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Abstract
Electrospun nanofibers combined with a wide range of functional additives can be used for a various tissue engineering 
applications due to their desired biomimetic and physicochemical properties. Therefore, the present study was conducted to 
obtain a highly efficient nanocomposite electrospun scaffold with appropriate physicochemical performance and biological 
properties based on Polycaprolactone/Polyurethane (PCL/PU) mixed with gold nanoparticles (GNPs) and soybean oil (SO). 
In the present study, the desired nanofibers were fabricated by electrospinning PCL/PU mixed solution with GNPs and 
SO. The nanocomposite electrospun PU/PCL/SO/GNP nanofibers were characterized in terms of chemical composition by 
attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), morphological structure by field-emission 
scanning electron microscopy (FE-SEM), and mechanical and biological properties. The surface topography and wettability 
were determined by atomic force microscopy (AFM) and water contact angle measurements, respectively. It was found that 
the presence of GNPs along with SO in the structure of PCL/PU nanofiber created a smoother surface in terms of surface 
roughness and also a more homogeneous fibrous structure. In addition, it was observed that both SO and GNPs caused an 
increase in the electrical conductivity of the fibrous mats. In the biocompatibility evaluations by measuring cell viability and 
cell adherence to the scaffold’s surfaces, it was found that adding of SO and GNPs supports fibroblasts. Taken together, the 
fabricated nanocomposite fibrous scaffolds can be a potential candidate for various tissue engineering purposes.
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1  Introduction

Regeneration of injured tissues by tissue engineering 
approaches via developing novel biomaterials has got-
ten great attention [1]. Tissue engineering provides the 

structural and functional matrix by the combination of scaf-
folds, bioactive molecules, and cells to develop responsive 
constructs for damaged tissues [2]. Scaffold design and 
components are important factors that can influence tissue 
engineering outcomes [3]. Various methods, such as elec-
trospinning, gas foaming, 3D printing, and freeze-drying, 
have been reported to fabricate scaffolds [1, 2, 4]. Nowadays, 
polymeric electrospun scaffolds have attracted a great deal 
of attention for tissue engineering applications especially, 
skin regeneration. Electrospun nanofibers find good advan-
tages such as large surface-to-volume ratio, highly porous 
extracellular matrix (ECM) resembling membrane, mimick-
ing the fibrous structure of collagen, laminin, and elastin, 
supporting cell attachment, infiltration, and proliferation for 
developing tissue engineering scaffolds [5–9]. Recently, new 
approaches such as multicores-sheath nanostructures have 
also been developed by coaxial electrospinning technique 
to produce smart thermo-regulated textiles [10]. PUs, as 

 *	 Abolfazl Akbarzadeh 
	 akbarzadehab@tbzmed.ac.ir

1	 Department of Medical Nanotechnology, Faculty 
of Advanced Medical Sciences, Tabriz University of Medical 
Sciences, Tabriz, Iran

2	 Department of Tissue Engineering, Faculty of Advanced 
Medical Sciences, Tabriz University of Medical Sciences, 
Tabriz, Iran

3	 Health Research Center, Chamran Hospital, Tehran, Iran
4	 Department of Chemistry, Farhangian University, Tehran, 

Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s42235-023-00345-x&domain=pdf
http://orcid.org/0000-0001-9941-0357


1713Nanocomposite Electrospun Scaffold Based on Polyurethane/Polycaprolactone Incorporating…

1 3

synthetic bioactive materials, have been considered for fab-
ricating scaffolds [11]. They are mostly used in biomedical 
and pharmaceutical applications because of their favorable 
characteristics, such as high oxygen permeability, biocom-
patibility, biodegradability, and mechanical properties com-
parable to natural tissues [12]. PU-based nanofibers are suit-
able for skin tissue engineering and wound dressing fields 
as PU offers advantages, including excellent mechanical 
properties, promoting epithelization, and porous structure 
for nutrient and gas exchanges [13–15]. In addition, the bar-
rier properties of PU-based nanofibers do not allow bacteria 
to reach the internal surface of the wound [16]. Functional 
PUs with desired properties such as biodegradability, blood 
compatibility, and self-assembly has also been investigated 
for biomedical applications [17]. In a recent study [18], it 
was reported that the incorporation of PCL to PU electro-
spun solution in the ratio of 1:2 could present good pore 
size, nanofiber diameter size, and mechanical properties. 
Therefore, the development of a composite nanofiber with 
PU and PCL using electrospinning technology can address 
the multi-aspects of scaffolds for tissue engineering. How-
ever, the low hydrophilicity of PU-based scaffolds is one 
of their drawbacks that limit their applications [19]. The 
surface modification of PU nanofibers with nanoparticles 
can overcome the hydrophobicity of scaffolds thanks to the 
presence of different polar groups in PU [20]. Among can-
didates to be used for skin tissue engineering, GNPs can be 
considered as attractive nanostructures because of their bio-
compatibility, low toxicity, and electrical conductivity prop-
erties for affecting the cell behaviors [21–23]. It has been 
reported that electrical conductivity is another factor that 
can influence cell attachment and proliferation properties 
[24]. In addition, the positive effects of GNPs on neovascu-
larization and accelerating the wound healing process have 
been mentioned [25]. Yang et al. reported the fabrication of 
GNPs doped PCL/gelatin fibers for wound healing applica-
tion. Their results showed effective antimicrobial activity, 
biocompatibility, and adequate wound healing property [26]. 
However, there are no sufficient studies on using GNPs for 
skin tissue engineering.

In the past years, studies have been conducted on the fab-
ricating scaffolds containing natural oils. Soybean is a natu-
ral material composed of proteins, carbohydrates, oil frac-
tions, and isoflavones [27, 28]. The oil fraction of soybean 
include polyunsaturated oils (linoleic acid (51%), oleic acid 
(25%), palmitic acid (11%), linolenic acid (9%), and stearic 
acid (4%) residues) [29, 30]. SO possesses various properties 
that attract pharmaceutical, cosmetics, and food industries 
for the delivery of bioactive molecules [31]. SO with essen-
tial fatty acids can present antioxidant, anti-inflammatory, 
and epithelizing properties. Soybean-modified polyamide-6 
mats were found to support a higher percentage of fibroblast 

attachment by visible contact points with the surrounding 
fibers and ECM release of cells, well-spread and elongated 
morphology, and migration [32]. Moreover, the promotion 
of cell adhesion and proliferation by SO-based PU networks 
has been reported [33]. The epoxidized form of SO has been 
applied for the cross-linking of α-cellulose-based scaffolds 
with high porosity and biocompatibility [34].

The present study aimed to develop biocompatible and 
cell responsive electrospun PU/PCL nanofiber scaffolds con-
taining SO and GNPs for tissue engineering applications. 
For this purpose, the fabricated scaffolds were subjected to 
physicochemical characterization such as chemical composi-
tion, morphology, surface roughness, mechanical properties, 
wettability, and electroconductivity. The biocompatibility 
evaluations of the fabricated nanofibers were conducted by 
proliferation and attachment of the NIH-3T3 fibroblast cell 
line.

2 � Materials and Methods

2.1 � Materials

PU, PCL, HAuCl4, tri-sodium citrate, and (3-[4, 5-dimethyl-
thiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) were 
supplied from Sigma-Aldrich. Tetrahydrofuran (THF), N, 
N Dimethylformamide (DMF), and Dimethyl Sulfoxide 
(DMSO) were purchased from Merck. Roswell Park Memo-
rial Institute medium (RPMI) 1640 medium, Fetal Bovine 
Serum (FBS), Trypsin–EDTA, and Penicillin–Streptomycin 
(Pen-Strep) were obtained from GIBCO.

2.2 � Methods

2.2.1 � Synthesis of GNPs

GNPs were synthesized based on the reduction of Au 
ions by tri-sodium citrate. To synthesize the GNPs, the aque-
ous solution of HAuCl4 (1 mM, 20 ml) was stirred under 
100–150 ºC to reach the boiling point. Then, tri-sodium cit-
rate solution (1% w/v, 2 ml) was quickly added to the boiling 
HAuCl4 solution. After the color changed from light yellow 
to dark red, the reaction was stopped, and the obtained GNPs 
were cooled at room temperature.

2.2.2 � Preparation of Different Nanofibrous Mats 
by Electrospinning

PU/PCL nanofibers were prepared with regards to the previ-
ous research [18] with some modifications. For preparation 
of the electrospinning solution, 0.189 g PU and 0.094 g PCL 
were dissolved in DMF and THF (4:1). The mixture was 



1714	 N. Asadi et al.

1 3

stirred for 18 h to get a homogeneous solution. To fabricate 
the SO-loaded nanofibers (PU/PCL/SO), initially, the PU/
PCL solution was prepared similarly to the above section, 
and then SO with a concentration of 30% v/v was added to it. 
For preparation of the electrospun solution of PU/PCL/SO/
GNP composite nanofibers, after obtaining PU/PCL solu-
tion, the centrifuged GNPs (2 ml) and SO (30% v/v) were 
added to it, respectively. The same electrospinning condi-
tions were applied to all the samples. For electrospinning, 
3 ml of the solution was placed in a syringe and fitted into 
the device. The solution was injected at the rate of 2 ml/h, 
and the collector distance from the needle tip was adjusted to 
15 cm. To charge the solution, a 20 kV voltage was applied. 
The formed electrospun nanofibers were collected over the 
aluminum foil placed on the collector and dried in a vacuum 
for 24 h.

2.2.3 � Physicochemical Characterization of Nanofibrous 
Mats

ATR-FTIR (Bruker) was used to indicate the surface chemi-
cal structure of the electrospun nanofibrous mats. In addi-
tion, this analysis was used to determine whether SO was 
successfully integrated into PU/PCL scaffolds. The spectrum 
was recorded within the range of 600–4000 cm−1.

The morphology and diameter size distribution of pre-
pared nanofibers was investigated using SEM (MIRA3, Tes-
can). For this purpose, the gold sputter-coated samples were 
imaged by SEM. The nanofiber diameter size distribution 
was determined by ImageJ software.

To evaluate the hydrophilicity of the fabricated nanofib-
ers, the water contact angle measurements were deter-
mined by a contact angle instrument (Dataphysics, OCA 
15 plus). To this, the nanofibers were cut into square shapes 
(1 × 1 cm), and water droplets (4 µl) were gently placed on 
the nanofiber’s surfaces. The images were recorded by CCD 
camera and the contact angles were calculated by the image 
analysis software.

To assessment the surface roughness of the fabricated 
nanofibers, AFM (Nanosurf, Nanosurf Mobile- S) was used. 
The topographic and phase images were obtained.

For the electrical conductivity assessment of the fabri-
cated nanofibers, the standard four-probe technique was used 
[35] by measuring the voltage in different currents. Finally, 
the resistance was calculated. The electrical conductivity of 
the nanofibers can be calculated by inverting the resistance 
value of them.

2.2.4 � Mechanical Characterization

To evaluate the mechanical properties of the fabricated 
nanofibers, the tensile strength was measured using a 
mechanical instrument (Instron Z010, Zwick/Roell). For 
this purpose, the rectangular-shaped (50 mm × 10 mm) 
samples were placed into the testing machine, and tests 
were conducted at a strain rate of 5 mm/min.

2.2.5 � Biocompatibility of the Nanofibers

We used fibroblast cell line to investigate the biocompat-
ibility studies due to the importance of these cells in the 
injured tissues [13]. NIH-3T3 fibroblast cell lines were 
cultured in RPMI 1640 medium complemented with 10% 
v/v FBS and 1% v/v Pen-Strep and incubated at 37 °C 
under 5% CO2. All the nanofibers were punched into the 
small disk shapes and sterilized with UV light for 60 min. 
After reaching 70–80% confluency, the cells were detached 
with trypsin–EDTA and seeded on the surface of the scaf-
folds (5 × 103 cells/each well). The cell-seeded samples 
were incubated under standard culture conditions for sev-
eral days. The biocompatibility of the fabricated nanofib-
ers was evaluated by the MTT assay. At the predetermined 
times (3 and 5 days after seeding), the culture medium 
was replaced with MTT solution (3 mg/ml) and a new 
medium containing FBS. After incubation for 4 h at 37 °C, 
the supernatant was discarded and replaced with 150 µl 
DMSO to dissolve the formazan crystals. Finally, the 
absorbance of the samples was measured by a Microplate 
Reader (Awareness Technology).

The cell attachment on the surface of nanofibers was 
studied to evaluate the compatibility of the fabricated 
mats for fibroblast attachment, connection, and migra-
tion. For this investigation, the NIH-3T3 fibroblast cells 
were placed on the surface of each nanofiber according to 
the previous section and incubated for three days. Then, 
the medium was removed, the cell-seeded scaffolds were 
rinsed with fresh phosphate-buffered saline (PBS), and 
cells were fixed with glutaraldehyde (4% v/ v in PBS) for 
20 min. In the next step, ethanol solutions (50, 60, 70, 80, 
90, and 100% v/v) were applied to dehydrate the samples. 
Finally, the attached cells on the nanofiber’s surfaces were 
imaged by SEM.

2.3 � Statistical Analysis

Statistical analysis was performed by one-way analysis of 
variance (ANOVA) via Graph PAD Prism software (ver-
sion 8.0.2). All the experimental results were presented 
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as means ± standard deviations, and p value < 0.05 was 
determined as the statistical significance.

3 � Results and Discussion

3.1 � Physicochemical Characterization 
of Nanofibrous Mats

3.1.1 � ATR‑FTIR Spectroscopy

In this work, ATR-FTIR spectroscopy was used to indicate 
the chemical composition of the nanofiber’s surfaces. Fig-
ure 1 displays the peaks of pristine SO, PU/PCL, PU/PCL/
SO, and PU/PCL/SO/GNPs composite nanofibers. As shown 
in Fig. 1, the characteristic band of PCL was observed at 
1725 cm−1 which was assigned to the stretching vibration 
of carbonyl groups (C=O). The peaks near 2868–2952 cm−1 
were attributed to the C−H stretching vibration of PCL 
units. About PU, the characteristic absorption peak at 
1531 cm−1 was corresponded to the amide groups of N−H 
and C−N. About SO, the bands around 2854–2924 cm−1 and 
1462 cm−1 were attributed to the −CH3 and −CH2 stretch-
ing vibrations. In addition, peaks at 3010 (CH=CH), 1709 
(−COOC−), and 1083 cm−1 (−C−O−C−) were observed, 
that could show the existence of unsaturated double bonds 
of SO [36]. From the spectra, it can be seen that the peak 
of hydrocarbon bonds (methyl stretching), which is seen 
around 2900 cm−1, has increased in SO and samples mixed 
with it. Since soy is a fatty acid, its integration into the PU/
PCL mesh increases the elongation of methyl, which can be 
seen in the spectra of SO, PU/PCL/SO, and PU/PCL/SO/
GNP. Therefore, SO forms chain entanglements instead of 

covalently binding to PU/PCL mass materials. This increase 
in methyl elongation and methyl groups indicates that SO 
has been successfully integrated into the samples.

3.1.2 � Morphological Characterization of Nanofibrous Mats

In tissue engineering and fabrication of appropriate fibers 
for biomedical applications, the study of their morphol-
ogy is very important in terms of fiber diameter [37, 38]. 
Fiber diameter is an important parameter for cellular sign-
aling that can ultimately significantly affect cell differentia-
tion and function. Optimizing fiber diameters is critical to 
achieving a well function and biocompatible scaffold [39, 
40]. In this work, the fabricated PU/PCL, PU/PCL/SO, and 
PU/PCL/SO/GNP composite nanofibers were morphologi-
cally investigated through SEM images. Figure 2 shows 
the different groups of nanofibers prepared in this study. 
The fibers showed suitable morphology and free of beads 
characteristics. The presence of a porous network was also 
observed despite the distinct fibers. In addition, based on 
the SEM images, it was observed that the presence of SO 
in the nanofiber structure has increased the diameter of the 
nanofibers and their fusion. It also appears that the fibrous 
structure has lost its homogeneous shape. But on the other 
hand, it was observed that the presence of GNPs in the PU/
PCL/SO/GNP fibers has created a homogeneous and uniform 
fiber structure. Generally, the combination of SEM micro-
graphs and ImageJ analysis of the nanofiber samples shows 
that the presence of SO and GNPs increases the diameter 
of the fibers. This phenomenon is thought to be due to the 
being ejected of more solutes at the tip of the Taylor cone, 
which increases the fiber diameter. This has been observed 
in previous studies [41, 42]. These results demonstrated the 
successful incorporation of SO into PU/PCL mesh materials 
as well as the successful incorporation of GNPs.

3.1.3 � Surface Water Absorption of Nanofibrous Mats

Surface hydrophilicity is one of the important parameters 
that affect the biological properties of fibers and provide 
improved properties in terms of cell growth and proliferation 
[43, 44]. For this purpose, in the present study, to evalu-
ate the mentioned feature, measuring the contact angle of 
the water droplet was used. The contact angle assessment is 
based on the theta angle, and the lower theta angle lead to 
the more hydrophilicity of the surface. In addition, according 
to the previous studies, a contact angle close to at least 90 
indicates a hydrophobic surface [41]. In the present study, 
the contact angle of the PU/PCL fibers is more than 113 
degrees, which means incomplete wetting. On the other 
hand, contact angle measurements for the PU/PCL/SO and 
PU/PCL/SO/GNP fibers show 91 and 76 degrees, respec-
tively, indicating good wetting of these scaffolds. In this part 

Fig. 1   FTIR spectra of pristine SO, PU/PCL, PU/PCL/SO, and PU/
PCL/SO/GNPs composite nanofibers
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Fig. 2   SEM images and size 
distribution of a PU/PCL 
nanofibers, b PU/PCL/SO 
nanofibers, c PU/PCL/SO/GNP 
nanocomposite fibers, and d 
GNPs
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of the study, several measurements were performed on the 
samples at different spatial locations. As shown in Fig. 3, 
the fibers containing SO have more hydrophilic surface 
properties than oil-free fiber (PU/PCL fiber). In addition, 
as it was reported in previous studies that the use of GNPs 
decreases the contact angle [23, 45], in this study, it was 
also observed that the presence of GNP leads to a further 
decrease in the water contact angle and thus more wettabil-
ity. This is most likely because the contact angle of GNPs is 
about 82.3° ± 8.0°, as reported by Lucio et al. [46]. Accord-
ingly, the decrease in water contact angle can be related to 
the more hydrophilic nature of GNPs than PU/PCL. Finally, 
it was demonstrated that the presence of GNPs led to more 
wettability of the PU/PCL/SO/GNP nanofibers compared to 
the other samples. It was demonstrated that the presence of 
GNPs along with SO in the structure of PU/PCL/SO/GNP 
fibers caused a significant increase (p < 0.01) compared to 
the PU/PCL nanofiber in terms of surface hydrophilicity.

3.1.4 � The Surface Roughness Study

To increase the biocompatibility of tissue engineering 
scaffolds, achieving higher hydrophilicity with surface 
roughness is critical, because it can create a favorable 
environment for the appropriate function of cells and their 
proliferation [47]. As shown in Fig. 4a, PU/PCL nanofib-
ers show a surface with noticeable roughness. The rough 
surface of PU/PCL nanofibers was altered by the incor-
poration of SO (Fig. 4b). It has also been observed that 
the surface roughness of the sample encoded with PU/
PCL/SO/GNP (Fig. 4c) is more balanced compared to the 
pure PU/PCL nanofibers or PU/PCL nanofibers loaded 
with SO. Therefore, it was proved that the great change in 
the surface is attributed to the presence of GNPs, which 
causes a significant surface smoothness. Meanwhile, SO 
does not have a considerable effect on the surface nature 
of PU/PCL nanofibers, and only their presence, along 

Fig. 3   Contact angle images and measurements of a PU/PCL nanofibers, b PU/PCL/SO nanofibers, and c PU/PCL/SO/GNP nanocomposite fib-
ers ***p < 0.001



1718	 N. Asadi et al.

1 3

with GNPs, causes a more balanced surface roughness, 
which is essential for better interaction with cells.

3.1.5 � Electrical Conductivity Measurement 
of the Nanofibers

The distribution of GNPs throughout the scaffold is an effec-
tive strategy to increase electrical conductivity [48]. GNPs, 
known as biocompatible nanostructures, have great poten-
tial for enhancing intercellular electrical communication. 

Various studies have shown that the presence of GNPs in 
various structures made of materials such as alginate, col-
lagen, and poly (2-hydroxyethyl methacrylate) increases the 
electrical conductivity of the scaffold and better function of 
cardiomyocytes and effective differentiation of mesenchymal 
cells [49–51]. In this study, the electrical conductivity of PU/
PCL, PU/PCL/SO, and PU/PCL/SO/GNP nanofibers was 
reported according to Table 1. It was observed that both oil 
and GNPs caused a significant increase in electrical conduc-
tivity and acted well as electrical stimuli.

3.2 � Mechanical Characterization of the Nanofibers

Mechanical properties strongly depend on the composition 
of the structure. To estimate the effect of GNP and SO on 
tensile properties, the stress–strain curves for various sam-
ples were plotted (Fig. 5). In addition, Table 2 reports the 
mechanical properties of the samples. It has been observed 
that the mechanical properties showed a lower value for PU/
PCL/SO mesh compared to pure PU/PCL nanofibers. The 

Fig. 4   AFM results of a PU/PCL nanofibers, b PU/PCL/SO nanofibers, and c PU/PCL/SO/GNP nanocomposite fibers

Table 1   Electrical conductivity measurement of the nanofibers

Sample Volume 
conductivity 
(S/cm)

PU/PCL 1.06E-10
PU/PCL/SO 2.82E-10
PU/PCL/SO/GNP 3.32E-10

Fig. 5   Stress–strain curve of electrospun a PU/PCL nanofibers, b PU/PCL/SO nanofibers, and c PU/PCL/SO/GNP nanocomposite fibers
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results showed that the combination of SO leads to statisti-
cally significant data. This reduction is due to the greater 
flexibility that is more appropriate for some tissue engineer-
ing applications [52]. Various surface factors, such as poros-
ity and fiber distribution, can be effective in the mechanical 
properties. A compound that increases porosity reduces the 
tensile strength of the nanofibers, although the excellent 
alignment of the nanofibers increases the strength and thus 
creates more elasticity.

3.3 � Biocompatibility of the Nanofibers

3.3.1 � MTT Assay

It is expected that antimicrobial substances such as GNPs 
should always be highly biocompatible when used in clini-
cal applications and not be toxic to normal cells [53, 54]. 
Thus, to investigate the biocompatibility of the fabricated 
nanofibers, MTT assay was performed on days 3 and 5. On 
the third day, all the samples showed a significant enhance-
ment in optical density (OD) compared to the control sample 
(Fig. 6). As can be seen, because of the excellent biocompat-
ibility, the fabricated PU/PCL showed high cell viability. On 
the other hand, the PU/PCL mixture with SO did not change 
cell viability. This can be due to the SO’s biocompatibility 
with human cells. In addition, it was observed, when PU/
PCL mixed with GNP (PU/PCL/SO/GNP), the cell viability 
slightly decreased, but it remained within acceptable limits. 
In addition, there is no significant difference between the 

study groups on the third and fifth days. These confirm that 
the presence of GNP and SO in the structure of nanofibers 
has not led to a negative effect on their biocompatibility. Our 
research, as well as that of others [41, 55, 56], has shown 
that cell proliferation increase in GNP-bound substances.

3.3.2 � Cell Attachment Study

Various surface properties, including different chemical 
groups, hydrophilicity, and roughness, can affect cell adhe-
sion and alter cell viability [57, 58]. As various studies have 
shown an increase in cell binding following an increase in 
hydrophilicity [59, 60], our results have also demonstrated 
that the addition of SO and GNP increases hydrophilicity 
and ultimately increases cell adhesion and viability. As men-
tioned earlier, incorporating SO and GNP has resulted in a 
rougher surface, followed by increased cell attachment. This 
can be seen in Fig. 7.

4 � Conclusion

In the present study, the electrospun PU/PCL, PU/PCL/
SO, and PU/PCL/SO/GNP nanofibers were fabricated and 
characterized. The presence of GNPs in the PU/PCL/SO/
GNP fibers has created a homogeneous and uniform fiber 
structure. In addition, the AFM results indicated a significant 
surface smoothness for PU/PCL/SO/GNP nanocomposite 
mats. The wettability behavior of the nanofibers was meas-
ured, and PU/PCL/SO/GNP nanocomposite fibers showed 
more hydrophilicity compared to the other groups. The rein-
forcement of PU/PCL nanofibers with SO and GNP leads 
to an increase in electroconductivity. The cytocompatibility 
studies demonstrated the fabricated scaffolds, especially PU/
PCL/SO/GNP nanocomposite fibers, have great potential to 
be applied as biocompatible biomaterials to support cellular 
adhesion and tissue engineering.

Table 2   Mechanical properties of the prepared nanofibers

Sample Tensile strength (MPa) 
Young’s modulus 
(MPa)

PU/PCL 8.29 ± 1.20 25.23 ± 1.75
PU/PCL/SO 0.95 ± 0.29 11.04 ± 4.34
PU/PCL/SO/GNP 0.38 ± 0.052 8.12 ± 4.26

Fig. 6   The MTT results of PU/
PCL, PU/PCL/SO, and PU/
PCL/SO/GNP nanocomposite 
fibers at 3 and 5 days after 
seeding
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