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Abstract
The wearable lower limb exoskeleton is a typical human-in-loop human–robot coupled system, which conducts natural and 
close cooperation with the human by recognizing human locomotion timely. Requiring subject-specific training is the main 
challenge of the existing approaches, and most methods have the problem of insufficient recognition. This paper proposes 
an integral subject-adaptive real-time Locomotion Mode Recognition (LMR) method based on GA-CNN for a lower limb 
exoskeleton system. The LMR method is a combination of Convolutional Neural Networks (CNN) and Genetic Algorithm 
(GA)-based multi-sensor information selection. To improve network performance, the hyper-parameters are optimized by 
Bayesian optimization. An exoskeleton prototype system with multi-type sensors and novel sensing-shoes is used to verify 
the proposed method. Twelve locomotion modes, which composed an integral locomotion system for the daily application 
of the exoskeleton, can be recognized by the proposed method. According to a series of experiments, the recognizer shows 
strong comprehensive abilities including high accuracy, low delay, and sufficient adaption to different subjects.

Keywords  Locomotion mode recognition · Gait mode detection · Lower limb exoskeleton · Convolutional neural network · 
Genetic algorithm · Bionic design

1  Introduction

Technology advancements have led to the development of 
numerous wearable exoskeleton robots for military and med-
ical purposes through abilities augment and physical assis-
tance [1], 2. Developing appropriate strategies to predict the 
intentions of wearers is one of the challenging issues. The 
availability of an exoskeleton system is extremely attractive 
for many applications, e.g., power supporting during daily 
living activities by automatically recognizing the physical 
activities of a human subject.

The locomotion for the lower limb can be classified into 
various modes according to the ground conditions (e.g., flat, 
stairs, ramp, etc.), and the kinematic as well as kinetic char-
acteristics are different under different locomotion modes. 
Human can intuitively achieve these locomotion modes by 

the innate motion system that employs different strategies. 
While as to exoskeleton, the complexity of locomotion must 
be considered in the control algorithms to assist the human 
movement more efficiently and naturally [3].

In recent years, many studies have proposed different 
approaches for the recognition of lower limb exoskeleton 
locomotion modes [4], 5. The offline recognition method 
[6–8] can analyze human locomotion or generate trajecto-
ries. In order for the exoskeleton to effectively assist, the 
subject’s motion intention must be decoded online. For 
sensing signals, some methods recognize human locomo-
tion based on electromyography (EMG) [9–12] and elec-
troencephalograph (EEG) [13–16] signals in recent years. 
However, EMG is sensitive to environmental conditions in 
the application, such as electric noise, and skin conditions 
[17]. About EEG, the unmatured technology and the com-
plexity of the signal process restrict the use of this method 
in portable devices. Therefore, since EMG and EEG suffer 
from poor repeatability, more approaches prefer the mechan-
ical sensors network to increase the system’s robustness and 
dependability [18–21].

As regards the recognition method, the rule-based strat-
egy such as fuzzy-logic-based method [3, 20, 22, 23] is an 
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intuitive approach and has been widely used. The principle 
of the rule-based method is concise and explicit, but rule 
formulating is intractable and inexact when faced with too 
many modes [24, 25]. Most importantly, the expandability 
of rule-based methods may also be a tough one because re-
making the rules are needed. Locomotion Mode Recognition 
(LMR) processed by machine learning is the most common 
way nowadays. For exoskeletons, the locomotion mode is 
widely recognized by Linear Discriminant Analysis (LDA) 
[3, 26] and Artificial Neural Network (ANN) classifier [3, 
9]. A classifier based on a Hidden Markov Model (HMM) 
was employed in walking and jogging discrimination by 
Mannini and Sabatini [27]. Varol et al. [28] described an 
intent recognition framework that uses Gaussian Mixture 
Models (GMM) for the supervisory control. A Support 
Vector Machine (SVM) machine learning model is estab-
lished and trained by Gao et al. [29] to classify terrain in 
lower limb rehabilitation systems. The features extracted by 
machine learning were more discriminative than the hand-
crafted rules. However, it is difficult to search for a good 
classification model when with large data quantity and poor 
feature extraction. Seeking more intelligent feature extrac-
tion methods and improving the efficiency is still the focus 
of recognition.

Deep learning models simultaneously integrate and opti-
mize feature extraction and predictive modeling. Those mod-
els have grown in popularity and practicality for complex 
tasks such as recognition and prediction of human motion 
[30]. Huang et al. [31] used a Recurrent Neural Network 
(RNN) for the prediction of real-time intended knee joint 
motion. Long short-term memory (LSTM) neural networks, 
a special case of RNN, was adopted to identify the wearer’s 
locomotion mode [32, 33]. Gautam et al. [34] introduced 
a transfer learning based long-term recurrent convolu-
tion network (LRCN) for the classification of lower limb 
movements.

Regarding the locomotion modes of the existing LMR 
methods, Park et al. [35] proposed a spatio-spectral convo-
lutional neural networks (CNN) having 83.4% accuracy on 
two gait motion modes recognition. [30, 31] both recognized 
three basic modes, standing, walking, and sitting. Almost all 
the recognition methods are for 2–7 locomotion modes [14, 
15, 32, 34], and 5 dynamic gait motions are the most com-
mon including level walking, stairs ascent, stairs descent, 
ramp ascent, and ramp descent [3, 20, 31, 36–38]. However, 
for the exoskeleton daily living assistance, the recognition of 
all the most common static and dynamic motions is needed.

In this paper, a novel subject-adaptive real-time LMR 
method based on GA-CNN is proposed for the lower limb 
exoskeleton, which is a combination of deep CNN and multi-
sensor information selection implemented by Genetic Algo-
rithm (GA). The proposed method is an integral locomo-
tion recognition for 12 modes which contain all common 

locomotion in daily life. Meanwhile, the method is dedicated 
to realizing strong comprehensive abilities including high 
accuracy, low delay, low computational complexity, and suf-
ficient adaption to different subjects. CNN is adopted as the 
basic framework. Its extraordinary performance in feature 
extraction is able to reveal the inner principle of different 
motion data [39–41]. Besides, the weight sharing mecha-
nism of CNN reduces the number of free parameters and 
computational complexity. To extract the characteristics of 
human motion more comprehensively and efficiently, the 
input of CNN must be sufficient and the most simplified. A 
multi-sensor system can perceive human multi-motion bet-
ter in all respects, but considering the over-fitting problem 
and computational complexity the redundant data should 
be elaborately eliminated. Selecting more representative 
sensor data can be considered as a searching optimization 
problem with a high computational cost. For the sake of high 
efficiency, heuristic methods are usually used [42]. GA is a 
kind of heuristic method whose encoding method is very 
friendly to a binary searching problem, so GA is introduced 
to conduct multi-sensor information selection. Furthermore, 
Bayesian optimization is adopted to optimize the hyper-
parameter of the deep network for better performance.

The comprehensive abilities of the proposed method are 
evaluated via online experiments. The proposed GA-CNN-
based method can achieve an accuracy average of 97.91%. 
About the generalization, the average recognition accuracy is 
still up to 93.97% for new subjects. In addition, the real-time 
ability can be guaranteed with the maximum recognition 
delay within 60 ms. The proposed method also is compared 
with two classic strategies (LDA, and ANN), and the neces-
sity of each presented part has also been confirmed by com-
parative experiments.

2 � Hardware and Data Acquisition

2.1 � Exoskeleton Hardware

The designed exoskeleton system called HEXO is shown 
in Fig. 1a, which is used to validate the proposed LMR 
method. The detailed mechanical structure and actuation 
system of the system was described in previous research 
[43, 44]. About the sensor system related to this paper, the 
exoskeleton is equipped with adequate sensors distributed 
throughout the body for observing motion state. To acquire 
the lower limb motion, four Inertial Measurement Units 
(IMUs) (LPMS-CU2, ALUBI, China) are mounted on the 
thighs and shank carbon-fiber limbs. Besides, a Six-axis 
Force Sensor (SFS) (M3554E, SRI, China) is installed at 
the back between the user and the exoskeleton to perceive 
the human–robot torso interaction force.



1361Integral Real‑time Locomotion Mode Recognition Based on GA‑CNN for Lower Limb Exoskeleton﻿	

1 3

Most importantly, a pair of wearable sensing-shoes is 
developed, which is shown in Fig. 1b. There are four load 
cells (AT8106, AUTODA, China) and one SFS for each 
shoe. Four load cells are installed in sensing-shoes at the 
hallux, the first metatarsophalangeal joint, the fourth meta-
tarsophalangeal joint and the heel. The SFS in the middle 
of shoes is installed between lace and sole (Fig. 1b). The 
foot will be tied to the laces and the exoskeleton shank is 
attached to the shoe sole, and the SFS can be seen as the 
only connection between the human foot and the exoskel-
eton. Therefore, when the foot is lifted the SFS can still 
detect the human–robot interaction force, which is also 
the resistance of the exoskeleton. Conventional sensing-
shoes [21, 45] usually cannot work in the swing phase. 
Hence, these new-type sensing-shoes can utilize the time 
and information when the leg is in the swinging phase. The 
IMU on the side of the shoe can also help further measure 
the attitude of the foot.

To sum up, the HEXO is equipped with 18 sensors that 
include 47 channels of sensor data in total. The whole sensor 
data set contains left thigh IMU0, left shank IMU1, left shoe 
IMU2, right thigh IMU3, right shank IMU4, right shoe IMU5, 
back IMU6, back SFS (B-SFS), left shoe SFS (L-SFS) and 
load cells (L-LCs), right shoe SFS (R-SFS) and load cells 
(R-LCs). The numbers of load cells from toe to heel are a, 
b, c, and d. Furthermore, each IMU has three axes of Euler 
angles, and SFS contains six axes of forces and torques. 
Therefore, the whole sensor data set can be described below.

2.2 � Data Acquisition Protocol

The proposed LMR method can recognize five dynamic 
motions, three static states and four transition states. For 
dynamic motions, there are level walking (LW), stairs ascent 
(SA), stairs descent (SD), ramp ascent (RA), and ramp 
descent (RD). Static states include standing (ST), sitting 
(SI), and squatting (SQ). Transition states denote the transi-
tion process between the three static states, i.e., stand to sit 
(STSI), sit to stand (SIST), stand to squat (STSQ), and squat 
to stand (SQST). To sum up, a total of 12 locomotion modes 
are studied in the LMR method. Six healthy subjects, whose 
characteristics are listed in Table 1, participated in the data 
collection experiments. The remaining three are employed in 
the online experiments. Corresponding mimic scenarios are 
used to evaluate the recognition performance. The staircase 
is 12 cm in height, 80 cm in width, and 30 cm in-depth, and 
the ramp slope is 15°.

In this experiment, all six subjects are asked to perform 
12 locomotion modes when wearing the exoskeleton with 
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Fig. 1   The exoskeleton hardware. a The exoskeleton sensor system. 
The left shoe shows the appearance, the right shoe displays the inter-
nal structure. b The new-type sensing-shoes. The dotted lines in the 
figure indicate where the physical connections are. Gray dotted lines 
indicate where the vamp and sole are connected. The SFS itself is 
fixed to the sole, and it is connected to the shoelace plate (fixed foot) 
through the red dotted line

Table 1   Detailed information of the nine subjects

Number Gender Age 
(years)

Height 
(cm)

Weight 
(kg)

Walking 
speed 
(m/s)

1# (Huang) Male 23 184 57 1–2
2# (Hu) Male 23 180 58 1–2
3# (Wang) Male 23 187 70 1
4# (Guo) Male 24 172 66 1–2
5# (Gao) Male 29 180 69 1–3
6# (Du) Male 24 176 72.5 1–3
7# (Li) Male 26 188 71 1–3
8# (Geng) Female 24 169 60.5 1
9# (Jiang) Male 45 179 78 1–2
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zero force (walking with HEXO, but no torque assistance 
is enabled). All modes are repeated five times. There are 
20–30 steps for dynamic motions every time. Static states 
and transition states continuously perform 5–10 every time. 
To evaluate the adaptability of different subjects of the pro-
posed method, all subjects are asked to perform locomotion 
with their natural gaits (e.g., different step lengths and dif-
ferent step speeds).

When using the acquired data for network training, the 
data amount of each mode is similar so that the unbalanced 
training issue can be avoided. Besides, 80% of the dataset of 
six subjects is chosen to be the training set, and the remain-
ing is the validation set. The training set is used to optimize 

the parameters of the model, and the validation set is used 
to optimize hyper-parameters.

As is seen in Fig. 2, the data curve of the same mode 
performed by different subjects can be very different. It can 
be derived that the detailed shape of the curves varies from 
person to person although the approximate shapes are simi-
lar. This is the reason why CNN is introduced to extract core 
and features from deformed and stretched sensor data.

Moreover, to eliminate the great magnitude differences of 
input data and avoid prediction errors, data normalization is 
employed. Before the sensor data is used as the input of the 
CNN, all the data are uniformly normalized to [0, 1]. The 
corresponding conversion is formulated as below,

Fig. 2   A part of the sensor data 
of three subjects performing 
LW. Displayed sensor including 
IMU0, IMU1 on the left leg and 
IMU2 on the left foot

IMU0(rad) IMU1(rad) IMU2(rad)

1tcejbuS
#

2tcejbuS
#

3tcejbuS
#

Sample point
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where x is the raw sensor data, x* is the normalized sensor 
data, MAX is a parameter that is larger than the maximum 
value of x in the training dataset, MIN is a parameter that is 
smaller than the minimum value of x in the training dataset.

3 � LMR Method Based on GA‑CNN

The procedure of the LMR method based on GA-CNN is 
described in Fig. 3. Pre-collected locomotion data are ini-
tially used to train a deep CNN learning model offline, and 
the model is subsequently adopted to recognize the subject’s 
locomotion online. This section first shows the architecture 
of CNN, and then is the determination of the input. The 
input is raw sensor data in a sliding time-window with a spe-
cific length and width. The length is determined by experi-
mental trade-offs between efficiency and accuracy, and the 
width is the number of sensor channels after rational multi-
sensor information selection using GA. Afterward, last but 
not least, hyper-parameter optimization is implemented to 
get a more efficient model.

3.1 � CNN Architecture

The architecture of the CNN model is illustrated in Fig. 4. 
The input of CNN is a lI × hI time-window data frame. 
Except for the input and output layer, the entire CNN archi-
tecture contains five hidden learning layers: two convolu-
tional layers, two pooling layers and one fully connected 
layer.

As is shown in Fig. 4, t is the current time and T is the time 
of the time-window data frame. The length of the input layer 

(2)x
∗ =

⎧
⎪⎪⎨⎪⎪⎩
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MAX−MIN
0 ≤

x−MIN

MAX−MIN
≤ 1

1
x−MIN
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> 1

0
x−MIN

MAX−MIN
< 0,

lI which is the length of the data frame equals T divided by 
Ts (sampling period) and the width of the input layer hI is the 
number of the remaining sensor channels after GA optimizes 
sensor selection. The first convolutional layer filters the lI × hI 
input data frame with wI kernels of size f11 × f12 with a stride 
of 1 data point. The feature map size of the first convolutional 
layer is lC1 × hC1 the same as the previous input lI × hI. The 
purpose of convolution is to extract the different characteristics 
of the input. The max-pooling layer follows the convolutional 
layer, used for dimensional compression and selecting more 
obvious features. The first pooling layer pools the lC1 × hC1 
input data frame with wI kernels (the number of pooling layer 
kernels is equal to the previous layer) of size p11 × p12 with a 
stride of 2 data points. The feature map size of the first pooling 
layer is lL1 × hL1, which can be calculated in Eq. (3),

where P = 0 (padding pattern is VAILD) and S = 2 (stride 
is 2). The convolutional layer 2 and the pooling layer 2 are 
in the same situation as the above description. The CNN 
becomes deeper through repeatedly stacking convolutional-
pooling layer, and more global features and higher dimen-
sional features can be extracted. nF denotes the number of 
neurons in the fully connected layer.

Algebraically, the convolutional layers can be expressed as,

where aj
l represents the output feature map of the jth chan-

nel (kernel) in layer l, ai
l−1 is the output of the ith channel 

of the previous layer, Wj
l is the convolution kernel matrix, 

and ∗ denotes the convolution operator, Ml−1 represents the 
total channel of the previous layer, and bj

l represents the 
bias. σ(·) is the activation function, and the leaky Rectified 

(3)
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S
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∗ Wl
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)
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Time-window 
data

Hyper-parameter 
optimization

CNN recognizer
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Sensor data selection
Recognition 

decision

Online recognition

Offline trainning

Raw data

Offline
Online

Fig. 3   The procedure of the LMR method based on GA-CNN
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Linear Unit (ReLU) is applied in this case. The formula of 
ReLU activation function is expressed as

The algebraic expression of the pooling layers can be writ-
ten as

where aj
l is the output feature maps of the jth channel in 

pooling layer l, and max (·) represents the max-pooling 
operation. The output of the fully connected layer can be 
calculated through the following equation,

where al is the output of the fully connected layer l, α is the 
weight coefficient of the fully connected layer, al−1 denotes 
the output feature graphs of the upper layer, and bl is the 
bias. Dropout with a probability of 0.5 is also implemented 
in the fully connected layer to reduce over-fitting. The 
12-channel softmax function in the last fully connected layer 
produces a distribution of 12 class labels corresponding to 
12 locomotion modes,

(5)𝜎(x) =

{
0, x < 0

x, x ≥ 0.

(6)al
j
= max

(
al−1
j

)
,

(7)al = �
(
� ⋅ al−1 + bl

)
,

(8)
yk =

ea
k

N∑
c=1

ea
c

,

where yk is the kth output of the softmax, ac and ak are the 
outputs of the fully connected layer, and N is the total num-
ber of the locomotion modes.

The loss function is cross entropy,

where M is training batch size, i denotes each sample in 
the training batch, N is the total number of the locomotion 
mode, and k denotes each mode. ŷik is the ground truth (0 or 
1) of the kth mode, and yik is the calculated softmax output 
of the ith sample for the kth mode. Furthermore, the Adap-
tive Moment Estimation (Adam) optimizer is employed to 
optimize the weights and biases in CNN.

3.2 � Time‑window Length

For time-window flow data, the window size is essential 
to the system’s efficiency. Hence, it is necessary to make a 
tradeoff between recognition efficiency and computational 
consumption for time-window length. In this paper, time-
window length lI is determined by cross entropy in the vali-
dation set and calculation consumption. All multi-sensor 
channel data are adopted in this section. A set of empirical 
values are adopted as the hyper-parameters in experiments 
before the optimization process.

As can be seen from Fig. 5, the calculation consump-
tion constantly increases with the increase of lI. While to 
cross entropy, it is distinctly decreasing with the increase 
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Fig. 4   Architecture of the deep CNN model. t is the current time. T is the time of time-window data
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of lI until lI reaches 100. Consequently, the length of the 
time-window lI is chosen as 100 in this work. In addition, 
the sliding step (window increment) is 10 ms as same as the 
sampling period.

3.3 � GA‑Based Multi‑sensor Information Selection

To get a more representative but simplified input frame, 
the multi-sensor information selection is implemented. The 
operation of the multi-sensor information selection consists 
of two steps. First, the sensor data with apparently poor per-
formance were manually removed. By observing the raw 
data, it is found that drifting always exists in the θz chan-
nel of the IMU, which is irregular and uncorrelated to the 
motion. Hence, all of them are removed permanently. After 
manual sensor selection, 40 channels remain. The second 
step is the automatic sensor selection. The GA simulates 
the evolution process of the artificial population. The sen-
sor signals are combined as different candidate individuals 
of the population. Through the mechanisms of Selection, 
Crossover and Mutation, a set of senor candidate individuals 
is retained in each iteration. The sensor candidate set will be 
used to conduct a recognition mission. The GA aims to find 
the best set with minimal cross entropy in the recognition 
result. After the population evolves during several iterations, 
the optimal combination of sensor data is elected.

The combination of different sensor data is encoded in 
binary, and each bit represents a sensor channel. “1” means 
the sensor channel is selected and “0” means it is excluded. 

Hence, the chromosome size of GA is 40. There is a total of 
30 individuals in the population, and the crossover rate and 
mutation rate are 0.75 and 5/40 respectively. In the process 
of cross entropy descending in evolution as shown in Fig. 6, 
the cross entropy begins to converge to around 0.15 from 
the 22nd generation. The minimum cross entropy reaches 
0.14396, and the corresponding individual is the optimal 
data set listed as follows.

Finally, a total of 24 data channels are left. Therefore, for 
the proposed recognition, only 24 data channels are adopted 
all the time.

3.4 � Hyper‑parameter Optimization

Hyper-parameters have a great impact on network per-
formance. Unlike grid search and random search, Bayes-
ian optimization makes full use of the previous informa-
tion when evaluating the next one, which can speed up the 
searching process. Thus, Bayesian optimization is adopted 
in this paper to minimize the cross entropy on the validation 
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Fig. 5   Cross entropy and computational consumption by different 
time-window length

Fig. 6   Evolution of GA-based multi-sensor information selection
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set. The hyper-parameters to be optimized and their bounds 
can be found in Table 2. Learning rate μ1 is initialized and 
searched in logarithmic space.

The optimization procedure is as follows. In the begin-
ning, five sets of random hyper-parameters x1–x5 are gen-
erated by Latin Hypercube Sampling (LHS) [46]. LHS 
can form uniform sets that benefit initialization. The cross 
entropy of five networks on the validation set is used to for-
malize a prior distribution of Gaussian Process (GP),

where xn is the nth hyper-parameters set, and Ln is the cor-
responding cross entropy. In this case, the mean function is 
zero and the covariance function k(xn) is Matérn 5/2.

Considering L(x) is obtained from a GP prior, a posterior 
over acquisition function α(x) is induced. Among the avail-
able acquisition functions, expected improvement (EI) has 
shown good performance in hyper-parameter tuning [47], 
which can be expressed as,

where Loptimal is the optimal value currently, μ(x) and σ(x) 
are the mean function and variance function of the poste-
rior, respectively, and Φ(⋅) and ϕ(⋅) are the normal cumula-
tive distribution function and probability density function, 
respectively.

Therefore, the next set is evaluated by xnext = argmaxα(x). 
Once the next hyper-parameter set xnext is evaluated, it is 
then considered as new prior knowledge and a new prior GP 
distribution is obtained.

(11)Ln ∼ N
(
0, k

(
xn

))
,

(12)�(x) =
(
Loptimal − �(x)

)
�

(
Loptimal − �(x)

�(x)

)
+ �(x)�

(
Loptimal − �(x)

�(x)

)
,

This processes 65 iterations for optimization. Figure 7 
demonstrates the whole optimization process. The optimal 
set is obtained at the 27th iteration, and the cross entropy 
is 0.115. The optimization results are listed in Table 2. The 
fully connected layer is composed of 4576 neurons. The 
related final structural parameters of CNN are given in 
Table 3. The neural network has 7,614,055 parameters and 
63,216 neurons in all.

4 � Experiment and Discussion

4.1 � Evaluation of GA‑CNN

To evaluate the proposed LMR method, online experiments 
are conducted. Two metrics are used to measure the result of 
the experiments: recognition effects and recognition delay. 
The previously trained subjects 1#, 2#, 3# (locomotion data 
are trained by the network) as well as three new subjects 7#, 
8#, 9# are adopted in this experiment.

4.1.1 � Recognition Effects

The LMR performance is evaluated in terms of the accuracy 
rate, which is calculated using the following equation,

where k ∈ [1, 12] denotes the locomotion modes, Ns repre-
sents the number of successfully recognized data points in 

(13)Sk =
Ns

Nt

,

Table 2   Details of the optimized hyper-parameters

Hyper-param-
eters

Data type Bounds Optimized value

f11 Int [2, 15] 14
f12 Int [2, 15] 7
wI Int [5, 25] 20
p11 Int [3, 8] 6
p12 Int [3, 8] 3
f21 Int [2, 15] 12
f22 Int [2, 15] 12
w2 Int [6, 40] 15
p21 Int [3, 7] 5
p22 Int [3, 7] 3
nF Int [100, 5000] 4576
σd Float [0, 1] 0.9336
μl Float [10−5, 10−1] 10−3.9536

Fig. 7   The hyper-parameter optimization process
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the locomotion mode k, and Nt is the total number of sample 
data in the locomotion mode k.

The accuracy rates of the LMR method are listed in 
Table 4. The columns in the table are all locomotion modes 
and the rows are subjects. The average accuracy rate is 
97.91% for the trained subjects and 93.97% for new subjects. 
As can be seen from the rightmost column, the accuracy 
rate of the three trained subjects are very close within the 
range of 97.91% ± 0.09, and the same close for each mode. 
The lowest rate is 96.17% (STSQ) and the highest is 99.80% 
(LW) except 100% for all ST. For new subjects, all rates 
of ST are still 100%, the second-highest rate is also in LW 
98.67% and the lowest is in SQ 88.91%. In general, the accu-
racy of the network is great for the trained subjects, and for 
new subjects it is still high enough.

For locomotion mode, the recognition accuracy rates for 
the trained subjects and new subjects are shown in Fig. 8. 
The accuracy rate is relatively contrasting for different 
motion modes. The accuracy of ST still maintains 100%. 
Dynamic motions have an overall higher accuracy rate, com-
pared with static states (except ST) and transitions. SQ and 
SI have the worst performance.

The accuracy rate is very straightforward but cannot 
display the classification details, and the specific recogni-
tion situation can be visually demonstrated by the con-
fusion matrix. There are four types of prediction results 
in the matrix, including True Positive (TP), False Posi-
tive (FP), False Negative (FN), and True Negative (TN). 

Figure 9 demonstrated the normalized confusion matrix 
for (a) the trained subjects and (b) the new subjects, 
respectively. The misclassification of (a) and (b) is roughly 
same. From the upper left corner to the lower right corner, 
first, mistakes are relatively easy to be made when deal-
ing with similar locomotion modes like RA and SA, RD 
and SD, because the motion characteristics of the limbs 
are very similar when these movements are performed. 
Furthermore, SA, RA, SD, and RD all have the possibil-
ity to be wrongly classified as LW. Moreover, it can be 

Table 3   Parameters of the CNN 
architecture

Layer Kernel Stride Num Feature maps

Convolutional 1 f11 × f12 14 × 7 1 20 lC1 × hC1 100 × 25
Pooling 2 p11 × p12 6 × 3 2 20 lL1 × hL1 48 × 12
Convolutional 1 f21 × f22 12 × 12 1 15 lC2 × hC2 48 × 12
Pooling 2 P21 × p22 5 × 3 2 15 lL2 × hL2 22 × 5
Fully connected 4576
Output 12
Learning rate 10−3.9536

Dropout rate 0.9336

Table 4   Accuracy rates of the LMR method

a 1#, 2#, 3# is the number of trained subjects whose motion data is trained by the network, and 7#, 8#, 9# is the number of new subjects

Dynamic motions Static states Transition states All (%)

LW (%) SA (%) SD (%) RA (%) RD (%) ST (%) SI (%) SQ (%) STSI (%) SIST (%) STSQ (%) SQST (%)

1#a 99.80 98.56 98.22 98.24 99.13 100.00 97.68 96.70 96.65 97.91 96.19 96.88 98.00
2# 99.76 97.89 98.01 98.44 99.23 100.00 97.03 97.00 96.22 97.44 96.17 96.81 97.83
3# 99.70 98.19 98.15 98.78 99.00 100.00 97.43 96.69 96.29 97.71 96.17 96.83 97.91
7# 96.08 95.15 93.61 95.35 94.88 100.00 89.91 88.91 90.24 90.79 90.66 89.89 92.96
8# 98.67 97.45 96.23 97.65 97.00 100.00 92.11 91.31 93.09 93.73 93.33 93.04 95.30
9# 96.92 95.38 94.12 95.81 95.62 100.00 90.59 89.99 91.57 91.57 91.84 90.55 93.66

Fig. 8   Accuracy rates of LMR for 12 locomotion modes



1368	 J. Wang et al.

1 3

deduced from the lower right part of Fig. 9 in the process 
of STSQ-SQ-SQST and STSI-SI-SIST that locomotion 
modes are easily wrongly classified into adjacent modes. 
In the middle of transition motion, the misclassification of 
SQ and SI is more. Additionally, there are more random 
misrecognitions of new subjects.

To further confirm the model’s performance and avoid 
misleading results derived from the accuracy rates metrics, 
the F1-score is adopted. Equation (14) represents the f1-
score under each motion, and Macro-F1 (Eq. (15)) indi-
cates the overall performance.

(14)f1k = 2 ⋅ precisionk ⋅ recallk
/(

precisionk + recallk
)
,

(15)M-F1 =
1

n

n∑
k=1

f1k,

(16)precisionk = TPk
/(

TPk + FPk
)
,

(17)recallk = TPk
/(

TPk + FNk

)
,

(a)

(b)

Fig. 9   Confusion matrix of the LMR method. a Confusion matrix of the trained subjects. b Confusion matrix of the new subjects
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Table 5 shows the f1-score of 12 locomotion modes and 
the Macro-F1 of an integral model for the trained subjects 
and new subjects, respectively. The closer the value of 
the f1-score is to 100%, the better the model behaves. The 
model still performs well and is stable for new subjects with 
93.97% Macro-F1.

As can be seen from the accuracy rate and F1-score that 
the proposed method performed well in the LMR task. It is 
reasonable that the performance of new subjects is not as 
good as the trained subjects, but it is still high enough in the 
application. Therefore, the proposed LMR method shows 
sufficient adaptation to new subjects.

4.1.2 � Recognition Delay

As the other critical metric, the delay of the LMR process is 
presented in this section. The delay was defined as the time 
elapsed from the beginning of certain task execution to the 
time of its recognition, and this measure can be applied both 
for motions at the beginning of the classification proces-
sor and for transitions between different motions. For most 
gait modes recognition, the response time was defined as 
the time elapsed between the time when the terrain change 
was recognized and the critical time [12]. The critical time 
is defined as the moment when the leading leg touches the 
ground [20]. This standard is widely used and practical for 
recognizing LW, SA, and SD, etc., but it is not appropri-
ate for this case because recognition in this paper includes 
varies modes like SI, and SQ, etc., in which there is no foot 
strike. In this case, the critical time adopts the exact moment 
when the wearer begins to execute or change the mode. The 
recognition delay is expressed using the following indexes,

where Tr is the recognition moment, and Tc is the critical 
moment.

The delay of the LMR is given in Table 6. The average 
values of all possible transitions are listed in the table. For 
example, the delay of LW represents the average delay of 
ST-LW, RA-LW, RD-LW, SA-LW, and SD-LW, and the 
delay of ST denotes the average delay of SIST-ST and 
SQST-ST. In addition, the remaining only represents one 
transition, like SA represented LW-SA, and SQ represented 
STSQ-SQ. As can be seen from Table 6, the delay is gener-
ally between 10 and 60 ms with an average of 20–30 ms, and 
different modes vary greatly. For dynamic motions, the delay 
of tens of milliseconds is much shorter than the human gait 
period, which means that the proposed method is able to suc-
cessfully recognize modes before the leading leg touches the 
ground. The delay of static states and transitions is generally 
less than dynamic motions.

The maximum recognition delay is 29.92 ± 5.86 ms for 
the trained subjects and 53.33 ± 14.39 ms for the new sub-
jects. It is reasonable that the performance of new subjects 
is not as good as the trained subjects, but the recognition 
performance for new subjects is still satisfactory and appli-
cable. Compared with most machine learning methods that 
need hundreds of milliseconds of delay, tens of millisec-
onds indicate good performance. The fuzzy-logic classifier 
proposed by Parri et al. [23] is always one step delay. The 
maximum delay is 47.69% ± 28.77% and 17.4% ± 1.2% of 
a gait cycle for [31] and [34], respectively. Assuming one 
gait cycle takes 500 ms, 17.4% ± 1.2% delay time reaches 
85 ms of the deep neural networks proposed by Hua et al. 

(18)D =Tr − Tc,

Table 5   F1-score of the LMR method for all locomotion modes

a f1T refers to the average f1 of the trained subjects, and f1N refers to the average f1 of the new subjects

Dynamic motions Static states Transition states M-F1

LW SA SD RA RD ST SI SQ STSI SIST STSQ SQST

f1Ta 97.98% 98.75% 98.81% 99.17% 98.97% 99.53% 97.68% 95.08% 98.81% 95.08% 97.68% 96.73% 97.91%
f1N 94.85% 96.42% 95.77% 96.99% 96.51% 97.64% 91.23% 89.78% 90.90% 93.85% 91.91% 91.77% 93.97%

Table 6   Delay of the LMR method

a DT refers to the average delay of the trained subjects, and DN refers to the average delay of the new subjects

LW SA SD RA RD ST

DTa (ms) 22.42 ± 3.10 27.78 ± 3.12 22.85 ± 2.88 28.89 ± 4.01 29.92 ± 5.86 10.22 ± 4.87
DN (ms) 35.14 ± 9.73 41.51 ± 13.15 38.27 ± 8.56 45.17 ± 11.94 53.33 ± 14.39 18.23 ± 5.56

SI SQ STSI SIST STSQ SQST

DT (ms) 23.70 ± 5.57 20.26 ± 3.23 15.38 ± 2.10 13.26 ± 1.59 12.16 ± 1.51 20.02 ± 2.27
DN (ms) 29.20 ± 10.27 25.06 ± 9.01 17.88 ± 5.55 25.68 ± 6.21 18.07 ± 5.61 35.36 ± 9.33
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[34]. For the proposed method with a maximum delay of 
53.33 ± 14.39 ms delay, the real-time ability can be confi-
dently guaranteed and can fully meet the needs of the control 
system.

Regarding the computational complexity, the weight 
sharing mechanism of CNN can reduce the number of free 
parameters and computational complexity. In addition, the 
embedded controller of the exoskeleton platform is based 
on TI AM437x ARM Cortex-A9, which possesses excellent 
computing ability. The average computational consumption 
to complete an online recognition via the proposed method 
is 5.41 ms with a standard deviation of 0.89 ms according to 
10,000 experiments. Considering that the sampling period is 
10 ms, the real-time capability can be guaranteed. Computa-
tional consumption has also been included in the delay time.

4.2 � Comparative Study

The comparative experiment is reported in this section. LDA 
and ANN that represent statistical and neural classifiers are 
adopted as comparing methods, and then two variants of the 
proposed model are listed following as comparing objects to 
confirm the necessity of each presented part.

1.	 LDA: One LDA classifier was constructed to classify 
locomotion modes. While LDA is a simple classifier, it 
has been shown in other pattern recognition literatures 

in which LDA has similar performance to non-linear and 
more complex classifiers [12]. The classifier is trained 
and tested in the same way as the proposed method.

2.	 ANN: In this method, a 6-layer ANN with dropout layers 
is adopted as a learning network. The input data is the 
same as the proposed method, which is the optimal data 
set selected by GA in the form of time-window flow. The 
same hyper-parameter optimization is executed in this 
method as well. The loss function still employs cross 
entropy, and the network is also optimized by Adam 
optimizer.

3.	 CNN-I: This variant employed the same architecture as 
the proposed method, but adopts all acquired data as 
input without removing any sensor channels. The pur-
pose of establishing this comparison item is to evaluate 
the influence of the multi-sensor information selection 
process.

4.	 CNN-O: As a variant of the proposed method, CNN-O 
is implemented without auto hyper-parameter optimiza-
tion, which means they are all tuned manually. Mean-
while, the other processes are the same as the proposed 
method.

The five methods including the proposed one are com-
pared from four aspects: accuracy for the trained subject, 
Macro F1-score, computational consumption and accuracy 
for the new subject. A radar plot shown in Fig. 10 makes 

Fig. 10   Radar plot of the com-
parative experiment
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a clear comparison. Apparently, the proposed model sig-
nificantly outperforms other methods in terms of accuracy 
and Macro F1-score. For calculational consumption, LDA’s 
performance is much ahead of all the other methods, which 
is followed by the proposed one. Thus, the proposed method 
has the best performance by trading all four aspects off. In 
addition, although with the best calculational consumption, 
LDA’s Macro F1-score is abnormally the lowest among all 
the methods, and its accuracy rate is also lower than the 
average level. The performance of the ANN method is also 
not well and remarkable on four standard axes. About CNN-
I, the shape of its radar plot is very similar to the proposed 
method, and the area is smaller. This phenomenon is very 
reasonable, indicating that multi-sensor information selec-
tion has improved the algorithm in all aspects, especially 
for calculational consumption. The input sensor channels 
of CNN-O are the same as the proposed method, so the cal-
culational consumption of them is very close. Due to the 
under-optimized hyper-parameters in CNN-O, its perfor-
mance except for calculational consumption is mediocre. 
The comparative experiment verified the effectiveness of 
the method and the necessity of each part.

5 � Conclusion

In this paper, an integral subject-adaptive real-time LMR 
method is proposed based on GA-CNN. A large and deep 
CNN is trained to recognize exoskeleton locomotion 
combined with GA multi-sensor information selection. A 
time-window with current and historical sensor data is 
employed to identify the current locomotion mode, and 
the appropriate length of the window is determined by 
balancing the cross entropy and computational consump-
tion. An exoskeleton prototype system with multi-type 
sensors is established. The multi-sensor data as the input 
of CNN is further elaborately selected by GA. Besides, 
Bayesian optimization optimizes a set of best-performing 
hyper-parameters of the network. The proposed LMR 
method is capable of recognizing 12 modes that contain 
all common locomotion in daily life, with an average 
accuracy of 97.91% for the trained subjects and 93.97% 
for the new subjects. About the recognition delay, the 
maximum is 29.92 ± 5.86 ms for the trained subjects and 
53.33 ± 14.39 ms for the new subjects. The average com-
putational consumption for online recognition using the 
proposed method is 5.41 ± 0.89 ms. The real-time abil-
ity can be confidently guaranteed and can fully meet the 
needs of the control system. The experiments validated the 
method possesses strong comprehensive abilities including 
high accuracy, low delay, low computational complexity, 
and sufficient adaption to different subjects. In the future, 

this locomotion recognition part should be integrated with 
the appropriate control strategy to complete the exoskel-
eton functional hierarchical control scheme. It is at least 
equally important for a controller to solve more issues, i.e., 
eliminating external interference and in concert with the 
intentions of the wearer. In this way, the final performance 
of the assisted exoskeleton will be demonstrated.

6 � Data Availability Statement

The datasets generated and analyzed during the current 
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of an ongoing study but are available from the correspond-
ing author on reasonable request.
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