
Vol:.(1234567890)

Journal of Bionic Engineering (2023) 20:158–183
https://doi.org/10.1007/s42235-022-00255-4

1 3

RESEARCH ARTICLE

CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm
for Solving Engineering Optimization Problems

Farhad Soleimanian Gharehchopogh1 · Mohammad H. Nadimi‑Shahraki2,3 · Saeid Barshandeh4 ·
Benyamin Abdollahzadeh1 · Hoda Zamani2,3

Received: 3 January 2022 / Revised: 20 July 2022 / Accepted: 24 July 2022 / Published online: 29 August 2022
© Jilin University 2022

Abstract
Farmland Fertility Algorithm (FFA) is a recent nature-inspired metaheuristic algorithm for solving optimization problems.
Nevertheless, FFA has some drawbacks: slow convergence and imbalance of diversification (exploration) and intensification
(exploitation). An adaptive mechanism in every algorithm can achieve a proper balance between exploration and exploitation.
The literature shows that chaotic maps are incorporated into metaheuristic algorithms to eliminate these drawbacks. Therefore,
in this paper, twelve chaotic maps have been embedded into FFA to find the best numbers of prospectors to increase the
exploitation of the best promising solutions. Furthermore, the Quasi-Oppositional-Based Learning (QOBL) mechanism
enhances the exploration speed and convergence rate; we name a CQFFA algorithm. The improvements have been made in
line with the weaknesses of the FFA algorithm because the FFA algorithm has fallen into the optimal local trap in solving
some complex problems or does not have sufficient ability in the intensification component. The results obtained show that
the proposed CQFFA model has been significantly improved. It is applied to twenty-three widely-used test functions and
compared with similar state-of-the-art algorithms statistically and visually. Also, the CQFFA algorithm has evaluated six
real-world engineering problems. The experimental results showed that the CQFFA algorithm outperforms other competitor
algorithms.

Keywords Nature-inspired algorithm · Farmland fertility algorithm · Chaotic maps · Quasi · Engineering optimization
problems

1 Introduction

Optimization is a common problem in all fields of science
and engineering problems; each problem has a wide range
of issues and solutions. Optimization problems aim to find
the best feasible solution(s) on the threshold of the optimal
responses. Exact algorithms can find the optimal answer
accurately; however, these algorithms do not hold the apt

efficiency to solve challenging and complex optimization
problems. The optimisation becomes more complicated with
the surge in the dimensions of the problems. The execution
time increases exponentially, according to the statement of
the problem. Approximate algorithms are developed, find-
ing the near-optimal solution in a considerably short time to
solve challenging and complex optimization problems1–6.

Approximate algorithms are divided into two types: heu-
ristic and metaheuristic7. They are approximate methods of
solving optimization problems. Heuristic algorithms often
seek a near-optimal answer in a reasonable computational
time. However, heuristic algorithms do not guarantee the
optimal solution, get stuck in local traps, and have prema-
ture convergence. Metaheuristic algorithms have been intro-
duced due to the weakness of heuristic algorithms. Each
metaheuristic algorithm uses unique methods to get out of
the local trap or prevent it from getting stuck in it. As a result,
metaheuristic algorithms can find high-quality answers for all
optimization problems without getting stuck in local traps8.

 * Farhad Soleimanian Gharehchopogh
 bonab.farhad@gmail.com

1 Department of Computer Engineering, Urmia Branch,
Islamic Azad University, Urmia 969, Iran

2 Faculty of Computer Engineering, Najafabad Branch, Islamic
Azad University, Najafabad 517, Iran

3 Big Data Research Center, Najafabad Branch, Islamic Azad
University, Najafabad 517, Iran

4 Afagh Higher Education Institute, Urmia 969, Iran

http://orcid.org/0000-0003-1588-1659
http://crossmark.crossref.org/dialog/?doi=10.1007/s42235-022-00255-4&domain=pdf

159CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

Metaheuristic optimization algorithms have relatively sim-
ple concepts and are easy to implement. They do not need
additional information and can overcome local optimums
9. These algorithms can be classified into three main cat-
egories: evolution-based methods, physics-based methods,
and population-based methods. Regardless of their nature,
all metaheuristic optimization algorithms have the exact
mechanism. The two main phases of the search process are
exploration and exploitation in population-based metaheuris-
tic optimization algorithms. In the exploration phase, ran-
dom behaviour helps search the search space. However,
the primary goal is rapid exploitation in promising areas.
Finding the right balance between these phases is essential
since metaheuristic algorithms' nature is based on a random
population. It has been shown in the literature that chaotic
mappings can improve the balance between the two phases.
A central and interesting query is how some chaotic mapping
can improve an algorithm's performance and others do not.
There is still no satisfactory theoretical framework for this
analysis. This analysis presents the progress of the hybridisa-
tion of chaos and the metaheuristic algorithm. However, the
hybridisation of metaheuristic algorithms with chaotic maps
has been done by various researchers. It has balanced the
two major and central phases of metaheuristic algorithms10.

An improved version of the Grey Wolf Optimizer (GWO)
algorithm has been provided in Ref 11. to improve the
exploration and exploitation. This improvement has been
made through the chaotic logistic map, Opposition-Based
Learning (OBL), Differential Evolution (DE), and Disrup-
tion Operator (DO). Chaotic logistics and OBL strategy
are used to assign the primary candidate solutions, and
these approaches address random population problems and
increase algorithm convergence. The DE operators are then
hybrid with the GWO algorithm. DE operators are per-
formed as a local search mechanism to improve exploration
capability by updating the GWO population. Correspond-
ingly, after updating the solutions using hybridisation of
GWO and DE, DO has been used to advance the exploration
capability in which the DO has been exploited to maintain
population diversity. Therefore, the hybridisation of logistic
mapping, OBL, DE, and DO has offered the GWO method
and apparatus to improve the search space's balance between
exploration and exploitation without affecting the required
computational time.

The chaos model is presented in Ref. 12 based on
adaptive inertia weight to overcome the premature
convergence problem in the Particle Swarm Optimization
(PSO) algorithm. The initial population was generated using
chaotic mapping, which improved population diversity
and particle rotation, and used cube mapping sequences
to assign the particles' primary position and velocity. The
new inertia weight value is adjusted comparatively with the
feedback parameters, including the number of iterations, the

aggregation degree factor, and the evolution rate parameter.
The relationship between variance, population fitness, and
premature convergence threshold has prevented premature
convergence. If the population fitness variance is less than
the predetermined threshold, the chaos disorder surpasses
the local optimal, and the optimal local problem would be
solved. The improved evolution speed parameter is used as
the number of feedback iterations, the aggregation factor's
degree, and the adaptive inertia weight parameters. The
experiments on four fitness functions show that the proposed
algorithm's performance exceeds the other algorithms,
improves convergence speed, and increases the ability to
pass the local optimal.

Moreover, the Starling PSO algorithm, the aggregation of
Starling birds, has been proposed to improve the efficiency
of the global PSO search. The standard PSO performance
depends on the parameter's values, and parameter adjustment
is beneficial for obtaining exploration and exploitation
capabilities. Nonlinear adjustment of inertial weight and
chaotic search method based on logistic mapping improves
the global search efficiency in the basic PSO. It helps the
particles move away from the local optimal. Therefore, in
Ref. 13 Chaotic Starling PSO algorithm is presented. The
inertial weight is adjusted using a nonlinear decreasing
approach, and the acceleration coefficients are adjusted
using a chaotic logistic mapping strategy to avoid the early
maturation of the search process. The speed update has
used the term dynamic disruption to improve algorithm
convergence14. A local search strategy based on the
Starling birds' behaviour uses information from the nearest
neighbours and determines a new cumulative position
and rate. The two-particle selection methods maintain
the Euclidean distance, and the value of the proportional
function supports the particle population's diversity. These
improvements aid the particles in avoiding stagnation and
discovering unvisited areas in the problem space. The
experiments' results on optimising the standard function
and traditional clustering problems indicate this favourable
efficacy method. This algorithm has better convergence
features and a higher global search capability than the basic
PSO and other evolutionary algorithms.

Authors in Ref. 15 present a chaos-based method
for Bacterial Foraging Optimization (BFO). Adaptive
Chemotaxis step settings allow fast convergence and
improve convergence precision. The Chaotic perturbation
operation provides the search's condition to escape local
optimality and achieve better convergence precision. The
proposed algorithm tested five benchmark functions, and
the results show that the proposed algorithm had a better
performance than the basic BFO and BFO with linear
decreasing chemotaxis step.

In the present paper, first, the FFA is improved by the
QOBL and chaotic-based local search mechanisms. Then,

160 F. S. Gharehchopogh et al.

1 3

the chaotic-based local search mechanism is utilised for
twelve different chaotic functions. Improvements made
using the mechanisms used complement each other. And
with the FFA algorithm has shown high efficiency. Because
in addition to increasing the variability using chaotic maps
at all optimisation stages, the Intensification component has
also been improved by using OBL. The same mechanisms
have improved the FFA algorithm and have covered all the
weaknesses.

The CQFFA algorithm tests 23 well-known and widely
used test functions with all the chaotic functions. The results
in each chaotic function are statistically compared with the
other functions' results using convergence diagrams. Finally,
the proposed best chaotic function algorithm is applied
to several real-world engineering problems for a subtler
analysis. The obtained results are compared with the results
of several similar algorithms. In brief, the contribution of
the paper can be summarised as follows:

• Chaotic maps have been embedded into FFA for the first
time.

• The chaotic maps are used in a local search technique in
the CQFFA algorithm.

• The QOBL strategy has improved the problem of
trapping in local minima.

• The convergence rate is boosted using a chaotic-based
local search.

• The CQFFA algorithm is tested on twenty-three different
well-known test functions.

• The results of the CQFFA algorithm are compared with
several similar state-of-the-art algorithms.

• The CQFFA algorithm has been applied to six real-world
engineering problems.

• Experiments show the superiority of the CQFFA
algorithm compared with competitor algorithms.

The present paper has been organised as follows:
Sect. 2 summarises the improved algorithms using chaos
maps; Sect. 3 gives a brief overview of the FFA algorithm,
various chaotic functions, and mathematical models. In
Sect. 4, the CQFFA algorithm is explained; Sect. 5 presents
the experimental tests and findings, and finally, in the last
section, conclusions and future research are discussed in
detail.

2 Related Works

For scientists and researchers, there has always been the ques-
tion: "How can some chaotic mappings improve the perfor-
mance of an algorithm while others do not, and why the same
maps do not act similarly for each algorithm?" and so far.
They have not provided an excellent theoretical framework

for advancing the performance of metaheuristic algorithms
with chaotic maps. Therefore, by reviewing the literature,
various chaos maps have been used to improve metaheuristic
algorithms' versions, some of which are mentioned here.

In Ref. 16, the trapping in the optimal local problem and
premature convergence in the quantum Genetic Algorithm
(GA) has been solved by analysing the Piecewise Logis-
tic Chaotic Map characteristic. Furthermore, it improves
the quantum GA using the chaotic optimization approach
based on piecewise logistic chaos. It optimises the quantum
upgrade process by changing the angle and rotation with
quantum GA's fuzzy adaptive mode. By analysing the search
process of quantum GA, the optimization colony with the
ergodicity of chaotic operator in the public domain, not
changing the quantum GA mechanism and introducing the
chaos optimization method based on Piecewise Logistic
chaotic map and quantum update with fuzzy adaptation,
the so-called algorithm increases the development speed of
the colony and significantly increases the performance of
quantum GA . The simulation results show that this method
improves local and global searches, overcoming slow con-
vergence and getting stuck in local optimization than quan-
tum and canonical GA.

Furthermore, the solution is presented in Ref. 17 for
being trapped in the local optimal, slow convergence, and
inefficiency for high-dimensional problems in the chaos
version of the Fruitfly optimization algorithm, whose
performance is evaluated using ten chaotic maps. In the
meantime, the Chebyshev map shows superiority regarding
the reliability of being globally optimised and algorithm
success rate. The Chaotic-based DE algorithm is presented
in Ref. 18 to determine the optimal control variables for
optimising the baker's yeast drying process. Instead of the
random number generator, four different chaos maps, such
as Lorenz, Rossler, Chua, and Mackey–Glass, have been
used to determine the population's initial population in the
mutation operation. The chaos-based structure for generating
entities in a population is introduced instead of generating a
random number. Ten optimization problems have been used
to demonstrate the efficacy of Chaotic-based DE algorithms.

Additionally, Ref. 19 presents an OBL Chaotic DE
algorithm. The initial population is generated according to
the principles of OBL, and the dynamic matching of the
F_measure factor is performed using the chaos sequence.
The obtained numerical results of this algorithm on 18
benchmark functions were compared with the results of
the DE algorithm and the OBL-based DE algorithm. The
findings indicated that the proposed method finds superior
solutions and simultaneously possesses satisfactory global
search ability, stability, and convergence speed. Using chaos
is among the techniques for adjusting individual parameters
in metaheuristic algorithms. Therefore, in Ref. 20, a chaotic
version has been provided to improve the global search in

161CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

the bat algorithm called the CBA. Four versions of the CBA
have been introduced, and thirteen chaos maps have been
exploited to validate each of these four versions. Comparing
the various CBAs, the algorithm uses sinus mapping as
pulse rate, namely CBA-IV, is considered the best type. The
results show that the improvement of the new algorithms is
due to the application of definite chaotic signals instead of
random and constant values. Statistical results and success
rates of CBAs show that adjusted algorithms can improve
the reliability of general optimization. The results show
that some versions of the CBA can perform better than the
traditional bat one.

Ten chaos maps have been introduced in the Moth-Flame
Optimization Algorithm (MSA) to surge the best prospectors
to exploit the best promising solutions21. Experiments
have been tested on seven benchmark functions with 30
executions. These performances' best and average modes
show that chaotic maps can improve the essential MSA's
efficiency in terms of convergence speed. Simultaneously,
a sinusoidal map is the most preeminent map to improve
the efficiency of the MSA. Four improved versions of the
stochastic Fractal Search Algorithm (FSA) are presented in
Ref. 22 with chaos theory to solve optimization problems
and apply them in control design. The chaotic version of
the Stochastic FSA performed better than the algorithm
itself. It was influenced by two chaos maps (Chebyshev and
Gauss/Mouse maps) that focused on the convergence speed
and precision of the Stochastic FSA search results. Two
standard test functions with the dimensional and landscape
levels have been used to evaluate the proposed algorithm's
performance with previous algorithms using the IEEE
CEC2014 benchmark functions. The proposed approach
has also been implemented to optimise fuzzy logic PD-type
and traditional PID controllers for a Twin rotor system in
hovering mode. The simulations show that the Chaotic FSA
performed better with the Gauss/Mouse chaotic map in the
initial upgrade and propagation process than the Chaotic
FSA and Stochastic FSAs. Besides, the PD-type fuzzy logic
controller in the dual-rotor system design control performed
better than the PID controller.

Furthermore, in Ref. 23, ten chaotic maps are plotted on
the Gravitational Search Algorithm (GSA) named Chaotic
GSA (CGSA). An adaptive normalisation method is also
provided for the smooth transition from the exploration
phase to the exploitation phase. Twelve standard functions
with bias have evaluated the efficiency of CGSA algorithms
in exploration and exploitation. The results show that chaotic
maps have improved GSA's exploration and exploitation
phase. A statistical test called Wilcoxon has been conducted
to examine the importance of results. The results show that
a sinusoidal map is the best option for CGSA performance.
Chaos maps improve the exploration phase since changing
G's value helps the affected masses be saved from the local

minimum. Chaos maps can be used to balance exploration
and exploitation. Sinus map helps GSA to avoid local
minimums better than other chaotic maps. The adaptive
normalisation method allows the sinusoidal map to focus
on exploitation instead of exploration in the final iteration.

In Ref. 24, chaos theory has been used to adjust the Crow
Search Algorithm (CSA) parameters to improve the general
convergence rate and exploration/exploitation trends of the
CSA to solve fractional optimization problems. The CSA
randomly leads to unsatisfactory solutions in some cases,
which in hybridisation with the chaos method can accelerate
the convergence efficiency and improve the quality of the
solutions. The simulation results have been tested on 20
well-known fractional benchmark problems, enhanced
by introducing chaotic maps, exploration capabilities,
exploitation, and early convergence of the CSA. It works
better than compared algorithms in terms of optimization.
Moreover, it can find optimal global solutions for fractional
problems and electrical applications. As computational
speed reduces, the convergence speed reduces computational
time. Also, the effectiveness of the proposed chaotic CSA
has been justified using the non-parametric Wilcoxon
signed-rank test. The results show that the proposed method
has performed satisfactorily in terms of the quality and
reliability of other algorithms.

The Grasshopper Optimization Algorithm (GOA)
is an algorithm inspired by the collective behaviour of
grasshoppers. In Ref. 25, the GOA optimization process
introduces Chaos theory to increase its general convergence
rate. Ten chaos maps have been applied to balance
exploitation and exploration in the optimisation process
and reduce grasshoppers' absorption/repulsion forces. The
proposed methods are evaluated on thirteen test functions.
The results show that chaotic maps can significantly improve
GOA performance. The results also show that c1 and c2
cannot greatly enhance the performance of GOA. The
improvement in efficiency is that the circle map provides
a better balance between exploration and exploitation. The
optimization process prevents it from getting stuck in the
local optimal. Adjusted algorithms also improve general
optimization confidence and increase the quality of the
results.

Some of the other chaos-enhanced Metaheuristic algo-
rithms are chaotic GAs26, Chaotic SA 27, Chaotic local
search-based differential evolution algorithms28, Chaotic
Hybrid Cognitive Optimization Algorithm29, CABC–CSA
30, Chaotic Krill Herd algorithm 31, Chaotic Salp Swarm
Algorithm 32, Chaotic vortex search algorithm33, Chaotic
Quantum CSA34, Chaotic Antlion Algorithm35, Chaotic
PSO 36, Chaotic GWO 37. Finally, this paper presents the
CQFFA algorithm to solve optimization problems, discuss
the following basic concepts and proposed algorithms, and
evaluates different methods and chaotic modes.

162 F. S. Gharehchopogh et al.

1 3

3 Fundamental Research

In this section, the basic concepts used in this paper are
explained. Subsection (3.1) will briefly and usefully explain
the FFA algorithm, and subsection (3.2) will describe the
chaos maps using which the CQFFA is presented.

3.1 Farmland Fertility Algorithm (FFA)

FFA is a novel metaheuristic algorithm inspired by the
fertility of agricultural land in nature 38. In this algorithm,
the solutions are optimised based on the division of
agricultural lands. With the optimal exploitation of two
types of internal and external memory, the solutions of
each section are optimised. According to Refs. 6, 47, the
formulation and steps of this algorithm are as follows. First,
the initial population is generated randomly, and the initial
parameters are set. Obviously, unlike other algorithms,
solutions are also divided. Then, the number of primary
populations is determined by Eq. (1):

In Eq. (1), n indicates the total number of solutions in the
search space, and k indicates the number of land parts or
space. n indicate the number of solutions available in each
section of agricultural land. This number is a variable and
an integer. The available solutions in the entire search space
are evaluated according to the fitness function at this stage.
FFA has a separate section for determining the value of k
that specifies the optimal value for 8 ≥ k ≥ 2 . However, the
value of k can be changed according to the optimization
problem. The quality of each part of the agricultural land is
obtained based on the average solutions available. Initially,
the solutions are assigned to different sections by Eq. (2).

In Eq. (2), the existing solutions separate each section
to calculate each section's average. x is all solutions in the
search space, s represents the section number, and j = {1,2,
… D} indicates the dimension of the variable x. After
segmentation, the quality of each segment is determined by
Eq. (3).

In Eq. (3), Fit_Section indicates the value that determines
the quality of the solutions in each part of the agricultural
land, which in the search space is the same as the average
fit or suitability of all the solutions in each part. Therefore,
for each agricultural land sector, the average of all solutions

(1)N = k × n

(2)
Sections = x(aj), a = n(s − 1) ∶ n × s,

s = {1, 2,… .k}, j = {1, 2,… .D}

(3)
Fit_Sections = Mean

(

all fit
(

xji
)

in Sections
)

s = {1.2.… .k}.i = {1.2.… .n}

within each sector is obtained and stored in Fit_Sections .
Equation (4) is used to update local memory, and Eq. (5) is
used for global memory.

In Eqs. (4) and (5), MGlobal shows the number of solutions
in global memory and Mlocal indicates the number of local
memory solutions, and the solutions are based on fitness and
suitability in these memories. Moreover, both memories are
updated at this stage, and both are updated at this point. As
the work progresses, the part with the worst quality changes
the most. The worst part of agricultural land in terms of
quality is that all the worst parts are combined with global
memory solutions according to Eqs. (6) and (7).

In Eq. (7), XMGlobal is a random solution that is one of
the available solutions in global memory, and α is a number
between zero and one, initialised in the FFA algorithm.Xij is
the solution in the worst part of the agricultural land selected
to apply the changes, and h is a decimal number calculated
based on Eq. (6). Solutions in other sections change based
on Eqs. (8) and (9).

In Eqs. (8) and (9), Xuj is a random solution among
the available solutions in the whole search space; that is,
a random path is selected among all the solutions in the
sections, and β is a number between intervals zero and one,
which must be initialised in the proposed first algorithm.
Xij is a solution from the parts (except for the worst part)
that have been selected to apply the changes, and h is a
decimal number that can be calculated based on Eq. (9). In
this algorithm, farmers in the final stage decide to combine
each of the soils within the sectors of the agricultural
land based on the bests available in their local memory
(BestLocal). The condition for combining with the available
bests in local memory is that not all solutions in all sections
are combined with their local memory, and at this stage,
some of the solutions in all places are combined with the
best solution, which has been found so far (BestGlobal) to
improve the quality of the solutions in each one of them.
The hybridisation of the desired resolution with BestGlobal
or BestLocal is determined by Eq. (10).

(4)MGlobal = round(t × N); 0.1 < t < 1

(5)Mlocal = round(t × n); 0.1 < t < 1

(6)h = �.rand(−1.1)

(7)Xnew = h.
(

Xij − XMGlobal

)

+ Xij

(8)h = β.rand(0.1)

(9)Xnew = h ×
(

Xij − Xuj

)

+ Xij

163CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

In Eq. (10), the new solution may create in two ways.
Variable Xij is a solution from the parts (except for the worst
part) that have been selected to apply the changes. Q is a
parameter initialised between zero and one. This parameter
specifies the extent to which solutions are combined
withBestGlobal. �1 . The FFA algorithm's parameters are
integer and must first be determined in the first algorithm,
gradually decreasing in value based on the algorithm's
iteration (Eq. (11)).

Correspondingly, the available solutions throughout
the search space are evaluated according to the objective
function. This step is done regardless of the number of
sections on all the available solutions in the search space.
The termination conditions are checked at the end. If the
end condition is met, the algorithm ends. Otherwise, the
algorithm will continue to work until the termination
conditions are met.

3.2 Chaos and Chaotic Map Functions

Chaos means clutter, turmoil, and disorder. The term implies
the absence of any stable structure and everyday conversa-
tion. It recognises disorganisation, inefficiency, and a nega-
tive denotation. With the advancement of scientists' attitudes
and the clarification of its scientific and theoretical dimen-
sions, today's disorder and chaos are no longer considered
disorganisation and disorder; instead, the disorder is unpre-
dictable, and dynamic phenomena have their characteristics.
Disorganisation is a kind of ultimate order inside disorder,
and this theory studies chaotic dynamic systems. Chaotic
systems are nonlinear and dynamic systems that are very
sensitive to their initial conditions. A small change in such a
system's initial state causes many future changes. This phe-
nomenon is known as the butterfly effect in chaos theory.
The behaviour of chaotic systems seems random on the sur-
face. However, there is no need for an accidental element
to cause chaotic behaviour, and specific dynamic systems
can exhibit chaotic behaviour. Scientists initially believed
that effects are linearly the result of the causes of the main
body of specific categories. However, now they emphasise
the creative role of disorder and chaos and see the world as
a collection of systems that operate in a self-organised and
unexpected method. These systems move from order to dis-
order. For this reason, further improvement of metaheuristic

(10)

H =

⎧

⎪

⎨

⎪

⎩

Xnew = Xij + 𝜔1

�

Xij − BestGlobal(b)
�

if Q > rand

Xnew = Xij + rand(0.1) ×
�

Xij − BestLocal(b)
�

else

(11)𝜔1 = 𝜔1.Rv, 0 < Rv < 1

algorithms has become a scorching new research topic33,
39, 40.

In this paper, twelve different chaotic maps like
Chebyshev map 41, Circle map 42, Iterative map 43,
Intermittency map 44, Liebovich map 42, Logistic map 45,
Piecewise map 46, Sawtooth map 44, Sine map 47, Singer
map48, Sinusoidal map 44, and Tent map 49 has been used.
Table 1 lists the formulas and specifications of the chaos
maps used in the present paper.

4 CQFFA Algorithm

This section describes the details of the proposed CQFFA
algorithm. Two new mechanisms have been integrated into
the necessary FFA. The first mechanism is the QOBL, an
extension of the opposition operator50–53. The QOBL
improves the exploration and exploitation capabilities of
the optimization algorithm. The QOBL position can be
calculated as Eq. (12).

where X is an n-dimensional position vector in the problem
space, r is a random number between (0,1), j is the jth
dimension, OXj

i
 are the opposite of the ith position. lb ,

and ub are the lower and upper bounds of the problem
space, respectively. The QOBL mechanism has been
applied to both initialisation and the main loop of the
CQFFA algorithm. The second mechanism is the CLS.
Chaos theory is a popular way to increase the randomness
and searchability of metaheuristic algorithms. The chaos
theory is used as chaotic maps in optimization algorithms.
In the proposed CQFFA algorithm, the chaotic maps have
been used in a CLS method. The CLS method increases
exploitation capability by searching nearby places. Also, the
CLS method has been applied to the best solution obtained
by the algorithm. The CLS method can be formulated as
Eq. (13).

where, Xbest is the current best solution obtained so far, X′

best

is the newly generated best solution, C is the chaotic value
generated by the chaotic map, Xi , and Xj are two randomly
selected solutions from the population. Furthermore, in the
CLS, a greedy mechanism has been used. That means, if

QX
j

i
=

{

M
j

i
+ r.(OX

j

i
− M

j

i
) X

j

i
< M

j

i

OX
j

i
+ r.(M

j

i
− OX

j

i
) otherwise

M
j

i
= (lbj + ubj)∕2

(12)OX
j

i
= lbj + ubj − X

j

i

(13)X
�

best
= Xbest + (C − 0.5) × (Xi − Xj)

164 F. S. Gharehchopogh et al.

1 3

X
′

best
 has better fitness, it is replaced with the Xbest , otherwise

the X′

best
 is ignored and the Xbest is kept.

The pseudo-code of the CQFFA algorithm has shown in
Fig. 1.

In Sect. (5), the performance of the proposed CQFFA
algorithm is investigated, and the results are presented.
For this purpose, various standard benchmark functions
and several real-world engineering problems (encoded as
optimization problems). The problems are optimization
issues in the experiments, and the algorithms strive to
reduce the cost values. Each situation has its specifications,
including boundaries, optimal points, and the number of
variables expressed in the corresponding subsections.

5 Experiment Evaluations and Results

This section evaluates the CQFFA algorithm's performance
on well-known test functions and several real-world engi-
neering problems. In the first subsection, twelve widely-
used chaotic maps have been applied to the CQFFA, and the
results have been investigated. The results of each chaotic
map have been compared with others statistically. Besides,

the convergence speed of the algorithms has been reached.
It is worth mentioning that the simulations were conducted
on a system with a Core i7 3.1 GHz processor, 8 GB RAM,
and a 2 TB hard disk. The parameter value of the CQFFA
algorithm is presented in Table 2.

5.1 Experiments on Test Functions

In the CQFFA algorithm, evaluations are performed to
evaluate the improvements achieved. These evaluations
are described using 23 standard benchmark functions in 3
separate subsections, which are fully described below.

5.1.1 Unimodal Test Functions

This subsection evaluates the CQFFA algorithm's perfor-
mance on the seven widely-used unimodal test functions.
These test functions only have one optimal point and con-
sider the exploitation capability of the algorithms. Table 3
presents the unimodal test function and details the obtained
results from the different chaotic maps. Also, Fig. 2 illus-
trates the convergence speed of the chaotic maps on these
test functions.

Table 1 The mathematical
details of the chaotic maps
41–49

Definition Name Name

Xi+1 = cos
(

(i.cos−1
(

Xi

)

)
)

Chebyshev map M1
Xi+1 = Xi + b − (a)sin(2�i)mod(1),a = 0.5, b = 0.2 Circle map M2

Xi+1 =

{

𝜀 + Xi + CXn
i
0 < Xi ≤ P

Xi−P

1−P
P < Xi < 1

P = 0.5 , C = 1.5, and n = 1.6

Intermittency map M3

Xi+1 = sin
(

a�

Xi

)

,a ∈ (0, 1)
Iterative map M4

Xi+1 =

⎧

⎪

⎨

⎪

⎩

𝛼.Xi0 < Xi ≤ P
P−Xi

P2−P1

P1 < Xi ≤ P2

1 − 𝛽
�

1 − Xi

�

P2 < Xi ≤ 1

� =
P2

P1

(1 − (P2 − P1)),� =
1

P2−1
((P2 − 1) − P1(P2 − P1))

P1 = 0.4,P2 = 0.6,P = 0.6

Leibovich map M5

Xi+1 = a.Xi(1 − Xi) , a = 4 Logistic map M6

Xi+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Xi

P
0 ≤ Xi ≤ P

Xi−P

0.5−P
P ≤ Xi < 0.5

1−P−Xi

0.5−P
0.5 ≤ Xi < 1 − P

1−Xi

P
1 − P ≤ Xi < 1

P ∈ (0, 0.5) and P ≠ 0

Piecewise map M7

Xi+1 = 2Ximod(1) Sawtooth map M8
Xi+1 =

a

4
sin

(

𝜋Xi

)

, 0 < a ≤ 4 Sine map M9

Xi+1 = �(7.86Xi − 23.31X2

i
+ 28.75X3

i
− 13.302875X4

i
),� ∈ (0.9, 1.08) Singer map M10

Xi+1 = aX2

i
sin

(

�Xi

)

, a = 2.3 and X0 = 0.7 Sinusoidal map M11

Xi+1 =

{

Xi

0.7
Xi < 0.7

10

3
(1 − Xi)Xi ≥ 0.7

Tent map M12

165CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

According to the statistical results of Table 4, it can
be seen that all chaotic versions of the FFA algorithm
have found the minimum function values of F1 to F4 test

functions. However, some chaotic maps have lost their
functionality in other test functions. By examining Table 4
results in more detail, it can be noticed that the Sawtooth

Set number of solutions , the maximum number of iterations , number of sections , and the values of other
parameters
% Initialising solutions
For i = 1

Randomly initialise X(i)
Calculate .
Initialise by Equation (12). % Quasi-oppositional learning
Calculate .

End
Merge and in .
Sort according to the and .
Store first of the as X.
Divide into nSec sections. % Multi-swarming part
Find the global best solution. % Elitism solution
% Main loop
For iteration = 1 to Maxiter

For s = 1
Determine the soil quality of the section
Find the local best of the section

End for
For s =1

If section is the worst section
Update solutions of the section using equations (6) and (7).
Calculate the fitness of new solutions.
Apply greedy selection mechanism.

Else
Update solutions of the section using equations (8) and (9).
Calculate the fitness of new solutions.
Apply greedy selection mechanism.

End if
End
For s =1

For i = 1 : solutions of section
Update solutions of section using Equation (10).
Calculate the fitness of new solutions.
Apply greedy selection mechanism.

End for
End
For s =1
 Calculate quasi-opposite positions of the solutions of section using Equation (12) % Quasi-Oppositional learning

Merge basic solutions and quasi-opposite solutions
Sort the set of merged solutions
The store first solutions as the solutions of section
Find local best of section % local elitism

End
Update the global best solution
For i = 1

Generate a new global best-using Equation (13). % The CLS.
Calculate the fitness of the new global best.
Apply greedy selection mechanism.

End for
End for
Return The global best solution.

Fig. 1 The pseudo-code of the CQFFA algorithm

166 F. S. Gharehchopogh et al.

1 3

and Tent maps outperform other maps. It also confirms this
by counting the number of successes of each chaotic map.
The success rate is the sum of the best performance of any
map. The graphs in Fig. 2 indicate that the results of the
different chaotic versions of the FFA algorithms are close,
with a slight difference. Generally, according to Table 4 and
Fig. 2, it can be inferred that the chaotic maps enhanced the
capabilities of the basic FFA algorithm for solving unimodal
test functions.

5.1.2 Multimodal Test Functions

The CQFFA algorithm's performance has been evaluated on
this subsection's six well-known multimodal test functions.
These test functions have more than one local optimum.
Table 5 presents the details of the multimodal test function
besides Table 6 and Fig. 3. Three represent the statistical
results and convergence graphs on these test functions.

Considering the statistical results of Table 6, it can be seen
that the results of all the chaotic versions of the FFA algorithm
on functions F9 to F11 are equal. Furthermore, all chaotic
algorithms achieved the most optimal function values of F9
and F10. Besides, on F12, all chaotic maps found promising
positions for the test function except Circle, Liebovitch, and
Tent maps. The Logistic and Sawtooth maps achieved better
results for all multimodal test functions than other maps, as
mentioned in Table 6. Figure 3 shows that all chaotic FFA
algorithms have converged better and achieved more optimal
cost values than the basic FFA algorithm. It also illustrates
that the Tent map has an excellent convergence rate. However,
the final result of the Logistic map is better.

5.1.3 Fix‑Dimension Test Functions

This subsection provides the results of the CQFFA algorithm
on the fix-dimension test functions. The dimension of these
test functions cannot change. Table 7 shows the details of
the fix-dimension test functions. The statistical results and
the convergence graphs of the CQFFA algorithm have been
provided in Table 8 and Fig. 4, respectively.

The results of the basic FFA and CQFFA algorithms
express that on the F14, F16, F18, and F19. The necessary
FFA performed better. However, in F17, F20, F22, and F23,
the Sawtooth map obtained better results than other maps.
Considering the success rates of the chaotic maps, it can be
concluded that the Sawtooth maps outperform other chaotic
maps in most test functions. Therefore, the Sawtooth map
was selected as the victorious map. To further investigate
the CQFFA algorithm's performance in the following
subsection, the FFA algorithm with Sawtooth map was
applied to several well-known real-world applications. The
results have been compared with similar algorithms.

5.1.4 Statistical Test

In this subsection, we used the Wilcoxon signed-rank test
to show the proposed algorithm's performance better. The
Tables 9, 10, 11 report the results of the Wilcoxon signed-
rank test of the CQOFFA algorithm versus different chaotic
maps. The test is conducted with a 5% significant level on all
test functions. In the tables, the one values in the R column
indicate a considerable difference. The -1 values express
there is no significant difference. The zero values mean the
test cannot decides the critical differences.

5.2 Engineering Optimization Problems

The following section evaluates the performance of the
CQFFA algorithm in solving six engineering problems.
These problems using P-Metaheuristics is one of the excel-
lent and novel research areas. The results obtained by FFA

Table 2 The parameter values of the algorithms

Algorithm Parameter Description value

CQFFA nSol Number of Solutions 50
nSec Number of Sections 2
Maxiter Maximum number of Iteration 1000
K Agricultural land division number 8

Table 3 Details of the unimodal
test functions

Function Dimension Range F
min

F1 f (x) =
∑d

i=1
x2
i

30 [−100, 100]d 0

F2 f (x) =
∑d

i=1
�

�

xi
�

�

+
∏d

i=1
�

�

xi
�

�

30 [−10, 10]d 0

F3
f (x) =

∑d

i=1

�

∑i

j=1
xj

�2 30 [−100, 100]d 0

F4 f (x) = maxi
{

|

|

xi
|

|

, 1 ≤ i ≤ d
}

30 [−100, 100]d 0
F5 f (x) =

∑d−1

i=1

�

100
�

xi+1 − x2
i

�2
+
�

xi − 1
�2
�

30 [−30, 30]d 0

F6 f (x) =
∑d

i=1

�

�

�

xi + 0.5�
�

�2 30 [−100, 100]d 0

F7 f (x) =
∑d

i=1
ix4

i
+ random[0, 1) 30 [−1.28, 1.28]d 0

167CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

Fig. 2 Convergence graph of the different chaotic maps on the unimodal test functions

168 F. S. Gharehchopogh et al.

1 3

Ta
bl

e
4

 O
bt

ai
ne

d
re

su
lts

 fr
om

 d
iff

er
en

t c
ha

ot
ic

 m
ap

s o
n

un
im

od
al

 te
st

fu
nc

tio
ns

B
es

t r
es

ul
ts

 a
m

on
g

al
l a

lg
or

ith
m

s a
re

 in
di

ca
te

d
in

 b
ol

d

FF
A

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

F1
M

in
3.

27
18

e−
06

0
0

0
0

0
0

0
0

0
0

0
0

M
ax

2.
31

04
e−

05
0

0
0

0
0

0
0

0
0

0
0

0
M

ea
n

1.
37

42
e−

05
0

0
0

0
0

0
0

0
0

0
0

0
ST

D
5.

15
64

e−
06

0
0

0
0

0
0

0
0

0
0

0
0

F2
M

in
6.

17
17

e−
05

0
0

0
0

0
0

0
0

0
0

0
0

M
ax

0.
00

02
85

0
0

0
0

0
0

0
0

0
0

0
0

M
ea

n
0.

00
01

27
0

0
0

0
0

0
0

0
0

0
0

0
ST

D
5.

73
19

e−
05

0
0

0
0

0
0

0
0

0
0

0
0

F3
M

in
49

92
.3

60
6

0
0

0
0

0
0

0
0

0
0

0
0

M
ax

11
,6

64
.2

15
6

0
0

0
0

0
0

0
0

0
0

0
0

M
ea

n
81

63
.5

49
0

0
0

0
0

0
0

0
0

0
0

0
0

ST
D

17
48

.7
15

5
0

0
0

0
0

0
0

0
0

0
0

0
F4

M
in

14
.7

13
3

0
0

0
0

0
0

0
0

0
0

0
0

M
ax

28
.0

45
8

0
0

0
0

0
0

0
0

0
0

0
0

M
ea

n
20

.9
46

7
0

0
0

0
0

0
0

0
0

0
0

0
ST

D
3.

39
44

0
0

0
0

0
0

0
0

0
0

0
0

F5
M

in
28

.3
95

7
5.

14
85

5.
73

46
9

5.
12

17
9

5.
46

62
5.

84
57

5.
27

12
5.

50
24

5.
81

35
5.

08
97

5.
22

78
5.

22
93

4.
93

48
M

ax
11

7.
08

25
6.

86
44

6.
78

60
4

6.
52

19
1

6.
64

86
1

6.
87

71
6.

56
84

6.
83

18
6.

41
68

6.
94

46
6.

79
80

6.
50

58
6.

36
31

M
ea

n
43

.9
90

1
6.

10
61

6.
21

26
5

6.
07

92
7

6.
11

01
5

6.
21

27
6.

07
43

6.
15

99
6.

08
46

6.
17

44
6.

13
68

6.
05

47
6.

05
26

ST
D

18
.1

10
7

0.
34

80
3

0.
28

34
5

0.
27

10
6

0.
31

78
0.

28
78

0.
23

84
0.

28
08

6
0.

16
64

0.
42

29
2

0.
32

91
0.

31
83

2
0.

34
75

F6
M

in
3.

94
20

e−
06

0
0

0
0

0
0

0
0

0
0

0
0

M
ax

2.
72

05
e−

05
3.

08
14

e−
33

0
1.

23
26

e−
32

0
3.

08
14

e−
33

3.
08

14
e−

33
0

0
3.

08
14

e−
33

3.
08

14
e−

33
0

0
M

ea
n

1.
36

68
e−

05
1.

23
25

e−
34

0
6.

16
30

e−
34

0
2.

46
51

e−
34

1.
23

25
e−

34
0

0
1.

23
26

e−
34

1.
23

26
e−

34
0

0
ST

D
5.

50
89

e−
06

6.
16

29
e−

34
0

2.
51

60
e−

33
0

8.
53

22
e−

34
6.

16
29

e−
34

0
0

6.
16

29
e−

34
6.

16
30

e−
34

0
0

F7
M

in
0.

02
46

3
2.

23
97

e−
06

1.
44

44
e−

06
1.

17
85

e−
06

6.
15

96
e−

07
1.

94
17

e−
07

1.
57

79
e−

06
2.

76
46

e−
07

1.
39

50
e−

07
9.

80
43

e−
07

3.
91

28
e−

07
1.

14
65

e−
06

2.
17

90
e−

07
M

ax
0.

06
06

3
5.

08
19

e−
05

4.
13

81
e−

05
3.

90
57

e−
05

2.
96

30
e−

05
3.

14
06

e−
05

2.
79

58
e−

05
6.

34
59

e−
05

2.
13

40
e−

05
4.

36
93

e−
05

5.
55

16
e−

05
5.

56
07

e−
05

4.
43

27
e−

05
M

ea
n

0.
04

09
3

1.
40

27
e−

05
1.

70
11

e−
05

1.
35

88
e−

05
1.

30
44

e−
05

9.
46

18
e−

06
1.

12
86

e−
05

1.
15

19
e−

05
1.

28
58

e−
06

1.
23

01
e−

05
1.

46
64

e−
05

1.
26

53
e−

05
1.

36
62

e−
06

ST
D

0.
00

92
5

9.
60

81
e−

06
1.

26
83

e−
05

9.
70

42
e−

06
9.

20
83

e−
06

7.
12

61
e−

06
7.

53
63

e−
06

1.
37

16
e−

05
1.

11
65

e−
06

1.
02

60
e−

05
1.

38
42

e−
05

1.
49

65
e−

05
1.

22
72

e−
05

Su
m

 o
f b

es
t r

es
ul

t
0

4
5

4
5

4
4

5
6

4
4

5
6

169CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

are compared with other different optimization or modified
algorithms.

5.2.1 Three‑bar Truss Design Problem

The Three-bar truss engineering problems display the for-
mulated truss and the applied forces to this structure. This
problem has two design variables (x1x2) . The purpose of
this problem is to minimise the total weight of the structure.
Additionally, this design issue includes various limitations,
such as deflection, buckling, and stress. The experiments
used 50 primary populations in 500 irritations and 30 inde-
pendent runs. Furthermore, since this issue has limitations,
it is necessary to integrate limitation control techniques in
CQFFA. The barrier penalty 54 approach has been used in
CQFFA. It is expressed mathematically as Eq. (14).

Consider �⃗X = [x1x2][A1A2],

Minimise f (�⃗X) =
�

2
√

2X1 + X2

�

× L,

Subject to g1(
�⃗X) =

√

2x1 + x2
√

2x2
1
+ 2x1x2

P − 𝜎 ≤ 0,

g2(
�⃗X) =

x2
√

2x2
1
+ 2x1x2

P − 𝜎 ≤ 0,

g3(
�⃗X) =

1
√

2x2 + x1

P − 𝜎 ≤ 0,

The results obtained by CQFFA have been compared with
other optimization algorithms such as GOA55, MBA56,
SSA57, PSO-DE58, DEDS59, MFO60, MVO61, Ray and
Sain62, CS63, TSA64 and the results of this comparisons
are shown in Table 12.

Results in Table 12 indicate that CQFFA has achieved better
performance and results than other optimization algorithms.
Also, according to the obtained results, it can be confirmed that
CQFFA has the excellent problem-solving ability.

5.2.2 Rolling Element Bearing Design Problem

This engineering problem has ten variables and nine con-
straints to maximise the load-carrying capacity mathemati-
cally stated in Eq. (15).

Variable range 0 ≤ x1, x2 ≤ 1,

(14)whereL = 100cm,P = 2KN∕cm2, � = 2KN∕cm2

Maximize Cd = fcZ
2∕3D1.8

b
ifD ≤ 25.4mm

Cd = 3.647fcZ
2∕3D1.4

b
ifD > 25.4mm

Subject to

g1(z⃗) =
𝜑0

2sin−1(Db∕Dm)
− Z + 1 ≤ 0,

g2(z⃗) = 2Db − KDmin(D − d) > 0,

Table 5 Details of the multimodal test functions

Function Dimension Range F
min

F8
f (x) = −

∑d

i=1

�

xisin

�

�

�

�

xi
�

�

��

30 [−500, 500]d -12,569.5

F9 f (x) = 10d +
∑d

i=1

�

xd
i
− 10cos

�

2�xi
�� 30 [−5.12, 5.12]d 0

F10
f (x) = −20exp

�

−0.2

�

1

d

∑d

i=1
x2
i

�

− exp
�

1

d

∑d

i=1
cos2�xi

�

+ 20 + e
30 [−32, 32]d 0

F11 f (x) =
1

4000

∑d

i=1
x2
i
−
∏d

i=1
cos

�

xi
√

i

�

+ 1
30 [−600, 600]d 0

F12 f (x) =
�

d

�

10sin
�

�y1
�

+
∑d−1

i=1

�

yi − 1
�2�

1 + 10sin2
�

�yi+1
��

+
�

yd − 1
�2
�

+
∑d

i=1
U
�

xi, 10, 100, 4
�

yi = 1 +
xi+1

4
,
U
�

xi, a, k,m
�

=

⎧

⎪

⎨

⎪

⎩

k
�

xi − a
�m

xi > a

0 − a < xi < a

k
�

−xi − a
�m

xi < −a

30 [−50, 50]d 0

F13
f (x) = 0.1

�

sin
2
�

3�x1
�

+
∑d

i=1

�

x
i
− 1

�2�

1 + sin
2
�

3�x
i
+ 1

��

+
�

x
d
− 1

�2�

1 + sin
2
�

2�x
d

��

�

+
∑d

i=1
U
�

x
i
, 5, 100, 4

�

30 [−50, 50]d 0

170 F. S. Gharehchopogh et al.

1 3

Ta
bl

e
6

 O
bt

ai
ne

d
re

su
lts

 fr
om

 d
iff

er
en

t m
ap

s o
n

m
ul

tim
od

al
 te

st
fu

nc
tio

ns

B
es

t r
es

ul
ts

 a
m

on
g

al
l a

lg
or

ith
m

s a
re

 in
di

ca
te

d
in

 b
ol

d

FF
A

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

F8
M

in
−

 78
80

.4
81

−
 39

,4
71

.8
67

−
 34

,5
07

.0
66

−
 36

,9
18

.3
19

−
 35

,4
01

.5
25

−
 42

,5
47

.0
65

−
 58

,7
28

.6
34

−
 37

,2
03

.4
59

−
 11

,9
07

.9
03

−
 41

,2
73

.0
75

−
 55

,5
76

.7
52

−
 11

,2
11

.2
90

−
 57

,0
27

.8
58

M
ax

−
 42

72
.7

48
−

 12
,5

69
.7

14
−

 13
,7

98
.6

99
−

 11
,6

09
.5

77
−

 13
,4

15
.7

89
−

 98
05

.0
54

−
 14

,7
62

.5
38

−
 12

,0
08

.8
63

−
 40

70
.7

13
−

 14
,4

41
.6

63
−

 12
,9

54
.0

80
−

 41
89

.8
28

−
 10

,1
70

.7
13

M
ea

n
−

 57
30

.7
86

−
 21

,7
97

.7
20

−
 21

,4
65

.7
99

−
 22

,3
08

.0
34

−
 21

,8
77

.1
68

−
 21

,5
30

.3
90

−
 25

,1
72

.8
20

−
 24

,1
75

.5
90

−
 84

89
.7

59
−

 23
,4

81
.6

58
−

 24
,4

63
.8

23
−

 80
09

.5
47

−
 23

,6
18

.7
84

ST
D

10
22

.6
86

1
66

94
.7

38
4

51
28

.5
70

72
50

.0
30

7
59

19
.3

59
75

72
.7

12
10

,2
67

.2
90

76
71

.2
90

24
86

.0
55

68
84

.3
92

86
68

.2
27

23
08

.3
16

10
,2

03
.4

47
F9

M
in

11
0.

32
39

0
0

0
0

0
0

0
0

0
0

0
0

M
ax

21
0.

78
89

0
0

0
0

0
0

0
0

0
0

0
0

M
ea

n
15

6.
16

90
0

0
0

0
0

0
0

0
0

0
0

0
ST

D
28

.7
70

5
0

0
0

0
0

0
0

0
0

0
0

0
F1

0
M

in
0.

00
11

4
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
M

ax
0.

03
42

4
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
M

ea
n

0.
00

42
6

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

8.
88

17
e−

16
8.

88
17

e−
16

ST
D

0.
00

72
6

0
0

0
0

0
0

0
0

0
0

0
0

F1
1

M
in

0.
00

24
4

0
0

0
0

0
0

0
0

0
0

0
0

M
ax

0.
06

53
8

0
0

0
0

0
0

0
0

0
0

0
0

M
ea

n
0.

01
64

7
0

0
0

0
0

0
0

0
0

0
0

0
ST

D
0.

01
34

3
0

0
0

0
0

0
0

0
0

0
0

0
F1

2
M

in
0.

07
35

0
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
M

ax
3.

12
44

4.
71

16
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
16

e−
32

4.
73

58
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
4.

73
58

e−
32

M
ea

n
0.

92
29

5
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
26

e−
32

4.
71

16
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
16

e−
32

4.
71

16
e−

32
4.

71
26

e−
32

4.
71

26
e−

32
ST

D
0.

66
97

0
1.

11
73

e−
47

4.
84

03
e−

47
1.

11
73

e−
47

1.
11

73
e−

47
4.

84
03

e−
35

1.
11

73
e−

47
1.

11
73

e−
47

1.
11

73
e−

47
1.

11
73

e−
47

1.
11

73
e−

47
1.

11
73

e−
47

4.
84

03
e−

35
F1

3
M

in
0.

09
89

1
1.

34
97

e−
32

1.
34

97
e−

32
1.

34
97

e−
32

1.
34

97
e−

32
1.

34
97

e−
32

1.
34

97
e−

32
1.

34
97

e−
32

1.
34

97
e−

32
1.

34
97

e−
32

1.
34

97
e−

32
1.

34
97

e−
32

1.
34

97
e−

32
M

ax
0.

90
75

1
0.

01
09

8
0.

01
09

87
0.

01
09

87
0.

01
09

8
0.

01
09

87
3

0.
01

09
87

4
0.

01
09

87
4

1.
58

42
e−

15
0.

01
09

87
4

0.
01

09
87

4
0.

01
09

87
4

0.
01

09
87

4
M

ea
n

0.
34

10
1

0.
00

30
76

4
0.

00
13

18
0.

00
13

1
0.

00
13

1
0.

00
13

18
0.

00
08

78
99

0.
00

17
57

9
6.

33
68

e−
17

0.
00

13
18

4
0.

00
08

78
9

0.
00

13
18

5
0.

00
13

18
4

ST
D

0.
14

93
3

0.
00

50
35

0
0.

00
36

4
0.

00
36

4
0.

00
36

4
0.

00
36

44
0.

00
30

42
27

0.
00

41
11

1
3.

16
84

e−
16

0.
00

36
44

1
0.

00
30

42
2

0.
00

36
44

1
0.

00
36

44
1

Su
m

 o
f b

es
t r

es
ul

t
0

4
3

4
4

3
5

4
5

4
4

4
3

171CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

Fig. 3 Convergence graph of the different chaotic maps on the multimodal test functions

172 F. S. Gharehchopogh et al.

1 3

g3(z⃗) = KDmax(D − d) − 2Db ≥ 0,

g4(z⃗) = 𝜁Bw − Db ≤ 0,

g5(z⃗) = Dm − 0.5(D + d) ≥ 0,

g6(z⃗) = (0.5 + e)(D + d) − Dm ≥ 0,

g7(z⃗) = 0.5(D − Dm − Db) − 𝜖Db ≥ 0,

g8(z⃗) = fi ≥ 0.515,

g9(z⃗) = fo ≥ 0.515,

where

fc = 37.91

⎡

⎢

⎢

⎣

1 +

�

1.04

�

1 − �

1 + �

�1.72�
fi(2fo − 1)

fo(2fi − 1)

�0.41
�10∕3

⎤

⎥

⎥

⎦

−0.3

×

[

�0.3(1 − γ)1.39

(1 + γ)1∕3

][

2fi

2fi − 1

]0.41

The obtained results by CQFFA compared with the
optimization algorithms of PVS65, TLBO66, HHO67, and
GA68, and the results are shown in Table 13.

By examining the results shown in Table 13, it was found
that CQFFA has achieved much better results than the other
algorithms.

x = [{(D − d)∕2 − 3(T∕4)}2 +
{

D∕2 − T∕4 − D
b

}2

− {d∕2 + T∕4}2]

y = 2{(D − d)∕2 − 3(T∕4)}
{

D∕2 − T∕4 − Db

}

�o = 2Π − cos−1
(

x

y

)

, � =
Db

Dm

, fi =
ri

Db

, fo =
ro

Db

T = D − d − 2Db

D = 160, d = 90,B
w
= 30, r

i
= r

o
= 11.0330.5(D + d)

≤ D
m
≤ 0.6(D + d),

0.15(D − d) ≤ Db ≤ 0.45(D − d), 4 ≤ Z ≤ 50, 0.515 ≤ fiandfo ≤ 0.6,

0.4 ≤ KDmin ≤ 0.5, 0.6 ≤ KDmax ≤ 0.7, 0.3 ≤ e ≤ 0.4, 0.02 ≤ e ≤ 0.1,

(15)0.6 ≤ � ≤ 0.85

Table 7 Details of the fix-dimension test functions

Function Dimension Range F
min

F14
f (x) =

�

1

500
+
∑25

i=1

1

i+
∑2

j=1(xj−aj,i)
6

�−1 2 [−65.53, 65.53] 0.9980

F15
f (x) =

∑d

i=1

�

�

�

�

ai −
x1(b2i +bix2)
b2
i
+bix3+x4

�

�

�

�

2 4 [−5, 5]d 3.0748e−04

F16 f (x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
2 [−5, 5]d − 1.0316

F17
f (x) =

(

x2 −
5.1

4�2 x
2

1
+

5

�
x1 − 6

)2

+ 10

(

1 −
1

8�

)

cosx1 + 10
2 [−5, 10]d × [0, 15]d 0.3979

F18
f (x) =

[

1 +
(

x1 + x2 + 1
)2(

19 − 14x1 + 3x
2

1
− 14x2 + 6x1x2 + 3x

2

2

)

]

×
[

30
(

2x1 − 3x2

)2(

18 − 32x1 + 12x
2

1
+ 48x236x1x2 + 27x

2

2

)

]

2 [−2, 2]d 3.0000

F19 f (x) = −
∑4

i=1
aiexp

�

−
∑3

j=1
bij
�

xj − pij
�2
�

3 [0, 1]d − 3.86278

F20 f (x) = −
∑4

i=1
aiexp

�

−
∑6

j=1
bij
�

xj − pij
�2
�

6 [0, 1]d − 3.322

F21
f (x) = −

∑5

i=1

�

�

�

�

xi − ai
��

xi − ai
�T

+ ci
�

�

�

−1 4 [0, 10]d − 10.1532

F22
f (x) = −

∑7

i=1

�

�

�

�

xi − ai
��

xi − ai
�T

+ ci
�

�

�

−1 4 [0, 10]d − 10.4028

F23
f (x) = −

∑10

i=1

�

�

�

�

xi − ai
��

xi − ai
�T

+ ci
�

�

�

−1 4 [0, 10]d − 10.5363

173CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

Ta
bl

e
8

 O
bt

ai
ne

d
re

su
lts

 fr
om

 d
iff

er
en

t m
ap

s o
n

fix
-d

im
en

si
on

 te
st

fu
nc

tio
ns

B
es

t r
es

ul
ts

 a
m

on
g

al
l a

lg
or

ith
m

s a
re

 in
di

ca
te

d
in

 b
ol

d

FF
A

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

F1
4

M
in

0.
99

80
0

0.
99

80
03

0.
99

80
03

0.
99

80
03

0.
99

80
03

0.
99

80
03

0.
99

80
03

0.
99

80
03

0.
99

80
03

0.
99

80
03

0.
99

80
03

0.
99

80
03

0.
99

80
03

M
ax

0.
99

80
0

10
.7

63
1

2.
98

21
0

10
.7

63
18

10
.7

63
18

2.
98

21
0

10
.7

63
18

2.
98

21
05

5.
92

88
4

2.
98

21
05

2.
98

21
0

2.
98

21
0

2.
98

21
05

M
ea

n
0.

99
80

0
1.

66
66

1.
19

64
9

1.
42

16
2

1.
70

81
0

1.
15

67
1.

62
74

2
1.

31
54

60
1.

35
45

6
1.

23
60

9
1.

23
60

9
1.

31
54

1.
15

68
73

ST
D

0
2.

01
01

0.
57

28
7

1.
95

56
3

2.
00

56
1

0.
54

94
1.

99
27

3
0.

74
23

82
1.

06
15

98
0.

65
80

5
0.

65
80

5
0.

74
23

8
0.

54
93

30

F1
5

M
in

0.
00

04
19

0.
00

03
07

4
0.

00
03

07
0.

00
03

07
4

0.
00

03
07

4
0.

00
03

07
4

0.
00

03
07

4
0.

00
03

07
4

0.
00

03
07

4
0.

00
03

07
4

0.
00

03
07

4
0.

00
03

07
4

0.
00

03
07

4

M
ax

0.
00

07
53

0.
00

03
60

8
0.

00
04

82
0.

00
03

84
2

0.
00

03
30

9
0.

00
03

71
2

0.
00

03
35

4
0.

00
04

89
34

0.
00

03
34

1
0.

00
03

99
6

0.
00

03
96

1
0.

00
03

83
0

0.
00

03
62

1

M
ea

n
0.

00
06

10
0.

00
03

18
5

0.
00

03
17

5
0.

00
03

16
3

0.
00

03
11

1
0.

00
03

16
0

0.
00

03
12

79
0.

00
03

27
19

0.
00

03
11

2
0.

00
03

16
9

0.
00

03
14

4
0.

00
03

13
7

0.
00

03
12

6

ST
D

9.
75

46
e−

05
1.

72
22

e−
05

2.
84

15
e−

05
1.

95
75

e−
05

6.
67

26
e−

06
1.

63
84

e−
05

7.
38

70
e−

06
4.

29
55

e−
05

6.
68

48
e−

06
2.

35
76

e−
05

1.
89

73
e−

05
1.

65
22

e−
05

1.
29

54
e−

05

F1
6

M
in

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2

M
ax

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2

M
ea

n
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

−
 1.

03
16

2
−

 1.
03

16
2

ST
D

6.
40

98
e−

16
1.

08
25

e−
15

2.
77

95
e−

11
3.

19
05

e−
12

1.
44

22
e−

12
1.

07
87

e−
13

6.
72

27
e−

16
3.

12
72

e−
12

3.
23

72
e−

12
6.

44
03

e−
10

6.
35

04
e−

13
8.

89
47

e−
13

6.
59

93
e−

16

F1
7

M
in

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

M
ax

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

0.
39

78
87

M
ea

n
0.

39
78

87
0.

39
78

87
0.

39
78

87
0.

39
78

87
0.

39
78

87
0.

39
78

87
0.

39
78

87
0.

39
78

87
0.

39
78

87
0.

39
78

87
0.

39
78

87
0.

39
78

87
0.

39
78

87

ST
D

7.
76

71
e−

11
1.

60
55

e−
13

1.
46

50
e−

10
2.

20
26

e−
14

1.
03

02
e−

14
0

1.
39

26
e−

13
9.

09
88

e−
11

0
1.

71
98

e−
11

2.
13

17
e−

15
3.

43
96

e−
10

2.
35

41
e−

12

F1
8

M
in

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00

M
ax

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00

M
ea

n
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

ST
D

6.
34

54
e−

16
1.

04
93

e−
15

1.
15

46
e−

15
5.

01
11

e−
14

1.
16

62
e−

15
1.

36
27

e−
15

1.
09

12
e−

15
1.

66
16

e−
15

1.
17

27
e−

15
7.

41
99

e−
16

1.
33

53
e−

15
1.

17
49

e−
15

1.
24

29
e−

15

F1
9

M
in

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82

M
ax

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
81

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

80

M
ea

n
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

−
 3.

86
27

82
−

 3.
86

27
82

ST
D

2.
26

62
–1

5
1.

04
28

e−
08

5.
85

33
e−

09
1.

21
84

e−
08

2.
78

25
e−

08
1.

41
99

e−
07

6.
56

97
e−

10
5.

77
75

e−
06

2.
40

75
e−

09
1.

97
22

e−
08

1.
72

30
e−

07
8.

63
42

e−
09

3.
62

94
e−

07

F2
0

M
in

−
 3.

32
20

−
 3.

32
20

−
 3.

32
20

−
 3.

32
20

−
 3.

32
20

−
 3.

32
20

−
 3.

32
20

−
 3.

32
20

−
 3.

32
20

−
 3.

32
20

−
 3.

32
20

−
 3.

32
20

−
 3.

32
20

M
ax

−
 3.

32
14

8
−

 3.
32

19
2

−
 3.

32
18

8
−

 3.
32

10
−

 3.
32

19
−

 3.
32

16
−

 3.
32

12
−

 3.
32

20
−

 3.
32

20
−

 3.
31

87
−

 3.
32

20
−

 3.
32

04
−

 3.
32

12

M
ea

n
−

 3.
32

20
−

 3.
32

20
−

 3.
32

20
−

 3.
32

19
−

 3.
32

20
−

 3.
32

20
−

 3.
32

20
−

 3.
32

20
−

 3.
32

20
−

 3.
32

18
−

 3.
32

20
−

 3.
32

19
−

 3.
32

19

ST
D

0.
00

01
01

1.
43

68
e−

05
2.

16
82

e−
05

0.
00

02
00

1.
70

78
e−

05
7.

91
16

e−
05

1.
61

44
e−

04
6.

47
97

e−
06

2.
00

39
e−

06
6.

56
64

e−
04

4.
94

94
e−

06
3.

10
46

e−
04

1.
62

88
e−

04

F2
1

M
in

−
 10

.1
53

19
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2

M
ax

−
 10

.0
68

06
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2

M
ea

n
−

 10
.1

49
46

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

−
 10

.1
53

2
−

 10
.1

53
2

ST
D

0.
01

69
95

5.
43

89
e−

15
5.

43
90

e−
15

5.
43

89
e−

15
5.

43
81

e−
15

5.
43

89
e−

15
5.

43
89

e−
15

5.
43

89
e−

15
5.

43
89

e−
15

5.
43

89
e−

15
5.

43
89

e−
15

5.
43

89
e−

15
5.

43
89

e−
15

F2
2

M
in

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

9

M
ax

−
10

.4
02

15
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

9

M
ea

n
−

10
.4

02
86

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
94

−
10

.4
02

94
−

10
.4

02
9

ST
D

0.
00

01
85

1.
00

87
e−

14
8.

88
26

e−
11

6.
39

50
e−

14
4.

21
41

e−
12

2.
96

10
e−

15
2.

29
67

e−
15

3.
98

16
e−

14
1.

12
55

e−
15

1.
09

02
e−

14
2.

51
21

e−
15

1.
19

19
e−

12
2.

01
88

e−
15

F2
3

M
in

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4

M
ax

−
10

.3
59

03
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4

M
ea

n
−

10
.5

29
31

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

−
10

.5
36

4
−

10
.5

36
4

ST
D

0.
03

54
75

4.
68

57
e−

15
1.

88
41

e−
15

1.
01

40
e−

14
1.

81
15

e−
13

2.
06

12
e−

15
9.

32
35

e−
15

1.
54

71
e−

11
1.

19
86

e−
15

1.
23

76
e−

14
2.

17
55

e−
15

1.
73

89
e−

15
6.

86
06

e−
15

Su
m

 o
f b

es
t r

es
ul

t
4

0
0

0
2

1
0

0
4

0
0

0
0

174 F. S. Gharehchopogh et al.

1 3

5.2.3 Welded Beam Design Problem

The Welded beam design problem minimises the Welded
beam's cost and gets the best manufacturing cost due to the
design limitations. The variables in this problem are length
(l), the thickness of the weld (h), the thickness of the bar (b),
and height (t). This problem is expressed mathematically as
Eq. (16).

Where

Optimal results obtained from CQFFA have been com-
pared with optimization algorithms GA169, HS70, GSA71,

(16)Consider z⃗ = [z1, z2, z3, z4] = [h, l, t, b],

Minimise f
(

z⃗
)

= 1.10471z2
1
z2 + 0.04811z3z4(14.0 + z2),

Subjectto g1
(

z⃗
)

= 𝜏
(

z⃗
)

− 𝜏max ≤ 0,

g2
(

z⃗
)

= 𝜎
(

z⃗
)

− 𝜎max ≤ 0,

g3
(

z⃗
)

= 𝛿
(

z⃗
)

− 𝛿max ≤ 0,

g4
(

z⃗
)

= z1 − z4 ≤ 0,

g5
(

z⃗
)

= P − Pc

(

z⃗
)

≤ 0,

g6
(

z⃗
)

= 0.125 − z1 ≤ 0,

g6
(

z⃗
)

= 1.10471z2
1
+ 0.04811z3z4

(

14.0 + z2
)

− 5.0 ≤ 0,

Variable range 0.05 ≤ z1 ≤ 2.00, 0.25 ≤ z2 ≤ 1.30, 2.00 ≤ z3 ≤ 15.0,

𝜏
�

z⃗
�

=

�

𝜏 �22𝜏 �𝜏 ��
z2

2R
+ 𝜏 ��2, 𝜏

�

=
P

√

2z1z2

, 𝜏
�� MR

J
,M = P

�

L +
z2

2

�

,

R =

�

�

�

�

z
2

2

4
+

�

z1 + z3

2

�2

, J = 2

�

√

2z1z2

�

z
2

2

12
+

�

z1 + z3

2

�2
��

,

𝜎
�

z⃗
�

=
6PL

z4z
2

3

𝛿
(

z⃗
)

=
4PL3

Ez3
3
z4
,Pc

(

z⃗
)

=

4.013E

√

z2
3
z6
4

36

L2

(

1 −
z3

2L

√

E

4G

)

,

P = 6000lb,L = 14in,E = 30 × 10
6psi,G = 12 × 10

6psi,

GA254, DAVID72, APPROX72, SIMPLEX72, RAN-
DOM72, CDE73, ESs74 and are listed in Table 14.

Table 14 shows that CQFFA has obtained the best design-
related settings with the least fitness compared to other opti-
mization algorithms.

5.2.4 Pressure Vessel Design Problem

The primary purpose of this problem is to minimise the
manufacturing cost. This issue has four limitations and four
parameters. The parameters of this problem are (z1—z4): Ts
(z1 , the thickness of the shell), Th (z2 , the thickness of the
head), r (z3 , inner radius), L (z4 , length of the section with-
out the head). The mathematical formula for this problem
is Eq. (17).

The design space for this case is limited to 0 ≤ z1 , z2 ≤ 99,
0 ≤ z3 , z4 ≤ 200.

Results of solving this problem using CQFFA have
been compared with other optimization algorithms such as
WOA71, BA75, MDDE76, CPSO77, CSS78, BIANCA79,
HPSO80, G-QPSO81, WEO82, IACO83, MFO60, GA384,
GWO85, ESs74, GA69, DELC86, Branch-bound (Sandgren)
71, Lagrangian multiplier (Kannan) 71. Obtained results
using CQFFA of other optimization algorithms are shown
in Table 15.

By examining these results, it can be seen that CQFFA
performs better than other algorithms in dealing with this
problem, and the obtained results from CQFFA are much
better than other methods.

5.2.5 Tension/Compression Spring Design

This problem's primary purpose is to minimise a spring's
weight. The variables used to design this problem are the
number of active coils (N), mean coil diameter (D), and wire
diameter (d). Minimum deflection, shear stress, and surge

Consider z⃗ = [z1z2z3z4] = [TsThRL],

Minimise f
(

z⃗
)

= 0.6224z1z3z4 + 1.7781z2z
3

2

+ 3.1661z2
1
z4 + 19.84z2

1
z3,

Subject to g1
(

z⃗
)

= −z1 + 0.0193z3 ≤ 0,

g2
(

z⃗
)

= −z3 + 0.00954z3 ≤ 0,

g3
(

z⃗
)

= −Πz2
3
z4 −

4

3
Πz3

3
+ 1, 296, 000 ≤ 0,

(17)g4
(

z⃗
)

= z4 − 240 ≤ 0,

175CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

frequency limits should apply when solving this problem
during the weight optimization process. This problem can
be expressed mathematically as Eq. (18).

Considerz⃗ = [z1z2z3] = [dDN],

Minimisef (z⃗) =
(

z3 + 2
)

z2z
2

1
,

Fig. 4 Convergence graph of the different chaotic maps on the fix-dimension test functions

176 F. S. Gharehchopogh et al.

1 3

To evaluate the obtained results, CQFFA has been com-
pared with several optimization algorithms that have solved
the so-called problem, such as Arora87, MFO60, GWO85,
SSA57, WOA71, GSA88, ESs74, CPSO77, GA269, GA384,

Subjecttog1
(

z⃗
)

= 1 −
z3
2
z3

71785z4
1

≤ 0,

g2
(

z⃗
)

=
4z2

2
− z1z2

12566(z2z
3

1
− z4

1
)
+

1

5108z2
1

≤ 0,

g3
(

z⃗
)

= 1 −
140.45z1

z2
2
z3

≤ 0,

(18)g4
(

z⃗
)

=
z1 + z2

1.5
− 1 ≤ 0,

and WEO82. The results of this comparison are also given
in Table 16.

The results in Table 16 indicate that CQFFA has a
remarkable ability to produce high-quality solutions and
has been able to have a good design in solving this problem.
On the other hand, the results are very near and competitive
compared to TEO and SFS optimization algorithms.

5.2.6 Multi‑plate Disc Clutch Brake

This engineering problem's main objective is to optimise
the multiple disc clutch brake's total weight for several
variables, including actuating force, inner and outer radius,
number of friction surfaces, and thickness of discs. It also
has eight limitations. This engineering problem is expressed
mathematically in Eq. (19).

f (x) = Π
(

r2
o
− r2

i

)

t(Z + 1)�

Fig. 4 (continued)

177CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

Ta
bl

e
9

 W
ilc

ox
on

 si
gn

ed
-r

an
k

te
st

re
su

lts
 o

f t
he

 C
Q

O
FF

A
 v

er
su

s d
iff

er
en

t c
ha

ot
ic

 m
ap

s w
ith

 a
 5

%
 si

gn
ifi

ca
nc

e
le

ve
l o

n
th

e
un

im
od

al
 te

st
fu

nc
tio

ns

C
Q

O
FF

A
 v

s.
M

1
R

C
Q

O
FF

A
 v

s.
M

2
R

C
Q

O
FF

A
 v

s.
M

3
R

C
Q

O
FF

A
 v

s.
M

4
R

C
Q

O
FF

A
 v

s.
M

5
R

C
Q

O
FF

A
 v

s.
M

6
R

F1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
F2

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F3
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
F4

1.
48

89
E−

02
1

1.
43

03
E−

03
1

9.
26

31
E−

02
−

1
8.

26
53

E−
02

−
1

1.
15

47
E−

01
−

1
1.

50
00

E−
01

−
1

F5
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
F6

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F7
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1

C
Q

O
FF

A
 v

s.
M

7
R

C
Q

O
FF

A
 v

s.
M

8
R

C
Q

O
FF

A
 v

s.
M

9
R

C
Q

O
FF

A
 v

s.
M

10
R

C
Q

O
FF

A
 v

s.
M

11
R

C
Q

O
FF

A
 v

s.
M

12
R

F1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
F2

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F3
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
F4

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F5
6.

53
11

E−
02

−
1

1.
82

90
E−

01
−

1
4.

79
67

E−
02

1
8.

75
27

E−
02

−
1

2.
87

86
E−

01
−

1
1.

65
84

E−
01

−
1

F6
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
F7

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

Ta
bl

e
10

W

ilc
ox

on
 si

gn
ed

-r
an

k
te

st
re

su
lts

 o
f t

he
 C

Q
O

FF
A

 v
er

su
s d

iff
er

en
t c

ha
ot

ic
 m

ap
s w

ith
 a

 5
%

 si
gn

ifi
ca

nc
e

le
ve

l o
n

th
e

m
ul

tim
od

al
 te

st
fu

nc
tio

ns

C
Q

O
FF

A
 v

s.
M

1
R

C
Q

O
FF

A
 v

s.
M

2
R

C
Q

O
FF

A
 v

s.
M

3
R

C
Q

O
FF

A
 v

s.
M

4
R

C
Q

O
FF

A
 v

s.
M

5
R

C
Q

O
FF

A
 v

s.
M

6
R

F8
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
F9

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F1
0

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F1
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F1
2

6.
53

11
E−

02
−

1
1.

48
89

E−
02

1
6.

53
11

E−
02

−
1

1.
48

89
E−

02
1

5.
10

87
E−

02
−

1
2.

25
86

E−
03

1
F1

3
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1

C
Q

O
FF

A
 v

s.
M

7
R

C
Q

O
FF

A
 v

s.
M

8
R

C
Q

O
FF

A
 v

s.
M

9
R

C
Q

O
FF

A
 v

s.
M

10
R

C
Q

O
FF

A
 v

s.
M

11
R

C
Q

O
FF

A
 v

s.
M

12
R

F8
1.

22
90

E−
05

1
1.

38
17

E−
02

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
2.

46
57

E−
02

1
1.

22
90

E−
05

1
F9

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F1
0

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F1
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F1
2

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F1
3

6.
53

11
E−

02
−

1
1.

22
90

E−
05

1
1.

48
89

E−
02

1
2.

25
86

E−
03

1
4.

79
67

E−
02

1
1.

48
89

E−
02

1

178 F. S. Gharehchopogh et al.

1 3

Ta
bl

e
11

W

ilc
ox

on
 si

gn
ed

 ra
nk

 te
st

re
su

lts
 o

f t
he

 C
Q

O
FF

A
 v

er
su

s d
iff

er
en

t c
ha

ot
ic

 m
ap

s w
ith

 a
 5

%
 si

gn
ifi

ca
nc

e
le

ve
l o

n
th

e
fix

ed
-d

im
en

si
on

 te
st

fu
nc

tio
ns

C
Q

O
FF

A
 v

s.
M

1
R

C
Q

O
FF

A
 v

s.
M

2
R

C
Q

O
FF

A
 v

s.
M

3
R

C
Q

O
FF

A
 v

s.
M

4
R

C
Q

O
FF

A
 v

s.
M

5
R

C
Q

O
FF

A
 v

s.
M

6
R

F1
4

3.
90

63
E−

03
1

6.
25

00
E−

02
−

1
3.

12
50

E−
02

1
9.

76
56

E−
04

1
1.

56
25

E−
02

1
9.

76
56

E−
04

1
F1

5
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
1.

22
90

E−
05

1
F1

6
1.

00
00

E
+

 00
0

5.
00

00
E−

01
−

1
5.

00
00

E−
01

−
1

1.
00

00
E

+
 00

0
2.

50
00

E−
01

−
1

1.
00

00
E

+
 00

0
F1

4
5.

00
00

E−
01

−
1

8.
75

00
E−

01
−

1
5.

00
00

E−
01

−
1

5.
00

00
E−

01
−

1
5.

00
00

E−
01

−
1

5.
00

00
E−

01
−

1
F1

8
3.

12
50

E−
02

1
3.

12
50

E−
02

1
6.

17
19

E−
01

−
1

4.
88

28
E−

04
1

3.
90

63
E−

02
1

1.
56

25
E−

02
1

F1
9

2.
50

00
E−

01
−

1
3.

12
50

E−
02

1
7.

81
25

E−
03

1
9.

76
56

E−
04

1
3.

90
63

E−
03

1
5.

00
00

E−
01

−
1

F2
0

3.
03

68
E−

01
−

1
7.

80
01

E−
02

−
1

3.
67

39
E−

01
−

1
3.

91
37

E−
01

−
1

1.
91

90
E−

01
−

1
7.

16
42

E−
01

−
1

F2
1

6.
10

35
E−

05
1

6.
10

35
E−

05
1

6.
10

35
E−

05
1

6.
10

35
E−

05
1

6.
10

35
E−

05
1

6.
10

35
E−

05
1

F2
2

1.
28

91
E−

01
−

1
5.

46
88

E−
01

−
1

3.
12

50
E−

02
1

1.
56

25
E−

01
−

1
3.

12
50

E−
02

1
3.

12
50

E−
02

1
F2

3
1.

95
31

E−
02

1
7.

81
25

E−
03

1
1.

95
31

E−
02

1
7.

81
25

E−
03

1
7.

81
25

E−
03

1
7.

81
25

E−
02

−
1

C
Q

O
FF

A
 v

s.
M

1
R

C
Q

O
FF

A
 v

s.
M

2
R

C
Q

O
FF

A
 v

s.
M

3
R

C
Q

O
FF

A
 v

s.
M

4
R

C
Q

O
FF

A
 v

s.
M

5
R

C
Q

O
FF

A
 v

s.
M

6
R

F1
4

1.
95

31
E−

03
1

4.
88

28
E−

04
1

7.
81

25
E−

03
1

3.
90

63
E−

03
1

7.
81

25
E−

03
1

7.
81

25
E−

03
1

F1
5

1.
77

35
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

1.
22

90
E−

05
1

F1
6

2.
50

00
E−

01
−

1
5.

00
00

E−
01

−
1

1.
25

00
E−

01
−

1
1.

00
00

E
+

 00
0

2.
50

00
E−

01
−

1
1.

00
00

E
+

 00
0

F1
4

1.
00

00
E

+
 00

0
5.

00
00

E−
01

−
1

5.
00

00
E−

01
−

1
5.

00
00

E−
01

−
1

1.
00

00
E

+
 00

0
6.

25
00

E−
01

−
1

F1
8

3.
59

38
E−

01
−

1
4.

88
28

E−
04

1
3.

12
50

E−
02

1
3.

90
63

E−
02

1
9.

76
56

E−
04

1
6.

25
00

E−
02

−
1

F1
9

7.
81

25
E−

03
1

6.
25

00
E−

02
−

1
9.

76
56

E−
04

1
1.

95
31

E−
03

1
3.

90
63

E−
03

1
4.

88
28

E−
04

1
F2

0
1.

50
00

E−
01

−
1

4.
43

17
E−

01
−

1
3.

30
41

E−
01

−
1

1.
52

86
E−

01
−

1
8.

40
07

E−
01

−
1

5.
67

71
E−

01
−

1
F2

1
6.

10
35

E−
05

1
6.

10
35

E−
05

1
6.

10
35

E−
05

1
6.

10
35

E−
05

1
6.

10
35

E−
05

1
6.

10
35

E−
05

1
F2

2
4.

68
75

E−
02

1
1.

56
25

E−
01

−
1

4.
68

75
E−

02
1

3.
12

50
E−

02
1

3.
59

38
E−

01
−

1
3.

12
50

E−
02

1
F2

3
1.

52
34

E−
01

−
1

7.
81

25
E−

03
1

7.
81

25
E−

03
1

1.
56

25
E−

02
1

7.
81

25
E−

03
1

3.
51

56
E−

02
1

179CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

subject to ∶

g1(x) = ro − ri − Δr ≥ 0,

g2(x) = lmax − (Z + 1)(t + �) ≥ 0,

g3(x) = Pmax − Prz ≥ 0,

g4(x) = Pmaxv����� − Prz�sr ≥ 0,

g5(x) = vsrmax − vsr ≥ 0,

g6 = Tmax − T ≥ 0,

g7(x) = Mh − sMs ≥ 0,

(19)g8(x) = T ≥ 0,

Δr = 20mm , Iz = 55kgmm2 , Pmax = 1MPa ,
Fmax = 1000N , Tmax = 15s,� = 0.5, s = 1.5,Ms = 40Nm,
Mf = 3Nm, n = 250rpm,
vsrmax = 10m∕s, lmax = 30mm, rimin = 60,
rimax = 80, romin = 90,
romax = 110, tmin = 1.5, tmax = 3,Fmin = 600,
Fmax = 1000, Zmin = 2, Zmax = 9.

where,

M
h
=

2

3
�FZ

r
3
o
− r

2

i

r2
o
− r

3

i

,P
rz
=

F

Π(r2
o
− r

2

i
)
,

v
rz
=

2Πn
(

r
3
o
− r

3

i

)

90
(

r2
o
− r

2

i

) , T =
I
z
Πn

30(M
h
+M

f
)

Table 12 Comparison of results for the three-bar truss design prob-
lem

Best results among all algorithms are indicated in bold

Algorithm Optimal values for variables Optimal weight

x1 x2

CQFFA 0.7886684 0.4082672 263.8958434
DEDS [59] 0.7886751 0.4082482 263.8958434
PSO-DE [58] 0.7886751 0.4082482 263.8958433
SSA [57] 0.7886654 0.4082757 263.8958434
MBA [56] 0.7885650 0.4085597 263.8958522
TSA [64] 0.7885416 0.4084548 263.8985569
GOA [55] 0.7888975 0.4076195 263.8958814
CS [63] 0.7886745 0.4090254 263.9716548
Ray and Sain [62] 0.7955484 0.3954792 264.3217937
MVO [61] 0.7886027 0.4084530 263.8958499
MFO [60] 0.7882447 0.4094669 263.8959797

Table 13 Comparison of results
for rolling element bearing
design problem

Best results among all algorithms are indicated in bold

GA4 [68] PVS [65] HHO [67] TLBO [66] CQFFA

Dm 125.7171 125.7190 125.0000 125.7191 1.2572E + 02
Db 21.42300 21.42559 21.00000 21.42559 21.42330
Z 11.00000 11.00000 11.09207 11.00000 11.00115
fi 0.515000 0.515000 0.515000 0.515000 0.515000
fo 0.515000 0.515000 0.515000 0.515000 0.515000
KDmin 0.415900 0.400430 0.400000 0.424266 0.400155
KDmax 0.651000 0.680160 0.600000 0.633948 0.614400
� 0.300043 0.300000 0.300000 0.300000 0.300000
e 0.022300 0.079990 0.050474 0.068858 0.073413
� 0.751000 0.700000 0.600000 0.799498 0.655940
Cost 81,843.30 81,859.74 83,011.88 81,859.74 8.5539E + 04

Table 14 Comparison of results for the welded beam design problem

Best results among all algorithms are indicated in bold

Algorithm h l t b Optimal cost

CQFFA 0.20573 3.47041 9.03661 0.20573 1.72485
GSA [71] 0.18212 3.85698 10.0000 0.20237 1.87995
GA2 [54] 0.20880 3.42050 8.99750 0.21000 1.74831
HS [70] 0.24425 6.22316 8.29150 0.24431 2.38070
GA1 [69] 0.24890 6.17300 8.17890 0.25330 2.43311
APPROX [72] 0.24444 6.21890 8.29151 0.24440 2.38150
SIMPLEX

[72]
0.27923 5.62560 7.75125 0.27960 2.53074

RANDOM
[72]

0.45757 4.73134 5.08530 0.66547 4.11855

DAVID [72] 0.24340 6.25528 8.29157 0.24446 2.38410
ESs [74] 0.19974 3.61206 9.03753 0.20608 1.73730
CDE [73] 0.20313 3.54299 9.03349 0.20617 1.73346

180 F. S. Gharehchopogh et al.

1 3

The optimal results obtained by CQFFA compared with
the results of TLBO66, HHO67, WCA 89, and PVS65 algo-
rithms, and these results are shown in Table 17.

A review of Table 17 indicates that CQFFA performs
better than TLBO, WCA, and PVS algorithms while achiev-
ing close and competitive results compared to HHO algo-
rithms. Reviewing and evaluating the CQFFA algorithm in
different benchmarks and engineering problems shows that
the CQFFA has performed better than other comparative
algorithms.

6 Conclusion and Future Works

In this paper, FFA's exploration and exploitation capabil-
ity has improved by using twelve different chaotic maps
embedded into FFA to find the best number of prospectors
to increase the exploitation of the best promising solutions.
Furthermore, the QOBL mechanism has enhanced the explo-
ration and convergence rate. The CQFFA algorithm's perfor-
mance has evaluated o twenty-three widely used test func-
tions and six well-known real-world engineering problems.
The results show that the CQFFA algorithm performs bet-
ter and indicate that this version has a good and significant
performance compared to the original version of the FFA
algorithm. Because the weaknesses of FFA are well identi-
fied and well covered using the mechanisms used. Many
movement search strategies can be embedded into CQFFA
to improve its efficiency as much as possible in the future.
Also, CQFFA can hybridise with other metaheuristics algo-
rithms. On the other hand, the multi-objective model of the
proposed algorithm can be used to solve multi-objective
problems. Finally, due to the excellent potential of the pro-
posed algorithm, it can be a perfect option for solving binary
and clustering problems.

Table 15 Comparison of results
for pressure vessel design
problem

Best results among all algorithms are indicated in bold

Algorithms T
s
(x1) T

h
(x2) R(x3) L(x4) Optimal cost

CQFFA 0.778168 0.384649 40.319618 199.9900 5.8853E + 03
BIANCA [79] 0.812500 0.437500 42.096800 176.6580 6.0599E + 03
HPSO [80] 0.812500 0.437500 42.098400 176.6366 6.0597E + 03
CPSO [77] 0.812500 0.437500 42.091266 176.7465 6.0611E + 03
CSS [78] 0.812500 0.437500 42.103624 176.5727 6.0591E + 03
G-QPSO [81] 0.812500 0.437500 42.098415 176.6372 6.0597E + 03
WEO [82] 0.812500 0.437500 42.098444 176.6366 6.0597E + 03
IACO [83] 0.812500 0.437500 42.098353 176.6378 6.0597E + 03
GA3 [84] 0.812500 0.437500 42.097454 176.6541 6.0599E + 03
GWO [85] 0.812500 0.434500 42.089181 176.7587 6.0516E + 03
MFO [60] 0.812500 0.437500 42.098445 176.6366 6.0597E + 03
WOA [71] 0.812500 0.437500 42.098269 176.6390 6.0597E + 03
BA [75] 0.812500 0.437500 42.098445 176.6366 6.0597E + 03
MDDE [76] 0.812500 0.437500 42.098446 176.6360 6.0597E + 03
GA [69] 0.812500 0.437500 42.097398 176.6541 6.0599E + 03
DELC [86] 0.812500 0.437500 42.098445 176.6366 6.0597E + 03

Table 16 Comparison of results for tension/compression spring prob-
lem

Best results among all algorithms are indicated in bold

Algorithms d D N Optimal cost

CQFFA 0.051697 0.356909 11.277755 0.012665
Arora [87] 0.053396 0.399180 9.1854001 0.012730
MFO [60] 0.051994 0.364109 10.868422 0.012666
GWO [85] 0.051690 0.356737 11.288851 0.012666
SSA [57] 0.051207 0.345215 12.004032 0.012676
WOA [71] 0.051207 0.345215 12.004032 0.012676
GSA [88] 0.050276 0.323680 13.525410 0.012702
ESs [74] 0.051643 0.355360 11.397926 0.012698
CPSO [77] 0.051728 0.357644 11.244543 0.012674
GA2 [69] 0.051480 0.351661 11.632201 0.012704
GA3 [84] 0.051989 0.363965 10.890522 0.012681
WEO [82] 0.051685 0.356630 11.294103 0.012665

Table 17 Comparison of results for multi-plate disc clutch brake

Algorithm WCA
[89]

TLBO
[66]

PVS [65] HHO [67] CQFFA

ri 70 70 70 70 70
r0 90 90 90 90 90
t 1 1 1 1 1
F 910 810 980 1000 1000
Z 3 3 3 2.312781 2.312781
Optimal cost 0.313656 0.313656 0.313665 0.259768 0.259769

181CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

Data Availability Source code supporting this research's findings will
be shared when this manuscript is accepted for publication or the
Editor/reviewer is requested to share. In this paper, we used a standard
benchmark (those are in Tables 3, 5, 7) to implement, evaluate and
compare the proposed method with other algorithms.

Declarations

Conflict of interest The author declares that they have no conflict of
interest.

References

 1. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., Ewees, A.
A., Abualigah, L., & Abd Elaziz, M. (2021). MTV-MFO: Multi-
trial vector-based moth-flame optimization algorithm. Symmetry,
13(12), 2388.

 2. Goldanloo, M. J., & Gharehchopogh, F. S. (2021). A hybrid OBL-
based firefly algorithm with symbiotic organisms search algorithm
for solving continuous optimization problems. The Journal of
Supercomputing, 3, 1–34.

 3. Zamani, H., Nadimi-Shahraki, M. H., & Gandomi, A. H. (2021).
QANA: Quantum-based avian navigation optimizer algorithm.
Engineering Applications of Artificial Intelligence, 104(104314),
2021.

 4. Ghafori, S., & Gharehchopogh, F. S. (2021). Advances in spotted
hyena optimizer: a comprehensive survey. Archives of Computa-
tional Methods in Engineering, 29, 1–22.

 5. Banaie-Dezfouli, M., Nadimi-Shahraki, M. H., & Beheshti, Z.
(2021). R-GWO: representative-based grey wolf optimizer for
solving engineering problems. Applied Soft Computing, 106,
107328.

 6. Zaman, H. R. R., & Gharehchopogh, F. S. (2021). An improved
particle swarm optimization with backtracking search optimiza-
tion algorithm for solving continuous optimization problems.
Engineering with Computers, 5, 1–35.

 7. Gharehchopogh, F. S. (2022). Advances in tree seed algorithm:
a comprehensive survey. Archives of Computational Methods in
Engineering, 7, 1–24.

 8. Gharehchopogh, F. S. (2022). An improved tunicate swarm algo-
rithm with best-random mutation strategy for global optimization
problems. Journal of Bionic Engineering, 48, 1–26.

 9. Gharehchopogh, F. S., & Gholizadeh, H. (2019). A comprehensive
survey: whale optimization algorithm and its applications. Swarm
and Evolutionary Computation, 48, 1–24.

 10. Xu, Z., Yang, Y., Li, J., Zhang, X., Lu, B., & Gao, S. (2021). Com-
parative study on single and multiple chaotic maps incorporated
grey wolf optimization algorithms. IEEE Access, 9, 77416–77437.

 11. Ibrahim, R. A., Elaziz, M. A., & Lu, S. (2018). (2018) Chaotic
opposition-based grey-wolf optimization algorithm based on dif-
ferential evolution and disruption operator for global optimization.
Expert Systems with Applications, 108, 1–27.

 12. Li,J., Cheng, Y.M., & Chen,K.Z. (2014) Chaotic particle swarm
optimization algorithm based on adaptive inertia weight, in Con-
trol and Decision Conference (2014 CCDC), The 26th Chinese,
2014: IEEE, 1310-1315.

 13. Wang, L., Liu, X., Sun, M., Qu, J., & Wei, Y. (2018). A new cha-
otic starling particle swarm optimization algorithm for clustering
problems. Mathematical Problems in Engineering., 2018, 1–14.

 14. Gao, S., Zhou, M., Wang, Y., Cheng, J., Yachi, H., & Wang, J.
(2018). Dendritic neuron model with effective learning algorithms
for classification, approximation, and prediction. IEEE Transac-
tions on Neural Networks and Learning Systems, 30(2), 601–614.

 15. Zhang, Y. T., Zhou, W., & Yi, J. (2016) A novel adaptive chaotic
bacterial foraging optimization algorithm. In 2016 international
conference on computational modeling, simulation and applied
mathematics.

 16. Teng, H., & Cao, A. (2011). 2011) An novel quantum genetic
algorithm with Piecewise Logistic chaotic map, In Natural
Computation (ICNC. Seventh International Conference on, 2,
1053–1057.

 17. Mitic, M., Vukovic, N., Petrovic, M., & Miljkovic, Z. (2015). Cha-
otic fruit fly optimization algorithm. Knowledge-Based Systems,
89, 446–458.

 18. Yuzgec, U., & Eser, M. (2018). Chaotic based differential evolu-
tion algorithm for optimization of baker’s yeast drying process.
Egyptian Informatics Journal., 19, 151–163.

 19. Thangaraj, R., Pant, M., Chelliah, T.R. & Abraham, A. (2012)
Opposition based chaotic differential evolution algorithm for solv-
ing global optimization problems, 2012 fourth world congress on
nature and biologically inspired computing (NaBIC), 1–7.

 20. Gandomi, A. H., & Yang, X. S. (2014). Chaotic bat algorithm.
Journal of computational science, 5(2), 224–232.

 21. Guvenc, U., Duman, S., & Hinislioglu, Y. (2017). Chaotic Moth
Swarm Algorithm. IEEE International Conference on Inovations
in Intelligent Systems and Applications (INISTA), 2017, 90–95.

 22. Rahman, T. A., Arry, A., Jalil, N. A. A., & Ahmad, R. M. K. R.
(2017). Chaotic fractal search algorithm for global optimization
with application to control design. IEEE Symposium on Computer
Applications & Industrial Electronics (ISCAIE), 2017, 111–116.

 23. Mirjalili, S., & Gandomi, A. H. (2017). Chaotic gravitational con-
stants for the gravitational search algorithm. Applied Soft Comput-
ing, 53, 407–419.

 24. Rizk-Allah, R. M., Hassanien, A. E., & Bhattacharyya, S. (2018).
Chaotic crow search algorithm for fractional optimization prob-
lems. Applied Soft Computing, 71, 1161–1175.

 25. Arora, S., & Anand, P. (2018). Chaotic grasshopper optimization
algorithm for global optimization. Neural Computing and Appli-
cations, 31, 1–21.

 26. Yao, J. F., Mei, C., Peng, X. Q., Hu, Z. K., & Hu, J. (2001).
A new optimization approach-chaos genetic algorithm. Systems
Engineering, 1, 015.

 27. Mingjun, J., & Huanwen, T. (2004). Application of chaos in simu-
lated annealing. Chaos, Solitons & Fractals, 21(4), 933–941.

 28. Gao, S., Yu, Y., Wang, Y., Wang, J., Cheng, J., & Zhou, M. (2019).
Chaotic local search-based differential evolution algorithms for
optimization. IEEE Transactions on Systems, Man, and Cybernet-
ics: Systems, 51(6), 3954–3967.

 29. Zhou, Y., Su, K., & Shao, L. (2018). A new chaotic hybrid cog-
nitive optimization algorithm. Cognitive Systems Research, 52,
537–542.

 30. Chahkandi, V., Yaghoobi, M., & Veisi, G. (2013). CABC–CSA: a
new chaotic hybrid algorithm for solving optimization problems.
Nonlinear Dynamics, 73(12), 475–484.

 31. Wang, G. G., Guo, L., Gandomi, A. H., Hao, G. H., & Wang, H.
(2014). Chaotic krill herd algorithm. Information Sciences, 274,
17–34.

 32. Sayed, G. I., Khoriba, G. M., & Haggag, H. (2018). A novel cha-
otic salp swarm algorithm for global optimization and feature
selection. Applied Intelligence, 48, 1–20.

 33. Gharehchopogh, F. S., Maleki, I., & Dizaji, Z. A. (2021). Chaotic
vortex search algorithm: metaheuristic algorithm for feature selec-
tion. Evolutionary Intelligence, 15, 1–32.

 34. Boushaki, S. I., Kamel, N., & Bendjeghaba, O. (2018). A new
quantum chaotic cuckoo search algorithm for data clustering.
Expert Systems with Applications, 96, 358–372.

 35. Tharwat, A., & Hassanien, A. E. (2018). Chaotic antlion algorithm
for parameter optimization of support vector machine. Applied
Intelligence, 48(3), 670–686.

182 F. S. Gharehchopogh et al.

1 3

 36. Xu, X., Rong, H., Trovati, M., Liptrott, M., & Bessis, N. (2018).
CS-PSO: Chaotic particle swarm optimization algorithm for solv-
ing combinatorial optimization problems. Soft Computing, 22(3),
783–795.

 37. Kohli, M., & Arora, S. (2018). Chaotic grey wolf optimization
algorithm for constrained optimization problems. Journal of Com-
putational Design and Engineering, 5(4), 458–472.

 38. Shayanfar, H., & Gharehchopogh, F. S. (2018). Farmland fertility:
A new metaheuristic algorithm for solving continuous optimiza-
tion problems. Applied Soft Computing, 71, 728–746.

 39. Yuan, X., Zhao, J., Yang, Y., & Wang, Y. (2014). Hybrid paral-
lel chaos optimization algorithm with harmony search algorithm.
Applied Soft Computing, 17, 12–22.

 40. Asghari, K., Masdari, M., Gharehchopogh, F. S., & Saneifard,
R. (2021). A chaotic and hybrid gray wolf-whale algorithm for
solving continuous optimization problems. Progress in Artificial
Intelligence, 10, 1–26.

 41. Geisel, T., & Fairen, V. (1984). Statistical properties of chaos in
Chebyshev maps. Physics Letters A, 105(6), 263–266.

 42. Hilborn, R. C. (2000). Chaos and Nonlinear Dynamics: An Intro-
duction for Scientists and Engineers. Oxford University Press.

 43. Lauwerier, H. (1989). Two-dimensional iterative maps. Chaos, 2,
58–95.

 44. Barshandeh, S., & Haghzadeh, M. (2020). A new hybrid chaotic
atom search optimization based on tree-seed algorithm and Levy
flight for solving optimization problems. Engineering with Com-
puters, 4, 1–44.

 45. Li, Y., Deng, S., & Xiao, D. (2011). A novel Hash algorithm
construction based on chaotic neural network. Neural Computing
and Applications, 20(1), 133–141.

 46. Tomida, A.G. (2008) Matlab toolbox and GUI for analyzing one-
dimensional chaotic maps, International conference on computa-
tional sciences and its application, 321–330.

 47. Devaney, R. (2008). An Introduction to Chaotic Dynamical Sys-
tems. Westview: Westview press.

 48. Peitgen,H.O, Jurgens, H., & Saupe,D. (2006) Chaos and fractals:
new frontiers of science. Springer science & business media.

 49. Ott, E. (2002). Chaos in Dynamical Systems. Cambridge Univer-
sity Press.

 50. Truong, K. H., Nallagownden, P., Baharudin, Z., & Vo, D. N.
(2019). A quasi-oppositional-chaotic symbiotic organisms search
algorithm for global optimization problems. Applied Soft Comput-
ing, 77, 567–583.

 51. Basu, M. (2016). Quasi-oppositional differential evolution for
optimal reactive power dispatch. International Journal of Elec-
trical Power & Energy Systems, 78, 29–40.

 52. Warid, W., Hizam, H., Mariun, N., & Wahab, N. I. A. (2018).
A novel quasi-oppositional modified Jaya algorithm for multi-
objective optimal power flow solution. Applied Soft Computing,
65, 360–373.

 53. Guha, D., Roy, P., & Banerjee, S. (2017). Quasi-oppositional
symbiotic organism search algorithm applied to load frequency
control. Swarm and Evolutionary Computation, 33, 46–67.

 54. Coello, C. A. C. (2000). Use of a self-adaptive penalty approach
for engineering optimization problems. Computers in Industry,
41(2), 113–127.

 55. Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimi-
sation algorithm: Theory and application. Advances in Engineer-
ing Software, 105, 30–47.

 56. Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M.
(2013). Mine blast algorithm: A new population based algorithm
for solving constrained engineering optimization problems.
Applied Soft Computing, 13(5), 2592–2612.

 57. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H.,
& Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired

optimizer for engineering design problems. Advances in Engineer-
ing Software, 114, 163–191.

 58. Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm
optimization with differential evolution for constrained numeri-
cal and engineering optimization. Applied Soft Computing, 10(2),
629–640.

 59. Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution
with dynamic stochastic selection for constrained optimization.
Information Sciences, 178(15), 3043–3074.

 60. Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel
nature-inspired heuristic paradigm. Knowledge-Based Systems,
89, 228–249.

 61. Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse
optimizer: A nature-inspired algorithm for global optimization.
Neural Computing and Applications, 27(2), 495–513.

 62. Ray, T., & Saini, P. (2001). Engineering design optimization using
a swarm with an intelligent information sharing among individu-
als. Engineering Optimization, 33(6), 735–748.

 63. Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo
search algorithm: A metaheuristic approach to solve structural
optimization problems. Engineering with Computers, 29(1),
17–35.

 64. Tsai, J. F. (2005). Global optimization of nonlinear fractional pro-
gramming problems in engineering design. Engineering Optimi-
zation, 37(4), 399–409.

 65. Savsani, P., & Savsani, V. (2016). Passing vehicle search (PVS): A
novel metaheuristic algorithm. Applied Mathematical Modelling,
40(5–6), 3951–3978.

 66. Rao, R. V., Savsani, V. J., & Vakharia, S. (2011). Teaching–learn-
ing-based optimization: A novel method for constrained mechani-
cal design optimization problems. Computer-Aided Design, 43(3),
303–315.

 67. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M.,
& Chen, H. (2019). Harris hawks optimization: Algorithm and
applications. Future Generation Computer Systems, 97, 849–872.

 68. Gupta, S., Tiwari, R., & Nair, S. B. (2007). Multi-objective design
optimisation of rolling bearings using genetic algorithms. Mecha-
nism and Machine Theory, 42(10), 1418–1443.

 69. Deb, K. (1991). Optimal design of a welded beam via genetic
algorithms,". AIAA Journal, 29(11), 2013–2015.

 70. Lee, K. S., & Geem, Z. W. (2004). A new structural optimization
method based on the harmony search algorithm. Computers &
Structures, 82(9–10), 781–798.

 71. Mirjalili, S., & Lewis, A. (2016). The whale optimization algo-
rithm. Advances in Engineering Software, 95, 51–67.

 72. Ragsdell, K., & Phillips, D., (1976) Optimal design of a class of
welded structures using geometric programming.

 73. Huang, F. Z., Wang, L., & He, Q. (2007). An effective co-evolu-
tionary differential evolution for constrained optimization. Applied
Mathematics and Computation, 186(1), 340–356.

 74. Mezura-Montes, E. N., & Coello, C. A. C. (2005). A simple mul-
timembered evolution strategy to solve constrained optimization
problems. IEEE Transactions on Evolutionary computation, 9(1),
1–17.

 75. Gandomi, A. H., Yang, X. S., Alavi, A. H., & Talatahari, S.
(2013). Bat algorithm for constrained optimization tasks. Neural
Computing and Applications, 22(6), 1239–1255.

 76. Mezura-Montes, E. N., Coello, C. C., Velazquez-Reyes, J. S., &
Muaoz-Da¡vila, L.A. (2007). Multiple trial vectors in differential
evolution for engineering design. Engineering optimization, 39(5),
567–589.

 77. He, Q., & Wang, L. (2007). An effective co-evolutionary particle
swarm optimization for constrained engineering design problems.
Engineering Applications of Artificial Intelligence, 20(1), 89–99.

183CQFFA: A Chaotic Quasi‑oppositional Farmland Fertility Algorithm for Solving Engineering…

1 3

 78. Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimiza-
tion method: charged system search. Acta Mechanica, 213(3–4),
267–289.

 79. Montemurro, M., Vincenti, A., & Vannucci, P. (2013). The auto-
matic dynamic penalisation method (ADP) for handling con-
straints with genetic algorithms. Computer Methods in Applied
Mechanics and Engineering, 256, 70–87.

 80. He, Q., & Wang, L. (2007). A hybrid particle swarm optimization
with a feasibility-based rule for constrained optimization. Applied
Mathematics and Computation, 186(2), 1407–1422.

 81. Coelho, L. D. S. (2010). Gaussian quantum-behaved parti-
cle swarm optimization approaches for constrained engineer-
ing design problems. Expert Systems with Applications, 37(2),
1676–1683.

 82. Kaveh, A., & Bakhshpoori, T. (2016). Water evaporation optimi-
zation: a novel physically inspired optimization algorithm. Com-
puters & Structures, 167, 69–85.

 83. Rosenbrock, H. (1960). An automatic method for finding the
greatest or least value of a function. The Computer Journal, 3(3),
175–184.

 84. Coello, C. A. C., & Montes, E. N. M. (2002). Constraint-han-
dling in genetic algorithms through the use of dominance-based
tournament selection. Advanced Engineering Informatics, 16(3),
193–203.

 85. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf opti-
mizer. Advances in Engineering Software, 69, 46–61.

 86. Wang, L., & Li, L. P. (2010). An effective differential evolution
with level comparison for constrained engineering design. Struc-
tural and Multidisciplinary Optimization, 41(6), 947–963.

 87. Arora, J.S.(2004) Introduction to optimum design. 945.
 88. Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA:

a gravitational search algorithm. Information Sciences, 179(13),
2232–2248.

 89. Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M.
(2012). Water cycle algorithm–A novel metaheuristic optimiza-
tion method for solving constrained engineering optimization
problems. Computers & Structures, 110, 151–166.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

	CQFFA: A Chaotic Quasi-oppositional Farmland Fertility Algorithm for Solving Engineering Optimization Problems
	Abstract
	1 Introduction
	2 Related Works
	3 Fundamental Research
	3.1 Farmland Fertility Algorithm (FFA)
	3.2 Chaos and Chaotic Map Functions

	4 CQFFA Algorithm
	5 Experiment Evaluations and Results
	5.1 Experiments on Test Functions
	5.1.1 Unimodal Test Functions
	5.1.2 Multimodal Test Functions
	5.1.3 Fix-Dimension Test Functions
	5.1.4 Statistical Test

	5.2 Engineering Optimization Problems
	5.2.1 Three-bar Truss Design Problem
	5.2.2 Rolling Element Bearing Design Problem
	5.2.3 Welded Beam Design Problem
	5.2.4 Pressure Vessel Design Problem
	5.2.5 TensionCompression Spring Design
	5.2.6 Multi-plate Disc Clutch Brake

	6 Conclusion and Future Works
	References

