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Abstract
Till now, several novel metaheuristic algorithms are proposed for global search. But only specific algorithms have become 
popular or attracted researchers, who are efficient in solving global optimization problems as well as real-world applica-
tion problems. The Social Group Optimization (SGO) algorithm is a new metaheuristic bioinspired algorithm inspired by 
human social behavior that attracted researchers due to its simplicity and problem-solving capability. In this study, to deal 
with the problems of low accuracy and local convergence in SGO, the chaos theory is introduced into the evolutionary 
process of SGO. Since chaotic mapping has certainty, ergodicity, and stochastic property, by replacing the constant value of 
the self-introspection parameter with chaotic maps, the proposed chaotic social group optimization algorithm increases its 
convergence rate and resulting precision. The proposal chaotic SGO is validated through 13 benchmark functions and after 
that 9 structural engineering design problems have been solved. The simulated results have been noticed as competent with 
that of state-of-art algorithms regarding convergence quality and accuracy, which certifies that improved SGO with chaos 
is valid and feasible.

Keywords  Chaos · Bionic algorithm · Constrained optimization · SGO · Design problem

1  Introduction

For simplicity and gradient-free mechanism, metaheuris-
tic optimization algorithms are becoming popular among 
researchers globally. According to the no-free lunch (NFL) 
theorem [1], a single metaheuristic optimization algorithm 
cannot solve all optimization problems. It may solve some 
problems with high performance and some problems with 
low performance. Hence, researchers have invented many 
optimization algorithms, and every year new algorithms are 
being proposed. At the same time, the existing algorithms 
are also improved.

Till now, several novel metaheuristic algorithms are pro-
posed for global search. These algorithms reveal improved 
performances in comparison to traditional optimization 
techniques, especially when applied to solve non-convex 
optimization problems [2]. Satapathy et al. have developed 
a promising metaheuristic algorithm, called social group 

optimization (SGO) in year 2016, which is inspired by 
humans social behavior to solve complex problems [3]. Pre-
liminary studies suggest that the SGO demonstrates superior 
results when compared with other metaheuristics algorithms 
[4, 5].

The metaheuristic algorithms consist of two essential 
steps exploration and exploitation. Exploration refers to 
searching the whole search space of the algorithm. This 
factor shows the capability of a method in global search. 
Exploitation is the capability to find local optimum around 
different feasible solutions It has been seen that if an optimi-
zation algorithm has good exploration capability, then it will 
be lacking in good exploitation capability and vice versa [6]. 
Previously, researchers were using random walks and gradi-
ent descent methods for improving exploration and exploita-
tion, respectively. But, increasing the overall computational 
cost of the algorithm, researchers are using chaotic maps 
to improve diversification and local exploitation of search 
space to find the optimal solutions [7, 8]. The interesting 
property of the systems is that when there is a minor change 
in the system, the whole system gets affected [9].

In the past, various metaheuristic optimization algo-
rithms have been used together with chaotic sequences 
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such as Artificial Bee Colony (ABC) optimization [10], 
Harmony Search (HS) [11], Particle Swarm Optimization 
(PSO) [12], genetic algorithm (GA) [13], differential evolu-
tion (DE) [14], simulated annealing (SA) [15], firefly algo-
rithm (FA) [16], krill herd (KH) [17], imperialist competi-
tive algorithm (ICA)[18], biogeography-based optimization 
(BBO) [19], bat algorithm (BA) [20], gravitational search 
algorithm (GSA) [8], Bird swarm algorithms (BSA) [21], 
league championship algorithms (LCA) [22], and farmland 
fertility (FF) [23].

Based on the SGO algorithm, in this paper, a family of the 
chaotic algorithm is proposed, called Chaotic SGO (CSGO). 
The insertion of chaotic maps in the structure of the CSGO 
algorithm is motivated by the following arguments: (1) the 
SGO functions with various dimensions and characteristics 
(unimodal, multimodal, composite) [5]. Thus, it is expected 
that in the case of structural engineering problems this effi-
ciency will be maintained. (2) Consulting several databases, 
we found that the SGO algorithm equipped with various 
chaotic maps has not been used in solving the structural 
engineering problem (3). In addition, CSGO algorithms are 
easy to implement and have the ability to maintain a good 
balance between exploration and exploitation, thus being 
able to generate promising solutions during the iterative 
process. Again to evaluate the proposed family of CSGO 
algorithms, 13 benchmark functions are utilized and their 
performances are compared: with 10 metaheuristics opti-
mization algorithms.

Normally, metaheuristic algorithms show good results 
on benchmark functions, but they perform poorly on real-
world problems. The practical problem is an actual test for 
checking the problem-solving capabilities of an optimization 
algorithm. Therefore, to further evaluate the validity of the 
proposed family of CSGO algorithms in real-world appli-
cations, these are used to solve nine structural engineering 
design problems. The results reveal that there is an improve-
ment in the performance of the proposed algorithms due to 
the application of deterministic chaotic signals.

The rest of the paper is organized as follows. Section 2 
presents the description of SGO. Section 3 outlines the cha-
otic maps that generate chaotic sequences in the SGO. Sec-
tion 4 presents the proposed family of CSGO algorithms. 
Simulations and result analysis are presented in Sect. 5. 
Finally, the conclusions and directions for further research 
are drawn in Sect. 6.

2 � Social Group Optimization (SGO) 
Algorithm

The SGO algorithm is based on human behavior towards soci-
ety in solving complex problems. The person is a candidate 
solution and the person’s knowledge is the fitness value of 

the problem. The human traits are designated as the design 
variable of the problem which corresponds to the dimension 
of the problem. The SGO algorithm goes through two phases, 
namely the improving and acquiring phases. In the group, 
each individual’s knowledge level is improved based on the 
best individual influence in the improving phase. The best 
candidate solution is the one having the highest knowledge 
level and the ability to solve the problem under concern. The 
mutual interaction between individuals in the group and at the 
same time interaction with the best person through the acquir-
ing phase improved each person’s knowledge. For a detailed 
description of the SGO algorithm, please refer to the paper [3, 
24]. The SGO algorithm, in short, is given as follows:

Let Pi , i = 1,2,3,…., N, be the N persons of the social group 
and each person Pi is defined by Pi = (pi1, pi2, pi3,…… , piD) 
where D is the number of traits assigned to a person and fi ’s 
are their corresponding fitness value, respectively. For every 
iteration, each person has to undergo the “improving” and 
“acquiring” phase in the hope of finding a better solution.

2.1 � Improving Phase

Accept Pnew if it gives better fitness than P
where rand is a random number, rand ∼ U(0, 1), and c is 

known as a self-introspection parameter in (0,1).

2.2 � Acquiring Phase

Randomly select one person Pr , where i ≠ r

If f ( Pi) < f ( Pr)

Else

End If
Accept Pnew if it gives better fitness than P where rand1 and 

rand2 are two independent random numbers, rand1 ∼ U(0, 1) , 
and rand2 ∼ U(0, 1) . These random numbers are used to affect 
the stochastic nature of the algorithm.

(1)Find bestP = Pi such that fi isminmum in social group

Pnewi = c ∗ Pi + rand ∗
(
bestP − Pi

)

(2)bestP = Pi such thatfi is minmum in social group

Pnewi = Pi + rand1 ∗
(
Pi − Pr

)
+ rand2 ∗ (bestP − Pi)

Pnewi = Pi + rand1 ∗
(
Pr − Pi

)
+ rand2 ∗ (bestP − Pi)
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3 � Chaotic Map

Variety of chaotic maps are available in the optimization 
field [25]. In this study, 10 most widely used uni-dimen-
sional chaotic maps have been employed [26]. The math-
ematical forms of chaotic maps employed are represented 
as follows:

Chebyshev map

Circle map

where P = 0.5 and b = 0.2.

Gauss map

Iterative map

where P ∈ (0, 1) is a suitable parameter.

Logistic map

P = 4 is used for the experiments.

Piecewise map

where 0 ≤ P ≤ 0.5.

.

(3)xk+1 = cos(kcos−1
(
xk
)
)

(4)xk+1 = xk + b − (P∕2�)sin
(
2�xk

)
mod(1)

(5)xk+1 =

{
0 xk = 0

1

xkmod(1)
otherwise

(6)
1

xkmod(1)
=

1

xk
−

[
1

xk

]

(7)xk+1 = sin

(
P�

xk

)

(8)xk+1 = Pxk(1 − xk)

(9)xk+1 =

⎧
⎪⎪⎨⎪⎪⎩

xk

P
0 ≤ xk ≤ P

xk−P

0.5−P
0 ≤ xk ≤ 0.5

1−P−xk

0.5−P
0.5 ≤ xk ≤ 1 − P

1−xk

P
1 − P ≤ xk ≤ 1

Sine map

Singer map

where P ∈ (0.9, 1.08).

Sinusoidal map

where P = 2.3.

Tent map

4 � The Proposed Chaotic Social Group 
Optimization Algorithms

On consulting several databases (Scopus, Springer, Else-
vier), it can be seen much latest research work has been done 
through the SGO algorithm. The SGO algorithm has been 
successfully applied to many research areas such as in the 
medical field [27, 28], civil engineering [29], optimization 
engineering [30], communication engineering [31], opera-
tion management [32, 33], and many more.

In metaheuristic algorithms, randomness is achieved 
through some probability distributions. Such randomness 
can be replaced with a chaotic map due to similar properties 
of randomness with better statistical and dynamic proper-
ties. Such dynamical mixing helps the algorithm to diverse 
enough to reach every mode in the multimodal objec-
tive landscape. Due to the ergodicity and mixing properties 
of chaos, algorithms perform the iterative search at higher 
speeds than standard stochastic searches with standard prob-
ability distributions.

While going through the literature on the SGO algo-
rithm, we have found that there is only a single paper on 
SGO which is combined with chaotic concepts [34]. In this 
paper, the self-inspection parameter ‘C’ value is replaced 
by two chaotic strategies as Chaotic decreasing inertia 
weight and Chaotic random inertia weight where logistic 
maps are aggregated with two popular techniques i.e., liner 
decreasing inertia weight and random inertia weight. Here, 

(10)xk+1 = sin(�xk)

(11)xk+1 = P
(
7.86xk − 23.31x2

k
+ 28.75x3

k
− 13.302875x4

k

)

(12)xk+1 = Px2
k
sin(�xk)

(13)xk+1 =

{
xk

0.7
xk < 0.7

10

3

(
1 − xk

)
xk ≥ 0.7
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authors proved that the chaotic maps do not significantly 
affect the convergence of SGO. Again the authors replaced 
the ‘C’ value with another adaptive chaotic inertia weight 
to adjust the weight with logistic maps to introduce chaotic 
sequence into iterations and proved that SGO with adaptive 
chaotic inertia weight performs better for some benchmark 
functions.

In the SGO algorithm, the self-introspection param-
eter C = 0.2 is made constant for all the persons in all gen-
erations, and this parameter is responsible for a person to 
improve his/her knowledge level from the current position 
towards the optimum position. In order to increase the 
searchability of the algorithm, the parameter C should be 
changed or redefined in a manner such that the improve-
ment of the person should be done at a higher speed than the 
standard speed. This can be achieved by selecting different C 
values according to the chaotic function, as the insertion of 
chaotic maps in the structure of metaheuristic algorithms can 
increase the efficiency of the new algorithm [20, 35]. Equip-
ping the SGO algorithm with chaotic maps aims to improve 
the capacity of the CSGO algorithm to avoid local mini-
mums, increase stability and strengthen the global search. 
Hence if replacement happens the potential benefits of C are 
retained by chaotic numbers.

When the ‘C’ value in SGO is replaced by chaotic maps, 
then the CSGO can be an algorithm-specific parameter-free 
algorithm. Then, when we compared CSGO with other algo-
rithms that have different parameter settings, we can declare 
for the CSGO algorithm no need to bother with parameter 
settings. The selected chaotic maps that produce chaotic 
numbers in (0, 1) have been listed in Sect. 3. The family of 
CSGO algorithms maybe simply classified and described 
as follows:

In Chaotic SGO1 (CSGO1), Chaotic SGO2 (CSGO2), 
Chaotic SGO3 (CSGO3), Chaotic SGO4 (CSGO4), Cha-
otic SGO5 (CSGO5), Chaotic SGO6 (CSGO6), Chaotic 
SGO7 (CSGO7), Chaotic SGO8 (CSGO8), Chaotic SGO9 
(CSGO9), and Chaotic SGO10 (CSGO10) algorithm, the 
self-introspection parameter C is replaced by a chaotic num-
ber generated by the Chebyshev map, circle map, gauss map, 
iterative map, logistic map, piecewise map, sine map, singer 
map, sinusoidal map, and tent map, respectively.

Now, it can be said that both original SGO and chaotic 
SGOs algorithms have the same structure; the only differ-
ence between them is the self-introspection parameter that 
is replaced by chaotic maps in chaotic SGOs and all other 
conditions remain the same. If we carefully see, four random 
numbers have been used in SGO: the random numbers in the 
initialization phase, the improving phase, and two in acquir-
ing phase, and these are not replaced by any chaotic maps 
in CSGOs. It can be seen from the literature that the cha-
otic maps replace the random numbers of the chaotic-based 
stochastic algorithm and even in population initialization. 

From paper [36], the author has experimentally proven that 
logistic map-based initialization is able to generate more 
uniformly distributed particles in the allowable search space 
to enhance the stability of the algorithm. Not replacing ran-
dom numbers of the CSGO algorithm with any of the chaotic 
maps create uniqueness in the algorithm. Although there 
is no mathematical proof for enhancing the stability of the 
SGO algorithm still, it has been proved through our experi-
ments that the proposed CSGO algorithms increase their 
convergence rate and the resulting precision than the SGO 
algorithm.

5 � Simulation, Experimental Results, 
and Discussion

Every novel optimization algorithm must be subjected to 
well-defined benchmark functions to measure and test the 
performance. There are many benchmark functions avail-
able; however, there is no standardized set of benchmark 
functions that are agreed upon for validating new algorithms. 
To validate and benchmark the performance of the proposed 
CSGO family of algorithms, simulations on 13 benchmark 
functions are conducted. One of the main reasons for select-
ing these functions is that they are utilized in many papers 
[37–41]. Out of 13, 7 are unimodal benchmark functions 
and 6 are multimodal benchmarks. Detailed descriptions 
of these benchmark functions are given in papers [37–41]. 
After that, nine structural engineering design problems are 
considered, and the detailed descriptions of these design 
problems are given in their respective cited papers. All 
algorithms are implemented using MATLAB 2016a, under 
Microsoft Windows 10 operating system. Simulations are 
carried out on an Intel Core i5, 8 GB memory laptop.

5.1 � Algorithm Validation

For validating the performance of the CSGO family of algo-
rithms, 13 benchmarks are employed as described above and 
the results are compared with 10 different metaheuristics 
algorithms such as GSA [42], Whale Optimization Algo-
rithm (WOA) [37], Henry Gas Solubility Optimization 
(HGSO) [43], Seagull Optimization Algorithm (SOA) [44], 
Marine Predators Algorithm (MPA) [45], Tunicate Swarm 
Algorithm (TSA) [46], Slime Mould Algorithm (SMA) 
[47], Sooty Term Optimization Algorithm (STOA) [48], 
Harris Hawks Optimization (HHO) [38], and Ground-Tour 
Algorithm (GTA) [49]. In experiment 1, the CSGO fam-
ily of algorithms is compared with each other, and Table 2 
illustrates the comparative results. Similar to experiment 2, 
the performance of the CSGO family is compared with the 
other ten algorithms and Table 3 illustrates the comparative 
results. In the experiments, the parameters max_FEs have 
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been kept fixed at 10,000. Hence, the number of iterations 
and population size may vary for different algorithms. The 
algorithmic parameter settings are based on the parameters 
widely used by various researchers and these are mentioned 
in Table 1.

5.1.1 � Experiment 1: The Performance Comparison 
of the CSGO Family of Algorithms

In this experiment, the performance of the proposed CSGO 
family of algorithms such as CSGO1, CSGO2, CSGO3, 
CSGO4, CSGO5, CSGO6, CSGO7, CSGO8, CSGO9, and 
CSGO10 are compared with each other. Statistical results of 
30 repetitions in terms of the best (BEST), worst (WORST), 
average (MEAN), and standard deviation (SD) of fitness 
solutions are determined and reported in Table 2 to ensure 
stability and statistical significance with the best results are 
highlighted in bold. In the tables, the symbol ‘ ∥ ’ represents 
that its value is equal to the value of the above column.

It is seen from Table 2 that the CSGO3 algorithm reaches 
the global optimum for all the functions except F5–F7, F10, 

F12, and F13, and in 10 cases out of 13 finds the best solu-
tions than others. CSGO4 in 6 cases, CSGO7 in 5 cases, 
and other algorithms except for CSGO9 in 4 cases out of 
13 find the best solutions, whereas CSGO9 in 3 cases finds 
the best solutions. For the F10 function, all algorithms find 
an equivalent solution but not an optimal solution. Hence, 
it can be said that the CSGO3 algorithm outperformed all 
other CSGO family algorithms.

5.1.2 � Experiment 2: The Performance Comparison 
with Other Metaheuristics Algorithms

From experiment 1, it can be examined that CSGO3 has 
shown superior performance in comparison to all algorithms 
of the CSGO family in terms of fitness function evaluation. 
Therefore, in this experiment, CSGO3 is compared with the 
other ten algorithms for performance validation. Statistical 
results of 30 repetitions in terms of the best (BEST), worst 
(WORST), average (MEAN), and standard deviation (SD) 
of fitness solutions are determined and reported in Table 3 
to ensure stability and statistical significance with the best 

Table 1   Parameter setting of 
algorithms

Sl. no. Algorithms Parameters Values

1 Gravitational search algorithm Gravitational constant
Alpha constant
Rnorm
Rpower

100
20
2
1

2 Whale Optimization Algorithm Control parameter ( �
1
)

Control parameter ( �
2
)

b

[2, 0]
[− 2, − 1]
1

3 Henry Gas Solubility Optimization Cluster number
M1
M2
Beta
Alpha
K
L1
L2
L3

5
0.1
0.2
1
1
1
5e−03
100
1e−02

4 Harris Hawks Optimization beta 1.5
5 Seagull Optimization Algorithm Control parameter (A)

fc

[2,0]
2

6 Sooty Term Optimization Algorithm fc 2
7 G Ground-Tour Algorithm G

mmin

mmax

crr
rho_ar
Cd_A
Cmin

Cmax

9.81
45
95
0.002
1.225
0.307
0.5
1

8 Marine Predators Algorithm FADs
P

0.2
0.5

9 Slime Mould Algorithm Parameter 0.03
10 Tunicate Swarm Algorithm Pmin

Pmax

1
4
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Table 2   Results of CSGO family of algorithms

Algo/functions F1 F2 F3 F4 F5 F6 F7

CSGO1 BEST 1.0683e−92 3.2308e−47 5.6021e−91 3.9926e−46 26.0415 2.6931e−05 3.4617e−05
WORST 1.3538e−91 1.6891e−46 3.6616e−90 6.9955e−46 27.6446 0.2666 4.9832e−04
MEAN 5.7815e−92 8.1931e−47 2.1116e−90 5.4908e−46 26.8969 0.0527 2.3371e−04
SD 3.4688e−92 3.3245e−47 7.4547e−91 9.0649e−47 0.3824 0.0835 1.3319e−04

CSGO2 BEST 6.9669e−92 6.8360e−47 4.3436e−89 1.8208e−45 25.9082 5.5511e−05 7.0864e−06
WORST 7.8927e−90 3.1121e−46 2.0284e−88 5.0291e−45 27.0863 0.0064 5.0886e−04
MEAN 9.5072e−91 1.7078e−46 1.1019e−88 3.3616e−45 26.4021 0.0015 1.9760e−04
SD 1.6173e−90 5.7342e−47 4.4095e−89 7.5651e−46 0.3211 0.0018 1.3103e−04

CSGO3 BEST 0 0 0 0 25.4235 2.9837e−04 1.7330e−05
WORST 0 0 0 0 27.1020 0.0063 4.7404e−04
MEAN 0 0 0 0 26.5388 0.0017 1.2603e−04
SD 0 0 0 0 0.3496 0.0014 1.5155e−04

CSGO4 BEST 1.6304e−106 4.2533e−54 1.5325e−105 1.1600e−53 25.3050 9.9073e−05 6.0227e−06
WORST 4.6757e−106 1.0801e−53 4.2147e−105 1.8466e−53 27.3137 0.0032 5.5482e−04
MEAN 3.3332e−106 7.4070e−54 2.8588e−105 1.4491e−53 26.3448 6.0213e−04 2.1049e−04
SD 8.8831e−107 1.5647e−54 6.9615e−106 1.9302e−54 0.4628 6.8272e−04 1.6184e−04

CSGO5 BEST 1.1732e−84 3.5204e−43 1.1670e−82 2.7343e−42 25.5748 7.8039e−05 7.6121e−06
WORST 2.2132e−83 1.1257e−42 4.1043e−82 5.5994e−42 26.9888 0.0216 4.1000e−04
MEAN 5.6495e−84 7.0591e−43 2.4175e−82 4.7346e−42 26.4354 0.0028 1.7562e−04
SD 4.2043e−84 2.0575e−43 8.2278e−83 7.5436e−43 0.3896 0.0055 1.1653e−04

CSGO6 BEST 1.2168e−83 7.8863e−43 6.6060e−81 4.8814e−41 25.5439 9.0940e−05 4.5065e−06
WORST 1.0647e−81 4.4936e−42 8.9854e−80 1.1354e−40 27.1496 0.0180 4.2095e−04
MEAN 2.1726e−82 2.7235e−42 4.3211e−80 8.6495e−41 26.4801 0.0031 1.5705e−04
SD 3.0157e−82 9.9014e−43 1.8345e−80 1.6118e−41 0.4494 0.0046 1.2955e−04

CSGO7 BEST 1.9384e−131 1.6142e−66 9.1665e−131 2.2333e−66 25.1802 1.6804e−04 2.4556e−05
WORST 5.9034e−131 3.6146e−66 1.8822e−130 3.8591e−66 26.9885 0.1273 5.5495e−04
MEAN 3.7236e−131 2.6495e−66 1.3517e−130 3.1869e−66 26.4430 0.0107 1.9425e−04
SD 1.0540e−131 4.8397e−67 2.9019e−131 4.0613e−67 0.4475 0.0276 1.3754e−04

CSGO8 BEST 2.0472e−59 1.9574e−30 5.6915e−57 7.7435e−29 26.0117 1.3110e−04 2.5367e−05
WORST 2.1062e−56 7.5073e−29 2.2897e−55 2.5021e−28 28.4936 0.3408 4.8607e−04
MEAN 6.4538e−57 2.1280e−29 8.8489e−56 1.8842e−28 27.2073 0.0998 2.2333e−04
SD 6.9756e−57 2.0236e−29 8.8489e−56 4.4614e−29 0.6222 0.1128 1.3667e−04

CSGO9 BEST 5.7660e−27 4.0550e−14 1.5323e−26 8.3977e−14 26.2668 3.5632e−04 2.6211e−05
WORST 3.9755e−26 8.6943e−14 1.2625e−25 1.1371e−13 27.8802 0.2051 6.3431e−04
MEAN 2.0281e−26 6.6514e−14 7.4925e−26 9.6614e−14 27.2533 0.0183 2.9170e−04
SD 9.2565e−27 1.1227e−14 2.8668e−26 8.1737e−15 0.4334 0.0426 1.7539e−04

CSGO10 BEST 3.8364e−65 7.9023e−34 1.1472e−63 1.6130e−32 25.4118 7.7545e−05 7.2578e−06
WORST 1.1357e−63 8.0502e−33 1.2105e−62 4.0668e−32 27.0872 0.1149 3.4833e−04
MEAN 3.0789e−64 3.2396e−33 6.2703e−63 3.0951e−32 26.4356 0.0058 1.4095e−04
SD 2.7512e−64 2.0573e−33 2.7445e−63 5.9278e−33 0.4326 0.0210 1.0161e−04

Algo/functions F8 F9 F10 F11 F12 F13

CSGO1 BEST − 1.2569e + 04 0 8.8818e−16 0 3.4247e−06 5.1351e−05
WORST − 1.2569e + 04 0 8.8818e−16 0 0.0721 2.9668
MEAN − 1.2569e + 04 0 8.8818e−16 0 0.0041 1.8857
SD 0 0 0 0 0.0135 1.3776

CSGO2 BEST ∥ ∥ ∥ ∥ 2.5402e−05 2.8052e−04
WORST 3.8921e−04 0.1913
MEAN 1.2914e−04 0.0223
SD 9.3119e−05 0.0408
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results are highlighted in bold. Table 4 reports p values of 
the WRS test [50] obtained at a 5% significance level of 
CSGO3 vs. other approaches. The p values less than 0.05 
indicate that the null hypothesis is rejected, and p values 
that are ‘NaN’ mean both the input values are the same in 
Table 4, “−”, “+”, and “≈” denote that the performance of 
other approaches is worse, better, and similar to CSGO3, 
respectively. 

Table 3 illustrates that the CSGO3 algorithm has the best 
results in most of the cases than the other compared algo-
rithms for the analyzed benchmarks. As can be seen from 
Table 4, out of 130 cases, only in 7 cases, CSGO3 finds 
equivalent results, in 9 cases, CSGO3 finds the same solu-
tion, in 4 cases, CSGO3 finds a worse solution and in 110 
cases, CSGO3 finds best results than others.

5.2 � Structural Engineering Design Optimization 
Problems and Result Analysis

In structural engineering, design optimization problems are 
Constrained Optimization Problem (COP) which are highly 
nonlinear and design variables are involved under complex 
constraints. Such nonlinearity often results in multimodal 
response landscape. Subsequently, metaheuristic global opti-
mization algorithms are used to obtain optimal solutions.

5.2.1 � Constrained Optimization

A COP comprises of an objective function together with 
some equality and inequality constraints. Lower and upper 
bounds of design variables are often specified. Considering 

Table 2   (continued)

Algo/functions F8 F9 F10 F11 F12 F13

CSGO3 BEST ∥ ∥ ∥ ∥ 2.4603e−05 1.4202e−04

WORST 3.0965e−04 0.1370

MEAN 1.2233e−04 0.0225

SD 7.0016e−05 0.0438
CSGO4 BEST ∥ ∥ ∥ ∥ 4.6680e−06 1.8100e−04

WORST 4.5161e−04 2.9661
MEAN 6.9008e−05 0.5903
SD 9.6678e−05 1.0957

CSGO5 BEST ∥ ∥ ∥ ∥ 7.3677e−06 9.1983e−05
WORST 1.5076e−04 0.1374
MEAN 4.4260e−05 0.0180
SD 3.8735e−05 0.0361

CSGO6 BEST ∥ ∥ ∥ ∥ 2.2879e−05 2.6560e−04
WORST 2.8905e−04 0.5182
MEAN 1.2341e−04 0.0416
SD 7.1090e−05 0.0996

CSGO7 BEST ∥ ∥ ∥ ∥ 3.4340e−06 9.4175e−05
WORST 1.1076e−04 0.1416
MEAN 3.4620e−05 0.0236
SD 2.9680e−05 0.0437

CSGO8 BEST ∥ ∥ ∥ ∥ 2.5923e−05 7.4171e−05
WORST 0.1062 2.9671
MEAN 0.0115 1.3721
SD 0.0317 1.3888

CSGO9 BEST ∥ 0 2.2204e−14 ∥ 3.8476e−05 2.0210e−04
WORST 42.7113 5.4179e−14 0.1041 2.4780
MEAN 15.6828 4.1981e−14 0.0076 0.4208
SD 11.9999 7.7322e−15 0.0236 0.8018

CSGO10 BEST ∥ 0 ∥ ∥ 1.6514e−05 8.9642e−05
WORST 0 3.6342e−04 0.2510
MEAN 0 8.2203e−05 0.0345
SD 0 7.1402e−05 0.0710
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Table 3   Comparatives results of all the algorithm

Algo/functions F1 F2 F3 F4 F5 F6 F7

CSGO3 BEST 0 0 0 0 25.3901 1.9837e−04 1.7330e−05
WORST 0 0 0 0 26.8591 0.0044 4.7404e−04
MEAN 0 0 0 0 26.2578 0.0014 1.2603e−04
SD 0 0 0 0 0.3584 0.0011 1.5155e−04

GSA BEST 436.9429 13.9984 766.0158 7.2154 2.4878e + 03 225.4227 0.0384
WORST 1.5687e + 03 24.0684 2.7470e + 03 15.6014 1.1464e + 05 1.4569e + 03 0.2033
MEAN 903.0623 18.5126 1.7746e + 03 11.3408 5.4996e + 04 794.7375 0.1178
SD 262.9562 2.6219 556.2787 1.8408 3.0013e + 04 337.8156 0.0430
p value 1.2118e−12 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 3.0199e−11 3.0199e−11

WOA BEST 1.4248e−36 2.5533e−25 3.7377e + 04 0.1006 27.6150 0.2801 2.9395e−04
WORST 6.9506e−32 6.1535e−21 8.2242e + 04 86.3280 28.7512 0.7901 0.0141
MEAN 3.6350e−33 9.5057e−22 5.6921e + 04 53.0049 28.3088 0.5040 0.0035
SD 1.2743e−32 1.4700e−21 1.1924e + 04 25.8779 0.3428 0.1590 0.0033
p value 1.2118e−12 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 3.0199e−11 4.9752e−11

HGSO BEST 1.3176e−44 8.6475e−23 1.3733e−40 1.9796e−22 28.1002 2.9690 5.3104e−05
WORST 8.0886e−37 5.2336e−20 1.1816e−30 3.2606e−18 28.8903 5.2215 0.0014
MEAN 4.7928e−38 4.1484e−21 6.7414e−32 3.7472e−19 28.5835 4.3948 5.5643e−04
SD 1.5871e−37 9.7595e−21 2.2612e−31 8.5215e−19 0.1979 0.5995 3.8452e−04
p value 1.2118e−12 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 3.0199e−11 1.1674e−05

SOA BEST 6.8182e−04 0.0010 0.0173 0.0445 28.3808 2.4362 0.0017
WORST 0.0135 0.0118 11.5964 3.5227 30.5146 4.1644 0.0210
MEAN 0.0039 0.0064 3.2540 1.0136 29.1680 3.4433 0.0093
SD 0.0028 0.0030 3.2276 0.7859 0.4275 0.5082 0.0048
p value 1.2118e−12 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 3.0199e−11 3.0199e−11

MPA BEST 8.6823e−08 4.2558e−05 0.0820 0.0023 26.0262 0.0117 0.0011
WORST 6.5764e−07 2.2550e−04 12.2886 0.0056 27.5269 0.1271 0.0067
MEAN 3.4184e−07 1.2261e−04 4.1587 0.0040 26.6481 0.0509 0.0031
SD 1.5179e−07 4.7189e−05 3.0020 9.1343e−04 0.3191 0.0274 0.0016
p value 1.2118e−12 1.2118e−12 1.2118e−12 1.2118e−12 1.0407e−04 3.0199e−11 3.0199e−11

TSA BEST 1.0867e−08 1.4400e−06 0.0076 0.4260 26.5432 2.5777 0.0046
WORST 1.2222e−06 1.1132e−04 5.7078 5.9403 28.8875 4.6151 0.0275
MEAN 2.6827e−07 3.0485e−05 0.9064 2.0998 28.2306 3.7481 0.0155
SD 3.1555e−07 2.6800e−05 1.3829 1.5630 0.7376 0.5572 0.0071
p value 1.2118e−12 1.2118e−12 1.2118e−12 1.2118e−12 6.6955e−11 3.0199e−11 3.0199e−11

SMA BEST 7.9861e−246 6.1818e−126 4.6324e−236 1.0034e−118 0.0392 0.0015 1.2680e−05
WORST 3.8549e−178 1.2516e−104 1.0741e−126 3.0687e−86 28.4892 0.2100 8.3208e−04
MEAN 1.8931e−179 8.8060e−106 3.5804e−128 1.2459e−87 13.3071 0.0749 2.7421e−04
SD 0 2.7416e−105 1.9611e−127 5.6918e−87 12.1549 0.0614 2.0137e−04
p value 1.2118e−12 1.2118e−12 1.2118e−12 1.2118e−12 0.0773 1.0937e−10 0.0519

STOA BEST 0.0062 0.0124 33.7096 1.3346 32.5351 2.4143 0.0076
WORST 1.8019 0.1430 464.9817 5.3936 132.2677 7.0952 0.0378
MEAN 0.6876 0.0599 171.6655 2.9803 69.9200 4.8385 0.0213
SD 0.5518 0.0342 115.0174 0.9095 29.1551 1.3178 0.0090
p value 1.2118e−12 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 3.0199e−11 3.0199e−11

HHO BEST 2.0414e−55 2.5442e−29 1.3946e−46 1.8486e−28 3.7719e−04 7.1900e−09 2.5621e−05
WORST 1.4064e−45 1.0948e−22 2.3887e−34 4.9473e−23 0.1390 0.0020 5.2680e−04
MEAN 1.2981e−46 8.4362e−24 9.0082e−36 7.1281e−24 0.0318 3.5589e−04 1.8200e−04
SD 3.4572e−46 2.5946e−23 4.3583e−35 1.4556e−23 0.0390 4.7640e−04 1.4454e−04
p value 1.2118e−12 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 4.4440e−07 0.8650
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Table 3   (continued)

Algo/functions F1 F2 F3 F4 F5 F6 F7

GTA​ BEST 5.3971e−17 8.5670e−15 3.1423e−17 1.1227e−14 28.8400 4.0850 0.0011

WORST 1.4599e−14 2.4318e−11 2.1144e−14 3.7380e−12 28.9924 7.2961 0.0183

MEAN 3.5119e−15 2.2610e−12 3.3347e−15 8.7064e−13 28.9434 6.5305 0.0098

SD 3.8949e−15 4.9836e−12 5.5902e−15 1.0195e−12 0.0433 0.6297 0.0056
p value 1.2118e−12 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 3.0199e−11 3.0199e−11

Algo/functions F8 F9 F10 F11 F12 F13

CSGO3 BEST − 1.2569e + 04 0 8.8818e−16 0 2.5600e−05 2.0376e−04
WORST − 1.2569e + 04 0 8.8818e−16 0 6.3783e−04 0.1099
MEAN − 1.2569e + 04 0 8.8818e−16 0 1.5034e−04 0.0201
SD 0 02.2204e−14 0 0 1.5686e−04 0.0339

GSA BEST − 3.5062e + 03 58.9623 10.5204 2.6322 1.3065 27.9534
WORST − 2.3590e + 03 210.6226 15.3128 10.9486 12.2971 1.9369e + 03
MEAN − 2.8128e + 03 110.2984 13.4418 7.4664 5.9810 172.0101
SD 338.5363 47.2230 1.0551 1.9688 2.5709 360.8752
p value 3.0199e−11 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 3.0199e−11

WOA BEST − 1.2565e + 04 0 4.4409e−15 0 0.0069 0.1840
WORST − 8.1341e + 03 5.6843e−14 2.2204e−14 0.2705 0.0454 1.0653
MEAN − 1.0336e + 04 1.8948e−15 1.0362e−14 0.0166 0.0236 0.5366
SD 1.6644e + 03 1.0378e−14 4.5068e−15 0.0633 0.0106 0.1912
p value 0.0076 0.3337 6.5558e−13 0.0815 3.0199e−11 3.0199e−11

HGSO BEST − 4.4071e + 03 0 8.8818e−16 0 0.2994 1.8041
WORST − 2.3000e + 03 0 8.8818e−16 0 0.6773 2.9023
MEAN − 3.3158e + 03 0 8.8818e−16 0 0.5024 2.7293
SD 564.9030 0 0 0 0.0977 0.2383
p value 3.0199e−11 NaN NaN NaN 3.0199e−11 3.0199e−11

SOA BEST − 6.7380e + 03 1.8329e−04 19.9583 0.0013 0.1010 1.6028
WORST − 4.4390e + 03 44.3976 19.9635 0.1264 0.7223 2.7332
MEAN − 4.9316e + 03 16.1990 19.9614 0.0668 0.3125 2.1890
SD 421.7500 9.8505 0.0015 0.0413 0.1214 0.2703
p value 3.6897e−11 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 3.0199e−11

MPA BEST − 9.8527e + 03 1.5903e−06 6.5629e−05 2.7181e−07 6.6609e−04 0.0246
WORST − 7.4931e + 03 0.0015 1.7377e−04 2.1563e−06 0.0082 0.1567
MEAN − 8.3146e + 03 1.7403e−04 1.2064e−04 1.1734e−06 0.0031 0.0702
SD 529.4453 3.3850e−04 2.8878e−05 5.6156e−07 0.0031 0.0395
p value 1.6351e−05 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 3.2555e−07

TSA BEST − 6.8763e + 03 110.1055 1.1229e−04 6.8352e−09 1.3962 1.8352
WORST − 5.3556e + 03 237.5861 3.7481 0.0274 18.7804 4.4032
MEAN − 6.0460e + 03 189.5021 2.2329 0.0088 8.9181 3.0443
SD 490.7734 33.7897 1.5160 0.0121 4.3787 0.5598
p value 1.0937e−10 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 3.0199e−11

SMA BEST − 1.2569e + 04 0 8.8818e−16 0 1.6053e−05 5.2757e−04
WORST − 1.2564e + 04 0 8.8818e−16 0 0.0276 0.0683
MEAN − 1.2568e + 04 0 8.8818e−16 0 0.0076 0.0187
SD 1.3005 0 0 0 0.0080 0.0186
p value 0.0773 NaN NaN NaN 1.1737e−09 0.0451
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that there are n design variables, then COP can be written 
in following form:

where the function f (X) is objective function which is to 
be minimized. The functions gi(X) and hk(X) are inequal-
ity and equality constraint functions, respectively. There are 
m inequality constraints and p equality constraints in the 
above problem. This problem is a nonlinear optimization 

(14)

Minimize ∶ f (X)

Subjectto ∶ gi(X) ≤ 0, i = 1, 2,…… ,m

hk(X) = 0 k = 1, 2,…… , p

aj ≤ xj≤ bj j = 1,…… , n

X =
�
x1, x2,… , xn

�

⎫⎪⎪⎬⎪⎪⎭

problem if at least one of the functions f (X) , gi(X) or hk(X) 
is nonlinear.

Most metaheuristic algorithms are normally designed to 
work on unconstrained search spaces. Solving COPs using 
metaheuristic algorithms requires additional mechanisms 
to incorporate the effects of constraints into their objective 
function. While solving COPs, it has become necessary to 
deal with both feasible and infeasible solutions, dealing 
with the latter having more concerns. It may be possible to 
ignore all the infeasible solutions but as metaheuristic algo-
rithms are stochastic search methods, completely discarding 
the infeasible solutions may results in a loss of information 
about some promising regions of the function landscape. 

Table 3   (continued)

Algo/functions F8 F9 F10 F11 F12 F13

STOA BEST − 5.8237e + 03 2.1453 0.7407 0.0921 0.0968 1.9846

WORST − 4.4813e + 03 89.1702 19.9626 0.9397 2.2575 4.7258

MEAN − 5.0923e + 03 42.6491 19.3197 0.5811 0.9978 3.2201

SD 307.5817 23.9185 3.5090 0.2239 0.5344 0.7318
p value 3.0199e−11 1.2118e−12 1.2118e−12 1.2118e−12 3.0199e−11 3.0199e−11

HHO BEST − 1.2569e + 04 0 8.8818e−16 0 1.8057e−09 2.2821e−06
WORST − 1.2566e + 04 0 8.8818e−16 0 6.7745e−05 4.6801e−04
MEAN − 1.2568e + 04 0 8.8818e−16 0 2.0373e−05 1.1551e−04
SD 1.1436 0 0 0 2.1029e−05 1.3780e−04
p value 0.0773 NaN NaN NaN 4.9980e−09 5.5727e−10

GTA​ BEST − 6.0633e + 03 0 1.8652e−14 0 0.5241 2.2501
WORST − 2.3456e + 03 5.6843e−14 5.8771e−12 4.7184e−14 1.3979 3.1935
MEAN − 1.3501e + 03 1.8948e−15 8.8386e−13 7.4533e−15 0.9688 2.9359
SD 1.1853e + 03 1.0378e−14 1.3506e−12 1.2642e−14 0.2434 0.1828
p value 3.0199e−11 0.3337 1.2088e−12 1.9280e−09 3.0199e−11 3.0199e−11

The best results of the experiments are represented in bold

Table 4   WRS test results on 
Table 2

“−”, “+”, and “≈” denote that the performance of other approaches are worse, better, and similar to 
CSGO3, respectively

Algo/Functions F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

GSA − − − − − − − − − − − − −

WOA − − − − − − − − ≈ − ≈ − −

HGSO − − − − − − − − NaN NaN NaN − −

SOA − − − − − − − − − − − − −

MPA − − − − − − − − − − − − −

TSA − − − − − − − − − − − − −

SMA − − − − ≈ − ≈ ≈ NaN NaN NaN − +

STOA − − − − − − − − − − − − −

HHO − − − − − + ≈ ≈ NaN NaN NaN + +

GTA​ − − − − − − − − ≈ − − − −

Total no. of ‘ −’ = 112, total no. of ‘ +’ = 2, total no. of ‘ ≈’ = 7, total no. of ‘ NaN’ = 9
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To remove this confusion and to solve this problem, there 
is a traditional approach that imposes a penalty [51] for the 
infeasible solutions. A constraint violation is included for the 
penalized candidate solutions. Then, the penalized candidate 
solutions are handled as an unconstrained objective function 
that can be optimized using the unconstrained optimizing 
technique.

5.2.2 � Constraint Violation

The constraint violation V(X) is the measure that indicates 
by how much a candidate solution X violates the given 
constraints:

Generally, evaluation of constraint violation in the COP 
is done using the following two equations:

In our study, we have used the approach (17) with m = 2.

5.2.3 � Constraint Handling

In COP, the constraint handling technique is a necessary 
criterion to reach the optimal solution within the feasible 
region (if exists). This is mainly to exploit the infeasible 
candidate solutions and extract effective information for the 
stochastic search process. Depending on the constraint viola-
tion and the objective function value, Deb’s rules [52] have 
been chosen for handling constraints.

While solving a COP, it is very difficult to handle the 
situation if some active constraint is present. All equality 
constraints are active constraints and for the inequality con-
straints those satisfy gi(X) = 0 at the global optimum solu-
tion are called active constraints. Therefore, the problems 
with equality constraint should be handled evasively for a 
high-quality solution. The equality constraints can be altered 
into the inequality form and can easily be combined with the 
inequality constraint. Lots of techniques have been used for 
this particular operation. Here, we use a tolerance parameter 
( tp ) to for converting the equality constraints into inequality 
form. Therefore, the constraints of Eq. (14) can be written as

where Gineq(X) is the inequality constraints, and tp is a toler-
ance parameter for the equality constraints.

(15)
V(X) = 0; if X ∈ F

V(X) > 0; if X ∉ F

}
,whereF is the feasible region

(16)V(X) = max
{
max

i

{
0, gi(X)

}
,max

k

||hk(X)||
}

(17)V(X) =
∑

i
max{0, gi(X)}

m +
∑

k
{||hk(X)||m

(18)Gineq(X) =

{
max

{
gi(X), 0

}
, i = 1,…… ,m

max
{||hi(X)|| − tp., 0

}
, i = 1,…… , p

Thus, the objective is to minimize the fitness function 
f (X) such that the optimal solution obtained satisfies all the 
inequality constraints Gineq(X).

5.2.4 � Structural Engineering Design Problems

The performance of the family of CSGO algorithms are 
demonstrated in this paper through solving nine structural 
engineering design problems and the performances are com-
pared with many state-of-the-art as well as latest metaheuris-
tic bionic algorithm algorithms of literature.

5.2.4.1  Parameter Settings and Evaluation Criterion 

•	 Stopping criterion: Maximum number of function evalu-
ations 20,000.

•	 Runs: 30 independent runs
•	 Statistical results: best (BEST), mean (MEAN), worst 

(WORST), and standard deviation (SD)
•	 Constraints handling: Deb’s rules [52]
•	 Initial point in chaos theory set to 0.7 for all chaos maps

The parameter settings for all the algorithms considered 
for statistical results comparisons are kept the same as men-
tioned in their respective papers.

Here, we have applied a rule that the infeasible solutions 
containing slight violation of the constraints (from 0.01 in 
the first iteration to 0.001 in the last iteration) are considered 
as feasible solutions. For most structural optimization prob-
lems, the global minimum locates on or close to the bound-
ary of a feasible design space. By applying this rule, the 
candidate solutions approach the boundaries and can reach 
the global minimum with a higher probability[53].

5.2.4.2  Tension/Compression Spring Design Problem  The 
objective is the minimization of the fabrication cost of 
spring with three parameters and four constrains such as 
wire diameter ( x1 ), spring coil diameter ( x2 ), and a num-
ber of active coils ( x3 ), and deflection ( g1(X) ), shear stress 
( g2(X) ), surge frequency ( g3(X) ), and outer diameter limit 
( g4(X) ). The spring design pattern is shown in Fig. 1 and 
formulated optimization problem is referred from [54].

The optimization results and the statistical results are 
given in Tables 5 and 6, respectively. The result of the PO, 
EO, PRO, CSA, MFO and Emperor Penguin Optimizer 
(EPO) algorithms are imported from [55–59] and [46], 
respectively. The result for the HGSO, MPA, TSA, and 
STOA algorithms are reported from [43, 45, 46], and [48], 
respectively. For SHO, SCA, GWO, PSO, MVO, GSA, GA, 
and DE, the results are imported from [44]. For CS, WOA, 
EHO (elephant herbing behavior), and SA, the results are 
imported from [43]. The results for the CSGO family are 
achieved by us. In the tables, “ − ” represents “not given” 
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for that particular algorithm. The best result is highlighted 
in bold. From Tables 5 and 6, it can be inferred that the 
CSGO family has found better optimal results than other. 
Again in CSGO family, CSGO5 finds better optimal result 
than others.

5.2.4.3  The Welded Beam Design Problem  The objective 
is to minimize the manufacturing cost of the welded beam 
with four optimized variables and seven constrains such 
as thickness of the weld ( x1 ), length of clamped bar ( x2 ), 
the height of the bar ( x3 ), and thickness of the bar ( x4 ), and 

Fig. 1   a Schematic of the spring; b stress distribution evaluated at the optimum design and c displacement distribution evaluated at the optimum 
design

Table 5   Optimum results of 
tension/compression spring 
design problem by different 
algorithms

Algorithms x
1

x
2

x
3

Optimal result

PRO 0.051819 0.359873 11.106372 0.012665
MFO 0.051994 0.364109 10.868421 0.012666
PO 0.05248 0.37594 10.24509 0.012678508650926
HGSO 0.0518 0.3569 11.2023 0.01265
EO 0.0516199100 0.355054381 11.38796759 0.012666132128342
MPA 0.051724477 0.35757003 11.2391955 0.012665283702960
TSA 0.051080 0.342890 12.0890 0.012655520
EPO 0.051087 0.342908 12.0898 0.012656987
STOA 0.051090 0.342910 12.0900 0.012656990
SHO 0.051144 0.343751 12.0955 0.012674000
GWO 0.050178 0.341541 12.07349 0.012678321
PSO 0.05 0.310414 15 0.013192580
MVO 0.05 0.315956 14.22623 0.012816930
SCA 0.050780 0.334779 12.72269 0.012709667
CSA 0.0516890284 0.3567169544 11.2890117993 0.0126652328
GSA 0.05000 0.317312 14.22867 0.012873881
GA 0.05010 0.310111 14.0000 0.013036251
DE 0.05025 0.316351 15.23960 0.012776352
CS 0.0518 0.3586 11.1808 0.0127
WOA 0.0520 0.3637 10.8938 0.0127
EHO 0.0580 0.5278 5.5820 0.0135
SA 0.0500 0.2500 9.3876 0.0178
CSGO1 0.051868506586171 0.361329001734979 11.010194291412466 0.012647191400445
CSGO2 0.052147921766084 0.368152633913749 10.635947794752985 0.012650559847160
CSGO3 0.051600716157639 0.354879861075208 11.383737998864271 0.012646496816940
CSGO4 0.051553871747610 0.353758785482019 11.450726981522376 0.012646651920237
CSGO5 0.051719671443382 0.357742166397375 11.215610175557737 0.012646456860643
CSGO6 0.051449941824867 0.351252263328912 11.603418508471799 0.012648440051873
CSGO7 0.051645763177484 0.355951578798280 11.320184517762158 0.012646506261597
CSGO8 0.051556912106367 0.353831660202976 11.446357218503547 0.012646639281262
CSGO9 0.051567172618997 0.354077252584201 11.431641386323564 0.012646599197901
CSGO10 0.051625142880021 0.355467751056912 11.348907315462579 0.012646459938708
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Table 6   Statistical results of 
tension/compression spring 
design problem by different 
algorithms

The best results of the experiments are represented in bold

Algorithms BEST WORST MEAN SD

PRO – – – –
MFO – – – –
PO 0.0127 0.0128 0.0127 0.0000
HGSO 0.01265 0.01278 0.0127 8.09E−07
EO 0.012666 0.013997 0.013017 3.91E-04
MPA 0.012665 0.012665 0.012665 5.55E-08
TSA 0.012655520 0.012667890 0.012677560 0.001010
EPO 0.012656987 0.012667902 0.012678903 0.001021
SOA 0.01264522 0.012665417 0.012665871 0.001108
SHO 0.01267400 0.012715185 0.012684106 0.000027
GWO 0.01267832 0.012720757 0.012697116 0.000041
PSO 0.01319258 0.017862507 0.014817181 0.002272
MVO 0.01281693 0.017839737 0.014464372 0.001622
CSA 0.0126652328 0.0126701816 0.0126659984 1.357079e−06
SCA 0.01270967 0.012998448 0.012839637 0.000078
GSA 0.01287388 0.014211731 0.013438871 0.000287
GA 0.01303625 0.016251423 0.014036254 0.002073
DE 0.01277635 0.015214230 0.013069872 0.000375
CS 0.0127 0.0127 0.0127 1.09E−06
WOA 0.0127 0.0178 0.0140 0.0014
EHO 0.0135 0.0189 0.0155 0.0011
SA 0.0178 0.0200 0.0184 5.90E−04
CSGO1 0.012647191400445 0.012705380460395 0.012671914370158 1.594855570095636e−05
CSGO2 0.012650559847160 0.012723177841050 0.012675734191303 2.039788119004384e−05
CSGO3 0.012646496816940 0.012723145234312 0.012670310798585 1.861631631708472e−05
CSGO4 0.012646651920237 0.012717738004471 0.012678120743460 2.042051003113493e−05
CSGO5 0.012646456860643 0.012722315376422 0.012667662137365 1.979728990700402e−05
CSGO6 0.012648440051873 0.012730907629073 0.012682782205489 2.400160579069954e−05
CSGO7 0.012646506261597 0.012698207423571 0.012668336535410 1.594780501287227e−05
CSGO8 0.012646639281262 0.012715944622341 0.012671778489487 1.789174157893117e−05
CSGO9 0.012646599197901 0.012709183712174 0.012677452370361 1.652317447164576e−05
CSGO10 0.012646459938708 0.012735913086394 0.012674051265553 2.142122522963287e−05

Fig. 2   Welded beam design problem: a Schematic of the weld, b stress distribution evaluated at the optimum design, c displacement distribution 
at the optimum design
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shear stress (τ), and bending stress in the beam (θ), buckling 
load (Pc), end deflection of beam (δ), normal stress (σ), and 
boundary. The design of welded beam is shown in Fig. 2 
and formulated optimization problem is referred from [54].

The optimization results and statistical results are given 
in Tables 7 and 8, respectively. The result of the PO, EO, 
PRO, CSA, MFO and Emperor Penguin Optimizer (EPO) 
algorithms are imported from [55–59] and [56], respectively. 
The result for the HGSO, SOA, MPA, TSA, and STOA algo-
rithms are imported from [43–46], and [48], respectively. 
For SMA, SSA the result is imported from [57]. For SHO, 
GWO, PSO, MVO, SCA, GSA, GA, and DE, the results are 
imported from [44]. For CS, WOA, EHO (elephant herbing 
behavior), and SA, the results are imported from [43]. The 

results for the CSGO family are achieved by us. In the tables, 
“ − ” represents “not given” for that particular algorithm. The 
best result is highlighted in bold. From Tables 7 and 8, it can 
be stated that the CSGO family of algorithms outperforms 
all other algorithms. Here, all algorithms of the CSGO fam-
ily perform equally well in finding optimal results.

5.2.4.4  Cantilever Beam Design Problem  It is made up of 
five hollow square cross-sections as Fig. 3 [54]. Regarding 
this problem, detailed description and formulated optimiza-
tion problem is referred from [54].

The optimization results and the statistical results of 
algorithms are given in Tables 9 and 10, respectively. The 
result SMA, MFO, SOS (Symbiotic Organisms Search), CS, 

Table 7   Optimum results of welded beam design by different algorithms

The best results of the experiments are represented in bold

Algorithms x
1

x
2

x
3

x
4

Optimal result

PO 0.205730 3.470472 9.036624 0.205730 1.724851
SMA 0.2054 3.2589 9.0384 0.2058 1.69604
MFO 0.2057 3.4703 9.0364 0.2057 1.72452
SSA 0.2057 3.4714 9.0366 0.2057 1.72491
HGSO 0.2054 3.4476 9.0269 0.2060 1.7260
EO 0.2057 3.4705 9.03664 0.2057 1.7249
MPA 0.205728 3.470509 9.036624 0.205730 1.724853
TSA 0.203290 3.471140 9.035100 0.201150 1.721020
EPO 0.205411 3.472341 9.035215 0.201153 1.723589
STOA 0.205415 3.472346 9.035220 0.201160 1.723590
SOA 0.205408 3.472316 9.035208 0.201141 1.723485
SHO 0.205563 3.474846 9.035799 0.205811 1.725661
GWO 0.205678 3.475403 9.036964 0.206229 1.726995
PSO 0.197411 3.315061 10.00000 0.201395 1.820395
MVO 0.205611 3.472103 9.040931 0.205709 1.725472
CSA 0.2057296398 3.4704886656 9.0366239104 0.2057296398 1.7248523086
SCA 0.204695 3.536291 9.004290 0.210025 1.759173
GSA 0.147098 5.490744 10.00000 0.217725 2.172858
GA 0.164171 4.032541 10.00000 0.223647 1.873971
DE 0.206487 3.635872 10.00000 0.203249 1.836250
CS 0.2057 3.4705 9.0366 0.2057 1.7289
WOA 0.1876 3.9298 8.990 0.2308 1.9428
EHO 0.4834 2.4950 4.4538 0.8488 2.3234
SA 0.4834 3.4751 9.0417 0.2063 1.7306
CSGO1 0.20573671085387 3.2529941267793 9.0366239103577 0.205729639786075 1.695240471336402
CSGO2 0.20573671085387 3.2529941267793 9.0366239103577 0.205729639786075 1.695240471336402
CSGO3 0.20573671085387 3.2529941267793 9.0366239103577 0.205729639786075 1.695240471336402
CSGO4 0.20573671085387 3.2529941267793 9.0366239103577 0.205729639786075 1.695240471336402
CSGO5 0.20573671085387 3.2529941267793 9.0366239103577 0.205729639786075 1.695240471336402
CSGO6 0.20573671085387 3.2529941267793 9.0366239103577 0.205729639786075 1.695240471336402
CSGO7 0.20573671085387 3.2529941267793 9.0366239103577 0.205729639786075 1.695240471336402
CSGO8 0.20573671085387 3.2529941267793 9.0366239103577 0.205729639786075 1.695240471336402
CSGO9 0.20573671085387 3.2529941267793 9.0366239103577 0.205729639786075 1.695240471336402
CSGO10 0.20573671085387 3.2529941267793 9.0366239103577 0.205729639786075 1.695240471336402
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Table 8   Statistical results of 
welded beam design problem by 
different algorithms

Algorithms BEST WORST MEAN SD

PO 1.724851 1.724852 1.724851 2.53E-07
SMA – – – –
MFO – – – –
SSA – – – –
HGSO 1.7260 1.7325 1.7265 7.66E−03
EO 1.724853 1.736725 1.726482 0.003257
MPA 1.724853 1.724873 1.724861 6.41E-06
STA 1.721020 1.727205 1.725021 0.003316
EPO 1.723589 1.727211 1.725124 0.004325
STOA 1.723590 1.727215 1.725126 0.004330
SOA 1.723485 1.727102 1.724251 0.005967
SHO 1.725661 1.726064 1.725828 0.000287
GWO 1.726995 1.727564 1.727128 0.001157
PSO 1.820395 3.048231 2.230310 0.324525
MVO 1.725472 1.741651 1.729680 0.004866
CSA 1.7248523086 1.7248523086 1.7248523086 1.19450917e−15
SCA 1.759173 1.873408 1.817657 0.027543
GSA 2.172858 3.003657 2.544239 0.255859
GA 1.873971 2.320125 2.119240 0.034820
DE 1.836250 2.035247 1.363527 0.139485
CS 1.7289 1.7250 1.7276 2.89E−05
WOA 1.9428 5.9905 3.3865 0.8251
EHO 2.3234 4.8541 3.5058 0.5536
SA 1.7288 1.7332 1.7380 0.0026
CSGO1 1.695240471336402 1.695240471336402 1.695240471336402 6.115790034619237e–16
CSGO2 1.695240471336402 1.695240471336402 1.695240471336402 6.334279577469838e–16
CSGO3 1.695240471336402 1.69524047133640 1.695240471336402 6.467088141258292e–16
CSGO4 1.695240471336402 1.695240471336402 1.695240471336402 6.239631870765690e–16
CSGO5 1.695240471336402 1.695240471336402 1.695240471336402 6.973073502539061e–16
CSGO6 1.695240471336402 1.695240471336404 1.695240471336402 6.762657090795278e–16
CSGO7 1.695240471336402 1.695240471336402 1.695240471336402 6.825217693107653e–16
CSGO8 1.695240471336402 1.695240471336403 1.695240471336402 6.825217693107653e–16
CSGO9 1.695240471336402 1.695240471336403 1.695240471336402 6.911851303463225e–16
CSGO10 1.695240471336402 1.695240471336402 1.695240471336402 7.105905885894476e–16

Fig. 3   Cantilever beam design
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MMA (Method of Moving Asymptotes), and GCA (Gener-
alised Convex Approximation) are imported from [47]. The 
results for the CSGO family are achieved by us. The “ − ” 
represents “not given” for that particular algorithm. The best 
result is highlighted in bold. From Tables 9 and 10, it can be 

Table 9   Optimum results of cantilever beam design problem by different algorithms

* Represents wrongly put
c Represents corrected value

Algorithms x
1

x
2

x
3

x
4

x
5

Optimal result

SMA 6.017757 5.310892 4.493758 3.501106 2.150159 1.339957*

1.339957c

MFO 5.9830 5.3167 4.4973 3.5136 2.1616 1.33998*

1.33998c

SOS 6.0188 5.3034 4.4959 3.4990 2.1556 1.33996*

13.3996c

CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999*

13.3999c

MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400*

13.400c

GCA​ 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400*

13.400c

CSGO1 6.0143069125645 5.3080639580584 4.4936917574974 3.5006821291728 2.1518561741050 13.3620572197022
CSGO2 6.0150727517961 5.3073755398209 4.4931808855624 3.5006393848484 2.1523324379117 13.3620572623622
CSGO3 6.0145326449192 5.3076950955757 4.4931185679383 3.5011268561112 2.1521279556988 13.3620573372395
CSGO4 6.0138874235950 5.3079214693168 4.4932750108494 3.5013219117263 2.1521954499936 13.3620574276354
CSGO5 6.0149990750964 5.3075027372209 4.4934538417099 3.5002586185344 2.1523867492680 13.3620572759868
CSGO6 6.0151106132899 5.3084991455319 4.4926672877461 3.5003628791237 2.1519613721669 13.36205744778727
CSGO7 6.0142224790303 5.3079146553709 4.4931574308163 3.5008169029355 2.1524895464754 13.36205727150465
CSGO8 6.0148823577978 5.3072968983588 4.4933942605634 3.5007556408336 2.1522719285524 13.36205731599240
CSGO9 6.0145090595848 5.3071963634624 4.4935926982223 3.5007769877979 2.1525259502884 13.36205729934305
CSGO10 6.0140122013280 5.308292289245 4.4935032881358 3.5002309588785 2.1525624547352 13.36205738210221

Table 10   Statistical results of cantilever beam design problem by different algorithms

The best results of the experiments are represented in bold

Algorithms BEST WORST MEAN SD

SMA – – – –
MFO – – – –
SOS – – – –
CS – – – –
MMA – – – –
GCA​ – – – –
CSGO1 13.362057219702205 13.362060325929614 13.362058423000358 8.593615875833658e–07
CSGO2 13.362057262362285 13.362061867644758 13.362058785952119 1.299590279055970e–06
CSGO3 13.362057337239426 13.362061311531937 13.362058932062419 9.909115197252335e–07
CSGO4 13.362057427635454 13.362060428644744 13.362058414070182 8.861240402167021e–07
CSGO5 13.362057275986803 13.362061591038888 13.362058600135557 1.028567170707533e–06
CSGO6 13.362057447787276 13.362061960283475 13.362058518321360 9.275908881267436e–07
CSGO7 13.362057271504650 13.362061236823928 13.362058766562427 1.103333599646931e–06
CSGO8 13.362057315992399 13.362060253167591 13.362058364060077 7.399711676054027e−07
CSGO9 13.362057299343050 13.362060339061168 13.362058575093503 9.682425313271179e–07
CSGO10 13.362057382102218 13.362063301098216 13.362058788800560 1.304095221610504e–06

inferred that the CSGO family of algorithm outperform all 
other algorithms. Among the CSGO family of algorithms, 
CSGO1 finds the best optimal solution, whereas CSGO8 
finds the best solution in terms of BEST, WORST, MEAN, 
and SD solution among others.
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5.2.4.5  Three‑Bar Truss Design Problem  The objective is to 
design a truss with a minimum weight that does not violate 
constraints. Regarding this problem, detailed description is 
given in [54]. Figure 4 [54] shows the structural parameters 
of this problem. The formulated design problem is referred 
from [42].

The optimization result of algorithms with constraint 
function values is given in Table 11, and the statistical result 
is given in Table 12. The result PRO (Poor and Rich Optimi-
zation), GOA, MFO, PSO-DE, ALO, and MVO are imported 
from [57], and for CSA, the result is imported from [58]. 

The results for the CSGO family are achieved by us. The 
constraint value in Table 13 is calculated by us using opti-
mization results as imported by the authors in their respec-
tive papers. The “ − ” represents “not given” for that particu-
lar algorithm. The best result is highlighted in bold. From 
Tables 11 and 12, it can be stated that the CSGO family 
of algorithms outperforms all other algorithms. Among the 
CSGO family of algorithms, CSGO4 finds the best optimal 
solution, whereas CSGO1 finds the best solution in terms of 
worst, mean, and standard deviation solution among others.  

5.2.4.6  I‑Beam Design Problem  The objective is to mini-
mize the vertical deflection of an I-beam with four optimi-
zation variables and two optimization constraints such as 
cross-section area ( g1(X) ), and bending stress ( g2(X) ) as 
Fig. 5 [59]. This case is modified from the original problem 
reported in [60]. The formulated optimization problem is 
referred from [59].

The optimization result of algorithms with constraint 
function values is given in Table 13, and the statistical result 
is given in Table 14. The result of ARSM, Improved ARSM, 
and CS are imported from [59]. The results for the CSGO 
family are achieved by us. “ − ” represents “not given” for that 
particular algorithm. The best result is highlighted in bold 
From Tables 13 and 14, it can be deduced that the CSGO 
family of algorithms outperforms all other algorithms. 
Here, all algorithms of CSGO family find equivalent results. 
Hence, all CSGO algorithm finds the best optimal solution 

Fig. 4   Three-bar truss design

Table 11   Optimum results of 
three-bar truss design with 
constraint values by different 
algorithms

The best results of the experiments are represented in bold

Algorithms x
1

x
2

Optimal result

PRO 0.7886475 0.4083262 263.8958439
GOA 0.7888975 0.4076195 263.8958814
MFO 0.7882447 0.4094669 263.8959796
PSO-DE 0.7886751 0.4082482 263.8958433
ALO 0.7886628 0.4082831 263.8958434
MVO 0.7886027 0.4084530 263.8958499
CSA 0.7886751284 0.4082483080 263.8958433765
CSGO1 0.785910302125472 0.406771162753979 2.629661178903138e + 02
CSGO2 0.785902703879913 0.406792652722559 2.629661177787879e + 02
CSGO3 0.785910438238492 0.406770779370732 2.629661180505648e + 02
CSGO4 0.785897853448955 0.406806371549532 2.629661177524364e + 02
CSGO5 0.785899014791685 0.406803086881755 2.629661177629863e + 02
CSGO6 0.785889546201876 0.406829868373055 2.629661177904916e + 02
CSGO7 0.785900217084501 0.406799686270454 2.629661177616174e + 02
CSGO8 0.785889712034763 0.406829399279497 2.629661177857593e + 02
CSGO9 0.785906353496849 0.406782330489170 2.629661178230024e + 02
CSGO10 0.785892039451910 0.406822817331165 2.629661178839051e + 02
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Table 12   Statistical results of three-bar toss design by different algorithms

The best results of the experiments are represented in bold

Algorithms BEST WORST MEAN STD

PRO – – – –
GOA – – – –
MFO – – – –
PSO-DE – – – –
ALO – – – –
MVO – – – –
CSA 263.8958433770 263.8958433770 263.8958433770 1.0122543402e−10
CSGO1 2.629661178903138e + 02 2.629661311442690e + 02 2.629661217343362e + 02 3.426468153983831e−06
CSGO2 2.629661177787879e + 02 2.629661351706924e + 02 2.629661224914092e + 02 4.479771727973893e−06
CSGO3 2.629661180505648e + 02 2.629661524424530e + 02 2.629661262757790e + 02 8.898346072064122e−06
CSGO4 2.629661177524364e + 02 2.629661395505302e + 02 2.629661239386700e + 02 6.429962565899163e−06
CSGO5 2.629661177629863e + 02 2.629661462439137e + 02 2.629661238138859e + 02 7.489793389126740e−06
CSGO6 2.629661177904916e + 02 2.629661407947427e + 02 2.629661246397652e + 02 6.876621127163010e−06
CSGO7 2.629661177616174e + 02 2.629661495027468e + 02 2.629661256394791e + 02 8.120192773574671e−06
CSGO8 2.629661177857593e + 02 2.629661475561125e + 02 2.629661258534684e + 02 9.245721043128937e−06
CSGO9 2.629661178230024e + 02 2.629661400469813e + 02 2.629661236594902e + 02 6.698724976365791e−06
CSGO10 2.629661178839051e + 02 2.629661417584532e + 02 2.629661275134199e + 02 7.425143328221043e−06

Table 13   Optimum results of 
I-beam design problem with 
value of constraints function by 
different algorithms

The best results of the experiments are represented in bold

Algorithms x
1

x
2

x
3

x
4

Optimal result

ARSM 80 37.05 1.71 2.31 0.0157
Improved ARSM 79.99 48.42 0.90 2.40 0.0131
CS 80 50 0.9000 2.3216715 0.0130747
CSGO1 80 50 1.764718360707903 5 0.006620471665250
CSGO2 80 50 1.764718360707903 5 0.006620471665250
CSGO3 80 50 1.764718360707903 5 0.006620471665250
CSGO4 80 50 1.764718360707903 5 0.006620471665250
CSGO5 80 50 1.764718360707903 5 0.006620471665250
CSGO6 80 50 1.764718360707903 5 0.006620471665250
CSGO7 80 50 1.764718360707903 5 0.006620471665250
CSGO8 80 50 1.764718360707903 5 0.006620471665250
CSGO9 80 50 1.764718360707903 5 0.006620471665250
CSGO10 80 50 1.764718360707903 5 0.006620471665250

Fig. 5   I-beam design problem
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as well as the best solution in terms of mean and standard 
deviation solution among others.

5.2.4.7  Tabular Column Design  The objective of the tabular 
column design problem is to minimize the cost of design-
ing a uniform column of the tabular section that includes 
material and construction costs as Fig. 6 [59]. The column 
is made of material of length (L) with a yield stress (S), a 
modulus of elasticity (E), and a density (D) carry a com-
pressive load (P). This optimization problem has two opti-
mized variables such as mean diameter of the column ( x1 ) 

and tube thickness ( x2 ), and six constraints such as the stress 
included in the column should be less then the buckling 
stress ((g1(X) ), and the yield stress ( g2(X) ), the mean diam-
eter of the column is restricted between 2 and 14 cm ( g3(X) 
and g4(X) ), and columns with thickness outside the range 
0.2–0.8 cm is not commercially available ( g5(X) and g6(X) ). 
The formulated optimization problem is referred from [59].

The optimization result of algorithms with constrains 
value is given in Table 15, and the statistical result is given 
in Table 16. The result of Rao, fuzzy proportional-derivative 

Table 14   Statistical results of I-beam design problem by different algorithms

The best results of the experiments are represented in bold

Algorithms BEST WORST MEAN STD

ARSM – – – –
Iproved ARSM – – – –
CS 0.0130747 0.01353646 0.0132165 0.0001345
CSGO1 0.006620471665250 0.006620471665250 0.006620471665250 3.528758033802314e−18
CSGO2 0.006620471665250 0.006620471665250 0.006620471665250 3.528758033802314e−18
CSGO3 0.006620471665250 0.006620471665250 0.006620471665250 3.528758033802314e−18
CSGO4 0.006620471665250 0.006620471665250 0.006620471665250 3.528758033802314e−18
CSGO5 0.006620471665250 0.006620471665250 0.006620471665250 3.528758033802314e−18
CSGO6 0.006620471665250 0.006620471665250 0.006620471665250 3.528758033802314e−18
CSGO7 0.006620471665250 0.006620471665250 0.006620471665250 3.528758033802314e−18
CSGO8 0.006620471665250 0.006620471665250 0.006620471665250 3.528758033802314e−18
CSGO9 0.006620471665250 0.006620471665250 0.006620471665250 3.528758033802314e−18
CSGO10 0.006620471665250 0.006620471665250 0.006620471665250 3.528758033802314e−18

Fig. 6   The tabular column design

Table 15   Optimum results of tabular column design problem by dif-
ferent algorithms

The best results of the experiments are represented in bold
*Represents wrongly put
c Represents corrected value

Algorithms x
1

x
2

Optimal result

Fuzzy PDCOE 5.4507 0.292 25.5316*

26.49912312C

Rao 5.44 0.293 26.5323
CS 5.45139 0.29196 26.53217
CSGO1 5.451941 0.29174226 26.4913864882
CSGO2 5.451941 0.29174226 26.4913864882
CSGO3 5.451941 0.29174226 26.4913864882
CSGO4 5.451941 0.29174226 26.4913864884
CSGO5 5.451941 0.29174226 26.4913864882
CSGO6 5.451941 0.29174227 26.4913864882
CSGO7 5.451941 0.29174227 26.4913864881
CSGO8 5.451942 0.29174222 26.4913864884
CSGO9 5.451941 0.29174228 26.4913864882
CSGO10 5.451941 0.29174227 26.4913864882
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controller optimization engine (fuzzy PDCOE) and CS are 
reported from [60, 61] and [59], respectively. The results 
for the CSGO family are achieved by us. The “ − ” represents 
“not given” for that particular algorithm. The best result is 
highlighted in bold. From Tables 15 and 16, it can be stated 
that the CSGO family of algorithms outperforms all other 
algorithms. Among the CSGO family of algorithms, CSGO7 
finds the best optimal solution, whereas CSGO6 finds the 
best solution in terms of mean and standard deviation among 
others.

5.2.4.8  Piston Lever Design Problem  The objective is to 
minimize the oil volume when the lever of the piston is lifted 
up from 0o to 45o as shown in Fig.  7 [59]. This problem 
has four optimization variables and four constraints such as 
force equilibrium, maximum bending moment of the lever, 

minimum piston stroke, and geographical conditions. The 
formulated optimization problem is referred from [59].

The optimization result of algorithms is given in 
Table 17, and the statistical result is given in Table 18. The 
result of PSO, DE, GA, HPSO, HPSO with Q-learning, and 
CS are reported from [59]. The results for the CSGO family 
of algorithms are achieved by us. “ − ” represents “not given” 
for that particular algorithm. The best result is highlighted 
in bold. From Tables 17 and 18, it can be stated that the 
CSGO1 algorithm finds the best optimal solution as well as 
worst solution and CS algorithm achieve best mean solution 
among others.

5.2.4.9  Multi‑plate Disc Clutch Brake Design Problem  The 
objective is to minimize the total weight of the multi-plate 
disc clutch brake as Fig. 8 [61]. This problem has five opti-
mized variables as driving force F(x4 ), inner redius ri(x1 ), 
outer redius ro(x2 ), friction surface number Z(x5 ), and disc 
thickness t(x3 ). Since the problem contains eight different 
constraints, the feasible region in the solution space only 
accounts for 70%, which makes it more difficult to solve the 
problem. The formulated optimization problem is referred 
from [61].

The optimization results of algorithms are given in 
Table 19, and the statistical results are given in Table 20. 
The result of HHO, PVS, WCA, TLBO, and WSOA are 
reported from [38, 62–65], respectively. Similarly, the result 
of hHHO–SCA, NSGA-II, and AMDE are reported from 
[66] and for teaching learning-based pathfinder algorithm 
(TLPFA), the result is reported from [67]. The results for the 
CSGO family are achieved by us. “ − ” represents “not given” 
for that particular algorithm. The best result is highlighted 
in bold. From Tables 19 and 20, it can be stated that the 
TLPFA, CSGO1-CSGO6, CSGO9 and CSGO10 algorithms 

Table 16   Statistical results of tabular column design problem by different algorithms

The best results of the experiments are represented in bold

Algorithms BEST WORST MEAN SD

Fuzzy PDCOE – – – –
Rao – – – –
CS 26.53217 26.53972 26.53504 0.00193
CSGO1 26.491386488153360 26.491386495333025 26.491386490856410 2.363396596882364e−09
CSGO2 26.491386488165571 26.491386498136841 26.491386490233214 2.281681440373964e−09
CSGO3 26.491386488158895 26.491386497496833 26.491386490513413 2.511529340998990e−09
CSGO4 26.491386488390233 26.491386498026579 26.491386490660908 2.452381904843001e−09
CSGO5 26.491386488172985 26.491386501565771 26.491386490788571 3.436161611017448e−09
CSGO6 26.491386488156394 26.491386496288538 26.491386489778495 1.843842257939578e−09
CSGO7 26.491386488145615 26.491386509030100 26.491386492059771 4.395248054678416e−09
CSGO8 26.491386488359122 26.491386503520090 26.491386492538890 4.499242203936305e−09
CSGO9 26.491386488150628 26.491386497031133 26.491386490765663 2.795759587125070e−09
CSGO10 26.491386488156930 26.491386507603700 26.491386491513428 4.242503751531444e−09

Fig. 7   Piston problem
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find the best optimal solution than all other algorithms. 
Here, CSGO1 and CSGO4 algorithm outperforms all other 
algorithms and finds the best optimal solution in terms of 
best (BEST), mean (MEAN), worst (WORST) and standard 
deviation (SD) solution among others.

5.2.4.10  Corrugated Bulkhead Design Problem  The objec-
tive is to minimize the weight of the corrugated bulkhead 
for a tanker [68]. This problem has four optimized variables 
such as width ( x1 ), depth ( x2 ), length ( x3 ), and plate thick-
ness ( x4 ) and six constraints. The formulated optimization 
problem is referred from [67].

Table 17   Optimum results of 
piston lever design problem by 
different algorithms

The best results of the experiments are represented in bold

Algorithms x
1

x
2

x
3

x
4

CS 0.0500 2.0430 120 4.0851
PSO – – – –
DE – – – –
GA – – – –
HPSO – – – –
HPSO with Q-learning – – – –
CSGO1 0.0544705199829 1.9727488561405 119.9999999997065 3.2093948910144
CSGO2 1000 1000 59.999999999356 1.273651425739
CSGO3 1000 1000 59.999999999356 1.273651425739
CSGO4 1000 1000 59.999999999352 1.273651425739
CSGO5 1000 1000 59.999999999352 1.273651425739
CSGO6 1000 1000 59.999999999352 1.273651425739
CSGO7 1000 1000 59.999999999352 1.273651425739
CSGO8 1000 1000 59.999999999352 1.273651425739
CSGO9 1000 1000 59.999999999356 1.273651425739
CSGO10 1000 1000 59.999999999356 1.273651425739

Table 18   Statistical results of piston lever design problem by different algorithms

The best results of the experiments are represented in bold

Algorithms BEST WORST MEAN SD

CS 8.4271 168.5920 40.2319 59.0552
PSO 122 294 166 51.7
DE 159 199 187 14.2
GA 161 216 185 18.2
HPSO 162 197 187 13.4
HPSO with Q-learning 129 168 151 13.4
CSGO1 8.049336450844930 72.337509930474823 70.599881973007484 10.568892070914794
CSGO2 72.337390896854473 72.337390896854686 72.337390896854629 7.741981830734082e−14
CSGO3 72.337390896854515 72.337390896854828 72.337390896854629 7.819310489593108e−14
CSGO4 72.337390896854473 72.337390896854686 72.337390896854615 8.700334948321627e−14
CSGO5 72.337390896854473 72.337390896854671 72.337390896854629 8.972224205222919e−14
CSGO6 72.337390896854487 72.337390896854771 72.337390896854629 8.787937783981305e−14
CSGO7 72.337390896854473 72.337390896854714 72.337390896854629 7.982368035972391e−14
CSGO8 72.337390896854473 72.337390896854728 72.337390896854629 8.064819254916418e−14
CSGO9 72.337390896854475 72.337390896854679 72.337390896854629 7.972224205222919e−14
CSGO10 72.337390896854477 72.337390896854777 72.337390896854629 8.797937783981305e−14

Fig. 8   Multi-plate disc clutch brake problem
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Table 19   Optimum results of 
multi-plate disc clutch brake 
design by different algorithms

The best results of the experiments are represented in bold
*Represents wrongly put
c Represents corrected value

Algorithms x
1

x
2

x
3

x
4

x
5

Optimal result

HHO 69.999999999249 90 1 1000 3 0.2597689930*
0.313656610544706C

PVS 70 90 1 980 3 0.31366
WCA​ 70 90 1 910 3 0.313656
TLBO 70 90 1 810 3 0.313656
WSOA 69.9996 90 1 600 2 0.23525
hHHO-SCA 70 90 2.312785 1000 1.5 0.389653842
NSGA-II 70 90 3 1000 1.5 0.4704
AMDE 70 90 3 810 1 0.3136566
TLPFA 69.9999 90.0002 1 680.0484 2 0.23524
CSGO1 70.0000070710678 90 1 270.7039721371302 2 0.235242385126378
CSGO2 70.0000070710678 90 1 167.9137205406554 2 0.235242385126378
CSGO3 70.0000070710678 90 1 61.266402700497608 2 0.235242385126378
CSGO4 70.0000070710678 90 1 350.5520670511875 2 0.235242385126378
CSGO5 70.0000070710678 90 1 564.7464174658709 2 0.235242385126378
CSGO6 70.0000070710678 90 1 745.7030521963353 2 0.235242385126378
CSGO7 60 90 1 72.498081261659237 2 0.330809706423005
CSGO8 60 90 1 329.7724327669219 2 0.330809706423005
CSGO9 70.0000070710678 90 1 968.9001314507637 2 0.235242385126378
CSGO10 70.0000070710678 90 1 571.8343784399032 2 0.235242385126378

Table 20   Statistical results of multi-plate disc clutch brake design by different algorithms

The best results of the experiments are represented in bold

Algorithms BEST WORSE MEAN STD

HHO – – – –
PVS – – – –
WCA​ – – – –
TLBO – – – –
WSOA – – – –
hHHO—SCA – – – –
NSGA-II – – – –
AMDE – – – –
TLPFA – – – –
CSGO1 0.235242385126378 0.235242385126378 0.235242385126378 5.646012854083702e−17
CSGO2 0.235242385126378 0.330809706423005 0.327624129046451 0.017448125878169
CSGO3 0.235242385126378 0.330809706423005 0.324438551669897 0.024246206537976
CSGO4 0.235242385126378 0.235242385126378 0.235242385126378 5.646012854083702e−17
CSGO5 0.235242385126378 0.330809706423005 0.327624129046451 0.017448125878169
CSGO6 0.235242385126378 0.330809706423005 0.321252974293342 0.029160320719521
CSGO7 0.330809706423005 0.330809706423005 0.330809706423005 0.330809706423005
CSGO8 0.330809706423005 0.330809706423005 0.330809706423005 0
CSGO9 0.235242385126378 0.330809706423005 0.324438551669897 0.024246206537976
CSGO10 0.235242385126378 0.330809706423005 0.327624129046451 0.017448125878169
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The optimization result of CSGO family algorithms 
is given in Table 21 and the statistical result is given in 
Table 22. For this problem, Ravindran et al. [69] reported the 
minimum value of 6.84241 using the random search method. 
A comparison of the results clearly shows that the CSGO 
family notably improves the results were obtained by the 
random search method.

In the present study, the CSGO family of algorithms per-
formance is compared against other state-of-art as well as 
latest metaheuristic algorithms in solving structural optimi-
zation problems. The extensive comparative study conducted 
reveals that the CSGO family performs superior to differ-
ent existing algorithms. This is partly due to the fact that 
there is one parameter, i.e., self-introspection parameter is 
replaced by the chaotic maps than in other algorithms. Other 
algorithms such as GA, DE, PSO, MBA, and CS require the 
tuning of at least one specific algorithm parameter. While 
simpler and more robust than competing algorithms, the 
CSGO family is able to resolve a wide variety of problems. 
Moreover, it avoids the risk of compromised performance 
due to proper parameter tuning.

6 � Conclusion

In this paper, the family of CSGO algorithms is proposed 
as an improved version of the SGO algorithm to solve opti-
mization problems. The family of ten CSGO algorithms 
is designed using ten chaotic maps in place of self-intro-
spection parameters which improves the performance of 
the SGO algorithm. The performance of the CSGO family 
of algorithms is validated through 13 benchmark functions 
and to evaluate effectiveness, extensive experiments are con-
ducted using 9 structural engineering problems and results 
are compared with many popular optimization algorithms. 
The extensive experiment and the promising results indicate 
the superiority of the proposed CSGO family for provid-
ing acceptable results in a wide range of problems. Again, 
although not yet mathematically proven, these experimen-
tal studies have shown that using chaotic maps is gener-
ally more useful than a constant value of 0.2 for the self-
introspection parameter in SGO. Since in CSGO, any of the 
random numbers are not replaced by a chaotic map, then 
replacing random numbers with a chaotic map in SGO is 
further research. Furthermore, the mapping strategies can 
also be used to generate a high-quality initial population 

Table 21   Optimum results of corrugated bulkhead design problem by different algorithms

Algorithms x
1

x
2

x
3

x
4

Optimal result

CSGO1 57.644819523344992 34.150109951178024 57.644939799015262 1.049257917114013 6.839596279899362
CSGO2 57.644820772896942 34.150109887652107 57.644939345910650 1.049257917252038 6.839596279826666
CSGO3 57.644819962796369 34.150109901928758 57.644939421910124 1.049257916614736 6.839596279845521
CSGO4 57.644820464996570 34.150109692435414 57.644937754918580 1.049257912968599 6.839596279822398
CSGO5 57.644818850940318 34.150109536692320 57.644936416305917 1.049257907999835 6.839596279986681
CSGO6 57.644820863171816 34.150109774692190 57.644938438225104 1.049257915078914 6.839596279813460
CSGO7 57.644820566162814 34.150109615000055 57.644937135495880 1.049257911534023 6.839596279859407
CSGO8 57.644819703038927 34.150109750974714 57.644938190258316 1.049257913273896 6.839596279825124
CSGO9 57.644819026305839 34.150109700474118 57.644937749466969 1.049257911489912 6.839596279881082
CSGO10 57.644819123092731 34.150110099522784 57.644940980144021 1.049257919679909 6.839596280080818

Table 22   Statistical results 
corrugated bulkhead design 
problem by different algorithms

Algorithms BEST WORST MEAN SD

CSGO1 6.839596279899362 6.839596289558670 6.839596282867553 2.530597150337215e−09
CSGO2 6.839596279826666 6.839596287568882 6.839596282290350 2.586440627141579e−09
CSGO3 6.839596279845521 6.839596288078614 6.839596282066320 1.879211473605989e−09
CSGO4 6.839596279822398 6.839596289306188 6.839596282008946 2.722561976382350e−09
CSGO5 6.839596279986681 6.839596285057616 6.839596282035327 1.313951699882326e−09
CSGO6 6.839596279813460 6.839596290113129 6.839596282042369 2.268237453036341e−09
CSGO7 6.839596279859407 6.839596286421157 6.839596281907713 1.803297997945493e−09
CSGO8 6.839596279825124 6.839596292945716 6.839596292945716 3.839693220809969e−09
CSGO9 6.839596279881082 6.839596286671987 6.839596281940447 1.887799099707682e−09
CSGO10 6.839596280080818 6.839596288903122 6.839596282445204 2.080643690725033e−09
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for obtaining rapid and better solutions. Proposing different 
hybridizing methods for chaotic mapping, and solving the 
problem of clustering or classification, large-scale optimiza-
tions and multiobjective optimizations using these chaotic 
concepts with SGO can be further researched.
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