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Abstract
The Moth Flame Optimization (MFO) algorithm shows decent performance results compared to other meta-heuristic algo-
rithms for tackling non-linear constrained global optimization problems. However, it still suffers from obtaining quality 
solution and slow convergence speed. On the other hand, the Butterfly Optimization Algorithm (BOA) is a comparatively 
new algorithm which is gaining its popularity due to its simplicity, but it also suffers from poor exploitation ability. In this 
study, a novel hybrid algorithm, h-MFOBOA, is introduced, which integrates BOA with the MFO algorithm to overcome 
the shortcomings of both the algorithms and at the same time inherit their advantages. For performance evaluation, the pro-
posed h-MFOBOA algorithm is applied on 23 classical benchmark functions with varied complexity. The tested results of 
the proposed algorithm are compared with some well-known traditional meta-heuristic algorithms as well as MFO variants. 
Friedman rank test and Wilcoxon signed rank test are employed to measure the performance of the newly introduced algo-
rithm statistically. The computational complexity has been measured. Moreover, the proposed algorithm has been applied 
to solve one constrained and one unconstrained real-life problems to examine its problem-solving capability of both type of 
problems. The comparison results of benchmark functions, statistical analysis, real-world problems confirm that the proposed 
h-MFOBOA algorithm provides superior results compared to the other conventional optimization algorithms.

Keywords Moth flame optimization algorithm · Butterfly optimization algorithm · Bio-inspired · Benchmark functions · 
Friedman rank test

1 Introduction

Optimization has the main function in both industrial pur-
poses and the scientific research world. Many numerical 
and computational processes have been invented to clear 
up optimization issues in the last twenty years. However, 
with the aid of numerical methods, it is very complicated to 
resolve the problems which are non-convex, highly nonlin-
ear, include a giant quantity of variables and constraints. To 
overcome the drawbacks, such as extra mathematical calcu-
lations, initial guess, convergent problems in discrete optimi-
zation problems, a set of optimization algorithms known as 
meta-heuristics algorithms have been proposed in the latest 
decades. Broadly we divide metaheuristic algorithms into 
two groups viz., Single Solution-Based (SSB) methods and 
Population-Based (PB) methods. The SSB methods perform 

the search by single search representatives, and a group of 
search representatives is used in PB methods. Depending 
on single and social information, each solution’s position is 
renovated in PB methods. Moreover, various solutions could 
easily search the whole search space; hence, better results 
are produced in PB methods compared to the SSB methods. 
The PB optimization techniques are mainly grouped into 
four different types: (i) evolutionary algorithms such as, 
Genetic Algorithm (GA) [1], Differential Evolution (DE) 
[2], Biogeography-Based Optimization (BBO) [3], Bird 
Mating Optimizer (BMO) [4], etc. (ii) Swarm Intelligence 
(SI) based algorithms, namely Particle Swarm Optimization 
(PSO) [5], Salp Swarm Algorithm (SSA) [6], Whale Optimi-
zation Algorithm (WOA) [7], Symbiotic Organism Search 
(SOS) [8], Butterfly Optimization Algorithm (BOA) [9], 
Monarch Butterfly Optimization (MBO) [10], Moth Flame 
Optimization (MFO) [11], Backtracking Search Algorithm 
(BSA) [12], JAYA algorithm [13], Slime Mould Algorithm 
(SMA) [14], Moth Search Algorithm (MSA) [15], Harris 
Hawks Optimization (HHO) [16], Hunger Games Search 
(HGS) [17], Colony Predation Algorithm (CPA) [18] etc. 
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(iii) physical or chemical law-based algorithms, namely 
Multi-Verse Optimizer Algorithm (MVO) [19], Gravitational 
Search Algorithm (GSA) [20] algorithm, Chemical Reaction 
Optimization (CRO) [21], Atom Search Optimization (ASO) 
[22], etc. and (iv) human-based algorithms, such as Teach-
ing–Learning Based Optimization (TLBO) [23] algorithm, 
Cognitive Behavior Optimization Algorithm (COA) [24]. 
Apart from these above algorithms, several algorithms have 
been proposed using the mathematics concepts like alge-
bra, geometry etc. Few of them are Sine Cosine Algorithm 
(SCA), [25], Runge kutta Method (RUN) [26], weIghted 
meaN oF vectOrs (INFO) [27] etc. Usually, these algorithms 
start with a randomly taken set of the initial solutions and 
then run the process until the global optimal solutions of 
the objective functions are obtained. The optimization pro-
cess will be stopped when it reaches a maximum number of 
iterations set by researchers. There is increased awareness 
and interest nowadays for implementing such metaheuristic 
algorithms, which are both inexpensive and efficient.

MFO is a SI based algorithm first discovered in 2015 
by Mirjalili [11]. MFO’s inspiration came from the moths’ 
navigation technique in nature, referred to as transverse ori-
entation. In particular, MFO has two critical strategies, such 
as spiral flight search and Simple Flame Generation (SFG). 
The SFG method can create flames from a group of the most 
powerful moth individuals and fire acquired so far. Moths 
are given the ability to spiral into the fire to update their 
place in the iterative process by mimicking the transverse 
orientation of other moths. Ultimately, MFO can select the 
most appropriate answer within the search space. If MFO is 
to succeed, transverse moth orientation is necessary.

MFO has a strong ability to solve numerous challeng-
ing constrained and unknown search space problems, which 
is the main advantage of MFO among all other traditional 
algorithms. Due to the less parameter and easy algorithm, 
MFO also has been applied to handle several real-life scien-
tific problems such as optical network unit placement [28], 
automatic generation control problem [29], image segmenta-
tion [30], feature selection [31], medical diagnoses [32, 33], 
smart grid system [34], and so on.

While MFO may represent a new type of population-
based optimization method, the MFO algorithm still needs to 
be further developed and studied, including the speed of con-
vergence and the capacity to search globally [35]. Various 
researchers have already proposed some improvements to 
MFO to overcome the disadvantages of the MFO algorithm. 
For example, Hongwei et al. [36] proposed a new variant of 
the MFO algorithm named chaos-enhanced MFO by inte-
grating chaos map into MFO to overcome the demerits of 
the MFO algorithm. Yueting et al. [37] proposed a series of 
new variants of the MFO algorithm by integrating MFO with 
Cauchy mutation, Gaussian mutation, levy mutation, or the 
combination of three mutations to reduce the disadvantages 

of MFO algorithm where three modified strategies boost 
the diversification and intensification capability of the basic 
MFO algorithm. Xu et al. [38] introduced a new variant of 
the MFO algorithm by embedding chaotic local search and 
Gaussian mutation named CLSGMFO to get a more stable 
balance between diversification and intensification. Kaur 
et al. [39] presented a modified version of the MFO algo-
rithm, dubbed E-MFO, in which a division of iterations, a 
Cauchy distribution function, and the influence of the better 
flame was added to the MFO algorithm to maintain a favora-
ble trade-off between diversification and intensification, 
as well as increased exploration and exploitation. Tumar 
et al. [40] embedded a modified MFO algorithm. They pro-
posed an Enhanced Binary MFO algorithm (EBMFO) to 
predict software faults using adaptive synthetic sampling 
(ADASYN). Wei Gu and Gan Xiang [41] proposed a new 
modified MFO algorithm named multi-operator MFO algo-
rithm (MOMFO), which integrates three operators called 
adaptive control strategy, elite search strategy, and chaos 
search strategy to make a balance between global and local 
search capability. The MFO algorithm was updated by Ma 
et al. [42] to address some of the shortcomings of the basic 
MFO algorithm, such as slow convergence and convergence 
to a local minimum. Both the exploration–exploitation and 
optimization performance optimization methods contain the 
inertia weight of the diversity feedback control and the small 
probability mutation component, which are embedded.

In recent times, meta-heuristics and hybrid metaheuris-
tics have played a major role in the research field. Hybridi-
zation is used to solve hard optimization problems due to 
the combination of two to three individual meta-heuristics 
algorithms. It is also helpful for improving the metaheuris-
tics algorithm with some additional techniques for better 
improvement of results, run time, or both. Some of the 
hybrid methods of MFO have been developed by different 
authors, such as in [43], the author developed an interest-
ing population-based algorithm using a proportional selec-
tion scheme to integrate the MFO and Hill Climbing (HC) 
algorithm named PMFOHC, which helps in (a) quickening 
the searching process (b) to improve the solution quality. 
Wu et al. [44] introduced a new PB algorithm known as 
the HSDE-MFO algorithm by integrating hybrid symbiotic 
DE and MFO to acquire suitable PV model parameters. In 
[35] the authors developed a modified algorithm of MFO 
by the mixture of the Water Cycle Algorithm (WCA), and 
MFO noted as WCMFO. Here MFO increases the exploita-
tion, and WCA improves the diversification of WCMFO. 
Also, it has been used in solving constrained optimization 
problems. Bhesdadiya et al. [45] proposed an algorithm by 
integrating PSO and MFO which enhance the diversifica-
tion search during solving high complex design problem and 
showed superiority in solving unconstrained optimization 
problems. In [46–48] various hybrid techniques of MFO 
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algorithm have been established to increase the efficiency 
of MFO algorithm.

Like the MFO algorithm, the BOA algorithm is a rela-
tively new PB metaheuristic algorithm that mimics the 
searching of food and mating pair behaviour of butterflies for 
global optimization. The approach is based mainly on but-
terflies' foraging strategies that use their smell to determine 
where the nectar or the pairing partner is. The BOA is a 
highly powerful and versatile algorithm to solve complicated 
real-world problems where the search areas are relatively 
complex. For example, Arora and Singh [49] introduced a 
novel improved BOA (IBOA) using a dynamic and adaptive 
strategy to modify the sensor modality instead of a constant 
value. The authors of [50] embedded a novel enhanced BOA 
algorithm called Bidirectional BOA (BBOA) by applying 
bidirectional search in BOA, which assisted the local search 
in both forward and backward direction. While selecting the 
direction for local search, the greedy selection technique was 
used. In [51], an improved BOA (WPBOA) was proposed, 
which incorporated guiding weights and a population restart 
strategy. With the addition of guiding weight into the global 
search phase, the algorithm's convergence rate and preci-
sion were increased. Dhanya and Kanmani [52] introduced 
a novel algorithm (BOA-C) with the help of Cauchy muta-
tion operator to enhance the global search ability of BOA 
and tested on both low and high-dimensional optimization 
problems. Li et al. [53] introduced an enhanced version of 
BOA algorithm, namely FPSBOA to balance the exploration 
and exploitation of BOA. The authors have used nineteen 
2000-dimensional and twenty 1000-dimensional functions 
to verify FPSBOA for complex large-scale optimization 
problems. In [54], the evidence of bias of BOA was dem-
onstrated for the problems whose optimal value was near 
the origin, and an unbiased BOA (UBOA) was suggested 
to eliminate this problem. Lohar et al. [55] used BOA and 
some other algorithms to optimize the geotechnical param-
eters used in slope stability analysis. Again, in [56], Arora 
and Singh proposed another hybrid method by the ensem-
ble of BOA and artificial bee colony (ABC) algorithm. In 
2019, Arora and Anand introduced binary versions of BOA 
(bBOA) [57] where two approaches of binary BOA, namely 
bBOA-S and bBOA-V were proposed and applied the same 
for feature selection problem in wrapper mode. Recently, 
Sharma et al. [58] presented a novel hybrid MPBOA algo-
rithm, which combines the BOA's parasitism and mutualism 
phases with the SOS algorithm's search phrases to improve 
the search behaviour of the BOA, which allows for better 
trade-offs between global and local searches in the MPBOA 
algorithm. Sharma et al. [59] created a new hybrid meta-
heuristic algorithm called h-BOASOS integrating BOA and 
SOS algorithms, and then applied it to find the cost and 
weight of the cantilever retaining wall. Sharma and Saha 
[60] introduced a powerful hybrid algorithm named BOSCA 

by combining SCA with BOA, which helps in stabilizing 
the global exploration and local exploitation ability of the 
proposed algorithm. Sharma and Saha [61] introduced a 
new efficient hybrid algorithm, m-MBOA. They utilized the 
mutualism step in the exploration section of BOA to deco-
rate the overall performance of the original BOA algorithm. 
Liu et al. [62] introduced an upgraded version of the BOA 
called LBOLBOA by integrating orthogonal learning, Lévy 
flight, and Broyden-Fletcher-Goldfarb Shanno (BFGS) into 
the original BOA. The main goal of the proposed LBOL-
BOA is to reduce the shortcoming of the BOA such as slow 
convergence speed and quickly fall into the local optima 
solution. The effectiveness of the suggested LBOLBOA has 
been tested on IEEE CEC’2017 benchmark problems and 
the parameter optimization of the Kernel Extreme Learning 
Machine (KELM) for prediction of cervical hyperextension 
injury. Yu et al. [63] developed an improved BOA-optimized 
KELM model (in short SBOA-KELM) by integrating SSA 
into the original BOA algorithm and applied it to bear-
ing fault diagnosis. First, the energy entropy features are 
extracted from the raw vibration signals by complete ensem-
ble empirical mode decomposition based on adaptive noise 
(CEEMDAN). The original vibration signals were decom-
posed into multiple Intrinsic Mode Function (IMF) compo-
nents by CEEMDAN. The energy entropy of the IMFs was 
calculated to construct an energy feature vector. Second, to 
avoid data redundancy caused by smaller energy features and 
increase calculation, a random forest was used to evaluate 
feature’s importance and select informative features as new 
feature vectors. Third, the proposed SBOA-KELM method 
was used for fault feature classification. Finally, the pro-
posed SBOA has been tested on IEEE CEC’2017 benchmark 
functions and SBOA-KELM applied diagnosing the fault 
diagnosis of rolling bearings.

Apart from the above modifications on MFO and BOA 
algorithms, various researchers introduced other efficient 
hybrid algorithms for solving various global optimization 
problems. For example, Saka et al. [64] introduced hybrid 
Taguchi-Vortex Search (VS) algorithm (in short HTVS) by 
combining VS algorithm and Taguchi orthogonal approxi-
mation. The aim of the proposed algorithm is to develop a 
better trade-off between diversification and intensification. 
Chakraborty et al. [65] introduced a new hybrid method 
by integrating modified WOA with Success History-based 
Adaptive DE (SHADE). The main goal of this hybrid method 
is to reduce the shortcomings of both algorithms and guide 
both algorithms to explore and exploit in the search space, 
and helps obtain good quality of solutions. Singh and Singh 
[66] introduced a hybrid algorithm HPSOGWO with the 
help of PSO and Grey Wolf Optimizer (GWO) to enhance 
the exploration and exploitation ability of both the algo-
rithms. Wang et al. [67] introduced hybrid VS by merging 
Artificial Bee Colony (ABC) algorithm and VS algorithm 
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to enhance the effectiveness of the component algorithms. 
Nama and Saha [68] introduced an efficient hybrid approach, 
namely HBSA by combining BSA and SQI. The motto of 
this hybrid approach is to deal with the unconstrained, non-
linear and non-differentiable optimization problems. Yildiz 
[69] introduced hybrid Taguchi-Harmony Search (HS) algo-
rithm and the robustness and effectiveness of the suggested 
approach has been measured by applying it into the engi-
neering design and manufacturing optimization problems. 
Nama et al. [70] proposed the hybrid SOS (HSOS) by inte-
grating SOS algorithm with Simple Quadratic Interpolation 
(SQI), which helps in enhancing the robustness of the algo-
rithm. Chakraborty et al. [71] introduced an efficient hybrid 
method called HSWOA by hybridizing the HGS algorithm 
into the WOA algorithm and applied it to solve different 
engineering design problems. Sharma et al. [72] introduced 
a different type of modification in BOA named mLBOA in 
which Lagrange interpolation and SQI are used in explo-
ration and exploitation phase respectively to improve the 
original BOA algorithm.

Motivating by the efficiency of MFO and BOA algorithms 
and the effectiveness of different hybrid techniques, in this arti-
cle, we have proposed a hybrid algorithm, namely h-MFOBOA, 
by an intelligent ensemble of BOA in the MFO algorithm to 
alleviate the inherent drawbacks of the MFO algorithm. As far 
our knowledge is concerned, no work on the hybridization of 
MFO and BOA is present in the literature. The salient features 
of BOA and MFO are hybridized to create a new approach, 
where BOA is used to improve the efficacy of the MFO algo-
rithm by updating the flame positions during its operation. The 
following are the main contributions of the work:

(i) Local and global phases of BOA are applied after the 
updating positions of flames of MFO to further enhance 
the performance of MFO.

(ii) The proposed algorithm is evaluated and compared to 
six popular state-of-the-art algorithms and five variants 
of the MFO algorithm on a diverse set of twenty-three 
benchmark functions.

(iii) Friedman rank test and Wilcoxon signed-rank test 
are used to analyze the performance of the proposed 
h-MFOBOA algorithm.

(iv) The complexity of the proposed algorithm has been 
obtained and some of the convergence graphs are plot-
ted to check its convergence competence.

(v) To see its problem-solving capability, the proposed 
algorithm is applied to solve a constrained and an 
unconstrained problem and compared with a wide vari-
ety of algorithms.

The rest of the present article is designed as follows: 
A summary of the MFO and BOA algorithm is shown in 
Sect. 2 and Sect. 3 respectively. The proposed h-MFOBOA 

algorithm is shown in Sect. 4. Computational complexity of 
the proposed h-MFOBOA is introduced in Sect. 5. In Sect. 6, 
experimental setup, simulation results, statistical analyses, 
and convergence analysis have been presented. The applica-
tion of real-world problems is shown in Sect. 7. Finally, con-
clusions with future enhancements are discussed in Sect. 8.

2  Classical MFO Algorithm

This section presents the origin of the MFO algorithm and 
its working process with the mathematical formulation in 
Subsect. 2.1 And 2.2, respectively.

2.1  Inspiration

Moths are insects and belong to the class of Arthropoda. The 
navigation techniques of moths are unique, which attracts 
researchers to think about it. Moths travel at night with the 
moonlight’s help, and for navigation, moths utilize the trans-
verse orientation mechanism, shown in Fig. 1. They fly using 
moonlight through crosswise inclination by keeping a fixed 
tendency towards the moon for a long journey in a straight 
path. The efficiency of preference depends on the distance 
of flame, i.e., when the distance between them decreases, 
the moth moves in a helix path around the flame, connecting 
the moth to the flame. Using these behaviours of moth and 
mathematical modelling, the MFO algorithm is developed 
by Mirjalili in 2015.

2.2  MFO Algorithm

In basic MFO, all moths are expressed as a set of candi-
date’s solutions. The positions of all moths are expressed as 
a vector of decision variables. Let us consider the following 
matrix for moths

Fig. 1  Transverse orientation of moth
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where Xi =
[
xi,1, xi,2,… , xi,n

]
 , i ∈ {1, 2,… ,N}.

N indicates moths’ number at initial population and n 
as variable numbers. The fitness vector of moth is shown 
below:

Flame matrix is the second key point of the MFO algo-
rithm. Here the size of both moth matrix (X) and flame 
matrix (FM) are same as each moth flies around the cor-
responding flame.

Also, the fitness vector of flame matrix is store in the 
following matrix i.e.

Here Fit [ ∗ ] is a candidate solution’s fitness function. 
MFO has two important components one is moth and other 
is flame where, moth moves through the respective flame to 
achieve suitable outcomes and the best outcomes acquired 
by the moth is known as flame. As the moth moves in a spi-
ral manner, therefore, the author of MFO has defined a spiral 
function which is represented in the following equation:

where �i =
|||xKi − Fmi

||| represents distance of moth at ith place 
and its specific flame ( Fmi ) The distance between the ith 
moth Mi and its specific flame further, b is a constant used 
to recognize the shape of the search for spiral flight shape 
and t be any random number between − 1 and 1 referring to 
how much closer the moth is to its specific flame. Figure 2 
represents that a moth flies towards its flame in a helix man-
ner, with a distinct value of t in a 1-dimensional manner.

(1)X =

⎡
⎢⎢⎢⎣

X1

X2

⋮

XN

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

x1,1 x1,2 ⋯ x1,n−1 x1,n
x2,1 ⋱ ⋯ ⋯ x2,n
⋮ ⋯ ⋱ ⋯ ⋮

xN−1,1 ⋯ ⋯ ⋱ xN−1,n
xN,1 xN,2 ⋯ xN,n−1 xN,n

⎤
⎥⎥⎥⎥⎥⎦

,

(2)Fit[X] =

⎡⎢⎢⎢⎣

Fit[X1]

Fit[X2]

⋮

Fit[Xn]

⎤⎥⎥⎥⎦
.

(3)

FM =

⎡⎢⎢⎢⎣

FM1

FM2

⋮

FMN

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

Fm1,1 Fm1,2 ⋯ Fm1,n−1 Fm1,n

Fm2,1 ⋱ ⋯ ⋯ Fm2,n

⋮ ⋯ ⋱ ⋯ ⋮

FmN−1,1 ⋯ ⋯ ⋱ FmN−1,n

FmN,1 FmN,2 ⋯ FmN−1 FmN,n

⎤
⎥⎥⎥⎥⎥⎦

.

(4)Fit[FM] =

⎡⎢⎢⎢⎣

Fit[FM1]

Fit[FM2]

⋮

Fit[FMn]

⎤⎥⎥⎥⎦
,

(5)xK+1
i

=

{
�i ∙ e

bt ∙ ���(2�t) + Fmi(k), i ≤ N.FM

�i ∙ e
bt ∙ ���(2�t) + FmN.FM(k), i ≥ N.FM

,

where maximumiter represents the number of maximum 
iterations, r be the convergence constant decreases from 
(− 1) to (− 2) linearly proving that both diversification and 
intensification occur in MFO algorithm.

In every iteration, flame position for the current and last 
iterations are collected and arranged as per the fitness value 
for the global and local search. Only the best N.FM flames 
are preserved, and other flames are wiped away, leading to 
the one imperfection briefly described in [73]. The following 
formula can obtain the number of flames (N.FM) that has 
been reduced over the iteration. The flowchart of the MFO 
algorithm is presented in Fig. 3.

3  Butterfly Optimization Algorithm

A new population-based meta-heuristics approach named 
the Butterfly Optimization Algorithm (BOA) was created 
in 2018 by Arora and Singh, based on the food-gathering 
and mating behaviour of butterflies. In BOA, it is assumed 
that all butterflies generates an aroma with certain strengths 
and the aroma of each butterfly has been connected with the 
location of the search agents. The aroma produced by an 
individual butterfly is circulated over the entire search region 
and reach all butterflies and detected by each and every but-
terfly which form a strong social information network system 
in the search space. In implementation phase, BOA basically 
has two phases: global phase and local phase. Butterflies' 
routine frequency depends on two key concepts: stimulus 

(6)r = −1 + currentiter

(
−1

Maximumiter

)
,

(7)t = (r − 1) × rand(0, 1) + 1,

(8)

N.FM = round

(
N.FMLastiter − Currentiter

(
N.FMLastiter − 1

)
Maximumiter

)
.

Fig. 2  Logarithmic spiral position w.r.t ‘t’ and space around a flame
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intensity (I) , which is linked to the butterflies' fitness, and 
scent formulation (f ) , which is subjective and experienced by 
other butterflies. BOA depicts the scent as follows:

where fi is the amount of aroma originated by ith butterfly, c 
is the sensory modality, I is the strength of the stimulus and 
a is called power exponent.

The benefit of f  will grow faster than the value of I 
because the inferior butterfly in BOA move to a better but-
terfly, as measured by fitness. So, f  should be allowed to 
vary depending on the power exponent and the degree of 
amalgamation that can be reached (a) . In the basic BOA, the 
values of "a" was set to be increase linearly over iterations 
from 0.1 to 0.3 , while εcε was set at 0.01 . The BOA considers 
a switch probability to carry out its search process, which 

(9)fi = c × Ia,

controls the algorithm's strategy between global and local 
searches. In basic BOA, it was taken as 0.8 . The global as 
well as local phases of BOA are mathematically represented 
by the following two equations

where B_Ft
best

 is the location of the best butterfly in the 
search space at the tth iteration, r is arandom number in (0, 1) 
and fi represents the aroma released by the ith butterfly. B_Ft

j
 

and B_Ft
k
 represent the jth and kth butterflies from popula-

tion in tth iteration. The flowchart of the BOA is presented 
in Fig. 4.

(10)B_Ft+1
i

= B_Ft
i
+
(
r2 × BF

t
best

− BF
t
i

)
× fi,

(11)B_Ft+1
i

= B_Ft
i
+

(
r2 × BF

t
j
− BF

t
k

)
× fi,

YES

Initialize parameters of the algorithm such as population size, Termination criteria,

Start

Randomly generate the initial moths

Find out the fitness value and save the best positions corresponding to the flames 

Update flame no,  and  by using Eqn. (6) and (7) 

Calculate δ  for the corresponding moth and update the moth’s positions using Eqn. (5) 

Are stopping criteria satisfied? 

Report the best position among the moths 

END

NO 

Fig. 3  Flow chart of the MFO algorithm
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4  The Proposed Algorithm

The main motto of any metaheuristic algorithm is to han-
dle the balancing phase, i.e., exploration and exploitation. 
We know that excessive exploration is the reason for losing 
optimal solutions because it spends more time searching the 
uninteresting regions. On the other hand, extreme exploita-
tion is also the main reason for premature convergence as 
the population rapidly lacks diversity. So, better performance 
of any algorithm is achieved when it maintains stability 
between diversification and intensification.

In MFO, exploration, and exploitation are obtained from 
the spiral movement of moths around the flame. The power 
of the exponent factor ‘t’ gives a better clarification about 
exploration and exploitation. We know that the next position 
of the moth is obtained from the spiral Eq. (3). The spiral 
equation parameter ‘t’ is responsible for how close the moth 

is to the flame in the next position (with t = −1 being the 
most intimate and t = 1 being the farthest). When the next 
part is out of the space between the moth and the flame, its 
exploration; when it's in the area, its exploitation.

The MFO features good exploitation ability because indi-
viduals in the MFO algorithm follow its flames by a spi-
ral trajectory according to Eq. (5). MFO updates its flames 
with a ‘survival of the fittest’ mechanism, which means the 
flames with better fitness value will survive from the flame 
selection. This mechanism makes the MFO algorithm fea-
tures a fast convergence speed but also raises a problem of 
diversity loss of moths. On the other hand, the literature 
study of BOA argues that BOA has good exploration ability 
and poor exploitation ability. It is due to high switch prob-
ability value (80%) most of the butterfly performs better in 
exploration phase than exploitation. Therefore, to avoid con-
flicts between these two methods and to developed a novel 

Calculate fragrance  using Eqn. (9) and find the best butterfly. Generate a random number ∈ ,1

END YES

NO 

Are termination criteria met?

Report the best solution 

Whether stopping criteria met 

Initialize population size, Termination criteria, Define sensor modality , Power exponent  and switch probability 

Start

Determine stimulus intensity  at  is determined by 

Perform global search using Eqn. (10) 

For each butterfly check 

Update the better values of the butterflies in the population 

Perform local search using Eqn. (11) 

YES NO 

Fig. 4  Flow chart of the BOA algorithm
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well-balanced metaheuristic algorithm we have embedded 
BOA into the MFO algorithm.

This paper presents a hybrid moth flame optimization 
algorithm to increase population diversity and expedite con-
vergence (h-MFOBOA). This strategy also makes it easier 
to balance the capability of the MFO to discover and exploit 
new opportunities. We similarly start the algorithm like 
MFO, and then we apply the global and local phase of the 
BOA algorithm [Eq. (10) and Eq. (11)] for position updat-
ing. The flowchart of the suggested h-MFOBOA is presented 
in Fig. 5. The major steps of h-MFOBOA can be shown in 
Algorithm 1 and summarized below.

1st step: initialize all parameters such as the number of 
populations, maximum iteration, and function evaluation 
randomly.
2nd Step: apply the sorting procedure to both the moth 
matrix and flame matrix w.r.t the fitness value and update 
the number of flames using the Eq. 8.
3rd step: update r and t  using Eq. 6 and Eq. 7. Also, 
Update moths position w.r.t corresponding flame using 
Eq. 5.
4th Step: update the new solution using Eq. 10 and Eq. 11 
and then find the fitness value of the latest solutions. Best 
fitness gives the optimum value.
5th Step: if it does not satisfy the stopping criteria, go to 
the 2nd step to get the best fitness value.

Initialize parameters of the algorithm such as population size, Termination criteria, Number of dimension 

variable, Define sensor modality , Power exponent  and switch probability 

Start

Randomly generate the initial moths 

Find out the fitness value and save the best positions corresponding to the flames

Update flame no, r and t using Eqns. (6) and (7). Calculate δ  for the corresponding moth and 

update the moth positions using Eqn. (5)

Apply global and local phase of the BOA algorithm i.e.  if <  use Eqn. (10) otherwise use Eqn. (11)  

Are stopping criteria satisfied?

Report the best position among the moths 

END

YESNO 

Fig. 5  Flow chart of the h-MFOBOA algorithm
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5  Computational Complexity of h‑MFOBOA

Complexity of any algorithm is a function which provides 
the running time or space with respect to input size. This 
is of two kinds: one is complexity of space and other is 
time complexity. The process of finding a formula for total 
space will be required towards execution of the algorithm 
is referred as space complexity. Also, process of finding 
a formula for total time required for successful execution 

of algorithm is known as time complexity. A big-O nota-
tion is used to analysis the computational complexity of 
the proposed h-MFOBOA algorithm. The Complexity of 
h-MFOBOA also depends on initialization of moth posi-
tion ( –T IMP ), evaluation of moth position ( –TEMP ), searching 
of spiral flight ( –TSSF ), flame generation ( –TFG and global and 
local phase of the BOA ( –TBOA ). Let maximum iterate num-
ber, variable number and moths’ number are denoted by I, 
D and N respectively. Here we will use time complexity for 
the comparison of both h-MFOBOA and MFO algorithm. 
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According to the quicksort algorithm, Computational com-
plexity for sorting N-flame and N-moth are lying between 
3Nlog3NI and (3 N)2I towards worst and best case

Hence, time complexity for h-MFOBOA with respect 
to worst case is O [NI (D + N)]. Also, from [9], the time 
complexity of MFO for the worst case is O [NI (D + N)]. 
Therefore, both MFO and h-MFOBOA has same complexity.

6  Simulation Results and Discussions

In this section, the experimental setup of our proposed 
method is presented in Sect. 6.1, a comparison of h-MFO-
BOA with basic MFO and other evolutionary algorithms 
and statistical performance are presented in Sect. 6.2 and 
Sect. 6.3 respectively.

6.1  Experimental Setup

The algorithm is coded and run on a Windows computer 
with an Intel i5 processor, 8 GB of RAM, and a MATLAB 
R2015a compiler. At most 1000 iterations are in use as a 
basis to stop our proposed algorithm. There are different 
ways to stop the algorithm such as maximum number of 
iterations achieved, a fix error tolerance value, Maximum 
use of CPU time, maximum number of iterations having zero 
improvement, etc. Each function was repeated for 30 runs 
and rounded up to two numbers after the decimal to produce 
less statistical errors and a statistically significant output. 
We put down the Average (A), Standard Deviation (SD), 
‘Best’ and ‘Worst’ of h-MFOBOA with other algorithms 
for collation. To fulfill this this criteria, one particular union 

–Th−MFOBOA = –T IMP + –TEMP + –TSSF + –TFG + –TBOA,

= O (ND) + O (NDI) + O(NDI) + O((3N)2I) + O(NDI),

= O (ND + 3NDI + 9N2I).

of variables used for h-MFOBOA in the copy of both uni-
modal, multimodal and fixed dimensional benchmark func-
tions which are taken from literature. The powers exponent 
constant b is equal to 1 and t varies from −1 to 1 and size of 
the population is thirty (30).

6.2  Discussion on Basic Benchmark Functions

Our proposed h-MFOBOA optimization model is tested against 
six meta-heuristics (DE, PSO, JAYA, BOA, BSA, and MFO) 
which have previously demonstrated their superiority in vari-
ous global optimization problems and can produce satisfying 
results on different unimodal, multimodal and fixed-dimension 
problem instances. The parameter setting of all the algorithms 
employed for comparison is given in Table 1. The results of 
each algorithm were calculated and presented in Table 1.

In Table 2, F1–F7 has been investigated under unimodal 
functions. Out of seven parts, h-MFOBOA achieves supe-
rior results for F5, F6, and F7 operations and achieves the 
best global optimum value for other functions. So, we can 
conclude that h-MFOBOA is good for diversification and 
reaches more than 90% best optimum value among different 
traditional optimization algorithms. 

In Table 2, F8–F17 has been investigated under multi-
modal benchmark functions. Our proposed algorithm pos-
sesses superior results for F11, F12, F13, and F14 bench-
mark functions, and for other parts, it achieves the second 
and third highest optimum value. From Table 2, it can be 
clear that h-MFOBOA provides more than 85% good global 
solutions among other state-of-the-art algorithms.

In Table 2, F18–F23 has been investigated under fixed 
dimensional multimodal benchmark functions. For F18, F19, 
F20, and F21, h-MFOBOA achieved the best optimal value, 
and for others, it provides the second and third highest global 
optimum value. Therefore, we can conclude that our pro-
posed h-MFOBOA achieved the best quality optimum value 
among other traditional optimization algorithms.

As shown in Table 3, the average performance of h-MFO-
BOA is greater than, similar to, or worse than the other six 

Table 1  Parameter setting of the considered algorithms

Algorithm Parameter values

DE No. of population = 30 , Maximum iteration = 1000 , Scaling Factor (F) = 0.5 = Crossover probability
PSO No. of population = 30 , Maximum iteration = 1000 , w = 0.9 to 0.4,c1 = c2 = 0.2

JAYA No. of population = 30 , Maximum iteration = 1000 , r = rand(0, 1)

BOA No. of population = 30 , Maximum iteration = 1000 , Switch probability (p) = 0.8 , Sensor modality (c) = 0.01 , 
Power exponent (a) = 0.1 to 0.3

BSA No. of population = 30 , Maximum iteration = 1000 , Two parameters ‘ a ’ and ‘ b ’ are uniformly random num-
bers between 0 and 1 , Mix rate = 1

MFO No. of population = 30 , Maximum iteration = 1000 , Convergence constant decreases linearly from (−1) to (−2)



1532 S. K. Sahoo, A. K. Saha 

1 3

Table 2  Experimental results of h-MFOBOA with other basic algorithms on 23 benchmark functions

Sl. No DE PSO Jaya BOA BSA MFO h-MFOBOA

F1 A 1.45E + 03 2.64E − 06 9.93E − 05 0 3.00 E + 05 3.59E − 110 0
SD 2.91E + 02 2.30E − 06 5.25E − 05 0 0 1.97E − 109 0
Best 1.05E + 01 1.72E − 07 3.26E − 06 0 3.00E + 05 4.25E − 122 0
Worst 6.55E + 03 8.11E − 06 4.05E − 04 0 3.00E + 05 3.79E − 107 0

F2 A 7.19E − 04 3.99E − 06 0 4.73E − 01 1.81E + 05 2.66E − 01 0
SD 1.27E − 03 1.05E − 05 0 4.54E − 01 0 6.29E − 01 0
Best 3.69E − 12 2.40E − 10 0 9.53E − 05 1.81E + 05 5.18E − 04 0
Worst 6.05E − 02 5.16E − 05 0 1.98 1.81E + 05 7.10E − 01 0

F3 A 7.50E − 05 2.91E − 07 0 1.65E − 01 3.00E + 04 1.88 0
SD 6.98E − 05 4.84E − 07 0 2.42E − 01 0 2.08 0
Best 4.87E − 09 5.98E − 11 0 8.45E − 06 3.00E + 04 1.02 0
Worst 2.15E − 04 1.84E − 06 0 1.66 3.00E + 04 1.26 0

F4 A 1.17E − 08 1.22E − 102 1.55E − 218 0 0 6.82E − 11 0
SD 2.74E − 08 3.88E − 102 0 0 0 3.73E − 11 0
Best 3.78E − 14 1.17E − 114 3.68E − 233 0 0 1.43E − 30 0
Worst 5.10E − 06 1.63E − 101 1.04E − 216 0 0 1.35E − 10 0

F5 A − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 − 3.34 E − 03 8.71 − 3.56E − 03 − 3.79E − 03
SD 6.23 E − 06 9.46E − 07 2.27E − 09 7.69 E − 04 5.42E − 15 3.41E − 04 4.26E − 17
Best − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 3.21E − 16 − 3.79E − 03 − 3.21E − 01
Worst − 3.79E − 03 − 3.78E − 03 − 3.79E − 03 0 1.14E − 12 − 9.04E − 04 − 3.21E − 01

F6 A 2.24E − 02 3.82E − 03 2.14 E − 12 1.08 E − 01 1.61E + 03 1.84 E − 01 0
SD 2.19E − 02 4.62E − 03 4.68 E − 12 1.84 E − 01 9.25 E − 13 2.75 E − 01 0
Best 3.75E − 07 1.69E − 07 2.87E − 16 9.55E − 08 4.61E + 05 5.75E − 04 0
Worst 1.85E − 01 1.53E − 02 8.47E − 12 7.70E − 01 2.61E + 02 1.66E − 01 0

F7 A 4.09E − 21 2.05E − 06 1.50 E − 32 2.67 E − 01 1.01E − 06 6.36 E − 02 0
SD 7.57E − 21 6.45E − 06 1.11 E − 47 3.24 E − 01 4.02E − 10 1.03 E − 01 0
Best 7.11E − 35 8.47E − 10 1.49E − 32 7.22E − 11 7.01E − 12 8.21E − 05 0
Worst 4.69E − 15 3.56E − 05 1.49E − 32 7.15E − 01 1.31E − 05 5.32E − 01 0

F8 A 3.01 2.34 3 1.18 E + 01 1.60E + 03 1.61E + 01 0
SD 1.62E − 02 2.39 2.03E − 04 9.68 0 2.01E + 01 0
Best 3.01 9.98E − 01 3 1.05E + 01 1.60E + 03 1.55E + 01 0
Worst 3.01 1.26E + 01 3 1.65E + 01 1.60E + 03 1.88E + 01 0

F9 A 1.19E − 05 3.75E − 04 1.70E − 07 0 8.75E + 05 3.13 E − 51 0
SD 1.35E − 05 9.05E − 04 3.08 E − 07 0 0 1.71 E − 50 0
Best 3.12E − 14 1.37E − 07 4.26E − 09 0 8.75E + 05 4.06E − 131 0
Worst 1.11E − 04 3.96E − 03 4.48E − 07 0 8.75E + 05 2.55E − 48 0

F10 A 3.69E − 05 6.05E − 07 5.17E − 30 0 3.00 E + 03 4.18E − 29 0
SD 2.58E − 05 1.02E − 06 9.74E − 30 0 0 2.29E − 28 0
Best 6.88E − 11 3.45E − 11 3.74E − 31 0 3.00E + 03 6.11E − 68 0
Worst 1.11E − 04 3.91E − 06 2.27E − 29 0 3.00E + 03 4.36E − 27 0

F11 A − 1.13E − 10 2.21E − 03 − 1.13E − 10 − 9.52 E − 11 1.00E + 02 − 1.13E − 10 − 1.13E − 10
SD 9.61E − 14 6.34E − 03 1.66E − 25 2.07E − 11 0 1.33E − 14 1.28E − 25
Best − 1.13E − 10 7.89E − 08 − 1.12E − 10 − 1.12E − 10 1.00E + 02 − 1.13E − 10 − 1 0.10E − 10
Worst − 1.12E − 10 2.93E − 02 − 1.12E − 10 − 2.56E − 11 1.00E + 02 1.11E − 10 − 1.08E − 10

F12 A 1.93E − 01 6.39E − 01 2.48E − 02 6.11E − 01 8.62E + 02 1.19E − 01 1.86E − 02
SD 1.88E − 01 0 3.08E − 02 5.94E − 01 1.15E − 13 1.17E − 01 2.06E − 02
Best 8.65E − 04 6.37E − 01 2.26E − 04 9.75E − 07 8.15E + 02 5.89E − 07 7.31E − 06
Worst 1.50E − 01 6.37E − 01 7.20E − 02 7.68E − 01 4.19E + 04 3.47E − 01 3.54E − 01
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Table 2  (continued)

Sl. No DE PSO JAYA BOA BSA MFO h-MFOBOA

F13 A 1.71E − 03 1.56 3.16E − 04 6.13E − 03 4.65E + 26 1.16E − 02 − 3.62
SD 9.34E − 04 1.4 2.19E − 05 8.33E − 03 2.54E + 27 1.66E − 02 1.05E − 01
Best 5.34E − 09 1.21E − 02 3.07E − 04 4.56E − 09 1.21E + 26 4.96E − 05 − 3.62
Worst 2.10E − 02 4.57 4.14E − 04 7.66E − 02 3.59E + 28 1.56E − 01 − 3.62

F14 A 6.45E − 05 1.21E − 02 0 1.47 E − 04 − 2.71E − 94 0 − 5.11E − 03

SD 9.79E − 05 1.67E − 02 0 8.06 E − 04 0 0 0

Best 5.11E − 10 2.95E − 05 0 4.07E − 05 − 2.70E − 94 0 − 5.11E − 03

Worst 1.67E − 04 6.02E − 02 0 1.33E − 02 − 2.70E − 94 0 − 5.11E − 03
F15 A − 3.04 − 2.03E − 01 − 3.02 − 2.53 − 3.77E − 02 − 2.91 − 3.04

SD 1.10E − 03 3.52E − 02 2.83 E − 02 1.74 E − 01 1.41E − 17 4.73 E − 02 6.88 E − 12
Best − 3.04 − 2.69E − 01 − 3.32 − 2.94 − 4.65E − 19 − 3.65 − 3.78
Worst − 3.04 − 1.13E − 01 − 3.2 − 1.83 − 1.22E − 01 − 2.41 − 3.78

F16 A 6.45E − 05 1.13E − 03 0 1.47 E − 04 7.50 E + 03 0 0
SD 9.79E − 05 2.69E − 03 0 8.06 E − 04 0 0 0
Best 4.47E − 14 3.13E − 04 0 9.45E − 11 7.49E + 03 0 0
Worst 3.30E − 04 1.53E − 02 0 7.31E − 03 7.49E + 03 0 0

F17 A 9.94E − 15 3.53 E + 01 1.24 E − 113 0 5.10 E + 04 7.47 E − 98 0
SD 3.88E − 14 0 4.71 E − 113 0 0 4.09 E − 97 0
Best 6.60E − 35 3.15E + 01 9.58E − 122 0 5.08E + 04 6.11E − 155 0
Worst 2.16E − 12 3.15E + 01 9.03E − 113 0 5.08E + 04 3.55E − 91 0

F18 A 2.14 E − 02 1.15 E + 04 6.13 E − 05 6.32 E − 01 3.97 E + 05 7.27 E − 01 − 2.92
SD 1.94E − 02 0 9.92 E − 05 1.42 E − 01 0 1.75 E − 01 5.30 E − 02
Best 8.38E − 04 1.12 E + 04 6.07E − 05 4.28E − 03 3.67E + 04 3.09E − 04 − 2.92E − 01
Worst 5.90E − 02 1.12 E + 04 4.14E − 05 2.71 3.67E + 04 1.06E + 01 − 2.92E − 01

F19 A − 3.04 − 1.46 − 3.02 − 2.53 − 1.32 − 2.91 − 1.65 E + 03
SD 1.10E − 03 0 2.83 E − 02 1.74 E − 01 4.51E − 16 4.73 E − 02 1.53 E + 02
Best − 3.04 − 1.41 − 3.32 − 2.82 5.01E − 18 − 3.12 − 1.87E + 03
Worst − 3.04 − 1.41 − 3.17 − 1.94 − 1.66 − 2.85 1.64E + 01

F20 A − 1.92E + 03 − 3.25 − 1.48E + 03 − 1.52E + 03 7.50E + 03 − 1.37 E + 03 3.49 E − 12
SD 5.07E + 01 6.04E − 02 4.98 E + 01 7.97 E + 01 0 1.11 E + 02 9.23 E − 12
Best − 2.95E + 03 − 3.32 − 1.57E + 03 − 1.75E + 03 8.12E + 03 − 1.42E + 03 6.89E − 16
Worst − 1.35E + 03 − 3.2 − 1.23E + 03 − 1.33E + 03 6.12E + 04 − 1.81E − 01 3.54E − 11

F21 A 1.92E − 02 − 4.98 1.56E − 06 1.82E − 05 2.55E + 03 0 − 1.54 E + 01
SD 1.25E − 02 3.27 4.40E − 06 1.59E − 06 1.38E − 12 0 1.24
Best 5.40E − 04 − 1.01E + 01 5.35E − 08 6.76E − 08 1.39E + 03 0 − 1.54E + 01
Worst 2.05E − 01 − 2.63 4.81E − 06 3.17E − 04 2.85E + 03 0 1.34E + 01

F22 A 1.59 1.04 E + 01 3.74E − 01 0 3.60E + 01 0 0
SD 1.85E − 01 0 2.04E − 01 0 0 0 0
Best 1.13E − 02 1.03 E + 01 5.19E − 07 0 2.78E + 01 0 0
Worst 3.31 1.03 E + 01 2.84E − 01 0 3.65E + 01 0 0

F23 A 7.1 2.87 E + 01 8.56E − 01 2.32 E − 01 5.66E + 01 6.76E − 58 0
SD 5.14E − 01 0 1.85E − 01 1.27 6.70E − 02 3.70E − 57 0
Best 5.25 2.85 E + 01 6.45E − 04 5.91E − 06 5.66E + 01 8.31E − 105 0
Worst 1.17E + 01 2.85 E + 01 2.65E − 01 1.67E + 01 7.12E + 03 2.95E − 51 0
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algorithms in a range of circumstances. From Table 3, we 
noticed that h-MFOBOA works better than DE, PSO, JAYA, 
BOA, BSA, and MFO in 22, 22, 16, 14, 22, and 17 bench-
mark functions, respectively, similar results can be seen in 0, 
0, 6, 6, 1 and 2 occasions, respectively, and worse values are 
achieved in 1, 1, 2, 3, 0 and 4 benchmark functions respec-
tively. The mathematical formulation of the 23 (twenty-
three) benchmark functions with dimension, range of the 
variables, and optimum value are shown in Appendix-1.

6.3  Statistical Analysis

Friedman and Wilcoxon signed rank test are used to analyze 
the performance of proposed h-MFOBOA algorithm. In this 
paper, for each benchmark function Friedman test is used 
from the average performance of algorithms. we use IBM-
SPSS software for finding the average rank. The outcomes 
of the Friedman rank test between h-MFOBOA, DE, PSO, 
JAYA, BOA, BSA and MFO for twenty-three benchmark 
functions is presented in Table 4. From Tables 4, it is clearly 
visible that h-MFOBOA obtain least rank among other algo-
rithms at 1% relevant.

The outcomes of Wilcoxon rank test are demonstrated 
at the 5% relevant point between h-MFOBOA, DE, PSO, 
JAYA, BOA, BSA and MFO for twenty-three benchmark 
functions is presented in Table 5. From Table 5, all the 
R + (positive rank) values higher than R − (negative) values 
which demonstrate the superiority of h-MFOBOA among 
other competitors.

For contrast, some of the convergence graphs of the 
h-MFOBOA method with other techniques, including DE, 
PSO, JAYA, BOA, BSA, and MFO, were compared on 
certain benchmark functions such as Beale, Levy, Matyas, 

and Power-Sum in Fig. 3. In these figures, both the func-
tion evaluation and objective function value are presented 
in the horizontal and vertical axis, respectively. It can be 
clear that h-MFOBOA has rapid convergence as compared 
to the other methods. About search accuracy, robustness, 
convergence speed, and escaping local optima, h-MFOBOA 
has greater performance and competitive advantage over dif-
ferent algorithms.

6.4  Discussion on Variants of the MFO Algorithm

In this subsection, comparison evaluation has been done in 
with six MFO variants such as OMFO [74], LMFO [75], 
WCMFO [35], WEMFO [76], and SMFO [77]. The simu-
lation outcomes of h-MFOBOA together with five MFO 
variants for twenty-three benchmark functions including 
unimodal and multimodal and fixed dimensional multimodal 
benchmark functions are presented in Table 6. These bench-
mark functions are taken from Appendix-1. The parameters 
of all the variants are taken same as in their original algo-
rithm. All the results are evaluated using Matlab 2015(a). 
The Average (A), Standard Deviation (SD), ‘Best’ and 
‘Worst’ values of h-MFOBOA with other variants of the 
MFO algorithm are presented in Table 6.

From Table 6, it can be observed that, our proposed 
h-MFOBOA algorithm achieved more than 82% best results 
for all groups of benchmark problems as compared to the 
variants of MFO algorithms but it provides more than sev-
enty percent best results when compared with WCMFO and 
WEMFO algorithm. Also, the number of occasions of supe-
riority, similarity and inferiority are presented in Table 7. 
From Table 7, we noticed that h-MFOBOA works better 
than OMFO, LMFO, WCMFO, WEMFO and SMFO in 17, 

Table 3  Performance 
assessment of h-MFOBOA and 
other basic algorithms on 23 
benchmark functions

DE PSO JAYA BOA BSA MFO

Superior to 22 22 16 14 22 17
Similar to 0 0 6 6 1 2
Inferior to 1 1 2 3 0 4

Table 4  Friedman rank test of h-MFOBOA and other basic algo-
rithms on 23 benchmark functions

Algorithm Mean rank Rank

h-MFOBOA 2.15 1
BOA 3.39 2
MFO 4.24 4
DE 4.41 6
PSO 4.39 5
JAYA 4.15 3
BSA 5.26 7

Table 5  Wilcoxon’s test for h-MFOBOA and other basic algorithms 
on 23 benchmark functions (α = 0.05)

h-MFOBOA vs. 
Algorithm

p value R + R −  Winner

BOA  < 0.001 383 52 h-MFOBOA
MFO 0.001 266 14 h-MFOBOA
DE 0.008 207 28 h-MFOBOA
PSO 0.010 404 30 h-MFOBOA
JAYA  < 0.001 399 7 h-MFOBOA
BSA  < 0.001 347 59 h-MFOBOA
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Table 6  Experimental results of h-MFOBOA with MFO variants on 23 benchmark functions

Sl. No OMFO LMFO WCMFO WEMFO SMFO h-MFOBOA

F1 A 1.81E − 01 5.22E − 03 2.54E − 01 1.65E − 01 1.32E − 02 0
SD 2.68E − 01 4.85E − 03 3.65E − 01 1.80E − 01 1.79E − 02 0
Best 4.56E − 03 1.04E − 04 1.41E − 13 1.42E − 03 1.47E − 03 0
Worst 9.55E − 01 1.63E − 02 7.62E − 01 6.78E − 01 5.78E − 01 0

F2 A 1.25 2.20E − 02 7.70E − 08 3.03E − 01 1.16E − 01 0
SD 1.77 2.48E − 02 5.50E − 08 3.47E − 01 1.68E − 01 0
Best 5.95E − 03 3.06E − 04 9.67E − 09 3.92E − 03 4.92E − 03 0
Worst 6.99 9.95E − 02 2.33E − 07 1.25 1.25 0

F3 A 1.10E − 93 3.29E − 08 2.70E − 22 7.04E − 198 4.23E − 14 0
SD 6.05E − 93 3.09E − 08 3.27E − 22 0 1.94E − 13 0
Best 1.57E − 209 7.62E − 10 1.52E − 24 3.91E − 264 1.91E − 26 0
Worst 3.31E − 92 1.27E − 07 1.16E − 21 2.11E − 196 2.51E − 10 0

F4 A 1.11E − 125 7.77E − 10 0 2.96E − 204 2.60E − 12 0
SD 6.11E − 125 1.52E − 09 0 0 1.43E − 11 0
Best 1.71E − 258 9.45E − 14 0 4.49E − 250 3.29E − 18 0
Worst 3.34E − 124 7.89E − 09 0 8.54E − 203 5.54E − 09 0

F5 A − 3.35E − 03 − 3.79E − 03 − 3.79E − 03 − 3.78E − 03 − 3.78E − 03 − 3.79E − 03
SD 6.97E − 04 3.39E − 07 2.75E − 10 1.33E − 05 1.43E − 05 4.26E − 17
Best − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 − 3.21E − 01
Worst − 1.28E − 03 − 3.78E − 03 − 3.78E − 03 − 3.73E − 03 − 3.73E − 03 − 3.21E − 01

F6 A 1.51E − 01 7.34E − 03 8.43E − 10 1.41E − 01 2.78E − 02 0
SD 2.51E − 01 9.62E − 03 1.13E − 09 1.31E − 01 3.01E − 02 0
Best 1.27E − 04 2.96E − 05 2.19E − 11 3.85E − 03 5.85E − 03 0
Worst 9.99E − 01 3.59E − 02 4.47E − 09 5.19E − 01 4.19E − 01 0

Sl. No OMFO LMFO WCMFO WEMFO SMFO h-MFOBOA

F7 A 6.95E − 110 3.09E − 07 6.74E − 20 1.61E − 206 2.80E − 11 0
SD 3.81E − 109 2.38E − 07 1.09E − 19 0 1.21E − 10 0
Best 1.18E − 246 1.52E − 08 7.27E − 22 1.76E − 248 3.76E − 16 0
Worst 2.08E − 108 8.33E − 07 5.87E − 19 4.71E − 205 4.51E − 09 0

F8 A 0 4.8513E − 06 0 0 2.89E − 09 0
SD 0 5.31E − 06 0 0 1.43E − 08 0
Best 0 2.06E − 08 0 0 2.06E − 08 0
Worst 0 2.07E − 05 0 0 2.07E − 05 0

F9 A 0 1.59E − 06 6.75E − 15 0 5.00E − 13 0
SD 0 1.96E − 06 3.41E − 15 0 1.59E − 12 0
Best 0 4.95E − 08 1.88E − 15 0 1.45E − 25 0
Worst 0 9.56E − 06 1.66E − 14 0 5.16E − 07 0

F10 A 7.19E − 02 6.59E − 04 9.04E − 12 8.77E − 03 3.44E − 03 0
SD 1.10E − 01 9.23E − 04 1.35E − 11 1.15E − 02 5.47E − 03 0
Best 4.48E − 04 1.54E − 05 5.69E − 14 1.45E − 05 8.45E − 05 0
Worst 4.13E − 01 3.61E − 03 5.30E − 11 5.16E − 02 3.16E − 02 0

F11 A − 1.12E − 10 − 1.12E − 10 − 1.12E − 10 − 1.12E − 10 − 1.13E − 10 − 1.13E − 10 
1.28E − 25

SD 6.89E − 15 1.82E − 14 1.05E − 19 4.08E − 14 5.92E − 13 − 1.10E − 10
Best − 1.12E − 10 − 1.12E − 10 − 1.12E − 10 − 1.12E − 10 − 1 0.12E − 10 − 1.08E − 10
Worst − 1.11E − 10 − 1.11E − 10 − 1.10E − 10 − 1.11E − 10 − 1.11E − 10

F12 A 4.99E − 02 2.92E − 02 6.48E − 02 5.51E − 02 3.44E − 10 1.86 E − 02
SD 2.73E − 02 2.68E − 02 3.00E − 02 3.02E − 01 1.31E − 09 2.06 E − 02
Best 1.63E − 06 1.11E − 05 2.24E − 06 3.18E − 02 4.18E − 14 7.31E − 06
Worst 1.49E − 01 9.63E − 02 1.62E − 01 1.65E − 01 2.65E − 05 3.54E − 01
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19, 17, 17, and 17 benchmark functions, respectively, similar 
results can be seen in 2, 0, 2, 2 and 2 occasions, respectively, 
and worse values are achieved in 4, 4, 4, 4 and 4 benchmark 
functions respectively.

Friedman and Wilcoxon signed rank test are used to ana-
lyze the performance of proposed h-MFOBOA algorithm. 
In this paper, for each benchmark function Friedman test is 
used from the average performance of algorithms. The IBM-
SPSS software has been used for finding the average rank. 

Table 6  (continued)

Sl. No OMFO LMFO WCMFO WEMFO SMFO h-MFOBOA

F13 A 6.73E − 30 2.50E − 01 1.27E − 05 1.45E − 52 1.39E − 02 − 3.62

SD 3.62E − 29 7.50E − 02 6.17E − 06 3.22E − 52 5.50E − 02 1.05 E − 01

Best 1.56E − 66 1.06E − 01 4.24E − 06 7.00E − 67 5.00E − 07 − 3.62

Worst 1.98E − 28 4.00E − 01 2.42E − 05 9.91E − 52 8.91E − 01 − 3.62
F14 A 1.05E − 01 1.11E − 01 1.06 1.27E − 01 4.72E − 01 − 5.11E − 03

SD 6.72E − 02 1.08E − 01 1.06 8.83E − 02 3.72E − 01 0
Best 1.11E − 02 6.13E − 03 1.13E − 01 1.03E − 02 3.03E − 05 − 5.11E − 03
Worst 2.83E − 01 5.54E − 01 4.62 3.30E − 01 1.30E − 01 − 5.11E − 03

F15 A 7.15E − 51 9.97E − 02 1.58 7.89E − 103 3.97E − 05 − 3.04
SD 3.91E − 50 2.96E − 04 2.22E − 01 3.58E − 102 2.12E − 04 6.88 E − 12
Best 2.35E − 123 9.86E − 02 1.19 1.65E − 139 5.65E − 08 − 3.78
Worst 2.14E − 49 9.98E − 02 2.09 1.93E − 101 2.93E − 02 − 3.78

F16 A 8.80E − 03 4.17E − 04 1.67E − 03 2.25E − 03 1.18E − 03 0
SD 9.91E − 03 7.50E − 05 4.79E − 03 1.40E − 03 6.61E − 04 0
Best 6.23E − 04 3.21E − 04 3.07E − 04 4.06E − 04 3.06E − 07 0
Worst 3.55E − 02 6.19E − 04 2.03E − 02 5.17E − 03 2.17E − 02 0

F17 A 7.1 4.39 5.68 4.55 1.87 0
SD 4.01 3.09 5.02 2.65 8.92E − 01 0
Best 1.99 9.98E − 01 9.98E − 01 9.98E − 01 4.98E − 02 0
Worst 1.26E + 01 1.18E + 01 1.64E + 01 1.01E + 01 2.01E + 01 0

F18 A 1.51E + 01 3.02 1.11E + 01 3.56 3.83 − 2.92
SD 1.94E + 01 3.62E − 02 1.75E + 01 8.54E − 01 2.48 5.30 E − 02
Best 3 3 3 3 3 − 2.92E − 01
Worst 9.27E + 01 3.16 8.40E + 01 6.57 5.57 − 2.92E − 01

F19 A − 2.35E − 01 − 2.34E − 01 − 3.00E − 01 − 2.47E − 01 − 2.98 − 1.65 E + 03
SD 2.25E − 02 1.76E − 02 2.25E − 16 1.98E − 02 4.61E − 01 1.53 E + 02
Best − 2.72E − 01 − 2.67E − 01 − 3.00E − 01 − 2.75E − 01 − 2.75E − 01 − 1.87E + 03
Worst − 1.89E − 01 − 1.86E − 01 − 3.00E − 01 − 2.01E − 01 − 2.01E − 01 1.64E + 01

F20 A − 3.06 − 3.06 − 3.27 − 3.07 − 3.02 3.49 E − 12
SD 6.16E − 02 8.09E − 02 5.92E − 02 6.68E − 02 8.66E − 02 9.23 E − 12
Best − 3.22 − 3.22 − 3.32 − 3.22 − 3.22 6.89E − 16
Worst − 2.95 − 2.91 − 3.2 − 2.95 − 2.99 3.54E − 11

F21 A − 4.82 − 4.77 − 6.3 − 4.97 − 4.27 − 1.54 E + 01 
SD 9.99E − 01 8.95E − 01 3.33 8.54E − 01 1.03 1.24
Best − 7.42 − 8.02 − 1.01E + 01 − 8.18 − 8.59 − 1.54E + 01
Worst − 3.34 − 3.3 − 2.63 − 3.93 − 3.63 1.34E + 01

F22 A − 5.15 − 4.84 − 5.77 − 5.37 − 4.14 0
SD 1.47 8.41E − 01 3.4 1.1 8.62E − 01 0
Best − 9.17 − 7.76 − 1.04E + 01 − 8.73 − 7.78 0
Worst − 3.78 − 3.68 − 1.83 − 4.3 − 3.39 0

F23 A − 5.06 − 4.84 − 4.5 − 5.56 − 4.34 0
SD 1.18 8.98E − 01 2.89 1.23 1.08 0
Best − 8.23 − 7.34 − 1.05E + 01 − 9.28 − 8.38 0
Worst − 3.36 − 3.64 − 1.85 − 4.23 − 3.53 0
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The outcomes of the Friedman rank test between h-MFO-
BOA, OMFO, LMFO, WCMFO, WEMFO and SMFO for 
benchmark functions is presented in Table 8. From Table 8, 
it is clearly visible that h-MFOBOA obtains least rank 
among other algorithms at 1% relevant.

In Table 9, the outcome of Wilcoxon rank test is dem-
onstrated at the 5% relevant point between h-MFOBOA, 
OMFO, LMFO, WCMFO, WEMFO and SMFO for twenty-
three benchmark functions in Table 9. From Table 9, all the 
R + (positive rank) values higher than R − (negative) values 
which demonstrate the superiority of h-FOBOA among other 
competitors. Moreover, to examine the convergence speed of 
the proposed algorithm, convergence graphs of some of the 
randomly chosen functions have been presented in Fig. 6, 
which clearly indicate that the suggested h-MFOBOA has a 
superior convergence speed than the compared algorithms.

7  Real‑World Applications

To assess the efficiency of the h-MFOBOA proposed, two 
Real-World Problems (RWP) were resolved, such as optimal 
gas production capacity problem and three-bar truss design 
problem.

7.1  RWP‑1: Optimal Capacity of Gas Production 
Facilities

This challenging problem has been adapted from [69] and 
is presented in Appendix-2 with its Mathematical repre-
sentation. These results are presented in Table 10. In this 
table, the results of DE, GSA and DE-GSA, BOA are taken 
from [78] and few variants of the MFO algorithm namely 
WEMFO, LMFO and OMFO. It has been noted that our 
approach is more efficient than the other methods.

7.2  RWP‑2: Three‑bar Truss Design Problem

The above problem is popular in civil engineering field. It 
is used due to its complex constrained search space [79, 
80]. To achieve minimum weight, two parameters of this 
design problem have been manipulated with respect to the 
constraints namely buckling, stress and deflection. The 
mathematical formulation and various components of the 
three-bar truss design problem are presented in Appendix 3 
and Fig. 7 respectively.

Our developed h-MFOBOA method is used to evaluate 
this design problem and it is compared with existing algo-
rithms in the literature [11], including DEDS, MBA, Tsa, 
PSO-DE, and CS with few variants of the MFO algorithm 
such as WEMFO, LMFO and OMFO. Table 11 paraphrases 
the text by summarising the comparison results. Our sug-
gested h-MFOBOA method outperforms the other three 
algorithms, as shown in Table 11.

8  Conclusion with Future Direction

To improve the MFO algorithm, the hybrid moth flame 
optimization (h-MFOBOA) makes use of exploration and 
exploitation phases. Comparative tests are conducted on 
several benchmark functions to judge the performance of 
h-MFOBOA in comparison to the DE, PSO, JAYA, BOA, 
BSA, and MFO. In addition, this approach has been used 
to solve engineering problems for validating the proposed 
h-MFOBOA, which provides superior results to alternative 
algorithms. According to the simulation results, the pro-
posed algorithm utilizes the global optimum solution, which 
helps it reach a solution quickly. The algorithm's position 

Table 7  Performance assessment of h-MFOBOA and MFO variants 
on 23 benchmark functions

OMFO LMFO WCMFO WEMFO SMFO

Superior to 17 19 17 17 22
Similar to 2 0 2 2 2
Inferior to 4 4 4 4 0

Table 8  Friedman rank test of h-MFOBOA and MFO variants on 23 
benchmark functions

The boldface represents the best value

Algorithm Mean rank Rank

h-MFOBOA 2.48 1
OMFO 4.22 5
LMFO 4.13 4
WCMFO 3.70 3
WEMFO 3.24 2
SMFO 3.24 2

Table 9  Wilcoxon’s test for h-MFOBOA and MFO variants on 23 
benchmark functions (α = 0.05)

h-MFOBOA vs. 
Algorithm

p value R + R- Winner

OMFO 0.322 144 87 h-MFOBOA
LMFO 0.301 172 104 h-MFOBOA
WCMFO 0.375 141 90 h-MFOBOA
WEMFO 0.455 137 94 h-MFOBOA
SMFO 0.455 137 94 h-MFOBOA
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Fig. 6  Convergence graph of h-MFOBOA with MFO, DE, PSO, JAYA, BSA and BOA for (a) Beale function, (b) Levy function, (c) Matyas 
function and (d) Power-sum function

Table 10  Experimental results of h-MFOBOA and some other algo-
rithms on optimal capacity of gas production facilities problem

The boldface represents the best value

Algorithm Optimal variables Optimal weight

x1 x2

h-MFOBOA 17.5 600 71.4459
DE 17.5 600 169.844
GSA 17.5 600 169.844
DE-GSA 17.5 600 169.844
MFO 17.5 600 71.4495
BOA 17.5 572.98 71.8010
WEMFO 17.5 598.89 71.4463
LMFO 17.5 597.38 71.4492
OMFO 17.5 599.62 71.4535

Fig. 7  Three-bar truss design problem
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update phase prevents it from being trapped in local optima 
and stopping before finding a true solution. Then, the pro-
posed method is considered to be a useful way to solve both 
real-world and engineering design optimization problems.

In future studies, the proposed algorithm may be extended 
to a more efficient algorithm by adding different learning 
strategies (for example, opposition based learning, quasi 
opposition based learning, dynamic opposite learning tech-
nique), using non-linear parameter adaption, parameter 

tuning, etc. It may also be applied to a range of actual opti-
mization problems including vehicle routing, job shop plan-
ning, parameter estimation of fuel cell problem, combined 
economic and emission dispatch problem, image segmenta-
tion problem, workflow planning, etc. Moreover, the sug-
gested algorithm may be extended to multi-objective envi-
ronment to check its capability to explore its possibility to 
solve multi-objective problems.

Table 11  Experimental results 
of h-MFOBOA and some other 
algorithms on three-bar truss 
design problem

The boldface represents the best value

Algorithm Optimal variables Optimal weight

x1 x2

h-MFOBOA 0.408966 0.288146 174.2762166
Tsa 0.788 0.408 263.68
DEDS 0.78867513 0.40824828 263.8958434
PSO-DE 0.7886751 0.4082482 263.8958433
MBA 0.7885650 0.4085597 263.8958522
MFO 0.7882447709319 0.7882447709319 263.8959796
CS 0.78867 0.40902 263.9716
WEMFO 0.399262577 0.3096396 174.2762410
LMFO 0.401404829 0.30649271 174.2785337
OMFO 0.399478073 0.31071487 174.2769516

Appendix 1

Formulation of twenty-three benchmark functions.

Sl. 
No.

Functions Formulation of objective functions d Fmin Search 
space

Unimodal Benchmark Functions
F1 Beale f(x) =

(
1.5 − x1 + x1x2

)2
+
(
2.25 − x1 + x1x

2

2

)2
+
(
2.625 − x1 + x1x

3

2

)2 2 0 [-100, 100]

F2 Booth f(x) =
(
2x1 + x2 − 5

)2
+
(
x1 + 2x2 − 7

)2 2 0 [-10, 10]

F3 Matyas f(x) = 0.26
(
x1

2 + x2
2
)
− 0.48x1x2 2 0 [-10, 10]

F4 SUMSQUARE f (x) =
∑D

i=1
xi
2 × i 30 0 [-10, 10]

F5 Zettl f(x) =
(
x − 12 + x − 22 − 2x1

)2
+ 0.25x1

2 -0.00379 [-1, 5]

F6 Leon f(x) = 100
(
x2 − x1

3
)2

+
(
1 − x1

)2 2 0 [-1.2, 1.2]

F7 Zakhrov
f(x) =

∑d

j=1
xi

2 +

�
0.5

∑d

j=1
jxj

�2

+

�
0.5

∑d

j=1
jxj

�4 2 0 [-5, 10]

Multimodal Benchmark Functions
F8 Bohachevsky f(x) = x1

2 + 2x2
2 − 0.3cos

(
3πx1

)
− 0.3 2 0 [-100, 100]

F9 Bohachevsky 3 f(x) = x1
2 + 2x2

2 − 0.3cos
(
3πx1

)
− 0.3 2 0 [-50, 50]

F10 Levy f (x) = sin2
�
�x1

�
+
∑D−1

i=1

�
xi − 1

�2�
1 + 10sin2

�
�xi + 1

��
+
�
xD − 1

�2�
1 + sin2

�
2�xD

��
Where, xi = 1 +

1

4
(xi − 1), i = 1, 2,………D

30 0 [-10, 10]

F11 Michalewicz f (x) = −
∑D

i=1
sin(xi)sin

2m(
ixi

2

�
) , m = 10 10 -9.66015 [0, �]

F12 Alpine f (x) =
∑D

i=1
��xisin(xi) + 0.1xi

�� 30 0 [-10, 10]

F13 Schaffers
f (x) = 0.5 +

sin2(x12+x22)−0.5

[1+0.001(x12+x22)]
2

2 0 [-100, 100]
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Sl. 
No.

Functions Formulation of objective functions d Fmin Search 
space

F14 Powersum
f (x) =

∑D

i=1

��∑D

k=1
(xk

i) − bi

�2
�

F15 Penalized2
f (x) = 0.1

�
10sin

2
�
�x

i

�
+
∑

D−1

i=1

�
x
i
− 1

�2

[1 + 10sin
2
�
3�x

i+1

�
+
�
x
D
− 1

�2
[1 + sin

2
�
2�x

D

�
]]

�
+
∑

D

i=1
u

�
x
i
, 5, 100, 4

�
0 [-50, 50]

F16 Kowalik
f(x) =

∑11

j=1

�
aj −

x1(bj
2+bjx2)

(bj
2−bjx3−x4

�2 4 0.0003075 [-5, 5]

F17 Foxholes
f(x) =

�
1

500
+
∑25

j=1

1

j
+
∑D

i=1

�
xi − aij

�6�−1 2 3 [-65, 65]

Fixed dimension Multimodal Benchmark functions
F18 Goldstein and 

Price
f (x) =

[
1 +

(
1 + x1 + x2

)2(
10 − 14x1 − 14x2 + 6x1x2 + 3x1

2 + 3x2
2
)]

×
[
30 +

(
2x1 − 3x2

2
)(
18 − 32x1 + 12x1

2 + 48x2 − 36x1x2 + 27x2
2
)]

2 3 [-2, 2]

F19 Hartmann3
f (x) = −

∑4

i=1
�iexp(−

∑3

j=1
aij

�
xj−bij

�2

)
3 -3.86 [0, 1]

F20 Hartmann6
f (x) = −

∑4

i=1
�iexp(−

∑6

j=1
aij

�
xj−bij

�2

)
6 -3.32 [0, 1]

F21 Shekel 5
f(x) = −

∑5

j=1

��
x − ai

��
x − ai

�T
+ cj

�−1 4 -10.1499 [0, 10]

F22 Shekel-7
f(x) = −

∑7

j=1

��
x − ai

��
x − ai

�T
+ cj

�−1 4 -10.3999 [0, 10]

F23 Shekel-10
f(x) = −

∑10

j=1

��
x − ai

��
x − ai

�T
+ cj

�−1 4 -10.5319 [0, 10]

Appendix 2

Optimal Capacity of Gas Production Facilities

Appendix 3

Three-bar truss problem

Objective function:

Subject to:

Minf(x) =61.8 + 5.72 × x1

× 0.2623 ×

[(
40 − x1

)
× ln

x2

200

]−0.85

+ 0.087 ×
(
40 − x1

)
× ln

x2

200

+ 700.23 × x−0.75
2

x1 ≥ 17.5, x2 ≥ 200, 17.5 ≤ x1 ≤ 40, 300 ≤ x2 ≤ 600;

�⃗k =
{
k1, k2,

}

Min.f (k) = L
�
k2 + 2

√
2k1

�
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