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Abstract
Farmland Fertility Algorithm (FFA) is a recent nature-inspired metaheuristic algorithm for solving optimization problems. 
Nevertheless, FFA has some drawbacks: slow convergence and imbalance of diversification (exploration) and intensification 
(exploitation). An adaptive mechanism in every algorithm can achieve a proper balance between exploration and exploitation. 
The literature shows that chaotic maps are incorporated into metaheuristic algorithms to eliminate these drawbacks. Therefore, 
in this paper, twelve chaotic maps have been embedded into FFA to find the best numbers of prospectors to increase the 
exploitation of the best promising solutions. Furthermore, the Quasi-Oppositional-Based Learning (QOBL) mechanism 
enhances the exploration speed and convergence rate; we name a CQFFA algorithm. The improvements have been made in 
line with the weaknesses of the FFA algorithm because the FFA algorithm has fallen into the optimal local trap in solving 
some complex problems or does not have sufficient ability in the intensification component. The results obtained show that 
the proposed CQFFA model has been significantly improved. It is applied to twenty-three widely-used test functions and 
compared with similar state-of-the-art algorithms statistically and visually. Also, the CQFFA algorithm has evaluated six 
real-world engineering problems. The experimental results showed that the CQFFA algorithm outperforms other competitor 
algorithms.

Keywords  Nature-inspired algorithm · Farmland fertility algorithm · Chaotic maps · Quasi · Engineering optimization 
problems

1  Introduction

Optimization is a common problem in all fields of science 
and engineering problems; each problem has a wide range 
of issues and solutions. Optimization problems aim to find 
the best feasible solution(s) on the threshold of the optimal 
responses. Exact algorithms can find the optimal answer 
accurately; however, these algorithms do not hold the apt 

efficiency to solve challenging and complex optimization 
problems. The optimisation becomes more complicated with 
the surge in the dimensions of the problems. The execution 
time increases exponentially, according to the statement of 
the problem. Approximate algorithms are developed, find-
ing the near-optimal solution in a considerably short time to 
solve challenging and complex optimization problems1–6.

Approximate algorithms are divided into two types: heu-
ristic and metaheuristic7. They are approximate methods of 
solving optimization problems. Heuristic algorithms often 
seek a near-optimal answer in a reasonable computational 
time. However, heuristic algorithms do not guarantee the 
optimal solution, get stuck in local traps, and have prema-
ture convergence. Metaheuristic algorithms have been intro-
duced due to the weakness of heuristic algorithms. Each 
metaheuristic algorithm uses unique methods to get out of 
the local trap or prevent it from getting stuck in it. As a result, 
metaheuristic algorithms can find high-quality answers for all 
optimization problems without getting stuck in local traps8. 
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Metaheuristic optimization algorithms have relatively sim-
ple concepts and are easy to implement. They do not need 
additional information and can overcome local optimums 
9. These algorithms can be classified into three main cat-
egories: evolution-based methods, physics-based methods, 
and population-based methods. Regardless of their nature, 
all metaheuristic optimization algorithms have the exact 
mechanism. The two main phases of the search process are 
exploration and exploitation in population-based metaheuris-
tic optimization algorithms. In the exploration phase, ran-
dom behaviour helps search the search space. However, 
the primary goal is rapid exploitation in promising areas. 
Finding the right balance between these phases is essential 
since metaheuristic algorithms' nature is based on a random 
population. It has been shown in the literature that chaotic 
mappings can improve the balance between the two phases. 
A central and interesting query is how some chaotic mapping 
can improve an algorithm's performance and others do not. 
There is still no satisfactory theoretical framework for this 
analysis. This analysis presents the progress of the hybridisa-
tion of chaos and the metaheuristic algorithm. However, the 
hybridisation of metaheuristic algorithms with chaotic maps 
has been done by various researchers. It has balanced the 
two major and central phases of metaheuristic algorithms10.

An improved version of the Grey Wolf Optimizer (GWO) 
algorithm has been provided in Ref 11. to improve the 
exploration and exploitation. This improvement has been 
made through the chaotic logistic map, Opposition-Based 
Learning (OBL), Differential Evolution (DE), and Disrup-
tion Operator (DO). Chaotic logistics and OBL strategy 
are used to assign the primary candidate solutions, and 
these approaches address random population problems and 
increase algorithm convergence. The DE operators are then 
hybrid with the GWO algorithm. DE operators are per-
formed as a local search mechanism to improve exploration 
capability by updating the GWO population. Correspond-
ingly, after updating the solutions using hybridisation of 
GWO and DE, DO has been used to advance the exploration 
capability in which the DO has been exploited to maintain 
population diversity. Therefore, the hybridisation of logistic 
mapping, OBL, DE, and DO has offered the GWO method 
and apparatus to improve the search space's balance between 
exploration and exploitation without affecting the required 
computational time.

The chaos model is presented in Ref. 12 based on 
adaptive inertia weight to overcome the premature 
convergence problem in the Particle Swarm Optimization 
(PSO) algorithm. The initial population was generated using 
chaotic mapping, which improved population diversity 
and particle rotation, and used cube mapping sequences 
to assign the particles' primary position and velocity. The 
new inertia weight value is adjusted comparatively with the 
feedback parameters, including the number of iterations, the 

aggregation degree factor, and the evolution rate parameter. 
The relationship between variance, population fitness, and 
premature convergence threshold has prevented premature 
convergence. If the population fitness variance is less than 
the predetermined threshold, the chaos disorder surpasses 
the local optimal, and the optimal local problem would be 
solved. The improved evolution speed parameter is used as 
the number of feedback iterations, the aggregation factor's 
degree, and the adaptive inertia weight parameters. The 
experiments on four fitness functions show that the proposed 
algorithm's performance exceeds the other algorithms, 
improves convergence speed, and increases the ability to 
pass the local optimal.

Moreover, the Starling PSO algorithm, the aggregation of 
Starling birds, has been proposed to improve the efficiency 
of the global PSO search. The standard PSO performance 
depends on the parameter's values, and parameter adjustment 
is beneficial for obtaining exploration and exploitation 
capabilities. Nonlinear adjustment of inertial weight and 
chaotic search method based on logistic mapping improves 
the global search efficiency in the basic PSO. It helps the 
particles move away from the local optimal. Therefore, in 
Ref. 13 Chaotic Starling PSO algorithm is presented. The 
inertial weight is adjusted using a nonlinear decreasing 
approach, and the acceleration coefficients are adjusted 
using a chaotic logistic mapping strategy to avoid the early 
maturation of the search process. The speed update has 
used the term dynamic disruption to improve algorithm 
convergence14. A local search strategy based on the 
Starling birds' behaviour uses information from the nearest 
neighbours and determines a new cumulative position 
and rate. The two-particle selection methods maintain 
the Euclidean distance, and the value of the proportional 
function supports the particle population's diversity. These 
improvements aid the particles in avoiding stagnation and 
discovering unvisited areas in the problem space. The 
experiments' results on optimising the standard function 
and traditional clustering problems indicate this favourable 
efficacy method. This algorithm has better convergence 
features and a higher global search capability than the basic 
PSO and other evolutionary algorithms.

Authors in Ref. 15 present a chaos-based method 
for Bacterial Foraging Optimization (BFO). Adaptive 
Chemotaxis step settings allow fast convergence and 
improve convergence precision. The Chaotic perturbation 
operation provides the search's condition to escape local 
optimality and achieve better convergence precision. The 
proposed algorithm tested five benchmark functions, and 
the results show that the proposed algorithm had a better 
performance than the basic BFO and BFO with linear 
decreasing chemotaxis step.

In the present paper, first, the FFA is improved by the 
QOBL and chaotic-based local search mechanisms. Then, 
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the chaotic-based local search mechanism is utilised for 
twelve different chaotic functions. Improvements made 
using the mechanisms used complement each other. And 
with the FFA algorithm has shown high efficiency. Because 
in addition to increasing the variability using chaotic maps 
at all optimisation stages, the Intensification component has 
also been improved by using OBL. The same mechanisms 
have improved the FFA algorithm and have covered all the 
weaknesses.

The CQFFA algorithm tests 23 well-known and widely 
used test functions with all the chaotic functions. The results 
in each chaotic function are statistically compared with the 
other functions' results using convergence diagrams. Finally, 
the proposed best chaotic function algorithm is applied 
to several real-world engineering problems for a subtler 
analysis. The obtained results are compared with the results 
of several similar algorithms. In brief, the contribution of 
the paper can be summarised as follows:

•	 Chaotic maps have been embedded into FFA for the first 
time.

•	 The chaotic maps are used in a local search technique in 
the CQFFA algorithm.

•	 The QOBL strategy has improved the problem of 
trapping in local minima.

•	 The convergence rate is boosted using a chaotic-based 
local search.

•	 The CQFFA algorithm is tested on twenty-three different 
well-known test functions.

•	 The results of the CQFFA algorithm are compared with 
several similar state-of-the-art algorithms.

•	 The CQFFA algorithm has been applied to six real-world 
engineering problems.

•	 Experiments show the superiority of the CQFFA 
algorithm compared with competitor algorithms.

The present paper has been organised as follows: 
Sect. 2 summarises the improved algorithms using chaos 
maps; Sect. 3 gives a brief overview of the FFA algorithm, 
various chaotic functions, and mathematical models. In 
Sect. 4, the CQFFA algorithm is explained; Sect. 5 presents 
the experimental tests and findings, and finally, in the last 
section, conclusions and future research are discussed in 
detail.

2 � Related Works

For scientists and researchers, there has always been the ques-
tion: "How can some chaotic mappings improve the perfor-
mance of an algorithm while others do not, and why the same 
maps do not act similarly for each algorithm?" and so far. 
They have not provided an excellent theoretical framework 

for advancing the performance of metaheuristic algorithms 
with chaotic maps. Therefore, by reviewing the literature, 
various chaos maps have been used to improve metaheuristic 
algorithms' versions, some of which are mentioned here.

In Ref. 16, the trapping in the optimal local problem and 
premature convergence in the quantum Genetic Algorithm 
(GA) has been solved by analysing the Piecewise Logis-
tic Chaotic Map characteristic. Furthermore, it improves 
the quantum GA using the chaotic optimization approach 
based on piecewise logistic chaos. It optimises the quantum 
upgrade process by changing the angle and rotation with 
quantum GA's fuzzy adaptive mode. By analysing the search 
process of quantum GA, the optimization colony with the 
ergodicity of chaotic operator in the public domain, not 
changing the quantum GA mechanism and introducing the 
chaos optimization method based on Piecewise Logistic 
chaotic map and quantum update with fuzzy adaptation, 
the so-called algorithm increases the development speed of 
the colony and significantly increases the performance of 
quantum GA‌. The simulation results show that this method 
improves local and global searches, overcoming slow con-
vergence and getting stuck in local optimization than quan-
tum and canonical GA.

Furthermore, the solution is presented in Ref. 17 for 
being trapped in the local optimal, slow convergence, and 
inefficiency for high-dimensional problems in the chaos 
version of the Fruitfly optimization algorithm, whose 
performance is evaluated using ten chaotic maps. In the 
meantime, the Chebyshev map shows superiority regarding 
the reliability of being globally optimised and algorithm 
success rate. The Chaotic-based DE algorithm is presented 
in Ref. 18 to determine the optimal control variables for 
optimising the baker's yeast drying process. Instead of the 
random number generator, four different chaos maps, such 
as Lorenz, Rossler, Chua, and Mackey–Glass, have been 
used to determine the population's initial population in the 
mutation operation. The chaos-based structure for generating 
entities in a population is introduced instead of generating a 
random number. Ten optimization problems have been used 
to demonstrate the efficacy of Chaotic-based DE algorithms.

Additionally, Ref. 19 presents an OBL Chaotic DE 
algorithm. The initial population is generated according to 
the principles of OBL, and the dynamic matching of the 
F_measure factor is performed using the chaos sequence. 
The obtained numerical results of this algorithm on 18 
benchmark functions were compared with the results of 
the DE algorithm and the OBL-based DE algorithm. The 
findings indicated that the proposed method finds superior 
solutions and simultaneously possesses satisfactory global 
search ability, stability, and convergence speed. Using chaos 
is among the techniques for adjusting individual parameters 
in metaheuristic algorithms. Therefore, in Ref. 20, a chaotic 
version has been provided to improve the global search in 
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the bat algorithm called the CBA. Four versions of the CBA 
have been introduced, and thirteen chaos maps have been 
exploited to validate each of these four versions. Comparing 
the various CBAs, the algorithm uses sinus mapping as 
pulse rate, namely CBA-IV, is considered the best type. The 
results show that the improvement of the new algorithms is 
due to the application of definite chaotic signals instead of 
random and constant values. Statistical results and success 
rates of CBAs show that adjusted algorithms can improve 
the reliability of general optimization. The results show 
that some versions of the CBA can perform better than the 
traditional bat one.

Ten chaos maps have been introduced in the Moth-Flame 
Optimization Algorithm (MSA) to surge the best prospectors 
to exploit the best promising solutions21. Experiments 
have been tested on seven benchmark functions with 30 
executions. These performances' best and average modes 
show that chaotic maps can improve the essential MSA's 
efficiency in terms of convergence speed. Simultaneously, 
a sinusoidal map is the most preeminent map to improve 
the efficiency of the MSA. Four improved versions of the 
stochastic Fractal Search Algorithm (FSA) are presented in 
Ref. 22 with chaos theory to solve optimization problems 
and apply them in control design. The chaotic version of 
the Stochastic FSA performed better than the algorithm 
itself. It was influenced by two chaos maps (Chebyshev and 
Gauss/Mouse maps) that focused on the convergence speed 
and precision of the Stochastic FSA search results. Two 
standard test functions with the dimensional and landscape 
levels have been used to evaluate the proposed algorithm's 
performance with previous algorithms using the IEEE 
CEC2014 benchmark functions. The proposed approach 
has also been implemented to optimise fuzzy logic PD-type 
and traditional PID controllers for a Twin rotor system in 
hovering mode. The simulations show that the Chaotic FSA 
performed better with the Gauss/Mouse chaotic map in the 
initial upgrade and propagation process than the Chaotic 
FSA and Stochastic FSAs. Besides, the PD-type fuzzy logic 
controller in the dual-rotor system design control performed 
better than the PID controller.

Furthermore, in Ref. 23, ten chaotic maps are plotted on 
the Gravitational Search Algorithm (GSA) named Chaotic 
GSA (CGSA). An adaptive normalisation method is also 
provided for the smooth transition from the exploration 
phase to the exploitation phase. Twelve standard functions 
with bias have evaluated the efficiency of CGSA algorithms 
in exploration and exploitation. The results show that chaotic 
maps have improved GSA's exploration and exploitation 
phase. A statistical test called Wilcoxon has been conducted 
to examine the importance of results. The results show that 
a sinusoidal map is the best option for CGSA performance. 
Chaos maps improve the exploration phase since changing 
G's value helps the affected masses be saved from the local 

minimum. Chaos maps can be used to balance exploration 
and exploitation. Sinus map helps GSA to avoid local 
minimums better than other chaotic maps. The adaptive 
normalisation method allows the sinusoidal map to focus 
on exploitation instead of exploration in the final iteration.

In Ref. 24, chaos theory has been used to adjust the Crow 
Search Algorithm (CSA) parameters to improve the general 
convergence rate and exploration/exploitation trends of the 
CSA to solve fractional optimization problems. The CSA 
randomly leads to unsatisfactory solutions in some cases, 
which in hybridisation with the chaos method can accelerate 
the convergence efficiency and improve the quality of the 
solutions. The simulation results have been tested on 20 
well-known fractional benchmark problems, enhanced 
by introducing chaotic maps, exploration capabilities, 
exploitation, and early convergence of the CSA. It works 
better than compared algorithms in terms of optimization. 
Moreover, it can find optimal global solutions for fractional 
problems and electrical applications. As computational 
speed reduces, the convergence speed reduces computational 
time. Also, the effectiveness of the proposed chaotic CSA 
has been justified using the non-parametric Wilcoxon 
signed-rank test. The results show that the proposed method 
has performed satisfactorily in terms of the quality and 
reliability of other algorithms.

The Grasshopper Optimization Algorithm (GOA) 
is an algorithm inspired by the collective behaviour of 
grasshoppers. In Ref. 25, the GOA optimization process 
introduces Chaos theory to increase its general convergence 
rate. Ten chaos maps have been applied to balance 
exploitation and exploration in the optimisation process 
and reduce grasshoppers' absorption/repulsion forces. The 
proposed methods are evaluated on thirteen test functions. 
The results show that chaotic maps can significantly improve 
GOA performance. The results also show that c1 and c2 
cannot greatly enhance the performance of GOA. The 
improvement in efficiency is that the circle map provides 
a better balance between exploration and exploitation. The 
optimization process prevents it from getting stuck in the 
local optimal. Adjusted algorithms also improve general 
optimization confidence and increase the quality of the 
results.

Some of the other chaos-enhanced Metaheuristic algo-
rithms are chaotic GAs26, Chaotic SA 27, Chaotic local 
search-based differential evolution algorithms28, Chaotic 
Hybrid Cognitive Optimization Algorithm29, CABC–CSA 
30, Chaotic Krill Herd algorithm 31, Chaotic Salp Swarm 
Algorithm 32, Chaotic vortex search algorithm33, Chaotic 
Quantum CSA34, Chaotic Antlion Algorithm35, Chaotic 
PSO 36, Chaotic GWO 37. Finally, this paper presents the 
CQFFA algorithm to solve optimization problems, discuss 
the following basic concepts and proposed algorithms, and 
evaluates different methods and chaotic modes.
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3 � Fundamental Research

In this section, the basic concepts used in this paper are 
explained. Subsection (3.1) will briefly and usefully explain 
the FFA algorithm, and subsection (3.2) will describe the 
chaos maps using which the CQFFA is presented.

3.1 � Farmland Fertility Algorithm (FFA)

FFA is a novel metaheuristic algorithm inspired by the 
fertility of agricultural land in nature 38. In this algorithm, 
the solutions are optimised based on the division of 
agricultural lands. With the optimal exploitation of two 
types of internal and external memory, the solutions of 
each section are optimised. According to Refs. 6, 47, the 
formulation and steps of this algorithm are as follows. First, 
the initial population is generated randomly, and the initial 
parameters are set. Obviously, unlike other algorithms, 
solutions are also divided. Then, the number of primary 
populations is determined by Eq. (1):

In Eq. (1), n indicates the total number of solutions in the 
search space, and k indicates the number of land parts or 
space. n indicate the number of solutions available in each 
section of agricultural land. This number is a variable and 
an integer. The available solutions in the entire search space 
are evaluated according to the fitness function at this stage. 
FFA has a separate section for determining the value of k 
that specifies the optimal value for 8 ≥ k ≥ 2 . However, the 
value of k can be changed according to the optimization 
problem. The quality of each part of the agricultural land is 
obtained based on the average solutions available. Initially, 
the solutions are assigned to different sections by Eq. (2).

In Eq. (2), the existing solutions separate each section 
to calculate each section's average. x is all solutions in the 
search space, s represents the section number, and j = {1,2, 
… D} indicates the dimension of the variable x. After 
segmentation, the quality of each segment is determined by 
Eq. (3).

In Eq. (3), Fit_Section indicates the value that determines 
the quality of the solutions in each part of the agricultural 
land, which in the search space is the same as the average 
fit or suitability of all the solutions in each part. Therefore, 
for each agricultural land sector, the average of all solutions 

(1)N = k × n

(2)
Sections = x(aj), a = n(s − 1) ∶ n × s,

s = {1, 2,… .k}, j = {1, 2,… .D}

(3)
Fit_Sections = Mean

(

all fit
(

xji
)

in Sections
)

s = {1.2.… .k}.i = {1.2.… .n}

within each sector is obtained and stored in Fit_Sections . 
Equation (4) is used to update local memory, and Eq. (5) is 
used for global memory.

In Eqs. (4) and (5), MGlobal shows the number of solutions 
in global memory and Mlocal indicates the number of local 
memory solutions, and the solutions are based on fitness and 
suitability in these memories. Moreover, both memories are 
updated at this stage, and both are updated at this point. As 
the work progresses, the part with the worst quality changes 
the most. The worst part of agricultural land in terms of 
quality is that all the worst parts are combined with global 
memory solutions according to Eqs. (6) and (7).

In Eq. (7), XMGlobal is a random solution that is one of 
the available solutions in global memory, and α is a number 
between zero and one, initialised in the FFA algorithm.Xij is 
the solution in the worst part of the agricultural land selected 
to apply the changes, and h is a decimal number calculated 
based on Eq. (6). Solutions in other sections change based 
on Eqs. (8) and (9).

In Eqs.  (8) and (9), Xuj is a random solution among 
the available solutions in the whole search space; that is, 
a random path is selected among all the solutions in the 
sections, and β is a number between intervals zero and one, 
which must be initialised in the proposed first algorithm. 
Xij is a solution from the parts (except for the worst part) 
that have been selected to apply the changes, and h is a 
decimal number that can be calculated based on Eq. (9). In 
this algorithm, farmers in the final stage decide to combine 
each of the soils within the sectors of the agricultural 
land based on the bests available in their local memory 
( BestLocal ). The condition for combining with the available 
bests in local memory is that not all solutions in all sections 
are combined with their local memory, and at this stage, 
some of the solutions in all places are combined with the 
best solution, which has been found so far ( BestGlobal ) to 
improve the quality of the solutions in each one of them. 
The hybridisation of the desired resolution with BestGlobal 
or BestLocal is determined by Eq. (10).

(4)MGlobal = round(t × N); 0.1 < t < 1

(5)Mlocal = round(t × n); 0.1 < t < 1

(6)h = �.rand(−1.1)

(7)Xnew = h.
(

Xij − XMGlobal

)

+ Xij

(8)h = β.rand(0.1)

(9)Xnew = h ×
(

Xij − Xuj

)

+ Xij
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In Eq. (10), the new solution may create in two ways. 
Variable Xij is a solution from the parts (except for the worst 
part) that have been selected to apply the changes. Q is a 
parameter initialised between zero and one. This parameter 
specifies the extent to which solutions are combined 
withBestGlobal. �1 . The FFA algorithm's parameters are 
integer and must first be determined in the first algorithm, 
gradually decreasing in value based on the algorithm's 
iteration (Eq. (11)).

Correspondingly, the available solutions throughout 
the search space are evaluated according to the objective 
function. This step is done regardless of the number of 
sections on all the available solutions in the search space. 
The termination conditions are checked at the end. If the 
end condition is met, the algorithm ends. Otherwise, the 
algorithm will continue to work until the termination 
conditions are met.

3.2 � Chaos and Chaotic Map Functions

Chaos means clutter, turmoil, and disorder. The term implies 
the absence of any stable structure and everyday conversa-
tion. It recognises disorganisation, inefficiency, and a nega-
tive denotation. With the advancement of scientists' attitudes 
and the clarification of its scientific and theoretical dimen-
sions, today's disorder and chaos are no longer considered 
disorganisation and disorder; instead, the disorder is unpre-
dictable, and dynamic phenomena have their characteristics. 
Disorganisation is a kind of ultimate order inside disorder, 
and this theory studies chaotic dynamic systems. Chaotic 
systems are nonlinear and dynamic systems that are very 
sensitive to their initial conditions. A small change in such a 
system's initial state causes many future changes. This phe-
nomenon is known as the butterfly effect in chaos theory. 
The behaviour of chaotic systems seems random on the sur-
face. However, there is no need for an accidental element 
to cause chaotic behaviour, and specific dynamic systems 
can exhibit chaotic behaviour. Scientists initially believed 
that effects are linearly the result of the causes of the main 
body of specific categories. However, now they emphasise 
the creative role of disorder and chaos and see the world as 
a collection of systems that operate in a self-organised and 
unexpected method. These systems move from order to dis-
order. For this reason, further improvement of metaheuristic 

(10)

H =

⎧

⎪

⎨

⎪

⎩

Xnew = Xij + 𝜔1

�

Xij − BestGlobal(b)
�

if Q > rand

Xnew = Xij + rand(0.1) ×
�

Xij − BestLocal(b)
�

else

(11)𝜔1 = 𝜔1.Rv, 0 < Rv < 1

algorithms has become a scorching new research topic33, 
39, 40.

In this paper, twelve different chaotic maps like 
Chebyshev map 41, Circle map 42, Iterative map 43, 
Intermittency map 44, Liebovich map 42, Logistic map 45, 
Piecewise map 46, Sawtooth map 44, Sine map 47, Singer 
map48, Sinusoidal map 44, and Tent map 49 has been used. 
Table 1 lists the formulas and specifications of the chaos 
maps used in the present paper.

4 � CQFFA Algorithm

This section describes the details of the proposed CQFFA 
algorithm. Two new mechanisms have been integrated into 
the necessary FFA. The first mechanism is the QOBL, an 
extension of the opposition operator50–53. The QOBL 
improves the exploration and exploitation capabilities of 
the optimization algorithm. The QOBL position can be 
calculated as Eq. (12).

where X is an n-dimensional position vector in the problem 
space, r is a random number between (0,1), j is the jth 
dimension, OXj

i
 are the opposite of the ith position. lb , 

and ub are the lower and upper bounds of the problem 
space, respectively. The QOBL mechanism has been 
applied to both initialisation and the main loop of the 
CQFFA algorithm. The second mechanism is the CLS. 
Chaos theory is a popular way to increase the randomness 
and searchability of metaheuristic algorithms. The chaos 
theory is used as chaotic maps in optimization algorithms. 
In the proposed CQFFA algorithm, the chaotic maps have 
been used in a CLS method. The CLS method increases 
exploitation capability by searching nearby places. Also, the 
CLS method has been applied to the best solution obtained 
by the algorithm. The CLS method can be formulated as 
Eq. (13).

where, Xbest is the current best solution obtained so far, X′

best
 

is the newly generated best solution, C is the chaotic value 
generated by the chaotic map, Xi , and Xj are two randomly 
selected solutions from the population. Furthermore, in the 
CLS, a greedy mechanism has been used. That means, if 

QX
j

i
=

{

M
j

i
+ r.(OX

j

i
− M

j

i
) X

j

i
< M

j

i

OX
j

i
+ r.(M

j

i
− OX

j

i
) otherwise

M
j

i
= (lbj + ubj)∕2

(12)OX
j

i
= lbj + ubj − X

j

i

(13)X
�

best
= Xbest + (C − 0.5) × (Xi − Xj)
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X
′

best
 has better fitness, it is replaced with the Xbest , otherwise 

the X′

best
 is ignored and the Xbest is kept.

The pseudo-code of the CQFFA algorithm has shown in 
Fig. 1.

In Sect. (5), the performance of the proposed CQFFA 
algorithm is investigated, and the results are presented. 
For this purpose, various standard benchmark functions 
and several real-world engineering problems (encoded as 
optimization problems). The problems are optimization 
issues in the experiments, and the algorithms strive to 
reduce the cost values. Each situation has its specifications, 
including boundaries, optimal points, and the number of 
variables expressed in the corresponding subsections.

5 � Experiment Evaluations and Results

This section evaluates the CQFFA algorithm's performance 
on well-known test functions and several real-world engi-
neering problems. In the first subsection, twelve widely-
used chaotic maps have been applied to the CQFFA, and the 
results have been investigated. The results of each chaotic 
map have been compared with others statistically. Besides, 

the convergence speed of the algorithms has been reached. 
It is worth mentioning that the simulations were conducted 
on a system with a Core i7 3.1 GHz processor, 8 GB RAM, 
and a 2 TB hard disk. The parameter value of the CQFFA 
algorithm is presented in Table 2.

5.1 � Experiments on Test Functions

In the CQFFA algorithm, evaluations are performed to 
evaluate the improvements achieved. These evaluations 
are described using 23 standard benchmark functions in 3 
separate subsections, which are fully described below.

5.1.1 � Unimodal Test Functions

This subsection evaluates the CQFFA algorithm's perfor-
mance on the seven widely-used unimodal test functions. 
These test functions only have one optimal point and con-
sider the exploitation capability of the algorithms. Table 3 
presents the unimodal test function and details the obtained 
results from the different chaotic maps. Also, Fig. 2 illus-
trates the convergence speed of the chaotic maps on these 
test functions.

Table 1   The mathematical 
details of the chaotic maps 
41–49

Definition Name Name

Xi+1 = cos
(

(i.cos−1
(

Xi

)

)
)

Chebyshev map M1
Xi+1 = Xi + b − (a)sin(2�i)mod(1),a = 0.5, b = 0.2 Circle map M2

Xi+1 =

{

𝜀 + Xi + CXn
i
0 < Xi ≤ P

Xi−P

1−P
P < Xi < 1

P = 0.5 , C = 1.5, and n = 1.6

Intermittency map M3

Xi+1 = sin
(

a�

Xi

)

,a ∈ (0, 1)
Iterative map M4

Xi+1 =

⎧

⎪

⎨

⎪

⎩

𝛼.Xi0 < Xi ≤ P
P−Xi

P2−P1

P1 < Xi ≤ P2

1 − 𝛽
�

1 − Xi

�

P2 < Xi ≤ 1

� =
P2

P1

(1 − (P2 − P1)),� =
1

P2−1
((P2 − 1) − P1(P2 − P1)) 

P1 = 0.4,P2 = 0.6,P = 0.6

Leibovich map M5

Xi+1 = a.Xi(1 − Xi) , a = 4 Logistic map M6

Xi+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Xi

P
0 ≤ Xi ≤ P

Xi−P

0.5−P
P ≤ Xi < 0.5

1−P−Xi

0.5−P
0.5 ≤ Xi < 1 − P

1−Xi

P
1 − P ≤ Xi < 1

P ∈ (0, 0.5) and P ≠ 0

Piecewise map M7

Xi+1 = 2Ximod(1) Sawtooth map M8
Xi+1 =

a

4
sin

(

𝜋Xi

)

, 0 < a ≤ 4 Sine map M9

Xi+1 = �(7.86Xi − 23.31X2

i
+ 28.75X3

i
− 13.302875X4

i
),� ∈ (0.9, 1.08) Singer map M10

Xi+1 = aX2

i
sin

(

�Xi

)

, a = 2.3 and X0 = 0.7 Sinusoidal map M11

Xi+1 =

{

Xi

0.7
Xi < 0.7

10

3
(1 − Xi)Xi ≥ 0.7

Tent map M12
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According to the statistical results of Table 4, it can 
be seen that all chaotic versions of the FFA algorithm 
have found the minimum function values of F1 to F4 test 

functions. However, some chaotic maps have lost their 
functionality in other test functions. By examining Table 4 
results in more detail, it can be noticed that the Sawtooth 

Set number of solutions , the maximum number of iterations , number of sections , and the values of other 
parameters 
% Initialising solutions 
For i = 1

Randomly initialise X(i)
Calculate . 
Initialise  by Equation (12).   % Quasi-oppositional learning 
Calculate . 

End
Merge  and  in . 
Sort  according to the  and . 
Store first  of the  as X. 
Divide  into nSec sections.         % Multi-swarming part 
Find the global best solution.       % Elitism solution 
% Main loop 
For iteration = 1 to Maxiter

For s = 1
Determine the soil quality of the section 
Find the local best of the section 

End for
For s =1

If section  is the worst section 
Update solutions of the section using equations (6) and (7). 
Calculate the fitness of new solutions. 
Apply greedy selection mechanism. 

Else 
Update solutions of the section using equations (8) and (9). 
Calculate the fitness of new solutions. 
Apply greedy selection mechanism. 

End if 
End 
For s =1

For i = 1 :  solutions of section 
Update solutions of section  using Equation (10). 
Calculate the fitness of new solutions. 
Apply greedy selection mechanism. 

End for 
End 
For s =1
         Calculate quasi-opposite positions of the solutions of section  using Equation (12) % Quasi-Oppositional learning 

Merge basic solutions and quasi-opposite solutions 
Sort the set of merged solutions 
The store first  solutions as the solutions of section 
Find local best of section    % local elitism 

End
Update the global best solution 
For i = 1 

Generate a new global best-using Equation (13).    % The CLS. 
Calculate the fitness of the new global best. 
Apply greedy selection mechanism. 

End for 
End for  
Return The global best solution. 

Fig. 1   The pseudo-code of the CQFFA algorithm
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and Tent maps outperform other maps. It also confirms this 
by counting the number of successes of each chaotic map. 
The success rate is the sum of the best performance of any 
map. The graphs in Fig. 2 indicate that the results of the 
different chaotic versions of the FFA algorithms are close, 
with a slight difference. Generally, according to Table 4 and 
Fig. 2, it can be inferred that the chaotic maps enhanced the 
capabilities of the basic FFA algorithm for solving unimodal 
test functions.

5.1.2 � Multimodal Test Functions

The CQFFA algorithm's performance has been evaluated on 
this subsection's six well-known multimodal test functions. 
These test functions have more than one local optimum. 
Table 5 presents the details of the multimodal test function 
besides Table 6 and Fig. 3. Three represent the statistical 
results and convergence graphs on these test functions.

Considering the statistical results of Table 6, it can be seen 
that the results of all the chaotic versions of the FFA algorithm 
on functions F9 to F11 are equal. Furthermore, all chaotic 
algorithms achieved the most optimal function values of F9 
and F10. Besides, on F12, all chaotic maps found promising 
positions for the test function except Circle, Liebovitch, and 
Tent maps. The Logistic and Sawtooth maps achieved better 
results for all multimodal test functions than other maps, as 
mentioned in Table 6. Figure 3 shows that all chaotic FFA 
algorithms have converged better and achieved more optimal 
cost values than the basic FFA algorithm. It also illustrates 
that the Tent map has an excellent convergence rate. However, 
the final result of the Logistic map is better.

5.1.3 � Fix‑Dimension Test Functions

This subsection provides the results of the CQFFA algorithm 
on the fix-dimension test functions. The dimension of these 
test functions cannot change. Table 7 shows the details of 
the fix-dimension test functions. The statistical results and 
the convergence graphs of the CQFFA algorithm have been 
provided in Table 8 and Fig. 4, respectively.

The results of the basic FFA and CQFFA algorithms 
express that on the F14, F16, F18, and F19. The necessary 
FFA performed better. However, in F17, F20, F22, and F23, 
the Sawtooth map obtained better results than other maps. 
Considering the success rates of the chaotic maps, it can be 
concluded that the Sawtooth maps outperform other chaotic 
maps in most test functions. Therefore, the Sawtooth map 
was selected as the victorious map. To further investigate 
the CQFFA algorithm's performance in the following 
subsection, the FFA algorithm with Sawtooth map was 
applied to several well-known real-world applications. The 
results have been compared with similar algorithms.

5.1.4 � Statistical Test

In this subsection, we used the Wilcoxon signed-rank test 
to show the proposed algorithm's performance better. The 
Tables 9, 10, 11 report the results of the Wilcoxon signed-
rank test of the CQOFFA algorithm versus different chaotic 
maps. The test is conducted with a 5% significant level on all 
test functions. In the tables, the one values in the R column 
indicate a considerable difference. The -1 values express 
there is no significant difference. The zero values mean the 
test cannot decides the critical differences.

5.2 � Engineering Optimization Problems

The following section evaluates the performance of the 
CQFFA algorithm in solving six engineering problems. 
These problems using P-Metaheuristics is one of the excel-
lent and novel research areas. The results obtained by FFA 

Table 2   The parameter values of the algorithms

Algorithm Parameter Description value

CQFFA nSol Number of Solutions 50
nSec Number of Sections 2
Maxiter Maximum number of Iteration 1000
K Agricultural land division number 8

Table 3   Details of the unimodal 
test functions

Function Dimension Range F
min

F1 f (x) =
∑d

i=1
x2
i

30 [−100, 100]d 0

F2 f (x) =
∑d

i=1
�

�

xi
�

�

+
∏d

i=1
�

�

xi
�

�

30 [−10, 10]d 0

F3
f (x) =

∑d

i=1

�

∑i

j=1
xj

�2 30 [−100, 100]d 0

F4 f (x) = maxi
{

|

|

xi
|

|

, 1 ≤ i ≤ d
}

30 [−100, 100]d 0
F5 f (x) =

∑d−1

i=1

�

100
�

xi+1 − x2
i

�2
+
�

xi − 1
�2
�

30 [−30, 30]d 0

F6 f (x) =
∑d

i=1

�

�

�

xi + 0.5�
�

�2 30 [−100, 100]d 0

F7 f (x) =
∑d

i=1
ix4

i
+ random[0, 1) 30 [−1.28, 1.28]d 0
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Fig. 2   Convergence graph of the different chaotic maps on the unimodal test functions
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are compared with other different optimization or modified 
algorithms.

5.2.1 � Three‑bar Truss Design Problem

The Three-bar truss engineering problems display the for-
mulated truss and the applied forces to this structure. This 
problem has two design variables (x1x2) . The purpose of 
this problem is to minimise the total weight of the structure. 
Additionally, this design issue includes various limitations, 
such as deflection, buckling, and stress. The experiments 
used 50 primary populations in 500 irritations and 30 inde-
pendent runs. Furthermore, since this issue has limitations, 
it is necessary to integrate limitation control techniques in 
CQFFA. The barrier penalty 54 approach has been used in 
CQFFA. It is expressed mathematically as Eq. (14).

Consider �⃗X = [x1x2][A1A2],

Minimise f ( �⃗X) =
�

2
√

2X1 + X2

�

× L,

Subject to g1(
�⃗X) =

√

2x1 + x2
√

2x2
1
+ 2x1x2

P − 𝜎 ≤ 0,

g2(
�⃗X) =

x2
√

2x2
1
+ 2x1x2

P − 𝜎 ≤ 0,

g3(
�⃗X) =

1
√

2x2 + x1

P − 𝜎 ≤ 0,

The results obtained by CQFFA have been compared with 
other optimization algorithms such as GOA55, MBA56, 
SSA57, PSO-DE58, DEDS59, MFO60, MVO61, Ray and 
Sain62, CS63, TSA64 and the results of this comparisons 
are shown in Table 12.

Results in Table 12 indicate that CQFFA has achieved better 
performance and results than other optimization algorithms. 
Also, according to the obtained results, it can be confirmed that 
CQFFA has the excellent problem-solving ability.

5.2.2 � Rolling Element Bearing Design Problem

This engineering problem has ten variables and nine con-
straints to maximise the load-carrying capacity mathemati-
cally stated in Eq. (15).

Variable range 0 ≤ x1, x2 ≤ 1,

(14)whereL = 100cm,P = 2KN∕cm2, � = 2KN∕cm2

Maximize Cd = fcZ
2∕3D1.8

b
ifD ≤ 25.4mm

Cd = 3.647fcZ
2∕3D1.4

b
ifD > 25.4mm

Subject to

g1(z⃗) =
𝜑0

2sin−1(Db∕Dm)
− Z + 1 ≤ 0,

g2(z⃗) = 2Db − KDmin(D − d) > 0,

Table 5   Details of the multimodal test functions

Function Dimension Range F
min

F8
f (x) = −

∑d

i=1

�

xisin

�

�

�

�

xi
�

�

��

30 [−500, 500]d -12,569.5

F9 f (x) = 10d +
∑d

i=1

�

xd
i
− 10cos

�

2�xi
�� 30 [−5.12, 5.12]d 0

F10
f (x) = −20exp

�

−0.2

�

1

d

∑d

i=1
x2
i

�

− exp
�

1

d

∑d

i=1
cos2�xi

�

+ 20 + e
30 [−32, 32]d 0

F11 f (x) =
1

4000

∑d

i=1
x2
i
−
∏d

i=1
cos

�

xi
√

i

�

+ 1
30 [−600, 600]d 0

F12 f (x) =
�

d

�

10sin
�

�y1
�

+
∑d−1

i=1

�

yi − 1
�2�

1 + 10sin2
�

�yi+1
��

+
�

yd − 1
�2
�

+
∑d

i=1
U
�

xi, 10, 100, 4
�

yi = 1 +
xi+1

4
,
U
�

xi, a, k,m
�

=

⎧

⎪

⎨

⎪

⎩

k
�

xi − a
�m

xi > a

0 − a < xi < a

k
�

−xi − a
�m

xi < −a

30 [−50, 50]d 0

F13
f (x) = 0.1

�

sin
2
�

3�x1
�

+
∑d

i=1

�

x
i
− 1

�2�

1 + sin
2
�

3�x
i
+ 1

��

+
�

x
d
− 1

�2�

1 + sin
2
�

2�x
d

��

�

+
∑d

i=1
U
�

x
i
, 5, 100, 4

�

30 [−50, 50]d 0
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1 3

Fig. 3   Convergence graph of the different chaotic maps on the multimodal test functions
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g3(z⃗) = KDmax(D − d) − 2Db ≥ 0,

g4(z⃗) = 𝜁Bw − Db ≤ 0,

g5(z⃗) = Dm − 0.5(D + d) ≥ 0,

g6(z⃗) = (0.5 + e)(D + d) − Dm ≥ 0,

g7(z⃗) = 0.5(D − Dm − Db) − 𝜖Db ≥ 0,

g8(z⃗) = fi ≥ 0.515,

g9(z⃗) = fo ≥ 0.515,

where

fc = 37.91

⎡

⎢

⎢

⎣

1 +

�

1.04

�

1 − �

1 + �

�1.72�
fi(2fo − 1)

fo(2fi − 1)

�0.41
�10∕3

⎤

⎥

⎥

⎦

−0.3

×

[

�0.3(1 − γ)1.39

(1 + γ)1∕3

][

2fi

2fi − 1

]0.41

The obtained results by CQFFA compared with the 
optimization algorithms of PVS65, TLBO66, HHO67, and 
GA68, and the results are shown in Table 13.

By examining the results shown in Table 13, it was found 
that CQFFA has achieved much better results than the other 
algorithms.

x = [{(D − d)∕2 − 3(T∕4)}2 +
{

D∕2 − T∕4 − D
b

}2

− {d∕2 + T∕4}2]

y = 2{(D − d)∕2 − 3(T∕4)}
{

D∕2 − T∕4 − Db

}

�o = 2Π − cos−1
(

x

y

)

, � =
Db

Dm

, fi =
ri

Db

, fo =
ro

Db

T = D − d − 2Db

D = 160, d = 90,B
w
= 30, r

i
= r

o
= 11.0330.5(D + d)

≤ D
m
≤ 0.6(D + d),

0.15(D − d) ≤ Db ≤ 0.45(D − d), 4 ≤ Z ≤ 50, 0.515 ≤ fiandfo ≤ 0.6,

0.4 ≤ KDmin ≤ 0.5, 0.6 ≤ KDmax ≤ 0.7, 0.3 ≤ e ≤ 0.4, 0.02 ≤ e ≤ 0.1,

(15)0.6 ≤ � ≤ 0.85

Table 7   Details of the fix-dimension test functions

Function Dimension Range F
min

F14
f (x) =

�

1

500
+
∑25

i=1

1

i+
∑2

j=1(xj−aj,i)
6

�−1 2 [−65.53, 65.53] 0.9980

F15
f (x) =

∑d

i=1

�

�

�

�

ai −
x1(b2i +bix2)
b2
i
+bix3+x4

�

�

�

�

2 4 [−5, 5]d 3.0748e−04

F16 f (x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
2 [−5, 5]d − 1.0316

F17
f (x) =

(

x2 −
5.1

4�2 x
2

1
+

5

�
x1 − 6

)2

+ 10

(

1 −
1

8�

)

cosx1 + 10
2 [−5, 10]d × [0, 15]d 0.3979

F18
f (x) =

[

1 +
(

x1 + x2 + 1
)2(

19 − 14x1 + 3x
2

1
− 14x2 + 6x1x2 + 3x

2

2

)

]

×
[

30
(

2x1 − 3x2

)2(

18 − 32x1 + 12x
2

1
+ 48x236x1x2 + 27x

2

2

)

]

2 [−2, 2]d 3.0000

F19 f (x) = −
∑4

i=1
aiexp

�

−
∑3

j=1
bij
�

xj − pij
�2
�

3 [0, 1]d − 3.86278

F20 f (x) = −
∑4

i=1
aiexp

�

−
∑6

j=1
bij
�

xj − pij
�2
�

6 [0, 1]d − 3.322

F21
f (x) = −

∑5

i=1

�

�

�

�

xi − ai
��

xi − ai
�T

+ ci
�

�

�

−1 4 [0, 10]d − 10.1532

F22
f (x) = −

∑7

i=1

�

�

�

�

xi − ai
��

xi − ai
�T

+ ci
�

�

�

−1 4 [0, 10]d − 10.4028

F23
f (x) = −

∑10

i=1

�

�

�

�

xi − ai
��

xi − ai
�T

+ ci
�

�

�

−1 4 [0, 10]d − 10.5363
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5.2.3 � Welded Beam Design Problem

The Welded beam design problem minimises the Welded 
beam's cost and gets the best manufacturing cost due to the 
design limitations. The variables in this problem are length 
(l), the thickness of the weld (h), the thickness of the bar (b), 
and height (t). This problem is expressed mathematically as 
Eq. (16).

Where

Optimal results obtained from CQFFA have been com-
pared with optimization algorithms GA169, HS70, GSA71, 

(16)Consider z⃗ = [z1, z2, z3, z4] = [h, l, t, b],

Minimise f
(

z⃗
)

= 1.10471z2
1
z2 + 0.04811z3z4(14.0 + z2),

Subjectto g1
(

z⃗
)

= 𝜏
(

z⃗
)

− 𝜏max ≤ 0,

g2
(

z⃗
)

= 𝜎
(

z⃗
)

− 𝜎max ≤ 0,

g3
(

z⃗
)

= 𝛿
(

z⃗
)

− 𝛿max ≤ 0,

g4
(

z⃗
)

= z1 − z4 ≤ 0,

g5
(

z⃗
)

= P − Pc

(

z⃗
)

≤ 0,

g6
(

z⃗
)

= 0.125 − z1 ≤ 0,

g6
(

z⃗
)

= 1.10471z2
1
+ 0.04811z3z4

(

14.0 + z2
)

− 5.0 ≤ 0,

Variable range 0.05 ≤ z1 ≤ 2.00, 0.25 ≤ z2 ≤ 1.30, 2.00 ≤ z3 ≤ 15.0,

𝜏
�

z⃗
�

=

�

𝜏 �22𝜏 �𝜏 ��
z2

2R
+ 𝜏 ��2, 𝜏

�

=
P

√

2z1z2

, 𝜏
�� MR

J
,M = P

�

L +
z2

2

�

,

R =

�

�

�

�

z
2

2

4
+

�

z1 + z3

2

�2

, J = 2

�

√

2z1z2

�

z
2

2

12
+

�

z1 + z3

2

�2
��

,

𝜎
�

z⃗
�

=
6PL

z4z
2

3

𝛿
(

z⃗
)

=
4PL3

Ez3
3
z4
,Pc

(

z⃗
)

=

4.013E

√

z2
3
z6
4

36

L2

(

1 −
z3

2L

√

E

4G

)

,

P = 6000lb,L = 14in,E = 30 × 10
6psi,G = 12 × 10

6psi,

GA254, DAVID72, APPROX72, SIMPLEX72, RAN-
DOM72, CDE73, ESs74 and are listed in Table 14.

Table 14 shows that CQFFA has obtained the best design-
related settings with the least fitness compared to other opti-
mization algorithms.

5.2.4 � Pressure Vessel Design Problem

The primary purpose of this problem is to minimise the 
manufacturing cost. This issue has four limitations and four 
parameters. The parameters of this problem are ( z1—z4 ): Ts 
( z1 , the thickness of the shell), Th ( z2 , the thickness of the 
head), r ( z3 , inner radius), L ( z4 , length of the section with-
out the head). The mathematical formula for this problem 
is Eq. (17).

The design space for this case is limited to 0 ≤ z1 , z2 ≤ 99, 
0 ≤ z3 , z4 ≤ 200.

Results of solving this problem using CQFFA have 
been compared with other optimization algorithms such as 
WOA71, BA75, MDDE76, CPSO77, CSS78, BIANCA79, 
HPSO80, G-QPSO81, WEO82, IACO83, MFO60, GA384, 
GWO85, ESs74, GA69, DELC86, Branch-bound (Sandgren) 
71, Lagrangian multiplier (Kannan) 71. Obtained results 
using CQFFA of other optimization algorithms are shown 
in Table 15.

By examining these results, it can be seen that CQFFA 
performs better than other algorithms in dealing with this 
problem, and the obtained results from CQFFA are much 
better than other methods.

5.2.5 � Tension/Compression Spring Design

This problem's primary purpose is to minimise a spring's 
weight. The variables used to design this problem are the 
number of active coils (N), mean coil diameter (D), and wire 
diameter (d). Minimum deflection, shear stress, and surge 

Consider z⃗ = [z1z2z3z4] = [TsThRL],

Minimise f
(

z⃗
)

= 0.6224z1z3z4 + 1.7781z2z
3

2

+ 3.1661z2
1
z4 + 19.84z2

1
z3,

Subject to g1
(

z⃗
)

= −z1 + 0.0193z3 ≤ 0,

g2
(

z⃗
)

= −z3 + 0.00954z3 ≤ 0,

g3
(

z⃗
)

= −Πz2
3
z4 −

4

3
Πz3

3
+ 1, 296, 000 ≤ 0,

(17)g4
(

z⃗
)

= z4 − 240 ≤ 0,
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frequency limits should apply when solving this problem 
during the weight optimization process. This problem can 
be expressed mathematically as Eq. (18).

Considerz⃗ = [z1z2z3] = [dDN],

Minimisef (z⃗) =
(

z3 + 2
)

z2z
2

1
,

Fig. 4   Convergence graph of the different chaotic maps on the fix-dimension test functions
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To evaluate the obtained results, CQFFA has been com-
pared with several optimization algorithms that have solved 
the so-called problem, such as Arora87, MFO60, GWO85, 
SSA57, WOA71, GSA88, ESs74, CPSO77, GA269, GA384, 

Subjecttog1
(

z⃗
)

= 1 −
z3
2
z3

71785z4
1

≤ 0,

g2
(

z⃗
)

=
4z2

2
− z1z2

12566(z2z
3

1
− z4

1
)
+

1

5108z2
1

≤ 0,

g3
(

z⃗
)

= 1 −
140.45z1

z2
2
z3

≤ 0,

(18)g4
(

z⃗
)

=
z1 + z2

1.5
− 1 ≤ 0,

and WEO82. The results of this comparison are also given 
in Table 16.

The results in Table  16 indicate that CQFFA has a 
remarkable ability to produce high-quality solutions and 
has been able to have a good design in solving this problem. 
On the other hand, the results are very near and competitive 
compared to TEO and SFS optimization algorithms.

5.2.6 � Multi‑plate Disc Clutch Brake

This engineering problem's main objective is to optimise 
the multiple disc clutch brake's total weight for several 
variables, including actuating force, inner and outer radius, 
number of friction surfaces, and thickness of discs. It also 
has eight limitations. This engineering problem is expressed 
mathematically in Eq. (19).

f (x) = Π
(

r2
o
− r2

i

)

t(Z + 1)�

Fig. 4   (continued)
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subject to ∶

g1(x) = ro − ri − Δr ≥ 0,

g2(x) = lmax − (Z + 1)(t + �) ≥ 0,

g3(x) = Pmax − Prz ≥ 0,

g4(x) = Pmaxv����� − Prz�sr ≥ 0,

g5(x) = vsrmax − vsr ≥ 0,

g6 = Tmax − T ≥ 0,

g7(x) = Mh − sMs ≥ 0,

(19)g8(x) = T ≥ 0,

Δr = 20mm  ,  Iz = 55kgmm2  ,  Pmax = 1MPa  , 
Fmax = 1000N  ,  Tmax = 15s,� = 0.5, s = 1.5,Ms = 40Nm, 
Mf = 3Nm, n = 250rpm, 
vsrmax = 10m∕s, lmax = 30mm, rimin = 60, 
rimax = 80, romin = 90, 
romax = 110, tmin = 1.5, tmax = 3,Fmin = 600, 
Fmax = 1000, Zmin = 2, Zmax = 9.

where,

M
h
=

2

3
�FZ

r
3
o
− r

2

i

r2
o
− r

3

i

,P
rz
=

F

Π(r2
o
− r

2

i
)
,

v
rz
=

2Πn
(

r
3
o
− r

3

i

)

90
(

r2
o
− r

2

i

) , T =
I
z
Πn

30(M
h
+M

f
)

Table 12   Comparison of results for the three-bar truss design prob-
lem

Best results among all algorithms are indicated in bold

Algorithm Optimal values for variables Optimal weight

x1 x2

CQFFA 0.7886684 0.4082672 263.8958434
DEDS [59] 0.7886751 0.4082482 263.8958434
PSO-DE [58] 0.7886751 0.4082482 263.8958433
SSA [57] 0.7886654 0.4082757 263.8958434
MBA [56] 0.7885650 0.4085597 263.8958522
TSA [64] 0.7885416 0.4084548 263.8985569
GOA [55] 0.7888975 0.4076195 263.8958814
CS [63] 0.7886745 0.4090254 263.9716548
Ray and Sain [62] 0.7955484 0.3954792 264.3217937
MVO [61] 0.7886027 0.4084530 263.8958499
MFO [60] 0.7882447 0.4094669 263.8959797

Table 13   Comparison of results 
for rolling element bearing 
design problem

Best results among all algorithms are indicated in bold

GA4 [68] PVS [65] HHO [67] TLBO [66] CQFFA

Dm 125.7171 125.7190 125.0000 125.7191 1.2572E + 02
Db 21.42300 21.42559 21.00000 21.42559 21.42330
Z 11.00000 11.00000 11.09207 11.00000 11.00115
fi 0.515000 0.515000 0.515000 0.515000 0.515000
fo 0.515000 0.515000 0.515000 0.515000 0.515000
KDmin 0.415900 0.400430 0.400000 0.424266 0.400155
KDmax 0.651000 0.680160 0.600000 0.633948 0.614400
� 0.300043 0.300000 0.300000 0.300000 0.300000
e 0.022300 0.079990 0.050474 0.068858 0.073413
� 0.751000 0.700000 0.600000 0.799498 0.655940
Cost 81,843.30 81,859.74 83,011.88 81,859.74 8.5539E + 04

Table 14   Comparison of results for the welded beam design problem

Best results among all algorithms are indicated in bold

Algorithm h l t b Optimal cost

CQFFA 0.20573 3.47041 9.03661 0.20573 1.72485
GSA [71] 0.18212 3.85698 10.0000 0.20237 1.87995
GA2 [54] 0.20880 3.42050 8.99750 0.21000 1.74831
HS [70] 0.24425 6.22316 8.29150 0.24431 2.38070
GA1 [69] 0.24890 6.17300 8.17890 0.25330 2.43311
APPROX [72] 0.24444 6.21890 8.29151 0.24440 2.38150
SIMPLEX 

[72]
0.27923 5.62560 7.75125 0.27960 2.53074

RANDOM 
[72]

0.45757 4.73134 5.08530 0.66547 4.11855

DAVID [72] 0.24340 6.25528 8.29157 0.24446 2.38410
ESs [74] 0.19974 3.61206 9.03753 0.20608 1.73730
CDE [73] 0.20313 3.54299 9.03349 0.20617 1.73346
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The optimal results obtained by CQFFA compared with 
the results of TLBO66, HHO67, WCA​89, and PVS65 algo-
rithms, and these results are shown in Table 17.

A review of Table 17 indicates that CQFFA performs 
better than TLBO, WCA, and PVS algorithms while achiev-
ing close and competitive results compared to HHO algo-
rithms. Reviewing and evaluating the CQFFA algorithm in 
different benchmarks and engineering problems shows that 
the CQFFA has performed better than other comparative 
algorithms.

6 � Conclusion and Future Works

In this paper, FFA's exploration and exploitation capabil-
ity has improved by using twelve different chaotic maps 
embedded into FFA to find the best number of prospectors 
to increase the exploitation of the best promising solutions. 
Furthermore, the QOBL mechanism has enhanced the explo-
ration and convergence rate. The CQFFA algorithm's perfor-
mance has evaluated o twenty-three widely used test func-
tions and six well-known real-world engineering problems. 
The results show that the CQFFA algorithm performs bet-
ter and indicate that this version has a good and significant 
performance compared to the original version of the FFA 
algorithm. Because the weaknesses of FFA are well identi-
fied and well covered using the mechanisms used. Many 
movement search strategies can be embedded into CQFFA 
to improve its efficiency as much as possible in the future. 
Also, CQFFA can hybridise with other metaheuristics algo-
rithms. On the other hand, the multi-objective model of the 
proposed algorithm can be used to solve multi-objective 
problems. Finally, due to the excellent potential of the pro-
posed algorithm, it can be a perfect option for solving binary 
and clustering problems.

Table 15   Comparison of results 
for pressure vessel design 
problem

Best results among all algorithms are indicated in bold

Algorithms T
s
(x1) T

h
(x2) R(x3) L(x4) Optimal cost

CQFFA 0.778168 0.384649 40.319618 199.9900 5.8853E + 03
BIANCA [79] 0.812500 0.437500 42.096800 176.6580 6.0599E + 03
HPSO [80] 0.812500 0.437500 42.098400 176.6366 6.0597E + 03
CPSO [77] 0.812500 0.437500 42.091266 176.7465 6.0611E + 03
CSS [78] 0.812500 0.437500 42.103624 176.5727 6.0591E + 03
G-QPSO [81] 0.812500 0.437500 42.098415 176.6372 6.0597E + 03
WEO [82] 0.812500 0.437500 42.098444 176.6366 6.0597E + 03
IACO [83] 0.812500 0.437500 42.098353 176.6378 6.0597E + 03
GA3 [84] 0.812500 0.437500 42.097454 176.6541 6.0599E + 03
GWO [85] 0.812500 0.434500 42.089181 176.7587 6.0516E + 03
MFO [60] 0.812500 0.437500 42.098445 176.6366 6.0597E + 03
WOA [71] 0.812500 0.437500 42.098269 176.6390 6.0597E + 03
BA [75] 0.812500 0.437500 42.098445 176.6366 6.0597E + 03
MDDE [76] 0.812500 0.437500 42.098446 176.6360 6.0597E + 03
GA [69] 0.812500 0.437500 42.097398 176.6541 6.0599E + 03
DELC [86] 0.812500 0.437500 42.098445 176.6366 6.0597E + 03

Table 16   Comparison of results for tension/compression spring prob-
lem

Best results among all algorithms are indicated in bold

Algorithms d D N Optimal cost

CQFFA 0.051697 0.356909 11.277755 0.012665
Arora [87] 0.053396 0.399180 9.1854001 0.012730
MFO [60] 0.051994 0.364109 10.868422 0.012666
GWO [85] 0.051690 0.356737 11.288851 0.012666
SSA [57] 0.051207 0.345215 12.004032 0.012676
WOA [71] 0.051207 0.345215 12.004032 0.012676
GSA [88] 0.050276 0.323680 13.525410 0.012702
ESs [74] 0.051643 0.355360 11.397926 0.012698
CPSO [77] 0.051728 0.357644 11.244543 0.012674
GA2 [69] 0.051480 0.351661 11.632201 0.012704
GA3 [84] 0.051989 0.363965 10.890522 0.012681
WEO [82] 0.051685 0.356630 11.294103 0.012665

Table 17   Comparison of results for multi-plate disc clutch brake

Algorithm WCA 
[89]

TLBO 
[66]

PVS [65] HHO [67] CQFFA

ri 70 70 70 70 70
r0 90 90 90 90 90
t 1 1 1 1 1
F 910 810 980 1000 1000
Z 3 3 3 2.312781 2.312781
Optimal cost 0.313656 0.313656 0.313665 0.259768 0.259769
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compare the proposed method with other algorithms.
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