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Abstract
In recent years, sEMG (surface electromyography) signals have been increasingly used to operate wearable devices. The 
development of mechanical lower limbs or exoskeletons controlled by the nervous system requires greater accuracy in 
recognizing lower limb activity. There is less research on devices to assist the human body in uphill movements. However, 
developing controllers that can accurately predict and control human upward movements in real-time requires the employment 
of appropriate signal pre-processing methods and prediction algorithms. For this purpose, this paper investigates the effects 
of various sEMG pre-processing methods and algorithms on the prediction results. This investigation involved ten subjects 
(five males and five females) with normal knee joints. The relevant data of the subjects were collected on a constructed ramp. 
To obtain feature values that reflect the gait characteristics, an improved PCA algorithm based on the kernel method is pro-
posed for dimensionality reduction to remove redundant information. Then, a new model (CNN + LSTM) was proposed to 
predict the knee joint angle. Multiple approaches were utilized to validate the superiority of the improved PCA method and 
CNN-LSTM model. The feasibility of the method was verified by analyzing the gait prediction results of different subjects. 
Overall, the prediction time of the method was 25 ms, and the prediction error was 1.34 ± 0.25 deg. By comparing with 
traditional machine learning methods such as BP (backpropagation) neural network, RF (random forest), and SVR (support 
vector machine), the improved PCA algorithm processed data performed the best in terms of convergence time and prediction 
accuracy in CNN-LSTM model. The experimental results demonstrate that the proposed method (improved PCA + CNN-
LSTM) effectively recognizes lower limb activity from sEMG signals. For the same data input, the EMG signal processed 
using the improved PCA method performed better in terms of prediction results. This is the first step toward myoelectric 
control of aided exoskeleton robots using discrete decoding. The study results will lead to the future development of neuro-
controlled mechanical exoskeletons that will allow troops or disabled individuals to engage in a greater variety of activities.
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1 Introduction

Over the past few decades, there has been growing research 
interest in assistive exoskeletal robots. An exoskeleton is a 
wearable device used to enhance the physical function of an 
injured or disabled person during daily activities. Exoskel-
etons can be used in many applications, such as assisting 
workers or soldiers in reducing the weight they bear while 
performing tasks and helping patients perform repetitive 
rehabilitation training [1–6]. However, fewer studies have 
been conducted on gadgets that aid the human body in doing 
uphill movements. Huang, R. et al., [7] proposed an adap-
tive gait planning method with dynamic motion primitives 
for a lower limb exoskeleton to assist the human body in 
uphill motion. The experimental results showed that the 
proposed gait planning method made the human exoskel-
eton system more stable in uphill scenarios. Seo, K. et al., 
[8] developed a hip exoskeleton to enhance gait function 
in the elderly and rehabilitation of post-stroke patients. In 
practice, human–machine communication has been crucial 
to ensuring the performance and comfort of the exoskeleton 
system as a whole [9]. Various data recording systems, such 
as accelerometers, gyroscopes, and barometers, have become 
available due to developments in wearable sensor technology 
[10]. Various data-recording technologies, such as acceler-
ometers, gyroscopes, and barometers, are now available due 
to improvements in wearable sensor technology. However, 
the wearer’s movement intent hinders the development of 
this technology, as standard exoskeleton sensors cannot 
forecast movement tendencies. Existing research [11] has 
shown that surface EMG signals can provide information 
about neuromuscular activity and be used to control exoskel-
etons. EMG signals are biological signals used to measure 
the electrical activity of skeletal muscles. EMG signals can 
reflect muscular contraction force 30–100 ms earlier than 
other wearable sensors [12]. Intramuscular EMG (invasive) 
and surface EMG (non-invasive) are the two methods for 
recording EMG signals [13]. Comparatively, the noninvasive 
approach permits electrodes without physician supervision, 
discomfort, or infection risk [14]. Currently, SEMG signals 
are widely used in various applications such as upper [15] 
and lower extremity [16] exoskeletal control, neuromuscular 
disease examination [17], health and exercise monitoring 
[18].

Numerous researchers have investigated machine learning 
and deep learning models for identifying limb activities for 
controlling exoskeletons or prostheses. Chen, Y. et al., [19] 
proposed a low-cost Soft Exoskeleton Glove (SExoG) sys-
tem for bilateral training that is powered by sEMG signals 
from a non-paralyzed hand. The experiments demonstrated 
that the hybrid model could achieve an average accuracy of 
98.7% with four hand motions. Cisnal A. et al., [20] created a 

thresholded non-pattern recognition EMG-driven controller 
that detects gestures from a healthy hand and repeats them 
on an exoskeleton worn by a paralyzed hand. The study’s 
findings revealed a 97 percent overall accuracy for gesture 
detection and indicated that the system was adequately 
time-responsive.

The surface EMG signal of the lower extremities is 
more intricate than that of the upper extremities. Lower 
extremity muscles are deeply buried beneath the skin and 
significantly overlap, making a prediction of motion based 
on surface EMG data from the lower extremity more com-
plicated than that of the upper extremities. Zhuang, Y. 
et al., [21] suggested an EMG-based Conductance Con-
trol Strategy (ECCS). The system incorporates an EMG-
Driven Musculoskeletal Model (EDMM), a conductance 
filter, and an internal position controller. ECCS is excel-
lent at enhancing motor stability and has the potential to 
be utilized in robot-assisted rehabilitation to treat foot 
drops. Lyu, M. X. et al., [22] have designed an EMG-
controlled knee exoskeleton to aid in the rehabilitation of 
stroke patients. The EMG signal of the patient was cap-
tured via an easy-to-wear EMG sensor and then processed 
by a Kalman filter to drive the exoskeleton autonomously. 
The test results demonstrated that individuals could use 
their EMG signals to control the exoskeleton.

High-quality signals provide more information needed for 
intention prediction, thus improving the prediction accuracy. 
However, different interventions and interferences are inevi-
table during the collection of sEMG signals [10]. Changes 
in patch position, sweat on the surface of the human skin, 
and EMG sensor transmission issues can affect data gath-
ering during trials. Numerous signal processing applica-
tions, particularly in the communication and medical areas, 
require the pre-processing of sensor data to decrease noise. It 
becomes challenging to minimize the effects of signal inter-
ference. In reality, numerous researchers have researched 
ways to reduce signal noise pollution. Hajian, G. et al., 
[23] proposed a method for channel selection utilizing Fast 
Orthogonal Search (FOS) to increase estimation power. The 
method uses PCA in the frequency domain to identify the 
channel that contributes the most to the first principal com-
ponent. The results demonstrate that the proposed method 
may minimize the dimensionality of the data (the number of 
channels is reduced from 21 to 9) while increasing the esti-
mating power's precision. Combining nonlinear time series 
analysis and time–frequency domain approaches, Wang, G. 
et al., [24] proposed a wavelet-based correlation dimension-
ality method for extracting the effective features of sEMG 
signals. Results indicate four separate clusters corresponding 
to different forearm motions at the third resolution level, 
with a classification accuracy of one hundred percent when 
using two channels of SEMG signals. This indicates that 
the proposed method is suitable for classifying different 



614 M. Zhu et al.

1 3

forearm motions. Sapsanis, C. et al., [25] proposed a pat-
tern recognition method for identifying basic hand move-
ments using sEMG data. Their experiments used Empirical 
Mode Decomposition (EMD) to decompose the EMG signal 
into an eigenmode function, followed by a feature extrac-
tion stage. The outcomes demonstrate that the application 
of EMD can enhance the recognition of traditional feature 
sets generated from the original EMG signal.

Deep learning techniques have developed rapidly in 
recent years. Compared with machine learning, deep learn-
ing focuses more on learning sample data’s intrinsic pat-
terns and representation levels. The information obtained 
from these learning processes can considerably assist when 
interpreting text, visuals, and sounds. CNN is a type of feed-
forward neural network that incorporates convolutional com-
putation and has a deep structure; they are also one of the 
representative algorithms of deep learning. By their hierar-
chical structure, CNN is capable of representational learning 
and classifying incoming data in a manner that is transla-
tion-invariant. CNN has also demonstrated effectiveness in 
identifying time-series data such as EEG [26], EMG [27], 
and ECG [28] signals. LSTM is a temporal recurrent neural 
network that can process data by learning the data depend-
encies based on time-sequential data, making it suited for 
processing and forecasting events with time intervals and 
delays [29].

Inspired by the constraints of CNN and the benefits of 
LSTM, this study proposes a hybrid CNN-LSTM model. 
The model combines feature extraction and time series 
regression for deep learning to use the Spatio-temporal cor-
relation of surface EMG signals fully. By extracting the deep 
features of CNN and performing LSTM processing, it is pos-
sible to predict complex EMG signals accurately. Moreover, 
the proposed prediction model is more precise and effective. 
In addition, an improved PCA based on the kernel approach 
is proposed for processing experimentally acquired sEMG 
data to solve the classic PCA's constraints in addressing the 
issue of nonlinear data. The remaining sections are organ-
ized as follows. Section 1 discusses the experiments and 
methods in detail, including experimental design, data col-
lection, and data preprocessing. Sections 2 and 3 describe 
the pre-processing data methods and prediction models used 
in this paper. Section 4 compares the experimental results in 
different cases (including different dimensions and different 
methods). Section 5 discusses the results of the calculations. 
Finally, Sect. 6 concludes the paper.

2  Materials and Methods

2.1  Data Acquisition

2.1.1  Acquisition of sEMG Signal

sEMG is a technique used in research to examine the crea-
tion, recording, and interpretation of EMG signals. When 
physiological changes occur in the state of muscle fiber 
membranes, sEMG signals are created. Delsys is a global 
leader in designing, producing, and marketing high-per-
formance EMG equipment (sales@delsys.com). Since its 
inception in 1993 in Natick, Massachusetts, Delsys has been 
focused on addressing the engineering issues involved with 
wearing EMG sensors. These challenges include low signal 
artifacts, low crosstalk, signal reliability, and signal consist-
ency. This experiment uses the TrignoTM wireless EMG (a 
wireless surface EMG acquisition device from Delsys, USA) 
to acquire EMG signals. This device has a sensing delay 
of less than 500us and is equipped with 16 sensors with a 
maximum sampling rate of 4000 Hz. To prevent signal loss, 
a sampling rate of 2000 Hz was adopted for the trials. In 
this experiment, the TrignoTM system can simultaneously 
activate the Codamotion (3D motion capture) system, ensur-
ing that the EMG data correlates to the knee joint angle data 
when data analysis is performed. Due to the symmetry of 
the human body during motion, data from only one leg (the 
right leg) were collected and analyzed for this experiment. 
According to the recommendations [30], 16 muscles on the 
right leg were selected as signal acquisition points. Figure 1 
illustrates the location of the sensor paste. Prior to the exper-
iment, selected locations were cleaned with medical alcohol 
to guarantee that EMG signals could be effectively acquired. 
It is essential to note that the sensors must be firmly attached 
to the muscles to prevent the EMG signal collector from 
deflecting during the activity. The distance between every 
two sensors is approximately 30 mm to reduce crosstalk. 
Otherwise, data loss may occur.

2.1.2  Acquisition of Joint Angle

In this experiment, Codamotion’s 3D motion capture tech-
nology was used to collect human knee joint angle data. 
Codamotion is a provider of motion capture devices for 
academic research, healthcare applications and other life 
science markets (info@codamotion.com). The device con-
sists of two cameras (to capture the trajectory of the marker 
points), a computer (to solve and store the data), and several 
marker points. The sampling rate of the device was adjusted 
to 200 Hz. Each Codamotion marker point was uniquely 
coded according to the Rizzoli [31] protocol specifica-
tions. As depicted in Fig. 2, three markers (1, 2, and 3) were 
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applied to the subject’s knee joint. At the start of each trial, 
the EMG system activates the Codamotion system and col-
lects the marker points' spatial coordinate coordinates in 
real-time. The markers transmit their acquired data to the 
host computer through the data collection box.

2.2  Experimental Procedures

Ten volunteers (five males and five females) participated in 
this experiment. The subjects did not suffer from leg sprain 
and had no painful muscle discomfort. Their ages ranged 
from 22 to 26 years, with a mean age of 24.2(± 1.13) years, 
a height of 171.8(± 7.23) cm, and a weight of 66.6(± 9.29) 
kg. All volunteers were informed and signed a consent form 
before participating in the experiment. Table 1 provides 

Fig. 1  Location of sensor attachment

Fig. 2  Location of the sensor 
attachment
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information about the volunteers who participated in the 
experiment.

The experiment was approved by the Review Commit-
tee of the First Hospital of Nanjing Medical University and 
conducted in accordance with the Declaration of Helsinki. 
The ethical review number for this experiment is 2021-SR-
109. We designed and built the device to simulate the uphill 
condition, as shown in Fig. 3. The uphill angle of the device 
was set at 30 deg. Each set of the experiment lasted 20 s. 
During this period, participants were asked to perform uphill 
activities according to the frequency of the metronome (at 
a speed of 3KM/h). As suggested [30], all volunteers were 
instructed to conduct 3–5 min of low-intensity exercise prior 
to the trial. During the experiment, the sEMG signal of the 
volunteers will be simultaneously captured with the knee 
motion coordinate data. The experiment was repeated 80 
times for the same volunteer. To reduce data fluctuations due 
to muscle fatigue, subjects will be asked to rest for 3 min for 
every five experiments performed.

2.3  Signal Pre‑processing

The sEMG signal is a weak electrical signal, which is the 
result of the integrated superposition of action potential 
sequences emitted from many motor units on the skin sur-
face. During the signal recording process, the sEMG signal 
is susceptible to interference from other electromagnetic 
signals [32]. Therefore, the SEMG signal must be preproc-
essed before utilizing the model prediction. Butterworth fil-
ters [33] and Chebyshev filters [34] are the most often used 
digital filters. According to [14], most of the EMG signal’s 

Table 1  Basic information of the volunteers

Weight (Kg) Height (cm) Age (years) Gender

Sub1 85 186 25 Male
Sub2 70 173 24 Male
Sub3 72 176 24 Male
Sub4 65 168 22 Male
Sub5 77 180 24 Male
Sub6 62 170 23 Female
Sub7 60 165 26 Female
Sub8 55 162 25 Female
Sub9 59 171 25 Female
Sub10 61 167 24 Female

Fig. 3  Experimental site

Fig. 4  The diagram for solving angles of motion



617sEMG‑Based Lower Limb Motion Prediction Using CNN‑LSTM with Improved PCA Optimization…

1 3

frequencies lie between 10 and 500 Hz. Consequently, this 
paper utilizes a fourth-order Butterworth bandpass filter to 
filter the sEMG signal.

It is worth mentioning that the coordinates acquired in 
the experiment cannot be employed directly. These coor-
dinates were solved as a continuously variable angle to 
facilitate model prediction. The link vector model was uti-
lized to solve this problem. Two neighboring points (1 → 2, 
2 → 3) are linked as vectors, and spatial coordinates of the 
three markers are employed (as shown in Fig. 4). Then, 
the angle between the two vectors may be computed using 
Codamotion's built-in solver. In this method, the coordinates 
recorded by the experiment are translated into a continu-
ously changing angle.

The formula for the angle calculation is shown below.

Since the sampling rates of the SEMG signal and the knee 
angle signal are different, the nearest neighbor interpola-
tion method is used after the signal filtering is completed. 
The knee angle signal corresponds to the processed SEMG 
signal. In this way, 10*80 = 800 independent sets of data 
were obtained. We picked the EMG and knee angle data 
corresponding to the beginning of the exercise from the rel-
evant data sets to generate a new set according to the subject 
number. The new dataset has 17 dimensions; x1–x16 were 
EMG data, and y were knee angles. The data were standard-
ized in accordance with recommendations [35] to shorten 
the learning time of the model and increase the accuracy of 
the predictions. The processed sMEG and knee angles are 
illustrated in Fig. 5.

(1)𝜃 = arccos
m⃗.n⃗

||m⃗||.||n⃗||
.

3  Data Preprocessing Algorithms

3.1  Traditional PCA Algorithm

PCA (Principal Component Analysis) is one of the most 
widely used data dimensionality reduction algorithms. 
The main idea of PCA is to map n-dimensional features to 
k-dimensions, which are new orthogonal features also called 
principal components and are reconstructed from the original 
n-dimensional features. The work of PCA is to sequentially 
find a set of mutually orthogonal axes from the original space. 
The selection of new axes is closely related to the data itself. 
The first new axis is chosen to be the direction with the largest 
variance in the original data, the second new axis is chosen to 
be the plane orthogonal to the first axis that makes the largest 
variance, and the third axis is the plane orthogonal to the first 
and second axes that make the largest variance. By analogy, n 
such axes can be obtained. The procedure of PCA calculation 
is shown as follows.

First, the projections of the all pixels xj onto this normal-
ized direction v are VTx1, ...V

TxN
The variance of the projections is

where:

Then the first principal vector can be found by the fol-
lowing equation:

This is equivalent to finding the largest Eigenvalue of the 
following eigenvalue problem:

Note that:
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Fig. 5  Data visualization of sEMG and joint angle
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Then:

Note that XX can be translated to:

If:

Then:

3.2  Improved PCA Algorithm

Note that the kernel matrix can be computed by kernel 
function K:

(7)XT =
[
x1, ...xN

]
.
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Then we can use K to find the eigenvectors of XTX.
The eigenvalue problem of K = XXT is:

This means that XTu is an eigenvector of XTX.
The eigenvalue v of XTX can be computed by the eigen-

value of K = XXT:
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Fig. 6  Comparison of PCA and Improved-PCA
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By applying the kernel function to the low-dimensional 
space, the calculation can get nearly the same result as in 
the high-dimensional space, as seen in the projection above. 
PCA is a linear transformation of the coordinate axes, mean-
ing that the new base remains a straight line following the 
transformation. However, the kernel-based PCA performs a 
nonlinear modification of the coordinate axes, and the new 
basis projected by the data is no longer a straight line but 
rather a curve or surface (as shown in Fig. 6).

Obviously, the kernel-based method PCA can separate 
different data classes, while PCA makes a projection of 
them. This shows the advantages of PCA based on the ker-
nelization method.

3.3  Fast Independent Component Analysis (FICA) 
Algorithm

Independent Component Analysis (ICA), refers to an analy-
sis process that separates or approximates the source signal 
when only the mixed signal is known, without knowing the 
source signal, the noise, and the mixing mechanism. The 
algorithm considers the observed signal as a linear combi-
nation of several statistically independent components, and 
what ICA has to do is a demixing process.

Suppose that mt is the EMG signal acquired in the experi-
ment, which actually consists of the source signal nt from 
the muscle and the noise vt from the other sensors during 
the acquisition. The signal can be approximated as a linear 
mixed system, expressed by the following equation.
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The purpose of the ICA algorithm is to separate the 
source signal nt from the above equation and, by calcula-
tion, obtain a signal yt that is similar to the original signal.

In recent years, a fast ICA algorithm (FICA) has emerged, 
which is obtained based on a fixed-point recursive algo-
rithm, and it works for any type of data. It was proposed 
by Hyvärinen et al., at the University of Helsinki, Finland. 
After optimizing the cumulative distribution function in the 
traditional ICA algorithm with the iterative formula, we can 
obtain the FICA algorithm. FICA uses a fixed-point iterative 
optimization algorithm, which makes the convergence faster 
and more robust.

4  Prediction Algorithms

4.1  Feature Extraction Based on Convolutional 
Neural Networks

Over recent years, numerous fields have implemented deep 
learning techniques. CNN is a feedforward neural network 
with convolutional operations and a depth structure com-
monly employed in image processing and natural language 
processing. Similar to essential neural networks, convo-
lutional neural networks [10] are biologically inspired by 
feedforward artificial neural networks. Each hidden CNN 
layer consists of a convolutional layer and a pooling layer. 
The last layer of CNN is usually a fully connected layer used 
for data classification.

Figure 7 shows the overall architecture of the CNN, which 
consists of three types of layers: convolutional, max-pooling, 
and classification. Even layers are utilized for convolution, 
while odd layers are used for maximum pooling. The output 
nodes of the convolution and max-pooling layers are com-
bined to form the feature map, which is a 2D plane.

(17)mt = A × nt + vt.

Fig. 7  The overall framework of CNN
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4.1.1  Convolutional Layer

Convolutional layers take advantage of three critical ideas 
that can help improve machine learning systems: sparse 
interaction, parameter sharing, and covariant representa-
tion. The convolutional layer of a convolutional neural net-
work operates by applying convolution to each data set. The 
two-dimensional discrete convolution operation is shown in 
Eqs. 18 and 19.

4.1.2  Pooling Layer

Pooling functions replace the output of a layer with the sum-
mary statistics of the previous layer's output. This layer in 
the architecture accelerates the training and categorization. 
xn is a vector holding the pooled data of the dataset. The 
pooling function is represented in the following equation.

The pooling layer may include the set’s greatest value, 
the average value, the parametric value, and the weighted 
mean of the pool. The maximum pool is utilized according 
to Eq. 22.

(18)
S
[
n1, n2

]
=

∑M1

m= 1

∑M2

m= 1
x
[
m1,m2

]
w
[
n1 − m1, n2 − m2

]
.

(19)C =
1

N

∑N

i=1
xix

T
i
.

(20)xn =
{
xj, ..., xN

}
.

(21)x̂n = f
(
xn, xn+1, xn+2

)
= f

(
xn
)
.

(22)f
(
xn
)
= argmax(xn).

4.2  Serial Regression Based on Long Short‑Term 
Memory

In recent years, LSTM has been widely used in speech rec-
ognition, sentiment analysis, text analysis and other fields. 
The LSTM forms the lower layer of the model proposed 
in this paper. This layer stores the temporal information of 
the important attributes of the EMG signal. The memory 
channel and gate mechanism (the forgetting gate, input gate, 
update gate, and output gate) are shown in Fig. 8.

Cell state (Ct-1–Ct) is the foundation of the LSTM design. 
Cell state holds the hidden state information for the current 
time. The hidden state information includes both the hidden 
state from the preceding time step and the temporary hidden 
state of the current time step. In addition, the LSTM includes 
a unique “gate” structure for removing or adding information 
to the cell state.

4.3  Forgotten Gate

The first step in LSTM is to decide the information to be 
discarded in the cell state. This decision is made via the 
forgetting gate layer. The forgotten gate reads ht-1 and xt 
and outputs a number between 0 and 1 for each cell state 
number. 1 indicates “keep totally,” and 0 indicates “discard 
completely.”

4.4  Input Gate

Afterward, the input gate determines which new information 
may be added to the cell’s state. Each tanh-layer generates 
a vector that can be substituted for the update (Eqs. 24, 25). 
These two components will be merged to update the cell 
state.

4.5  Update Gate

The function of the update gate is to transform old cell data 
(Ct-1) into new cell data (Ct). The update gate picks a por-
tion of the old cell information for erasure by the forget gate. 
Afterward, the input gate selects a portion of the candidate 
cell information to combine with the new cell information 
Ct.

(23)ft = �
(
Wf .

[
ht−1, xt

]
+ bf

)
.

(24)i
t
= �

(
W

i
.
[
h
t−1, xt

]
+ b

i

)
.

(25)C̃
t
= tanh(W

c
.
[
h
t−1, xt

]
+ b

c
).

Fig. 8  LSTMcell
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4.6  Output Gate

After updating the cell’s state, it is necessary to determine 
the output cell’s state based on the input values ht-1 and xt. 
The cell state is transmitted through the tanh-layer to get a 
vector of values between [− 1, 1], multiplied by the output 
gate’s judgment criteria to produce the cell's output.

where ht is the output vector result of the memory cell at 
time t (as Fig. 8 shows). Wf,i,c,o are the weights matrices and 
bf,i,c,o the bias vectors.

4.7  CNN‑LSTM Training Model

In this study, by integrating CNN and LSTM, we propose 
a new deep learning scheme. The feature sequences from 
the CNN layer are considered as the input to the LSTM. 
The CNN-LSTM structure proposed in this paper is shown 

(26)Ct = ft ∗ Ct−1 + it ∗ C̃t.

(27)ot = �
(
Wo

[
ht−1, xt

]
+ bo

)
,

(28)h
t
= o

t
∗ ���h(C

t
),

in Fig. 9. It consists of a CNN layer, an LSTM layer, and 
a fully connected (FC) layer. The CNN layer is used to 
receive and process the sEMG signals from 16 different 
locations of the human lower limbs. On the other hand, 
the dataset is divided into two parts: 80% for training the 
model and 20% for validating the results. This network 
structure consists of an input layer (inputting sensor vari-
ables), an output layer (extracting features to the LSTM), 
and several hidden layers. The hidden layers include the 
convolutional, ReLU, activation, and pooling layers. The 
neural network generates a weight for each input to deter-
mine a specific output based on this structure. The CNN 
structure consists mostly of five convolutional layers and 
five pooling layers in the hybrid model. Respectively, the 
activation function has 64, 128, 256, 128, and 64 convolu-
tional kernels. The LSTM model contains five hidden lay-
ers with 64, 128, 256, 128, and 64 neurons, respectively. 
The underlying layers of the model are two fully connected 
layers, which have 4096 and 2048 neurons, respectively.

Sensitive deep learning parameters are considered to 
maximize accuracy and optimize training time. The model 
is trained with 150 data points per batch, 120 epochs maxi-
mum, and 15 iterations per epoch. After all architectures 
have been trained, the confusion matrix is used to evaluate 

Fig. 9  The structure of CNN-LSTM
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the network's performance. This allows for the calculation 
of accuracy and recalls for each category.

4.8  Experimental Evaluation

To evaluate the model, a set of evaluation measures 
were chosen. According to [36], the root means square 
error (RMSE) and the Pearson correlation coefficient 
were selected to assess the accuracy of the predictions. 
A parameter’s mean squared error (MSE) is the expected 
value of the squared difference between its estimated and 
actual value. The root means squared error (RMSE) equals 
the square root of the squared mean error (MSE). These 
metrics are defined in the following manner:

Pearson correlation, also known as cumulative cor-
relation, is a method invented by the British statistician 
Pearson in the twentieth century to determine linear cor-
relation. The Pearson correlation coefficient is frequently 
used to analyze data that conforming a linear relationship 
or a normal distribution. It can be calculated as Eq. 31.

where: Yt is the real Knee angle value, Ŷp is the predicted 
value, and n is the number of Yt.

(29)MSE =
1

n

∑n

i=1
(Yt − Ŷp)

2

,

(30)RMSE =

√
1

n

∑n

i=1
(Yt − Ŷp)

2

.

(31)�Yt ,Yp =

∑
(Yt − Yt)(Yp − Yp)�∑
(Yt − Yt)

2
(Yp − Yp)

2

,

5  Experimental Results and Analysis

This chapter composed a new dataset including 16 different 
EMG signals and corresponding knee angles. Correspond-
ing data were collected from 10 different individuals (five 
males, five females). The replicated data were then pre-
processed in various methods (FICA/PCA/Improved PCA, 
respectively). Immediately after, these data were imported 
into the previously built models (CNN-LSTM) separately for 
data prediction. Each set of data was repeatedly trained and 
predicted 200 times. The model automatically recorded the 
training error for each training. Finally, the effects of various 
data processing methods on prediction accuracy and time 
spent are compared. In addition, the model training time and 
Pearson correlation coefficients are compared for different 
scenarios. To reflect the superiority of the prediction models 
proposed in this paper, other prediction models are used for 

Fig. 10  Contribution of principal components under different dimensions

Fig. 11  Difference of principal component contributions under the 
same dimension
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comparison. The study's findings are presented as the mean 
plus standard deviation to highlight the algorithms' consist-
ent performance.

5.1  Analysis 1: Principal Component Contribution 
Rates Under Different Dimensions

To select the best data input dimensions, we downscaled the 
sEMG signals of these 16 different channels. All dimensions 
were tried, and their principal component contribution rates 
were recorded. Figure 10 shows the difference in principal 
component contribution rates between the improved PCA 

algorithm and the traditional PCA algorithm for the same 
dimensions. As shown in Fig. 11, the principal compo-
nent contribution rate gradually increases from low to high 
dimensions. Apparently, the increasing trend of the principal 
component contribution is significantly greater among the 
2–8 dimensions than among the 9–16 dimensions. As dimen-
sions rise, the increase of primary component contribution 
tends to level off. Regarding principle component extraction 
rate, the improved PCA algorithm is much superior to the 
standard PCA method (most evident in dimensions 2–8).

The improved PCA approach presented in this study 
performs a nonlinear mapping of the sEMG signal using 
a Gaussian kernel function for nonlinear dimensionality 
reduction. Then, the centralization process was performed. 
Unlike the conventional PCA method, the resulting feature 
vectors are not the projected axes but the projected coordi-
nates. For linearly indistinguishable datasets, the improved 
PCA method maps them to higher dimensions and divides 
them. The results demonstrate that this method can more 
efficiently extract the principal components of sEMG signals 
in a nonlinear state.

5.2  Analysis 2: Comparison of Prediction Accuracy 
Under Different Dimensions

Then, the downscaled data were classified and imported into 
the CNN-LSTM model for prediction. Finally, the prediction 
errors for 10 different experimental subjects and the Pearson 
correlation coefficients were obtained. Immediately after, 
the predicted data are collated and compared. Figure 12 
shows that the prediction accuracy gradually improves as 
the dimensionality increases (either in FICA/PCA/Improved 
PCA). Obviously, the improved PCA method always has 
the smallest prediction error, followed closely by the PCA 
method and finally the FICA method.

Figure 13 compares the Pearson correlation coefficients 
in different dimensions. It can be found that as the dimen-
sionality increases, the Pearson correlation coefficient also 
increases. Obviously, the improved PCA algorithm achieved 
the highest Pearson correlation coefficient. In practical appli-
cations of sEMG in the field of assisted exoskeletons, errors 
higher than 5 degrees are unacceptable for achieving soft 
control. Excessive prediction errors may lead to ineffective 
control and interfere with the task process. From this per-
spective, the processing data of the improved PCA shows the 
most stable performance (among the various algorithms).

5.3  Analysis 3: Comparison of Prediction Accuracy 
Under Different Data Processing Methods

Figure 14 visually compares the prediction results of the 
data under each different pre-processing method. The data 

Fig. 12  Comparison of prediction errors in different dimensions

Fig. 13  Comparison of Pearson’s correlation coefficients under differ-
ent dimensions
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from two volunteers (one male, one female) are used for 
comparison. Since the step size of males is relatively larger 
than that of females. The knee angles collected in the experi-
ment for females were smaller than those for males. It can 
be seen from the figure that the prediction results of the 
data processed by the improved PCA algorithm are closest 
to the experimentally collected data. Then comes the data 
processed by the PCA algorithm, and finally, the data pro-
cessed by FICA.

5.4  Analysis 4: Comparison of Training 
and Prediction Time Under Different 
Dimensions

Next, the algorithm prediction elapsed time (both train-
ing and prediction time) was compared under different 

dimensions. All data were processed by Python on a per-
sonal server (with 3.30 GHz Intel Xeon CPU and GUP-
NVIDIA 2080Ti). Figure  15 illustrates each method 
instance’s average training and test run times. It is evident 
that as the dimension rises, the training time of the algorithm 
gradually increases. Similar to the prior contribution of the 
primary component, the range of increase in training time 
is more extensive bigger for dimensions 2–8 than dimen-
sions 9–16. Notably, once the algorithm training phase is 
complete, the prediction times are practically identical (in 
a concise time, as shown in Fig. 16). Such restrictions are 
tolerable for the majority of communication systems. With 
the rapid advancement of graphics processing unit (GPU) 
technology, it is anticipated that the method will become 
even more effective.

Fig. 14  Prediction results under different methods

Fig. 15  Comparison of training time under different dimensions
Fig. 16  Comparison of prediction times under different dimensions



625sEMG‑Based Lower Limb Motion Prediction Using CNN‑LSTM with Improved PCA Optimization…

1 3

5.5  Analysis 5: Comparsion with Other Models

In the end, the performance of the CNN-LSTM model is 
compared with other algorithms in terms of prediction 
results. All data were processed by Python on a personal 
server (with 3.30 GHz Intel Xeon CPU and GUP-NVIDIA 
2080Ti). Table 2 shows the comparison results. It can be 
easily found that the CNN-LSTM model combined with the 
improved PCA algorithm has the best performance (both in 
terms of prediction/training time and prediction accuracy). 
Moreover, the traditional PCA still has an advantage over the 
prediction results of the data after the original data filtering 
process.

6  Discussion

By comparing the prediction accuracy, computational 
time consumption, and correlation coefficients under dif-
ferent combinations of algorithms, a new method (CNN-
LSTM + Improved PCA) for predicting knee angles using 
EMG signals is proposed in this paper. With the EMG 
signals collected from the training experiments, the model 
can efficiently predict the corresponding knee angles from 
the input sEMG signals. The prediction accuracy under 
different conditions was analyzed and compared. It can be 
said that the new method proposed in this paper outper-
forms other machine learning-based methods in terms of 
performance. The proposed method (CNN-LSTM com-
bined with improved PCA) in this paper yields an accuracy 
of about 98.5%. With the above discussion, the excellent 
performance of the proposed method can be attributed to 
two reasons. One is the combination of CNN and LSTM, 
which can extract more practical features. The other one 
is the special interaction mechanism that can increase the 
diversity of features. Comparing the model parameters 

(Pearson correlation coefficient, RMSE, training time, 
and prediction time) under the same data, it is possible to 
determine that the new method (CNN + LSTM) described 
in this study has more advantages than existing machine 
learning methods. This permits the creation of auxiliary 
devices with high precision. This study aims to assess the 
impact of signal pre-processing techniques on the accu-
racy of prediction. Additionally, this article explores the 
relationship between the sEMG signal and the human 
joint angle to design a high-precision EMG controller for 
exoskeletons in future research. It facilitates the use of 
the sEMG signal to control the exoskeleton and provides 
intelligent support.

7  Conclusion

This work aims to investigate the effect of pre-processing 
sEMG signals on the prediction results and lay the founda-
tion for constructing an accurate and responsive exoskel-
eton robot controller. A new method based on CNN-LSTM 
with an improved PCA algorithm structure is proposed in 
this paper to predict the knee joint angle. Experimental 
data from 10 individuals were collected to demonstrate the 
method’s superiority. As a result, the improved PCA method 
can extract the principal components from the data more 
efficiently and help the model achieve faster convergence 
than the traditional PCA method. Comparing the predic-
tion results in various cases shows that improved PCA and 
CNN-LSTM produce the best results while maintaining 
computational efficiency. The experimental results also show 
that the combination of CNN and LSTM possesses the best 
prediction results compared to other existing models. The 
anticipated work will continue to expand in the future. To 
develop more flexible and efficient exoskeleton devices, the 
study of ankle joint angle and hip joint angle during the task 

Table 2  Average accuracy of 
the model for 20 runs

Algorithm Pearson 
coefficient

RMSE(deg) Training time(s) Forecast time(ms)

RF(FICA) 0.889 6.13 ± 1.62 5.05 ± 0.98 16.8 ± 1.1
RF(PCA) 0.895 5.71 ± 1.21 5.21 ± 0.94 17.4 ± 1.4
RF(Improved PCA) 0.932 4.81 ± 1.54 5.04 ± 1.03 17.8 ± 1.2
SVR(FICA) 0.869 4.71 ± 1.21 79.87 ± 5.71 35.5 ± 3.2
SVR(PCA) 0.875 4.52 ± 1.26 85.52 ± 5.68 34.4 ± 2.7
SVR(Improved PCA) 0.886 4.11 ± 1.06 74.97 ± 5.14 36.2 ± 2.9
BP(FICA) 0.919 3.89 ± 1.62 125.41 ± 13.25 33.3 ± 2.7
BP(PCA) 0.923 3.75 ± 1.57 127.51 ± 14.84 32.1 ± 2.5
BP(Improved PCA) 0.947 1.78 ± 0.42 114.92 ± 12.72 33.8 ± 2.4
CNN-LSTM (FICA) 0.951 3.97 ± 0.64 54.54 ± 2.12 25.5 ± 1.4
CNN-LSTM(PCA) 0.965 3.72 ± 0.36 58.24 ± 2.41 26.5 ± 1.5
CNN-LSTM(Improved PCA) 0.985 1.34 ± 0.25 46.55 ± 1.85 25.4 ± 1.2
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is equally important. In addition, multi-source signal fusion 
of force signals, motion signals (IMU) and sEMG signals to 
predict human motion is another area that should be inves-
tigated in the future. Moreover, due to the complexity of 
human musculoskeletal models, selecting the optimal loca-
tion for signal acquisition is a topic of research and interest.
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