm

Global exploration capabilities and local exploitation capa-
bilities intrinsically affect the performance of meta-heuris-
tics. However, the two capabilities conflicted with each other 
for the majority of meta-heuristics. It means that there is no 
way for a meta-heuristic to perform local exploitation while 
performing global exploration. Therefore, how to balance 
the exploration and exploitation for meta-heuristics has 
become a key factor in improving the performance. At this 
stage, the meta-heuristics usually use a composite function 
calculated from the current and the maximum number of 
iterations to control exploration and exploitation. For exam-
ple, the evading energy ( 

⇀

E ) in the GJO is used to control the 
exploration and exploitation. When 

||||
⇀

E
|||| > 1 , the algorithm 

performs exploration, vice versa, it performs exploitation. 
Hence, we could realize that the search process of GJO is 
unified, which means that all of the individuals are trans-
formed from global search to local exploitation. This phe-
nomenon implies a strong possibility that the algorithm will 
be trapped in local optimal. Therefore, an independent 
search process can improve the performance more effec-
tively, whereas reinforcement learning can conveniently 
achieve this goal.

3.1  The Q‑Learning Strategy

In this study, we consider the individual in the population 
as the agent of RL, while the search space is regarded as 
the environment, the state ( s ) represents the current updated 
position scheme of the individual, and the action ( a ) stands 
for the change process of state ( s ). Each individual has three 
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operations to update their own position: exploration, exploi-
tation, and hybrid mode. They adaptively choose the update 
strategy based on their learning experience. If the fitness of an 
individual increases after the updating operation, then it could 
receive positive feedback, and vice versa, it must receive a pen-
alty. The Q-table has been designed as a 3 × 3 matrix, where 
the rows and columns denote state and action, respectively. 
In addition, it is important to note that each individual has a 
separate Q-table in order to ensure the independence of the 
learning process. Figure 1 illustrates the update process of an 
individual in Q-Learning mode. The individual is currently in 
the “Exploration” state, and by comparing the action feedback 
of the “Exploration” state, we can anticipate that the individual 
will get the most rewards when the next state is in the “Hybrid”. 
Therefore, the individual will switch to the “Hybrid” state. In 
addition, the value of the Q-table will be updated by Eq. (10).

With the analysis of Fig. 1 combined with Eq. (10), we 
realize that the learning rate � can influence the Q-Learning 

algorithm enormously. A higher learning rate can cause indi-
viduals to forget the experiences which have been gained. 
On the other hand, a lower learning rate can prevent indi-
viduals from learning from the environment to change their 
behavior. Therefore, learning rate should be dynamically 
adjusted from a higher value to a lower value during the 
iteration, which can effectively increase the learning ability 
of the individual. In this study, the adjustment formula for 
the learning rate is shown as follows:

where �initial and �final stand for the initial and final value of � , 
which have been set to 0.9 and 0.1, respectively. t and T  rep-
resent the current and maximum iteration number, respec-
tively. Moreover, the reward parameter r has been deter-
mined by fitness, which is set to 1 if the fitness is improved, 
otherwise -1.

(22)�=
�initial + �funal

2
−

�initial − �funal

2
cos

(
π
(
1 −

t

T

))
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3.2  The New Update Mode and Mutation Strategy

In the original GJO algorithm, the exploration operation 
is performed at the beginning of the iteration, which is 
described by Eq. (2) and Eq. (3). The exploitation opera-
tion, on the other hand, is performed at the end of the 
exploration operation, which is depicted using Eq.  (8) 
and Eq. (9). In this paper, RL is introduced to coordinate 
the exploration and exploitation selection processes and 
inherit the original exploration and exploitation mecha-
nism. However, in order to further balance exploration and 
exploitation, this study proposes a new mode, called the 
hybrid mode. In the hybrid mode, the population will be 
divided into two classes, in which one class keeps explo-
ration while the other class starts exploitation. In addi-
tion, in the hybrid model, to further enhance the diversity 
of the population, a variation mechanism is designed to 
update the position of individuals in the population. The 
specific update strategy of the hybrid model is described 
by Eq. (23), Eq. (24), and Eq. (25).

(23)
−−−−−−⇀

Pos
�
(t) =

⎧
⎪⎨⎪⎩

−−−−−−⇀

Posm(t) −
⇀

E◦
����
−−−−−−⇀

Posm(t) −
⇀

RL◦
−−−−−−⇀

Posk(t)
����, r < 0.5

−−−−−−⇀

Posm(t) −
−−−−−−⇀

E ◦

����
−−−−−−⇀

RL ◦

−−−−−−⇀

Posm(t) −
−−−−−−⇀

Posk(t)
����, r ≥ 0.5

(24)
−−−−−−⇀

Pos
�
(t) =

⎧
⎪⎨⎪⎩

−−−−−−⇀

Posfm(t) −
−−−−−−⇀

E ◦

����
−−−−−−⇀

Posfm(t) −
−−−−−−⇀

RL ◦

−−−−−−⇀

Posk(t)
����, r < 0.5

−−−−−−⇀

Posfm(t) −
−−−−−−⇀

E ◦

����
−−−−−−⇀

RL ◦

−−−−−−⇀

Posfm(t) −
−−−−−−⇀

Posk(t)
����, r ≥ 0.5

where r is a random number between 0 and 1. 
⇀

Pos�(t) rep-
resents the updated position of the t th iteration for the k th 
individual. 

⇀

Pos�(t) denotes the mutation position of the t th 
iteration for the k th individual. 

⇀

rand stands for a random 
vector between 0 and 1. 

⇀

Posr1(t) , 
⇀

Posr2(t) , and 
⇀

Posr3(t) are 
three random individuals, respectively.

For both exploration and exploitation strategies, we pre-
sent two mutation strategies to improve the performance of 
the algorithm, respectively. Equation (26) is applied after 
exploration to assist the population in exploring more search 
space. On the other hand, Eq. (27) is used to mutate after 

(25)

−−−−−−⇀

Pos�(t) =

−−−−−−⇀

Pos
�
(t) +

−−−−−−⇀

Pos
�
(t)

2
−−−−−−⇀

Pos�(t) =
−−−−−−⇀

Posr�(t) +
−−−−−−⇀

rand◦(
−−−−−−⇀

Posr�(t) −
−−−−−−⇀

Posr�(t))

−−−−−−⇀

Posk(t + 1) =

⎧
⎪⎨⎪⎩

−−−−−−⇀

Pos�(t), fitness(
−−−−−−⇀

Pos�(t))fitness(
−−−−−−⇀

Pos�(t))
−−−−−−⇀

Pos�(t), otherwise

Fig. 1  The update process of the Q-table
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the exploitation to improve the diversity of the population 
and prevent individuals from being trapped in local optima.

where 
⇀

Posr4(t) and 
⇀

Posr5(t) are two random individuals, 
respectively. In addition, the meanings of the rest variables 
are all consistent with those mentioned in Eq. (25).

(26)

−−−−−−⇀

Pos�(t) =

−−−−−−⇀

Pos
�
(t) +

−−−−−−⇀

Pos
�
(t)

2
−−−−−−⇀

Pos�(t) =
−−−−−−⇀

Posr�(t) +
−−−−−−⇀

rand◦(
−−−−−−⇀

Poscr�(t) −
−−−−−−⇀

Posr�(t)) +
−−−−−−⇀

rand◦(
−−−−−−⇀

Posr�(t) −
−−−−−−⇀

Posr�(t))

−−−−−−⇀

Posk(t + 1) =

⎧⎪⎨⎪⎩

−−−−−−⇀

Pos�(t), fitness(
−−−−−−⇀

Pos�(t))fitness(
−−−−−−⇀

Pos�(t))
−−−−−−⇀

Pos�(t), otherwise

(27)

−−−−−−⇀

Pos�(t) =

−−−−−−⇀

Pos
�
(t) +

−−−−−−⇀

Pos
�
(t)

2
−−−−−−⇀

Pos�(t) =
−−−−−−⇀

Posk(t) +
−−−−−−⇀

rand◦(
−−−−−−⇀

Posr�(t) −
−−−−−−⇀

Posr�(t))

−−−−−−⇀

Posk(t + 1) =

⎧⎪⎨⎪⎩

−−−−−−⇀

Pos�(t), fitness(
−−−−−−⇀

Pos�(t))fitness(
−−−−−−⇀

Pos�(t))
−−−−−−⇀

Pos�(t), otherwise

It is worth noting that Eq. (27) is more similar to Eq. (25), 
and all variables have the same meanings. However, the vari-

able 
⇀

Posk(t) is used instead of the variable 
⇀

Posr1(t) . It allows 
the mutation of individuals to be more dependent on the 
current position, which enables the population to increase 
diversity while maintaining the original convergence. Fur-
thermore, the pseudo-code and flowchart of the proposed 
method are given in Algorithm 3 and Fig. 2, respectively.

3.3  Computational Complexity

3.3.1  Time Complexity

Further analysis of previous subsection reveals that the time 
complexity of the QLGJO algorithm is mainly influenced 

Fig. 2  Flowchart of the proposed method
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(a) Patient 3 (b) Patient 4 (c) Patient 5

(d) Histogram of Patient 3 (e) Histogram of Patient 4 (f) Histogram of Patient 5

Fig. 3  COVID-19 CT test images and their histograms

by three components. The first is the calculation of the fit-
ness, the second is the update of the golden jackal popula-
tion and the mutation of the golden jackal individuals, and 
the last is the update of the reinforcement learning compo-
nent (Q-table). In which the calculation of the fitness will 
costs O

(
T × N × OOtsu

)
 time to calculate, where T  indicates 

the maximum number of iterations, N denotes the size of 
the population, and OOtsu is the cost of Otsu method. And 
the population needs O(T × N ×M) time to be updated, 
where M represents the dimensions of the object func-
tion, which is generally the same as the threshold number 
in the Otsu method. In addition, the mutation strategy also 
costs O(T × N ×M) time complexity. Finally, the Q-table 
spends O(T × N) time to be updated. Therefore, the total 
time complexity of QLGJO is O(T × N × (OOtsu +M)) after 
simplification.

3.3.2  Space Complexity

According to Algorithm 3, we can observe that the pro-
posed algorithm additionally adds a Q-table for each indi-
vidual. In addition, the space complexity of the population 
is O(M × N) and the space complexity of the Q-table is 
O(9 × N) → O(N) . Therefore, the space complexity of the 
algorithm is the sum of the space occupied by the population 
and the space required by the Q-table, which is O(M × N) 
with simplification.

4  Experimental Results and Analysis

In this section, we demonstrate the performance of the 
proposed algorithm through two different sets of experi-
ments. First, we use IEEE CEC2022 as a benchmark test 
function to test the performance of proposed method. In 
this experiment, we selected six advanced meta-heuristics 
for comparison, including: the original algorithm of the 
proposed method, GJO. The first medical image segmen-
tation variant of the GJO algorithm, IGJO. One of the 
latest meta-heuristics, INFO. One of the commonly used 
meta-heuristics in recent years, MVO. The best old algo-
rithm, DE, and the most popular algorithm, PSO. Then 
we further evaluate the practical performance of QLGJO 
by presenting the experimental results of the COVID-19 
image segmentation. As mentioned in Sect. 2, we use 9 
random chosen images from Yang et al. [79] as experi-
mental data to compare the performance of the proposed 
algorithm with other meta-heuristics. The twelve images 
were named as Patient 3, Patient 4, Patient 5, Patient 6, 
Patient 7, Patient 9, Patient 13, Patient 24, Patient 30, 
Patient 37, Patient 80, and Patient 121. Figures 3, 4,  5, 
and 6 show each test image and their histogram infor-
mation. In the comparison experiments, the algorithms 
involved in the comparison were kept the same as the 
previous experiment and the Otsu method was used as the 
objective function for the segmentation. Moreover, Peak 
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Signal to Noise Ratio ( PSNR ) [70], Structural Similarity 
Index ( SSIM ) [71], and Feature Similarity Index ( FSIM ) 
[72] were used as evaluation metrics to assess the perfor-
mance of all algorithms.

4.1  Environment Settings

To ensure the fairness of the experiments, all algorithms 
were run 21 times independently in the same environment. 
For IEEE CEC2022 benchmark functions, the number of 
iterations was set to 5000 and the population size is fixed 
to 120. On the other hand, for segmentation experiment, 
the number of iterations was set to 200, and the popula-
tion size was fixed at 60. The parameters of all algorithms 

were kept at default parameters to ensure that they were 
in a relatively optimal state, considering the suggestion 
by Arcuri et al. [80]. In addition, the specific configura-
tion information of the running environment is given in 
Table 1, and the parameter settings for each algorithm are 
listed in Table 2.

4.2  Experiment on IEEE CEC2022

The CEC2022 benchmark test function is the most recent 
test function set which contains 12 different functions, 
of which F1 belongs to the Unimodal Functions, F2-F5 
belongs to the Multi-modal Functions, F6-F8 belongs to the 
Hybrid Functions, and F9-12 belongs to the Composition 

(a) Patient 6 (b) Patient 7 (c) Patient 9

(d) Histogram of Patient 6 (e) Histogram of Patient 7 (f) Histogram of Patient 9

Fig. 4  COVID-19 CT test images and their histograms



2288 Z. Wang et al.

1 3

(a) Patient 13 (b) Patient 24 (c) Patient 30

(d) Histogram of Patient 13 (e) Histogram of Patient 24 (f) Histogram of Patient 30

(g) Patient 37 (h) Patient 80 (i) Patient 121

(j) Histogram of Patient 37 (k) Histogram of Patient 80 (l) Histogram of Patient 121

Fig. 5  COVID-19 CT test images and their histograms
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Functions. In addition, Table 3 gives the details of the 
CEC2022 benchmark test function. In this experiment, we 
analyze the performance of the proposed method through 
quantitative and qualitative indicators. Among them, quan-
titative indicator includes the mean, median and Standard 
Deviations (std) [81] obtained in each benchmark function, 
while qualitative indicator is obtained by analyzing box-
plot and convergence curve. In addition, the comprehensive 
performance of all algorithms was ranked by the Friedman 
mean rank test [82].

Table 4 shows a general overview of the performance of 
each algorithm on the CEC2022 benchmarking function, 
the optimal values are highlighted in this table. With the 
data in this table, we can see that for the accuracy, QLGJO 
achieves an impressive improvement over all functions 
compared to the original GJO, IGJO, and PSO. Compared 
to the latest meta-heuristic INFO, QLGJO achieves a great 
advantage on F2, F4, F5, F6, F7, F8, F10, F11, and F12, 
and shows similar performance F1, F3, and F9. Compared 
to the common newer meta-heuristic MVO, QLGJO also 
achieves a great success over F2, F3, F4, F6, F7, F8, F9, 
and F11, except for F10, which is surpassed by MVO, and 
shows similar performance F1, F5, and F12. Finally, com-
pared with the best classical algorithm DE, QLGJO shows 

Table 3  The CEC2022 
benchmark test function

Function no Function type Function name Dim Range Optimal

F1 Unimodal Zakharov Function 10 [− 100, 100] 300
F2 Multi-modal Rosenbrock's Function 10 [− 100, 100] 400
F3 Multi-modal Schaffer's F7 10 [− 100, 100] 600
F4 Multi-modal Rastrigin's Function 10 [− 100, 100] 800
F5 Multi-modal Levy Function 10 [− 100, 100] 900
F6 Hybrid Hybrid Function 1 10 [− 100, 100] 1800
F7 Hybrid Hybrid Function 2 10 [− 100, 100] 2000
F8 Hybrid Hybrid Function 3 10 [− 100, 100] 2200
F9 Composition Composition Function 1 10 [− 100, 100] 2300
F10 Composition Composition Function 2 10 [− 100, 100] 2400
F11 Composition Composition Function 3 10 [− 100, 100] 2600
F12 Composition Composition Function 4 10 [− 100, 100] 2700

Table 1  Runtime Environment

Configurations

Hardware
 CPU Intel(R) Core(TM) i9-10980HK CPU @ 2.40 GHz
 GPU NVIDIA GeForce RTX 3080 Laptop GPU
 RAM 64.0 GB

Software
 OS Microsoft Windows [Version 10.0.19043.2130]
 Interpreter MATLAB R2021a (9.10.0.1602886)

Table 2  The parameters setting of all algorithms

Algorithm Parameters

QLGJO C1 = 1.5, � = 0.5, �initial = 0.9, �final = 0.1

GJO C1 = 1.5

IGJO C1 = 1.5

INFO c = 2, d = 4

MVO WEPmax = 1,WEPmin = 0.2

DE PCr = 0.8,F = 0.85

PSO C1 = 1.49445,C2 = 1.49445

(a) The 8 level result. (b) The 12 level result. (c) The 16 level result.  (d) The 20 level result. 

Fig. 6  The Segmented result for Patient 3
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Table 4  The CEC2022 benchmark test function

Function QLGJO GJO IGJO INFO MVO DE PSO

F1 Mean 300.000 398.217 404.755 300.000 300.000 300.000 892.979
Median 300.000 401.919 403.550 300.000 300.000 300.000 894.713
STD 0.000E + 00 4.095E + 01 4.292E + 01 1.798E-14 5.076E-05 4.403E-14 1.857E + 01
Cost 7.745 3.466 3.502 12.724 5.298 6.076 3.457

F2 Mean 401.519 415.278 412.458 411.467 404.243 404.501 423.496
Median 400.000 409.203 409.177 403.987 404.216 403.987 419.326
STD 1.984E + 00 1.744E + 01 1.524E + 01 2.001E + 01 1.382E + 00 2.040E + 00 7.362E + 00
Cost 7.706 3.693 3.645 11.919 5.508 5.735 3.379

F3 Mean 600.000 602.587 602.394 600.000 600.041 600.000 611.545
Median 600.000 602.383 602.018 600.000 600.026 600.000 610.907
STD 9.229E-06 2.247E + 00 2.213E + 00 3.607E-04 4.178E-02 0.000E + 00 1.586E + 00
Cost 9.653 4.795 4.607 14.082 7.447 6.660 4.509

F4 Mean 804.454 817.601 819.222 819.249 806.633 846.362 835.649
Median 803.980 817.242 818.057 815.919 805.970 846.561 835.653
STD 1.429E + 00 7.367E + 00 5.829E + 00 9.323E + 00 2.047E + 00 1.645E + 00 1.275E + 00
Cost 8.454 3.868 3.992 13.294 6.137 6.583 4.008

F5 Mean 900.000 919.579 917.289 901.381 900.000 900.000 958.368
Median 900.000 913.693 902.298 900.454 900.000 900.000 959.277
STD 0.000E + 00 2.225E + 01 2.539E + 01 2.406E + 00 2.601E-05 0.000E + 00 3.520E + 00
Cost 9.296 4.237 4.013 12.589 6.315 6.357 4.104

F6 Mean 1800.096 7333.616 6867.159 1803.759 2369.383 1800.732 1,519,252.339
Median 1800.093 8075.227 8073.260 1802.387 2067.923 1800.741 1,558,007.090
STD 5.382E-02 1.535E + 03 1.896E + 03 4.192E + 00 6.263E + 02 3.238E-02 2.457E + 05
Cost 7.946 3.639 3.588 12.385 5.083 5.591 3.463

F7 Mean 2002.354 2027.980 2026.404 2014.468 2003.524 2000.969 2052.058
Median 2001.133 2024.277 2024.166 2020.618 2000.784 2000.000 2051.357
STD 4.298E + 00 7.250E + 00 5.967E + 00 9.738E + 00 7.133E + 00 4.371E + 00 2.785E + 00
Cost 11.314 5.376 5.257 16.250 8.994 7.662 5.076

F8 Mean 2200.565 2221.089 2222.912 2218.737 2210.658 2200.558 2230.354
Median 2200.312 2222.844 2222.450 2220.659 2203.924 2200.537 2230.769
STD 6.373E-01 5.728E + 00 1.223E + 00 6.169E + 00 9.702E + 00 2.973E-01 2.010E + 00
Cost 12.375 6.120 6.105 15.733 10.139 8.194 5.724

F9 Mean 2529.284 2536.896 2534.651 2529.284 2529.285 2529.284 2533.201
Median 2529.284 2530.469 2529.315 2529.284 2529.285 2529.284 2533.198
STD 0.000E + 00 1.394E + 01 1.619E + 01 0.000E + 00 2.361E-04 0.000E + 00 1.780E-01
Cost 11.219 5.226 5.198 14.947 8.720 7.732 5.115

F10 Mean 2505.244 2528.519 2516.929 2528.417 2500.153 2500.515 2528.155
Median 2500.227 2500.376 2500.311 2500.320 2500.166 2500.519 2501.164
STD 2.302E + 01 5.179E + 01 4.179E + 01 5.157E + 01 4.214E-02 2.017E-02 5.705E + 01
Cost 11.064 5.178 5.124 15.047 7.941 7.235 4.790

F11 Mean 2600.000 2722.870 2664.239 2720.706 2600.067 2600.000 2873.177
Median 2600.000 2730.033 2605.279 2600.000 2600.067 2600.000 2752.069
STD 1.134E-11 8.387E + 01 6.753E + 01 1.834E + 02 9.118E-03 0.000E + 00 1.804E + 02
Cost 13.062 6.132 6.022 15.956 9.909 8.220 5.914

F12 Mean 2859.186 2862.573 2862.445 2863.082 2858.620 2860.199 2865.250
Median 2858.618 2863.495 2863.669 2863.495 2858.619 2861.405 2865.191
STD 8.321E-01 2.182E + 00 2.712E + 00 1.213E + 00 2.648E-03 1.326E + 00 6.227E-01
Cost 13.354 6.106 6.054 16.680 10.511 8.659 6.006

Friedman mean rank 1.7917 5.6667 4.9167 4.0000 2.8333 2.2083 6.5833
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some advantages on F2, F4, F6, and F12, and is compara-
ble to DE on the rest of the benchmark functions. On the 
other hand, as far as the cost time of the algorithm is con-
cerned, the proposed method is somewhat lacking and fails 
to obtain the best score among all the benchmark functions. 
However, compared to INFO, the proposed method still has 
some advantages. Finally, according to the Friedman mean 
rank test, we can further conclude that QLGJO ranks first 
in terms of overall performance among all the compared 
algorithms, followed by DE, MVO ranks third, while INFO, 
IGJO, GJO, and PSO rank fourth, fifth, sixth, and seventh, 
respectively.

Figure 7 shows the boxplot of all the algorithms on the 
CEC2022 benchmark functions. Through the boxplot we can 
intuitively comprehend the data distribution of the algorithm 
after multiple runs. The maximum value is marked at the 
highest point and the minimum value is marked at the lowest 
point. Therefore, in general, we consider that the more stable 
the performance of an algorithm, the lower the height of the 
corresponding box plot. By analyzing Fig. 7, we can see that 
the proposed method has the lowest boxplot in the overall 
view. Therefore, we can tentatively conclude that QLGJO 
has the most stable performance among all the compared 
algorithms.

Figure 8 records the convergence curve plots of each 
algorithm. One point should be pointed out that, in order 
to compare the accuracy among the algorithms more intui-
tively, the convergence curves of all algorithms are oper-
ated with the difference between the optimal value of the 
benchmark function. Therefore, the closer the curve is to 
0, the higher the accuracy of the algorithm is. In Fig. 8, the 
proposed algorithm reaches the lowest point except for F7 
and F10. In other words, in terms of generalization, QLGJO 
has the highest accuracy among all the compared algo-
rithms. However, one point also needs to be pointed out that 
although the convergence speed of QLGJO is substantially 
improved compared to the original algorithm, it still needs 
further enhancement compared to INFO and DE. In sum-
mary, through the experimental analysis in this subsection, 
we have a preliminary impression of the performance of 
QLGJO, and the proposed method is extremely competitive 
in numerical experiments compared with existing advanced 
algorithms. Therefore, in the next subsection, we will further 
validate the effectiveness of the proposed method in real-
world problems with the image segmentation experiments 
on COVID-19.

4.3  COVID‑19 CT Image Segmentation Experiment

4.3.1  Performance Metrics

As mentioned above, in this experiment, three evaluation 
parameters, PSNR , SSIM , and FSIM are used to evaluate 
the performance of the proposed algorithm. In this sub-
section, a brief review of these three metrics is presented.

PSNR is a common metric in digital image processing, 
which is used in multilevel threshold segmentation as a 
very critical performance metric [83]. PSNR could rep-
resent the difference between the original image and the 
segmented image, and is calculated using Eq. (28).

where RMES is the root mean square error calculated by 
Eq. (29) [84], Imgorg and Imgseg represent the original image 
and the segmented image, respectively, M and N denote the 
size of the image. In addition, the closer the value of PSNR 
is to 0 , the greater the difference between the two images.

Structural similarity index is another common metric used 
to compare the similarity of two images [85]. The SSIM is 
between 0 and 1, which is similar to the PSNR . The greater 
the difference between the two images, the closer the SSIM is 
to 0. It is calculated as follows:

where �org and �seg denote the mean intensities for the 
original image and segmented image, respectively, �org and 
�seg represent the standard deviations of Imgorg and Imgseg , 
respectively. In addition, the covariance of Imgorg and Imgseg 
was represented by �org,seg . Finally, C1 and C2 are two con-
stant values.

Feature similarity index is a new metric used to compare the 
degree of feature difference between two images [86]. FSIM 
obtains the result by compounding the Phase Congruency 
( PC ) [87] and Gradient Magnitude ( GM ) [88]. The higher 

(28)PSNR = 20 log10

(
255

RMSE

)

(29)
RMSE =

������
M∑
i=1

N∑
j=1

(Imgorg(i, j) − Imgseg(i, j))
2

M × N

(30)

SSIM(Imgorg, Imgseg) =
(2�org�seg + c1)(2�org,seg + c2)

(�2
org

+ �2
seg

+ c1)(�
2
org

+ �2
seg

+ c2)

Table 4  (continued)

Function QLGJO GJO IGJO INFO MVO DE PSO

Rank 1 6 5 4 3 2 7
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Fig. 7  The boxplot for CEC2022
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Fig. 8  The convergence curves for CEC2022



2294 Z. Wang et al.

1 3

FSIM value indicates the better performance of the threshold-
ing method. It can be described as follows:

where the phase congruency of Imgorg and Imgseg were 
denoted by PCorg and PCseg , respectively. And the gradient 
magnitude of Imgorg and Imgseg were represented by Gorg and 
Gseg . T1 and T2 are two positive constants, respectively. � and 
� are two constants, respectively.

4.3.2  Experimental Results and Analysis

In this subsection, we will discuss and analyze the results 
of the proposed algorithm for multilevel thresholding seg-
mentation on COVID-19 CT images. In this experiment, 
we use the Otsu method, which is mentioned in Sect. 2.3 
as the objective function. And the selected images are seg-
mented with threshold levels of 8, 12, 16, and 20, respec-
tively. Figures 4, 9, 10, 11, 12, 13, 14, 15,  16, 17, 18, 19 
shows the segmented images of the proposed algorithm for 
all the tested images at different threshold levels. Table 5, 
Table 6, and Table 7 show the mean value and std of all 
algorithms on PSNR , SSIM , and FSIM metrics, respec-
tively. In addition, the Friedman mean rank test was also 
again used to rank the comprehensive performance of all 
algorithms. It is noteworthy that an accurate and effec-
tive multilevel thresholding technique should have higher 
mean values on PSNR , SSIM , and FSIM , while the STD 
should be as low as possible. Therefore, the maximum 
mean value and the minimum STD value are highlighted 
in the tables.

Table  5 shows the PSNR values for each segmented 
image. Through the analysis of the data in the table, the 
proposed method has achieved the best experimental results, 

(31)FSIM =

∑
x∈Ω

SL(x)PCm(x)

∑
x∈Ω

PCm(x)

(32)SL(x) = [SPC(x)]
�[SG(x)]

�

(33)SPC(x) =
2PCorg(x)PCseg(x) + T1

PC2
org

(x) + PC2
seg
(x) + T1

(34)SG(x) =
2Gorg(x)Gseg(x) + T2

G2
org

(x) + G2
seg
(x) + T2

except that it was surpassed by the INFO algorithm in the 
Patient 37 segmentation experiment with the threshold value 
of 8. With the Friedman mean rank test, the ranking results 
of all algorithms are shown as follows: QLGJO is ranked 
first, MVO is ranked second, INFO is ranked third, DE is 
ranked fourth, IGJO is ranked fifth, and GJO and PSO are 
ranked sixth and seventh, respectively.

As shown in Table 6, where the SSIM values of the seg-
mentation results are recorded. We can observe that in the 
segmentation experiment of Patient 30 with a threshold of 
8, DE achieves the best results, and the proposed algorithm 
is also slightly inferior compared to MVO. In the segmen-
tation experiment on Patient 37 with a threshold of 8, DE 
again achieves the best results, but only slightly outper-
forms the proposed algorithm. According to the Friedman 
mean rank test, the top three algorithms are QLGJO, MVO, 
and IGJO.

Table 7 lists the mean FSIM values after all images were 
segmented. With the comparison of the data in this table, the 
original GJO, IGJO, and MVO did not obtain satisfactory 
results. While INFO, DE and PSO show a large improve-
ment in FSIM metrics, in contrast, the proposed QLGJO 
outperforms the other algorithms in the majority of experi-
mental results. Moreover, the proposed algorithm still main-
tains the best performance as measured with the Friedman 
mean rank test.

Furthermore, Fig.  20 shows the average time slots 
achieved by the different algorithms for each image seg-
mentation experiment in terms of time cost. Each row in 
the figure represents the percentage of time consumed by 
the different algorithms in the same segmentation experi-
ment. We can clearly observe that the percentage of time 
slots occupied by the proposed algorithms does not vary 
significantly across all experiments. This phenomenon 
indicates that the overhead of the QLGJO algorithm is 
not restricted to a specific image or threshold. Besides 
this, it should be noted that the proposed algorithm has 
a slightly higher time cost than the original algorithm, 
owing to the additional time cost of introducing reinforce-
ment learning. Overall, the proposed algorithm does not 
perform particularly well at the time complexity level, but 
it can complete the specified task in a reasonable amount 
of time.

In addition, Table 8 presents the results of all algo-
rithms tested for fitness values on the Otsu method accord-
ing to the Wilcoxon rank sum test. The Wilcoxon rank-sum 
test was used to verify whether there was a significant 
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(a) The 8 level result. (b) The 12 level result. (c) The 16 level result. (d) The 20 level result.

Fig. 11  The Segmented result for Patient 6

(a) The 8 level result. (b) The 12 level result. (c) The 16 level result. (d) The 20 level result. 

Fig. 9  The Segmented result for Patient 4

(a) The 8 level result. (b) The 12 level result. (c) The 16 level result.  (d) The 20 level result. 

Fig. 10  The Segmented result for Patient 5

(a) The 8 level result. (b) The 12 level result. (c) The 16 level result. (d) The 20 level result.

Fig. 12  The Segmented result for Patient 7
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difference between the algorithms. When the p-value is 
less than 0.05, it can be considered that there is a signifi-
cant difference between the algorithms. In other words, 
it means that there is a significant improvement in the 
proposed algorithm. Conversely, this means that the per-
formance of the proposed algorithm is similar to or worse 
than the algorithm being compared. To better represent 
the analysis of the values, we use the symbols “ +  + ” and 
“ − ” to represent the cases where the p-value is less than 
0.05 and the cases where the p-value is greater than 0.05, 
respectively. From Table 8, we can observe that there is a 

significant difference in the fitness values of the proposed 
algorithm compared to the original GJO, IGJO, INFO, 
DE, and PSO. Although it did not completely beat MVO 
in comparison, it only showed no significant improvement 
in the case of Patient 7 with a threshold of 20 and Patient 
80 with a threshold of 16 and 20. Therefore, based on the 
results of the Wilcoxon rank sum test, we can conclude 
that the proposed QLGJO algorithm has higher perfor-
mance in multilevel threshold segmentation using the Otsu 
method.

(a) The 8 level result. (b) The 12 level result. (c) The 16 level result. (d) The 20 level result.

Fig. 13  The Segmented result for Patient 9

(a) The 8 level result. (b) The 12 level result. (c) The 16 level result. (d) The 20 level result.

Fig. 14  The Segmented result for Patient 13

(a) The 8 level result. (b) The 12 level result. (c) The 16 level result. (d) The 20 level result.

Fig. 15  The Segmented result for Patient 24
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(a) The 8 level result. (b) The 12 level result. (c) The 16 level result. (d) The 20 level result.

Fig. 16  The Segmented result for Patient 30

(a) The 8 level result. (b) The 12 level result. (c) The 16 level result.  (d) The 20 level result. 

Fig. 17  The Segmented result for Patient 37

(a) The 8 level result. (b) The 12 level result. (c) The 16 level result.  (d) The 20 level result. 

Fig. 18  The Segmented result for Patient 80

(a) The 8 level result. (b) The 12 level result. (c) The 16 level result.  (d) The 20 level result. 

Fig. 19  The Segmented result for Patient 121

Further inspection of the data in Tables 5–7, we can 
observe that although the QLGJO obtains the best results 
in terms of mean value, it still has some deficiencies in 
terms of STD, none of the proposed methods obtains a 

STD close to 0. Therefore, we further compare with the 
original GJO and IGJO to analyze the reasons for the poor 
performance of the proposed method in terms of STD. 
To analyze the performance differences between different 
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versions of the GJO algorithm, radar plots [89] for the 
original GJO, IGJO, and proposed QLGJO are plotted sep-
arately in Fig. 21. It should be noted that the Otsu method 
used in this paper is a maximum optimization problem. 
Thus, the closer an algorithm is to the outer layer, the 
stronger its performance. From the images, we notice 
that the original GJO only performs better on Patient 3, 
and Patient 9. On the other hand, IGJO improves on the 
original GJO by overcoming the issue that the GJO tends 
to fall into a local optimum in most experiments. How-
ever, these improvements are also very limited in front 
of QLGJO, since both algorithms mentioned earlier are 
inside QLGJO, which indicates that the performance of 
the proposed algorithm in this paper surpasses all other 
versions of GJO algorithms.

By analyzing the radar plots of the three different ver-
sions of the GJO, we did not obtain a directly reason which 
affects the stability of the QLGJO. Therefore, we further 
analyzed the population diversity of different versions 
of the GJO. Figures 22, 23, 24, 25, 26, 27, 28, 29, 30, 
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 
61, 62, 63, 64, 65, 66, 67, 68, 69 show the convergence 
plots of the population diversity analysis. In which, the 
abscissa indicates the number of iterations and the ordinate 
represents the mean Euclidean distance between popula-
tion individuals. These figures can objectively reflect the 
distribution among individuals of the population and fur-
ther report the diversity characteristics of the population. 
Through the observation and analysis of these figures, we 
can see that the reinforcement learning strategy can help 
the population keep its diversity characteristics unaffected 
by the problem. Combined with reinforcement learning, 
the proposed QLGJO algorithm converges to stability ear-
lier than the original GJO as well as the improved GJO, 
and the convergence curve roughly obeys the distribution 
of the f (t) = 1∕t . In addition, it is worth noting that the 
populations of both the original GJO and the IGJO even-
tually converge and cluster together, forcing the popula-
tions to fail to escape from the local optima. However, the 
populations of QLGJO still maintain a certain degree of 
diversity, which allows the algorithm to have the potential 
to step away from the local optimum to further improve 
the quality of the solution in the late iteration. Therefore, 
by analyzing the proposed method from multiple perspec-
tives, we finally determined that the factor which affected 
the stability of the QLGJO algorithm was that the RL 
strategy would lead to a certain oscillation effect in the 
later Iteration. Overall, combining the results of CEC2022 
benchmark test function and COVID-19 image segmenta-
tion, the proposed method can obtain satisfactory results 
in terms of convergence accuracy and convergence speed. 
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Consequently, we can consider QLGJO as one of the most 
competitive GJO variants at present.

5  Conclusions

With the global prevalence of COVID-19, the entire scien-
tific community has been working on ways to mitigate its 
impact on society. Early screening and treatment of patients 
can effectively cut off the transmission of COVID-19. 
Through the efforts of multiple medical experts, CT images 
have been shown to be effective in identifying suspected 
patients who are already infected with the new coronavirus. 
The multilevel threshold segmentation of CT images can 
effectively reduce the difficulty of subsequent processing 
and save more precious time for patients and health care 
workers. Therefore, we proposed a reinforcement learning-
based GJO algorithm, QLGJO, to solve the COVID-19 CT 
image segmentation. In this study, we use the Otsu method 
as an objective function to determine the optimal threshold 
for COVID-19 CT images and make improvements to the 
original GJO algorithm. First, reinforcement learning was 
introduced to the GJO algorithm for the first time to bal-
ance the exploration and exploitation of the algorithm. Sec-
ond, a new iterative phase was extended to accelerate the 
convergence of the algorithm. Finally, three new vari-
ational mechanisms are introduced to assist the algorithm 
avoid local optima. The proposed algorithm is compared 
to six advanced meta-heuristics (GJO, IGJO, INFO, MVO, 
DE, and PSO). Firstly, the CEC2022 benchmark test func-
tion was used to verify the performance of QLGJO. Then, 
Peak signal-to-noise ratio, structural similarity index, 
and feature similarity index are used as evaluation met-
rics to measure the performance differences between the 
algorithms in the segmentation experiments. The experi-
mental results demonstrated that the proposed algorithm 
produced the most satisfactory results when compared to 
other algorithms and achieved efficient COVID-19 CT 
image segmentation.

In future work, we intend to introduce more objective 
functions into the proposed algorithm, such as Kapur 
Entropy, Tsallis Entropy, and Fuzzy Entropy. Meanwhile, 
we will extend the proposed algorithm to be applied to a 
wider range of fields, including feature selection, image 
classification, and drone path planning. Furthermore, it 
would also be a remarkable contribution to further reduce 
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Fig. 20  The average time slots achieved by the different algorithms 
for each image segmentation experiment

Fig. 21  Comparison of radar plots for GJO, IGJO, and QLGJO
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Table 8  Comparison of the Wilcoxon signed-rank test for Otsu method

Image Name Level QLGJO VS. GJO QLGJO VS. IGJO QLGJO VS. INFO QLGJO VS. MVO QLGJO VS. DE QLGJO VS. PSO

Patient 3 8 3.090E– 05 +  + 3.090E– 05 +  + 3.086E– 05 + + 4.571E– 05 + + 2.374E– 04 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 9.660E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.622E– 04 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 1.270E– 04 +  + 3.090E– 05 +  + 3.090E– 05 +  + 

Patient 4 8 3.090E– 05 +  + 3.090E– 05 +  + 3.043E– 05 +  + 1.217E– 04 +  + 8.654E– 05 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 1.904E– 03 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.578E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 1.523E– 03 +  + 3.090E– 05 +  + 3.090E– 05 +  + 

Patient 5 8 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 4.603E– 05 +  + 1.534E– 04 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 4.779E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 1.897E– 04 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 6.015E– 03 +  + 3.090E– 05 +  + 3.090E– 05 +  + 

Patient 6 8 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 5.982E– 04 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 4.779E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 1.080E– 03 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.743E– 02 +  + 3.090E– 05 +  + 3.090E– 05 +  + 

Patient 7 8 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 1.442E– 04 +  + 4.603E– 05 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 4.137E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 7.579E– 04 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 5.026E– 02– 3.090E– 05 +  + 3.090E– 05 +  + 

Patient 9 8 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 4.779E– 05 +  + 8.725E– 05 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 9.660E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 7.309E– 03 +  + 3.090E– 05 +  + 3.090E– 05 +  + 

Patient 13 8 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 4.603E– 05 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 4.779E– 05 +  + 3.578E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 5.514E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 9.660E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 

Patient 24 8 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 4.603E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.578E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 1.661E– 04 +  + 3.090E– 05 +  + 3.090E– 05 +  + 

Patient 30 8 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 2.806E– 04 +  + 3.622E– 04 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 4.108E– 04 +  + 3.578E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 1.212E– 03 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.578E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 

Patient 37 8 3.090E– 05 +  + 3.090E– 05 +  + 3.086E– 05 +  + 4.489E– 04 +  + 1.221E– 04 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.578E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 7.315E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 

Patient 80 8 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 5.266E– 04 +  + 1.025E– 04 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 4.276E– 01– 3.090E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 2.301E– 01– 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 8.091E– 02 +  + 3.090E– 05 +  + 3.090E– 05 +  + 

Patient 121 8 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 1.103E– 04 +  + 3.090E– 05 +  + 
12 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 6.015E– 03 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
16 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 8.411E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 
20 3.090E– 05 +  + 3.090E– 05 +  + 3.090E– 05 +  + 4.677E– 02 +  + 3.090E– 05 +  + 3.090E– 05 +  + 



2305An Efficient Multilevel Threshold Image Segmentation Method for COVID‑19 Imaging Using…

1 3

Fig. 22  Patient 3 with th 8

Fig. 23  Patient 3 with th 12

Fig. 24  Patient 3 with th 16

Fig. 25  Patient 3 with th 20

Fig. 26  Patient 4 with th 8

Fig. 27  Patient 4 with th 12
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Fig. 28  Patient 4 with th 16

Fig. 29  Patient 4 with th 20

Fig. 30  Patient 5 with th 8

Fig. 31  Patient 5 with th 12

Fig. 32  Patient 5 with th 16

Fig. 33  Patient 5 with th 20
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Fig. 34  Patient 6 with th 8

Fig. 35  Patient 6 with th 12

Fig. 36  Patient 6 with th 16

Fig. 37  Patient 6 with th 20

Fig. 38  Patient 7 with th 8

Fig. 39  Patient 7 with th 12
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Fig. 40  Patient 7 with th 16

Fig. 41  Patient 7 with th 20

Fig. 42  Patient 9 with th 8

Fig. 43  Patient 9 with th 12

Fig. 44  Patient 9 with th 16

Fig. 45  Patient 9 with th 20
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Fig. 46  Patient 13 with th 8

Fig. 47  Patient 13 with th 12

Fig. 48  Patient 13 with th 16

Fig. 49  Patient 13 with th 20

Fig. 50  Patient 24 with th 8

Fig. 51  Patient 24 with th 12
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Fig. 52  Patient 24 with th 16

Fig. 53  Patient 24 with th 20

Fig. 54  Patient 30 with th 8

Fig. 55  Patient 30 with th 12

Fig. 56  Patient 30 with th 16

Fig. 57  Patient 30 with th 20
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Fig. 58  Patient 37 with th 8

Fig. 59  Patient 37 with th 12

Fig. 60  Patient 37 with th 16

Fig. 61  Patient 37 with th 20

Fig. 62  Patient 80 with th 8

Fig. 63  Patient 80 with th 12
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the additional overhead which is added by introducing 
reinforcement learning as well as to enhance the stability 
of the algorithm in the latter iterations, as mentioned in 
subSect. 4.3.2.
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