
Vol:.(1234567890)

Journal of Bionic Engineering (2022) 19:1522–1543
https://doi.org/10.1007/s42235-022-00207-y

1 3

RESEARCH ARTICLE

A Hybrid Moth Flame Optimization Algorithm for Global Optimization

Saroj Kumar Sahoo1 · Apu Kumar Saha1 

Received: 20 December 2021 / Revised: 14 April 2022 / Accepted: 19 April 2022 / Published online: 1 July 2022
© Jilin University 2022

Abstract
The Moth Flame Optimization (MFO) algorithm shows decent performance results compared to other meta-heuristic algo-
rithms for tackling non-linear constrained global optimization problems. However, it still suffers from obtaining quality
solution and slow convergence speed. On the other hand, the Butterfly Optimization Algorithm (BOA) is a comparatively
new algorithm which is gaining its popularity due to its simplicity, but it also suffers from poor exploitation ability. In this
study, a novel hybrid algorithm, h-MFOBOA, is introduced, which integrates BOA with the MFO algorithm to overcome
the shortcomings of both the algorithms and at the same time inherit their advantages. For performance evaluation, the pro-
posed h-MFOBOA algorithm is applied on 23 classical benchmark functions with varied complexity. The tested results of
the proposed algorithm are compared with some well-known traditional meta-heuristic algorithms as well as MFO variants.
Friedman rank test and Wilcoxon signed rank test are employed to measure the performance of the newly introduced algo-
rithm statistically. The computational complexity has been measured. Moreover, the proposed algorithm has been applied
to solve one constrained and one unconstrained real-life problems to examine its problem-solving capability of both type of
problems. The comparison results of benchmark functions, statistical analysis, real-world problems confirm that the proposed
h-MFOBOA algorithm provides superior results compared to the other conventional optimization algorithms.

Keywords  Moth flame optimization algorithm · Butterfly optimization algorithm · Bio-inspired · Benchmark functions ·
Friedman rank test

1  Introduction

Optimization has the main function in both industrial pur-
poses and the scientific research world. Many numerical
and computational processes have been invented to clear
up optimization issues in the last twenty years. However,
with the aid of numerical methods, it is very complicated to
resolve the problems which are non-convex, highly nonlin-
ear, include a giant quantity of variables and constraints. To
overcome the drawbacks, such as extra mathematical calcu-
lations, initial guess, convergent problems in discrete optimi-
zation problems, a set of optimization algorithms known as
meta-heuristics algorithms have been proposed in the latest
decades. Broadly we divide metaheuristic algorithms into
two groups viz., Single Solution-Based (SSB) methods and
Population-Based (PB) methods. The SSB methods perform

the search by single search representatives, and a group of
search representatives is used in PB methods. Depending
on single and social information, each solution’s position is
renovated in PB methods. Moreover, various solutions could
easily search the whole search space; hence, better results
are produced in PB methods compared to the SSB methods.
The PB optimization techniques are mainly grouped into
four different types: (i) evolutionary algorithms such as,
Genetic Algorithm (GA) [1], Differential Evolution (DE)
[2], Biogeography-Based Optimization (BBO) [3], Bird
Mating Optimizer (BMO) [4], etc. (ii) Swarm Intelligence
(SI) based algorithms, namely Particle Swarm Optimization
(PSO) [5], Salp Swarm Algorithm (SSA) [6], Whale Optimi-
zation Algorithm (WOA) [7], Symbiotic Organism Search
(SOS) [8], Butterfly Optimization Algorithm (BOA) [9],
Monarch Butterfly Optimization (MBO) [10], Moth Flame
Optimization (MFO) [11], Backtracking Search Algorithm
(BSA) [12], JAYA algorithm [13], Slime Mould Algorithm
(SMA) [14], Moth Search Algorithm (MSA) [15], Harris
Hawks Optimization (HHO) [16], Hunger Games Search
(HGS) [17], Colony Predation Algorithm (CPA) [18] etc.

 *	 Apu Kumar Saha
	 apusaha.nita@gmail.com

1	 Department of Mathematics, National Institute
of Technology, Agartala, Tripura 799046, India

http://orcid.org/0000-0002-3475-018X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42235-022-00207-y&domain=pdf

1523A Hybrid Moth Flame Optimization Algorithm for Global Optimization﻿	

1 3

(iii) physical or chemical law-based algorithms, namely
Multi-Verse Optimizer Algorithm (MVO) [19], Gravitational
Search Algorithm (GSA) [20] algorithm, Chemical Reaction
Optimization (CRO) [21], Atom Search Optimization (ASO)
[22], etc. and (iv) human-based algorithms, such as Teach-
ing–Learning Based Optimization (TLBO) [23] algorithm,
Cognitive Behavior Optimization Algorithm (COA) [24].
Apart from these above algorithms, several algorithms have
been proposed using the mathematics concepts like alge-
bra, geometry etc. Few of them are Sine Cosine Algorithm
(SCA), [25], Runge kutta Method (RUN) [26], weIghted
meaN oF vectOrs (INFO) [27] etc. Usually, these algorithms
start with a randomly taken set of the initial solutions and
then run the process until the global optimal solutions of
the objective functions are obtained. The optimization pro-
cess will be stopped when it reaches a maximum number of
iterations set by researchers. There is increased awareness
and interest nowadays for implementing such metaheuristic
algorithms, which are both inexpensive and efficient.

MFO is a SI based algorithm first discovered in 2015
by Mirjalili [11]. MFO’s inspiration came from the moths’
navigation technique in nature, referred to as transverse ori-
entation. In particular, MFO has two critical strategies, such
as spiral flight search and Simple Flame Generation (SFG).
The SFG method can create flames from a group of the most
powerful moth individuals and fire acquired so far. Moths
are given the ability to spiral into the fire to update their
place in the iterative process by mimicking the transverse
orientation of other moths. Ultimately, MFO can select the
most appropriate answer within the search space. If MFO is
to succeed, transverse moth orientation is necessary.

MFO has a strong ability to solve numerous challeng-
ing constrained and unknown search space problems, which
is the main advantage of MFO among all other traditional
algorithms. Due to the less parameter and easy algorithm,
MFO also has been applied to handle several real-life scien-
tific problems such as optical network unit placement [28],
automatic generation control problem [29], image segmenta-
tion [30], feature selection [31], medical diagnoses [32, 33],
smart grid system [34], and so on.

While MFO may represent a new type of population-
based optimization method, the MFO algorithm still needs to
be further developed and studied, including the speed of con-
vergence and the capacity to search globally [35]. Various
researchers have already proposed some improvements to
MFO to overcome the disadvantages of the MFO algorithm.
For example, Hongwei et al. [36] proposed a new variant of
the MFO algorithm named chaos-enhanced MFO by inte-
grating chaos map into MFO to overcome the demerits of
the MFO algorithm. Yueting et al. [37] proposed a series of
new variants of the MFO algorithm by integrating MFO with
Cauchy mutation, Gaussian mutation, levy mutation, or the
combination of three mutations to reduce the disadvantages

of MFO algorithm where three modified strategies boost
the diversification and intensification capability of the basic
MFO algorithm. Xu et al. [38] introduced a new variant of
the MFO algorithm by embedding chaotic local search and
Gaussian mutation named CLSGMFO to get a more stable
balance between diversification and intensification. Kaur
et al. [39] presented a modified version of the MFO algo-
rithm, dubbed E-MFO, in which a division of iterations, a
Cauchy distribution function, and the influence of the better
flame was added to the MFO algorithm to maintain a favora-
ble trade-off between diversification and intensification,
as well as increased exploration and exploitation. Tumar
et al. [40] embedded a modified MFO algorithm. They pro-
posed an Enhanced Binary MFO algorithm (EBMFO) to
predict software faults using adaptive synthetic sampling
(ADASYN). Wei Gu and Gan Xiang [41] proposed a new
modified MFO algorithm named multi-operator MFO algo-
rithm (MOMFO), which integrates three operators called
adaptive control strategy, elite search strategy, and chaos
search strategy to make a balance between global and local
search capability. The MFO algorithm was updated by Ma
et al. [42] to address some of the shortcomings of the basic
MFO algorithm, such as slow convergence and convergence
to a local minimum. Both the exploration–exploitation and
optimization performance optimization methods contain the
inertia weight of the diversity feedback control and the small
probability mutation component, which are embedded.

In recent times, meta-heuristics and hybrid metaheuris-
tics have played a major role in the research field. Hybridi-
zation is used to solve hard optimization problems due to
the combination of two to three individual meta-heuristics
algorithms. It is also helpful for improving the metaheuris-
tics algorithm with some additional techniques for better
improvement of results, run time, or both. Some of the
hybrid methods of MFO have been developed by different
authors, such as in [43], the author developed an interest-
ing population-based algorithm using a proportional selec-
tion scheme to integrate the MFO and Hill Climbing (HC)
algorithm named PMFOHC, which helps in (a) quickening
the searching process (b) to improve the solution quality.
Wu et al. [44] introduced a new PB algorithm known as
the HSDE-MFO algorithm by integrating hybrid symbiotic
DE and MFO to acquire suitable PV model parameters. In
[35] the authors developed a modified algorithm of MFO
by the mixture of the Water Cycle Algorithm (WCA), and
MFO noted as WCMFO. Here MFO increases the exploita-
tion, and WCA improves the diversification of WCMFO.
Also, it has been used in solving constrained optimization
problems. Bhesdadiya et al. [45] proposed an algorithm by
integrating PSO and MFO which enhance the diversifica-
tion search during solving high complex design problem and
showed superiority in solving unconstrained optimization
problems. In [46–48] various hybrid techniques of MFO

1524	 S. K. Sahoo, A. K. Saha

1 3

algorithm have been established to increase the efficiency
of MFO algorithm.

Like the MFO algorithm, the BOA algorithm is a rela-
tively new PB metaheuristic algorithm that mimics the
searching of food and mating pair behaviour of butterflies for
global optimization. The approach is based mainly on but-
terflies' foraging strategies that use their smell to determine
where the nectar or the pairing partner is. The BOA is a
highly powerful and versatile algorithm to solve complicated
real-world problems where the search areas are relatively
complex. For example, Arora and Singh [49] introduced a
novel improved BOA (IBOA) using a dynamic and adaptive
strategy to modify the sensor modality instead of a constant
value. The authors of [50] embedded a novel enhanced BOA
algorithm called Bidirectional BOA (BBOA) by applying
bidirectional search in BOA, which assisted the local search
in both forward and backward direction. While selecting the
direction for local search, the greedy selection technique was
used. In [51], an improved BOA (WPBOA) was proposed,
which incorporated guiding weights and a population restart
strategy. With the addition of guiding weight into the global
search phase, the algorithm's convergence rate and preci-
sion were increased. Dhanya and Kanmani [52] introduced
a novel algorithm (BOA-C) with the help of Cauchy muta-
tion operator to enhance the global search ability of BOA
and tested on both low and high-dimensional optimization
problems. Li et al. [53] introduced an enhanced version of
BOA algorithm, namely FPSBOA to balance the exploration
and exploitation of BOA. The authors have used nineteen
2000-dimensional and twenty 1000-dimensional functions
to verify FPSBOA for complex large-scale optimization
problems. In [54], the evidence of bias of BOA was dem-
onstrated for the problems whose optimal value was near
the origin, and an unbiased BOA (UBOA) was suggested
to eliminate this problem. Lohar et al. [55] used BOA and
some other algorithms to optimize the geotechnical param-
eters used in slope stability analysis. Again, in [56], Arora
and Singh proposed another hybrid method by the ensem-
ble of BOA and artificial bee colony (ABC) algorithm. In
2019, Arora and Anand introduced binary versions of BOA
(bBOA) [57] where two approaches of binary BOA, namely
bBOA-S and bBOA-V were proposed and applied the same
for feature selection problem in wrapper mode. Recently,
Sharma et al. [58] presented a novel hybrid MPBOA algo-
rithm, which combines the BOA's parasitism and mutualism
phases with the SOS algorithm's search phrases to improve
the search behaviour of the BOA, which allows for better
trade-offs between global and local searches in the MPBOA
algorithm. Sharma et al. [59] created a new hybrid meta-
heuristic algorithm called h-BOASOS integrating BOA and
SOS algorithms, and then applied it to find the cost and
weight of the cantilever retaining wall. Sharma and Saha
[60] introduced a powerful hybrid algorithm named BOSCA

by combining SCA with BOA, which helps in stabilizing
the global exploration and local exploitation ability of the
proposed algorithm. Sharma and Saha [61] introduced a
new efficient hybrid algorithm, m-MBOA. They utilized the
mutualism step in the exploration section of BOA to deco-
rate the overall performance of the original BOA algorithm.
Liu et al. [62] introduced an upgraded version of the BOA
called LBOLBOA by integrating orthogonal learning, Lévy
flight, and Broyden-Fletcher-Goldfarb Shanno (BFGS) into
the original BOA. The main goal of the proposed LBOL-
BOA is to reduce the shortcoming of the BOA such as slow
convergence speed and quickly fall into the local optima
solution. The effectiveness of the suggested LBOLBOA has
been tested on IEEE CEC’2017 benchmark problems and
the parameter optimization of the Kernel Extreme Learning
Machine (KELM) for prediction of cervical hyperextension
injury. Yu et al. [63] developed an improved BOA-optimized
KELM model (in short SBOA-KELM) by integrating SSA
into the original BOA algorithm and applied it to bear-
ing fault diagnosis. First, the energy entropy features are
extracted from the raw vibration signals by complete ensem-
ble empirical mode decomposition based on adaptive noise
(CEEMDAN). The original vibration signals were decom-
posed into multiple Intrinsic Mode Function (IMF) compo-
nents by CEEMDAN. The energy entropy of the IMFs was
calculated to construct an energy feature vector. Second, to
avoid data redundancy caused by smaller energy features and
increase calculation, a random forest was used to evaluate
feature’s importance and select informative features as new
feature vectors. Third, the proposed SBOA-KELM method
was used for fault feature classification. Finally, the pro-
posed SBOA has been tested on IEEE CEC’2017 benchmark
functions and SBOA-KELM applied diagnosing the fault
diagnosis of rolling bearings.

Apart from the above modifications on MFO and BOA
algorithms, various researchers introduced other efficient
hybrid algorithms for solving various global optimization
problems. For example, Saka et al. [64] introduced hybrid
Taguchi-Vortex Search (VS) algorithm (in short HTVS) by
combining VS algorithm and Taguchi orthogonal approxi-
mation. The aim of the proposed algorithm is to develop a
better trade-off between diversification and intensification.
Chakraborty et al. [65] introduced a new hybrid method
by integrating modified WOA with Success History-based
Adaptive DE (SHADE). The main goal of this hybrid method
is to reduce the shortcomings of both algorithms and guide
both algorithms to explore and exploit in the search space,
and helps obtain good quality of solutions. Singh and Singh
[66] introduced a hybrid algorithm HPSOGWO with the
help of PSO and Grey Wolf Optimizer (GWO) to enhance
the exploration and exploitation ability of both the algo-
rithms. Wang et al. [67] introduced hybrid VS by merging
Artificial Bee Colony (ABC) algorithm and VS algorithm

1525A Hybrid Moth Flame Optimization Algorithm for Global Optimization﻿	

1 3

to enhance the effectiveness of the component algorithms.
Nama and Saha [68] introduced an efficient hybrid approach,
namely HBSA by combining BSA and SQI. The motto of
this hybrid approach is to deal with the unconstrained, non-
linear and non-differentiable optimization problems. Yildiz
[69] introduced hybrid Taguchi-Harmony Search (HS) algo-
rithm and the robustness and effectiveness of the suggested
approach has been measured by applying it into the engi-
neering design and manufacturing optimization problems.
Nama et al. [70] proposed the hybrid SOS (HSOS) by inte-
grating SOS algorithm with Simple Quadratic Interpolation
(SQI), which helps in enhancing the robustness of the algo-
rithm. Chakraborty et al. [71] introduced an efficient hybrid
method called HSWOA by hybridizing the HGS algorithm
into the WOA algorithm and applied it to solve different
engineering design problems. Sharma et al. [72] introduced
a different type of modification in BOA named mLBOA in
which Lagrange interpolation and SQI are used in explo-
ration and exploitation phase respectively to improve the
original BOA algorithm.

Motivating by the efficiency of MFO and BOA algorithms
and the effectiveness of different hybrid techniques, in this arti-
cle, we have proposed a hybrid algorithm, namely h-MFOBOA,
by an intelligent ensemble of BOA in the MFO algorithm to
alleviate the inherent drawbacks of the MFO algorithm. As far
our knowledge is concerned, no work on the hybridization of
MFO and BOA is present in the literature. The salient features
of BOA and MFO are hybridized to create a new approach,
where BOA is used to improve the efficacy of the MFO algo-
rithm by updating the flame positions during its operation. The
following are the main contributions of the work:

(i)	 Local and global phases of BOA are applied after the
updating positions of flames of MFO to further enhance
the performance of MFO.

(ii)	 The proposed algorithm is evaluated and compared to
six popular state-of-the-art algorithms and five variants
of the MFO algorithm on a diverse set of twenty-three
benchmark functions.

(iii)	 Friedman rank test and Wilcoxon signed-rank test
are used to analyze the performance of the proposed
h-MFOBOA algorithm.

(iv)	 The complexity of the proposed algorithm has been
obtained and some of the convergence graphs are plot-
ted to check its convergence competence.

(v)	 To see its problem-solving capability, the proposed
algorithm is applied to solve a constrained and an
unconstrained problem and compared with a wide vari-
ety of algorithms.

The rest of the present article is designed as follows:
A summary of the MFO and BOA algorithm is shown in
Sect. 2 and Sect. 3 respectively. The proposed h-MFOBOA

algorithm is shown in Sect. 4. Computational complexity of
the proposed h-MFOBOA is introduced in Sect. 5. In Sect. 6,
experimental setup, simulation results, statistical analyses,
and convergence analysis have been presented. The applica-
tion of real-world problems is shown in Sect. 7. Finally, con-
clusions with future enhancements are discussed in Sect. 8.

2 � Classical MFO Algorithm

This section presents the origin of the MFO algorithm and
its working process with the mathematical formulation in
Subsect. 2.1 And 2.2, respectively.

2.1 � Inspiration

Moths are insects and belong to the class of Arthropoda. The
navigation techniques of moths are unique, which attracts
researchers to think about it. Moths travel at night with the
moonlight’s help, and for navigation, moths utilize the trans-
verse orientation mechanism, shown in Fig. 1. They fly using
moonlight through crosswise inclination by keeping a fixed
tendency towards the moon for a long journey in a straight
path. The efficiency of preference depends on the distance
of flame, i.e., when the distance between them decreases,
the moth moves in a helix path around the flame, connecting
the moth to the flame. Using these behaviours of moth and
mathematical modelling, the MFO algorithm is developed
by Mirjalili in 2015.

2.2 � MFO Algorithm

In basic MFO, all moths are expressed as a set of candi-
date’s solutions. The positions of all moths are expressed as
a vector of decision variables. Let us consider the following
matrix for moths

Fig. 1   Transverse orientation of moth

1526	 S. K. Sahoo, A. K. Saha

1 3

where Xi =
[
xi,1, xi,2,… , xi,n

]
 , i ∈ {1, 2,… ,N}.

N indicates moths’ number at initial population and n
as variable numbers. The fitness vector of moth is shown
below:

Flame matrix is the second key point of the MFO algo-
rithm. Here the size of both moth matrix (X) and flame
matrix (FM) are same as each moth flies around the cor-
responding flame.

Also, the fitness vector of flame matrix is store in the
following matrix i.e.

Here Fit [ ∗ ] is a candidate solution’s fitness function.
MFO has two important components one is moth and other
is flame where, moth moves through the respective flame to
achieve suitable outcomes and the best outcomes acquired
by the moth is known as flame. As the moth moves in a spi-
ral manner, therefore, the author of MFO has defined a spiral
function which is represented in the following equation:

where �i =
|||xKi − Fmi

||| represents distance of moth at ith place
and its specific flame ( Fmi ) The distance between the ith
moth Mi and its specific flame further, b is a constant used
to recognize the shape of the search for spiral flight shape
and t be any random number between − 1 and 1 referring to
how much closer the moth is to its specific flame. Figure 2
represents that a moth flies towards its flame in a helix man-
ner, with a distinct value of t in a 1-dimensional manner.

(1)X =

⎡
⎢⎢⎢⎣

X1

X2

⋮

XN

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

x1,1 x1,2 ⋯ x1,n−1 x1,n
x2,1 ⋱ ⋯ ⋯ x2,n
⋮ ⋯ ⋱ ⋯ ⋮

xN−1,1 ⋯ ⋯ ⋱ xN−1,n
xN,1 xN,2 ⋯ xN,n−1 xN,n

⎤
⎥⎥⎥⎥⎥⎦

,

(2)Fit[X] =

⎡⎢⎢⎢⎣

Fit[X1]

Fit[X2]

⋮

Fit[Xn]

⎤⎥⎥⎥⎦
.

(3)

FM =

⎡⎢⎢⎢⎣

FM1

FM2

⋮

FMN

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

Fm1,1 Fm1,2 ⋯ Fm1,n−1 Fm1,n

Fm2,1 ⋱ ⋯ ⋯ Fm2,n

⋮ ⋯ ⋱ ⋯ ⋮

FmN−1,1 ⋯ ⋯ ⋱ FmN−1,n

FmN,1 FmN,2 ⋯ FmN−1 FmN,n

⎤
⎥⎥⎥⎥⎥⎦

.

(4)Fit[FM] =

⎡⎢⎢⎢⎣

Fit[FM1]

Fit[FM2]

⋮

Fit[FMn]

⎤⎥⎥⎥⎦
,

(5)xK+1
i

=

{
�i ∙ e

bt ∙ ���(2�t) + Fmi(k), i ≤ N.FM

�i ∙ e
bt ∙ ���(2�t) + FmN.FM(k), i ≥ N.FM

,

where maximumiter represents the number of maximum
iterations, r be the convergence constant decreases from
(− 1) to (− 2) linearly proving that both diversification and
intensification occur in MFO algorithm.

In every iteration, flame position for the current and last
iterations are collected and arranged as per the fitness value
for the global and local search. Only the best N.FM flames
are preserved, and other flames are wiped away, leading to
the one imperfection briefly described in [73]. The following
formula can obtain the number of flames (N.FM) that has
been reduced over the iteration. The flowchart of the MFO
algorithm is presented in Fig. 3.

3 � Butterfly Optimization Algorithm

A new population-based meta-heuristics approach named
the Butterfly Optimization Algorithm (BOA) was created
in 2018 by Arora and Singh, based on the food-gathering
and mating behaviour of butterflies. In BOA, it is assumed
that all butterflies generates an aroma with certain strengths
and the aroma of each butterfly has been connected with the
location of the search agents. The aroma produced by an
individual butterfly is circulated over the entire search region
and reach all butterflies and detected by each and every but-
terfly which form a strong social information network system
in the search space. In implementation phase, BOA basically
has two phases: global phase and local phase. Butterflies'
routine frequency depends on two key concepts: stimulus

(6)r = −1 + currentiter

(
−1

Maximumiter

)
,

(7)t = (r − 1) × rand(0, 1) + 1,

(8)

N.FM = round

(
N.FMLastiter − Currentiter

(
N.FMLastiter − 1

)
Maximumiter

)
.

Fig. 2   Logarithmic spiral position w.r.t ‘t’ and space around a flame

1527A Hybrid Moth Flame Optimization Algorithm for Global Optimization﻿	

1 3

intensity (I) , which is linked to the butterflies' fitness, and
scent formulation (f) , which is subjective and experienced by
other butterflies. BOA depicts the scent as follows:

where fi is the amount of aroma originated by ith butterfly, c
is the sensory modality, I is the strength of the stimulus and
a is called power exponent.

The benefit of f will grow faster than the value of I
because the inferior butterfly in BOA move to a better but-
terfly, as measured by fitness. So, f should be allowed to
vary depending on the power exponent and the degree of
amalgamation that can be reached (a) . In the basic BOA, the
values of "a" was set to be increase linearly over iterations
from 0.1 to 0.3 , while εcε was set at 0.01 . The BOA considers
a switch probability to carry out its search process, which

(9)fi = c × Ia,

controls the algorithm's strategy between global and local
searches. In basic BOA, it was taken as 0.8 . The global as
well as local phases of BOA are mathematically represented
by the following two equations

where B_Ft
best

 is the location of the best butterfly in the
search space at the tth iteration, r is arandom number in (0, 1)
and fi represents the aroma released by the ith butterfly. B_Ft

j

and B_Ft
k
 represent the jth and kth butterflies from popula-

tion in tth iteration. The flowchart of the BOA is presented
in Fig. 4.

(10)B_Ft+1
i

= B_Ft
i
+
(
r2 × BF

t
best

− BF
t
i

)
× fi,

(11)B_Ft+1
i

= B_Ft
i
+

(
r2 × BF

t
j
− BF

t
k

)
× fi,

YES

Initialize parameters of the algorithm such as population size, Termination criteria,

Start

Randomly generate the initial moths

Find out the fitness value and save the best positions corresponding to the flames

Update flame no, and by using Eqn. (6) and (7)

Calculate δ for the corresponding moth and update the moth’s positions using Eqn. (5)

Are stopping criteria satisfied?

Report the best position among the moths

END

NO

Fig. 3   Flow chart of the MFO algorithm

1528	 S. K. Sahoo, A. K. Saha

1 3

4 � The Proposed Algorithm

The main motto of any metaheuristic algorithm is to han-
dle the balancing phase, i.e., exploration and exploitation.
We know that excessive exploration is the reason for losing
optimal solutions because it spends more time searching the
uninteresting regions. On the other hand, extreme exploita-
tion is also the main reason for premature convergence as
the population rapidly lacks diversity. So, better performance
of any algorithm is achieved when it maintains stability
between diversification and intensification.

In MFO, exploration, and exploitation are obtained from
the spiral movement of moths around the flame. The power
of the exponent factor ‘t’ gives a better clarification about
exploration and exploitation. We know that the next position
of the moth is obtained from the spiral Eq. (3). The spiral
equation parameter ‘t’ is responsible for how close the moth

is to the flame in the next position (with t = −1 being the
most intimate and t = 1 being the farthest). When the next
part is out of the space between the moth and the flame, its
exploration; when it's in the area, its exploitation.

The MFO features good exploitation ability because indi-
viduals in the MFO algorithm follow its flames by a spi-
ral trajectory according to Eq. (5). MFO updates its flames
with a ‘survival of the fittest’ mechanism, which means the
flames with better fitness value will survive from the flame
selection. This mechanism makes the MFO algorithm fea-
tures a fast convergence speed but also raises a problem of
diversity loss of moths. On the other hand, the literature
study of BOA argues that BOA has good exploration ability
and poor exploitation ability. It is due to high switch prob-
ability value (80%) most of the butterfly performs better in
exploration phase than exploitation. Therefore, to avoid con-
flicts between these two methods and to developed a novel

Calculate fragrance using Eqn. (9) and find the best butterfly. Generate a random number ∈ ,1

END YES

NO

Are termination criteria met?

Report the best solution

Whether stopping criteria met

Initialize population size, Termination criteria, Define sensor modality , Power exponent and switch probability

Start

Determine stimulus intensity at is determined by

Perform global search using Eqn. (10)

For each butterfly check

Update the better values of the butterflies in the population

Perform local search using Eqn. (11)

YES NO

Fig. 4   Flow chart of the BOA algorithm

1529A Hybrid Moth Flame Optimization Algorithm for Global Optimization﻿	

1 3

well-balanced metaheuristic algorithm we have embedded
BOA into the MFO algorithm.

This paper presents a hybrid moth flame optimization
algorithm to increase population diversity and expedite con-
vergence (h-MFOBOA). This strategy also makes it easier
to balance the capability of the MFO to discover and exploit
new opportunities. We similarly start the algorithm like
MFO, and then we apply the global and local phase of the
BOA algorithm [Eq. (10) and Eq. (11)] for position updat-
ing. The flowchart of the suggested h-MFOBOA is presented
in Fig. 5. The major steps of h-MFOBOA can be shown in
Algorithm 1 and summarized below.

1st step: initialize all parameters such as the number of
populations, maximum iteration, and function evaluation
randomly.
2nd Step: apply the sorting procedure to both the moth
matrix and flame matrix w.r.t the fitness value and update
the number of flames using the Eq. 8.
3rd step: update r and t using Eq. 6 and Eq. 7. Also,
Update moths position w.r.t corresponding flame using
Eq. 5.
4th Step: update the new solution using Eq. 10 and Eq. 11
and then find the fitness value of the latest solutions. Best
fitness gives the optimum value.
5th Step: if it does not satisfy the stopping criteria, go to
the 2nd step to get the best fitness value.

Initialize parameters of the algorithm such as population size, Termination criteria, Number of dimension

variable, Define sensor modality , Power exponent and switch probability

Start

Randomly generate the initial moths

Find out the fitness value and save the best positions corresponding to the flames

Update flame no, r and t using Eqns. (6) and (7). Calculate δ for the corresponding moth and

update the moth positions using Eqn. (5)

Apply global and local phase of the BOA algorithm i.e. if < use Eqn. (10) otherwise use Eqn. (11)

Are stopping criteria satisfied?

Report the best position among the moths

END

YESNO

Fig. 5   Flow chart of the h-MFOBOA algorithm

1530	 S. K. Sahoo, A. K. Saha

1 3

5 � Computational Complexity of h‑MFOBOA

Complexity of any algorithm is a function which provides
the running time or space with respect to input size. This
is of two kinds: one is complexity of space and other is
time complexity. The process of finding a formula for total
space will be required towards execution of the algorithm
is referred as space complexity. Also, process of finding
a formula for total time required for successful execution

of algorithm is known as time complexity. A big-O nota-
tion is used to analysis the computational complexity of
the proposed h-MFOBOA algorithm. The Complexity of
h-MFOBOA also depends on initialization of moth posi-
tion (  –T IMP ), evaluation of moth position (  –TEMP ), searching
of spiral flight (  –TSSF ), flame generation (  –TFG and global and
local phase of the BOA (  –TBOA ). Let maximum iterate num-
ber, variable number and moths’ number are denoted by I,
D and N respectively. Here we will use time complexity for
the comparison of both h-MFOBOA and MFO algorithm.

1531A Hybrid Moth Flame Optimization Algorithm for Global Optimization﻿	

1 3

According to the quicksort algorithm, Computational com-
plexity for sorting N-flame and N-moth are lying between
3Nlog3NI and (3 N)2I towards worst and best case

Hence, time complexity for h-MFOBOA with respect
to worst case is O [NI (D + N)]. Also, from [9], the time
complexity of MFO for the worst case is O [NI (D + N)].
Therefore, both MFO and h-MFOBOA has same complexity.

6 � Simulation Results and Discussions

In this section, the experimental setup of our proposed
method is presented in Sect. 6.1, a comparison of h-MFO-
BOA with basic MFO and other evolutionary algorithms
and statistical performance are presented in Sect. 6.2 and
Sect. 6.3 respectively.

6.1 � Experimental Setup

The algorithm is coded and run on a Windows computer
with an Intel i5 processor, 8 GB of RAM, and a MATLAB
R2015a compiler. At most 1000 iterations are in use as a
basis to stop our proposed algorithm. There are different
ways to stop the algorithm such as maximum number of
iterations achieved, a fix error tolerance value, Maximum
use of CPU time, maximum number of iterations having zero
improvement, etc. Each function was repeated for 30 runs
and rounded up to two numbers after the decimal to produce
less statistical errors and a statistically significant output.
We put down the Average (A), Standard Deviation (SD),
‘Best’ and ‘Worst’ of h-MFOBOA with other algorithms
for collation. To fulfill this this criteria, one particular union

–Th−MFOBOA = –T IMP + –TEMP + –TSSF + –TFG + –TBOA,

= O (ND) + O (NDI) + O(NDI) + O((3N)2I) + O(NDI),

= O (ND + 3NDI + 9N2I).

of variables used for h-MFOBOA in the copy of both uni-
modal, multimodal and fixed dimensional benchmark func-
tions which are taken from literature. The powers exponent
constant b is equal to 1 and t varies from −1 to 1 and size of
the population is thirty (30).

6.2 � Discussion on Basic Benchmark Functions

Our proposed h-MFOBOA optimization model is tested against
six meta-heuristics (DE, PSO, JAYA, BOA, BSA, and MFO)
which have previously demonstrated their superiority in vari-
ous global optimization problems and can produce satisfying
results on different unimodal, multimodal and fixed-dimension
problem instances. The parameter setting of all the algorithms
employed for comparison is given in Table 1. The results of
each algorithm were calculated and presented in Table 1.

In Table 2, F1–F7 has been investigated under unimodal
functions. Out of seven parts, h-MFOBOA achieves supe-
rior results for F5, F6, and F7 operations and achieves the
best global optimum value for other functions. So, we can
conclude that h-MFOBOA is good for diversification and
reaches more than 90% best optimum value among different
traditional optimization algorithms.

In Table 2, F8–F17 has been investigated under multi-
modal benchmark functions. Our proposed algorithm pos-
sesses superior results for F11, F12, F13, and F14 bench-
mark functions, and for other parts, it achieves the second
and third highest optimum value. From Table 2, it can be
clear that h-MFOBOA provides more than 85% good global
solutions among other state-of-the-art algorithms.

In Table 2, F18–F23 has been investigated under fixed
dimensional multimodal benchmark functions. For F18, F19,
F20, and F21, h-MFOBOA achieved the best optimal value,
and for others, it provides the second and third highest global
optimum value. Therefore, we can conclude that our pro-
posed h-MFOBOA achieved the best quality optimum value
among other traditional optimization algorithms.

As shown in Table 3, the average performance of h-MFO-
BOA is greater than, similar to, or worse than the other six

Table 1   Parameter setting of the considered algorithms

Algorithm Parameter values

DE No. of population = 30 , Maximum iteration = 1000 , Scaling Factor (F) = 0.5 = Crossover probability
PSO No. of population = 30 , Maximum iteration = 1000 , w = 0.9 to 0.4,c1 = c2 = 0.2

JAYA​ No. of population = 30 , Maximum iteration = 1000 , r = rand(0, 1)

BOA No. of population = 30 , Maximum iteration = 1000 , Switch probability (p) = 0.8 , Sensor modality (c) = 0.01 ,
Power exponent (a) = 0.1 to 0.3

BSA No. of population = 30 , Maximum iteration = 1000 , Two parameters ‘ a ’ and ‘ b ’ are uniformly random num-
bers between 0 and 1 , Mix rate = 1

MFO No. of population = 30 , Maximum iteration = 1000 , Convergence constant decreases linearly from (−1) to (−2)

1532	 S. K. Sahoo, A. K. Saha

1 3

Table 2   Experimental results of h-MFOBOA with other basic algorithms on 23 benchmark functions

Sl. No DE PSO Jaya BOA BSA MFO h-MFOBOA

F1 A 1.45E + 03 2.64E − 06 9.93E − 05 0 3.00 E + 05 3.59E − 110 0
SD 2.91E + 02 2.30E − 06 5.25E − 05 0 0 1.97E − 109 0
Best 1.05E + 01 1.72E − 07 3.26E − 06 0 3.00E + 05 4.25E − 122 0
Worst 6.55E + 03 8.11E − 06 4.05E − 04 0 3.00E + 05 3.79E − 107 0

F2 A 7.19E − 04 3.99E − 06 0 4.73E − 01 1.81E + 05 2.66E − 01 0
SD 1.27E − 03 1.05E − 05 0 4.54E − 01 0 6.29E − 01 0
Best 3.69E − 12 2.40E − 10 0 9.53E − 05 1.81E + 05 5.18E − 04 0
Worst 6.05E − 02 5.16E − 05 0 1.98 1.81E + 05 7.10E − 01 0

F3 A 7.50E − 05 2.91E − 07 0 1.65E − 01 3.00E + 04 1.88 0
SD 6.98E − 05 4.84E − 07 0 2.42E − 01 0 2.08 0
Best 4.87E − 09 5.98E − 11 0 8.45E − 06 3.00E + 04 1.02 0
Worst 2.15E − 04 1.84E − 06 0 1.66 3.00E + 04 1.26 0

F4 A 1.17E − 08 1.22E − 102 1.55E − 218 0 0 6.82E − 11 0
SD 2.74E − 08 3.88E − 102 0 0 0 3.73E − 11 0
Best 3.78E − 14 1.17E − 114 3.68E − 233 0 0 1.43E − 30 0
Worst 5.10E − 06 1.63E − 101 1.04E − 216 0 0 1.35E − 10 0

F5 A − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 − 3.34 E − 03 8.71 − 3.56E − 03 − 3.79E − 03
SD 6.23 E − 06 9.46E − 07 2.27E − 09 7.69 E − 04 5.42E − 15 3.41E − 04 4.26E − 17
Best − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 3.21E − 16 − 3.79E − 03 − 3.21E − 01
Worst − 3.79E − 03 − 3.78E − 03 − 3.79E − 03 0 1.14E − 12 − 9.04E − 04 − 3.21E − 01

F6 A 2.24E − 02 3.82E − 03 2.14 E − 12 1.08 E − 01 1.61E + 03 1.84 E − 01 0
SD 2.19E − 02 4.62E − 03 4.68 E − 12 1.84 E − 01 9.25 E − 13 2.75 E − 01 0
Best 3.75E − 07 1.69E − 07 2.87E − 16 9.55E − 08 4.61E + 05 5.75E − 04 0
Worst 1.85E − 01 1.53E − 02 8.47E − 12 7.70E − 01 2.61E + 02 1.66E − 01 0

F7 A 4.09E − 21 2.05E − 06 1.50 E − 32 2.67 E − 01 1.01E − 06 6.36 E − 02 0
SD 7.57E − 21 6.45E − 06 1.11 E − 47 3.24 E − 01 4.02E − 10 1.03 E − 01 0
Best 7.11E − 35 8.47E − 10 1.49E − 32 7.22E − 11 7.01E − 12 8.21E − 05 0
Worst 4.69E − 15 3.56E − 05 1.49E − 32 7.15E − 01 1.31E − 05 5.32E − 01 0

F8 A 3.01 2.34 3 1.18 E + 01 1.60E + 03 1.61E + 01 0
SD 1.62E − 02 2.39 2.03E − 04 9.68 0 2.01E + 01 0
Best 3.01 9.98E − 01 3 1.05E + 01 1.60E + 03 1.55E + 01 0
Worst 3.01 1.26E + 01 3 1.65E + 01 1.60E + 03 1.88E + 01 0

F9 A 1.19E − 05 3.75E − 04 1.70E − 07 0 8.75E + 05 3.13 E − 51 0
SD 1.35E − 05 9.05E − 04 3.08 E − 07 0 0 1.71 E − 50 0
Best 3.12E − 14 1.37E − 07 4.26E − 09 0 8.75E + 05 4.06E − 131 0
Worst 1.11E − 04 3.96E − 03 4.48E − 07 0 8.75E + 05 2.55E − 48 0

F10 A 3.69E − 05 6.05E − 07 5.17E − 30 0 3.00 E + 03 4.18E − 29 0
SD 2.58E − 05 1.02E − 06 9.74E − 30 0 0 2.29E − 28 0
Best 6.88E − 11 3.45E − 11 3.74E − 31 0 3.00E + 03 6.11E − 68 0
Worst 1.11E − 04 3.91E − 06 2.27E − 29 0 3.00E + 03 4.36E − 27 0

F11 A − 1.13E − 10 2.21E − 03 − 1.13E − 10 − 9.52 E − 11 1.00E + 02 − 1.13E − 10 − 1.13E − 10
SD 9.61E − 14 6.34E − 03 1.66E − 25 2.07E − 11 0 1.33E − 14 1.28E − 25
Best − 1.13E − 10 7.89E − 08 − 1.12E − 10 − 1.12E − 10 1.00E + 02 − 1.13E − 10 − 1 0.10E − 10
Worst − 1.12E − 10 2.93E − 02 − 1.12E − 10 − 2.56E − 11 1.00E + 02 1.11E − 10 − 1.08E − 10

F12 A 1.93E − 01 6.39E − 01 2.48E − 02 6.11E − 01 8.62E + 02 1.19E − 01 1.86E − 02
SD 1.88E − 01 0 3.08E − 02 5.94E − 01 1.15E − 13 1.17E − 01 2.06E − 02
Best 8.65E − 04 6.37E − 01 2.26E − 04 9.75E − 07 8.15E + 02 5.89E − 07 7.31E − 06
Worst 1.50E − 01 6.37E − 01 7.20E − 02 7.68E − 01 4.19E + 04 3.47E − 01 3.54E − 01

1533A Hybrid Moth Flame Optimization Algorithm for Global Optimization﻿	

1 3

Table 2   (continued)

Sl. No DE PSO JAYA​ BOA BSA MFO h-MFOBOA

F13 A 1.71E − 03 1.56 3.16E − 04 6.13E − 03 4.65E + 26 1.16E − 02 − 3.62
SD 9.34E − 04 1.4 2.19E − 05 8.33E − 03 2.54E + 27 1.66E − 02 1.05E − 01
Best 5.34E − 09 1.21E − 02 3.07E − 04 4.56E − 09 1.21E + 26 4.96E − 05 − 3.62
Worst 2.10E − 02 4.57 4.14E − 04 7.66E − 02 3.59E + 28 1.56E − 01 − 3.62

F14 A 6.45E − 05 1.21E − 02 0 1.47 E − 04 − 2.71E − 94 0 − 5.11E − 03

SD 9.79E − 05 1.67E − 02 0 8.06 E − 04 0 0 0

Best 5.11E − 10 2.95E − 05 0 4.07E − 05 − 2.70E − 94 0 − 5.11E − 03

Worst 1.67E − 04 6.02E − 02 0 1.33E − 02 − 2.70E − 94 0 − 5.11E − 03
F15 A − 3.04 − 2.03E − 01 − 3.02 − 2.53 − 3.77E − 02 − 2.91 − 3.04

SD 1.10E − 03 3.52E − 02 2.83 E − 02 1.74 E − 01 1.41E − 17 4.73 E − 02 6.88 E − 12
Best − 3.04 − 2.69E − 01 − 3.32 − 2.94 − 4.65E − 19 − 3.65 − 3.78
Worst − 3.04 − 1.13E − 01 − 3.2 − 1.83 − 1.22E − 01 − 2.41 − 3.78

F16 A 6.45E − 05 1.13E − 03 0 1.47 E − 04 7.50 E + 03 0 0
SD 9.79E − 05 2.69E − 03 0 8.06 E − 04 0 0 0
Best 4.47E − 14 3.13E − 04 0 9.45E − 11 7.49E + 03 0 0
Worst 3.30E − 04 1.53E − 02 0 7.31E − 03 7.49E + 03 0 0

F17 A 9.94E − 15 3.53 E + 01 1.24 E − 113 0 5.10 E + 04 7.47 E − 98 0
SD 3.88E − 14 0 4.71 E − 113 0 0 4.09 E − 97 0
Best 6.60E − 35 3.15E + 01 9.58E − 122 0 5.08E + 04 6.11E − 155 0
Worst 2.16E − 12 3.15E + 01 9.03E − 113 0 5.08E + 04 3.55E − 91 0

F18 A 2.14 E − 02 1.15 E + 04 6.13 E − 05 6.32 E − 01 3.97 E + 05 7.27 E − 01 − 2.92
SD 1.94E − 02 0 9.92 E − 05 1.42 E − 01 0 1.75 E − 01 5.30 E − 02
Best 8.38E − 04 1.12 E + 04 6.07E − 05 4.28E − 03 3.67E + 04 3.09E − 04 − 2.92E − 01
Worst 5.90E − 02 1.12 E + 04 4.14E − 05 2.71 3.67E + 04 1.06E + 01 − 2.92E − 01

F19 A − 3.04 − 1.46 − 3.02 − 2.53 − 1.32 − 2.91 − 1.65 E + 03
SD 1.10E − 03 0 2.83 E − 02 1.74 E − 01 4.51E − 16 4.73 E − 02 1.53 E + 02
Best − 3.04 − 1.41 − 3.32 − 2.82 5.01E − 18 − 3.12 − 1.87E + 03
Worst − 3.04 − 1.41 − 3.17 − 1.94 − 1.66 − 2.85 1.64E + 01

F20 A − 1.92E + 03 − 3.25 − 1.48E + 03 − 1.52E + 03 7.50E + 03 − 1.37 E + 03 3.49 E − 12
SD 5.07E + 01 6.04E − 02 4.98 E + 01 7.97 E + 01 0 1.11 E + 02 9.23 E − 12
Best − 2.95E + 03 − 3.32 − 1.57E + 03 − 1.75E + 03 8.12E + 03 − 1.42E + 03 6.89E − 16
Worst − 1.35E + 03 − 3.2 − 1.23E + 03 − 1.33E + 03 6.12E + 04 − 1.81E − 01 3.54E − 11

F21 A 1.92E − 02 − 4.98 1.56E − 06 1.82E − 05 2.55E + 03 0 − 1.54 E + 01
SD 1.25E − 02 3.27 4.40E − 06 1.59E − 06 1.38E − 12 0 1.24
Best 5.40E − 04 − 1.01E + 01 5.35E − 08 6.76E − 08 1.39E + 03 0 − 1.54E + 01
Worst 2.05E − 01 − 2.63 4.81E − 06 3.17E − 04 2.85E + 03 0 1.34E + 01

F22 A 1.59 1.04 E + 01 3.74E − 01 0 3.60E + 01 0 0
SD 1.85E − 01 0 2.04E − 01 0 0 0 0
Best 1.13E − 02 1.03 E + 01 5.19E − 07 0 2.78E + 01 0 0
Worst 3.31 1.03 E + 01 2.84E − 01 0 3.65E + 01 0 0

F23 A 7.1 2.87 E + 01 8.56E − 01 2.32 E − 01 5.66E + 01 6.76E − 58 0
SD 5.14E − 01 0 1.85E − 01 1.27 6.70E − 02 3.70E − 57 0
Best 5.25 2.85 E + 01 6.45E − 04 5.91E − 06 5.66E + 01 8.31E − 105 0
Worst 1.17E + 01 2.85 E + 01 2.65E − 01 1.67E + 01 7.12E + 03 2.95E − 51 0

1534	 S. K. Sahoo, A. K. Saha

1 3

algorithms in a range of circumstances. From Table 3, we
noticed that h-MFOBOA works better than DE, PSO, JAYA,
BOA, BSA, and MFO in 22, 22, 16, 14, 22, and 17 bench-
mark functions, respectively, similar results can be seen in 0,
0, 6, 6, 1 and 2 occasions, respectively, and worse values are
achieved in 1, 1, 2, 3, 0 and 4 benchmark functions respec-
tively. The mathematical formulation of the 23 (twenty-
three) benchmark functions with dimension, range of the
variables, and optimum value are shown in Appendix-1.

6.3 � Statistical Analysis

Friedman and Wilcoxon signed rank test are used to analyze
the performance of proposed h-MFOBOA algorithm. In this
paper, for each benchmark function Friedman test is used
from the average performance of algorithms. we use IBM-
SPSS software for finding the average rank. The outcomes
of the Friedman rank test between h-MFOBOA, DE, PSO,
JAYA, BOA, BSA and MFO for twenty-three benchmark
functions is presented in Table 4. From Tables 4, it is clearly
visible that h-MFOBOA obtain least rank among other algo-
rithms at 1% relevant.

The outcomes of Wilcoxon rank test are demonstrated
at the 5% relevant point between h-MFOBOA, DE, PSO,
JAYA, BOA, BSA and MFO for twenty-three benchmark
functions is presented in Table 5. From Table 5, all the
R + (positive rank) values higher than R − (negative) values
which demonstrate the superiority of h-MFOBOA among
other competitors.

For contrast, some of the convergence graphs of the
h-MFOBOA method with other techniques, including DE,
PSO, JAYA, BOA, BSA, and MFO, were compared on
certain benchmark functions such as Beale, Levy, Matyas,

and Power-Sum in Fig. 3. In these figures, both the func-
tion evaluation and objective function value are presented
in the horizontal and vertical axis, respectively. It can be
clear that h-MFOBOA has rapid convergence as compared
to the other methods. About search accuracy, robustness,
convergence speed, and escaping local optima, h-MFOBOA
has greater performance and competitive advantage over dif-
ferent algorithms.

6.4 � Discussion on Variants of the MFO Algorithm

In this subsection, comparison evaluation has been done in
with six MFO variants such as OMFO [74], LMFO [75],
WCMFO [35], WEMFO [76], and SMFO [77]. The simu-
lation outcomes of h-MFOBOA together with five MFO
variants for twenty-three benchmark functions including
unimodal and multimodal and fixed dimensional multimodal
benchmark functions are presented in Table 6. These bench-
mark functions are taken from Appendix-1. The parameters
of all the variants are taken same as in their original algo-
rithm. All the results are evaluated using Matlab 2015(a).
The Average (A), Standard Deviation (SD), ‘Best’ and
‘Worst’ values of h-MFOBOA with other variants of the
MFO algorithm are presented in Table 6.

From Table 6, it can be observed that, our proposed
h-MFOBOA algorithm achieved more than 82% best results
for all groups of benchmark problems as compared to the
variants of MFO algorithms but it provides more than sev-
enty percent best results when compared with WCMFO and
WEMFO algorithm. Also, the number of occasions of supe-
riority, similarity and inferiority are presented in Table 7.
From Table 7, we noticed that h-MFOBOA works better
than OMFO, LMFO, WCMFO, WEMFO and SMFO in 17,

Table 3   Performance
assessment of h-MFOBOA and
other basic algorithms on 23
benchmark functions

DE PSO JAYA​ BOA BSA MFO

Superior to 22 22 16 14 22 17
Similar to 0 0 6 6 1 2
Inferior to 1 1 2 3 0 4

Table 4   Friedman rank test of h-MFOBOA and other basic algo-
rithms on 23 benchmark functions

Algorithm Mean rank Rank

h-MFOBOA 2.15 1
BOA 3.39 2
MFO 4.24 4
DE 4.41 6
PSO 4.39 5
JAYA​ 4.15 3
BSA 5.26 7

Table 5   Wilcoxon’s test for h-MFOBOA and other basic algorithms
on 23 benchmark functions (α = 0.05)

h-MFOBOA vs.
Algorithm

p value R +  R − Winner

BOA  < 0.001 383 52 h-MFOBOA
MFO 0.001 266 14 h-MFOBOA
DE 0.008 207 28 h-MFOBOA
PSO 0.010 404 30 h-MFOBOA
JAYA​  < 0.001 399 7 h-MFOBOA
BSA  < 0.001 347 59 h-MFOBOA

1535A Hybrid Moth Flame Optimization Algorithm for Global Optimization﻿	

1 3

Table 6   Experimental results of h-MFOBOA with MFO variants on 23 benchmark functions

Sl. No OMFO LMFO WCMFO WEMFO SMFO h-MFOBOA

F1 A 1.81E − 01 5.22E − 03 2.54E − 01 1.65E − 01 1.32E − 02 0
SD 2.68E − 01 4.85E − 03 3.65E − 01 1.80E − 01 1.79E − 02 0
Best 4.56E − 03 1.04E − 04 1.41E − 13 1.42E − 03 1.47E − 03 0
Worst 9.55E − 01 1.63E − 02 7.62E − 01 6.78E − 01 5.78E − 01 0

F2 A 1.25 2.20E − 02 7.70E − 08 3.03E − 01 1.16E − 01 0
SD 1.77 2.48E − 02 5.50E − 08 3.47E − 01 1.68E − 01 0
Best 5.95E − 03 3.06E − 04 9.67E − 09 3.92E − 03 4.92E − 03 0
Worst 6.99 9.95E − 02 2.33E − 07 1.25 1.25 0

F3 A 1.10E − 93 3.29E − 08 2.70E − 22 7.04E − 198 4.23E − 14 0
SD 6.05E − 93 3.09E − 08 3.27E − 22 0 1.94E − 13 0
Best 1.57E − 209 7.62E − 10 1.52E − 24 3.91E − 264 1.91E − 26 0
Worst 3.31E − 92 1.27E − 07 1.16E − 21 2.11E − 196 2.51E − 10 0

F4 A 1.11E − 125 7.77E − 10 0 2.96E − 204 2.60E − 12 0
SD 6.11E − 125 1.52E − 09 0 0 1.43E − 11 0
Best 1.71E − 258 9.45E − 14 0 4.49E − 250 3.29E − 18 0
Worst 3.34E − 124 7.89E − 09 0 8.54E − 203 5.54E − 09 0

F5 A − 3.35E − 03 − 3.79E − 03 − 3.79E − 03 − 3.78E − 03 − 3.78E − 03 − 3.79E − 03
SD 6.97E − 04 3.39E − 07 2.75E − 10 1.33E − 05 1.43E − 05 4.26E − 17
Best − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 − 3.79E − 03 − 3.21E − 01
Worst − 1.28E − 03 − 3.78E − 03 − 3.78E − 03 − 3.73E − 03 − 3.73E − 03 − 3.21E − 01

F6 A 1.51E − 01 7.34E − 03 8.43E − 10 1.41E − 01 2.78E − 02 0
SD 2.51E − 01 9.62E − 03 1.13E − 09 1.31E − 01 3.01E − 02 0
Best 1.27E − 04 2.96E − 05 2.19E − 11 3.85E − 03 5.85E − 03 0
Worst 9.99E − 01 3.59E − 02 4.47E − 09 5.19E − 01 4.19E − 01 0

Sl. No OMFO LMFO WCMFO WEMFO SMFO h-MFOBOA

F7 A 6.95E − 110 3.09E − 07 6.74E − 20 1.61E − 206 2.80E − 11 0
SD 3.81E − 109 2.38E − 07 1.09E − 19 0 1.21E − 10 0
Best 1.18E − 246 1.52E − 08 7.27E − 22 1.76E − 248 3.76E − 16 0
Worst 2.08E − 108 8.33E − 07 5.87E − 19 4.71E − 205 4.51E − 09 0

F8 A 0 4.8513E − 06 0 0 2.89E − 09 0
SD 0 5.31E − 06 0 0 1.43E − 08 0
Best 0 2.06E − 08 0 0 2.06E − 08 0
Worst 0 2.07E − 05 0 0 2.07E − 05 0

F9 A 0 1.59E − 06 6.75E − 15 0 5.00E − 13 0
SD 0 1.96E − 06 3.41E − 15 0 1.59E − 12 0
Best 0 4.95E − 08 1.88E − 15 0 1.45E − 25 0
Worst 0 9.56E − 06 1.66E − 14 0 5.16E − 07 0

F10 A 7.19E − 02 6.59E − 04 9.04E − 12 8.77E − 03 3.44E − 03 0
SD 1.10E − 01 9.23E − 04 1.35E − 11 1.15E − 02 5.47E − 03 0
Best 4.48E − 04 1.54E − 05 5.69E − 14 1.45E − 05 8.45E − 05 0
Worst 4.13E − 01 3.61E − 03 5.30E − 11 5.16E − 02 3.16E − 02 0

F11 A − 1.12E − 10 − 1.12E − 10 − 1.12E − 10 − 1.12E − 10 − 1.13E − 10 − 1.13E − 10
1.28E − 25

SD 6.89E − 15 1.82E − 14 1.05E − 19 4.08E − 14 5.92E − 13 − 1.10E − 10
Best − 1.12E − 10 − 1.12E − 10 − 1.12E − 10 − 1.12E − 10 − 1 0.12E − 10 − 1.08E − 10
Worst − 1.11E − 10 − 1.11E − 10 − 1.10E − 10 − 1.11E − 10 − 1.11E − 10

F12 A 4.99E − 02 2.92E − 02 6.48E − 02 5.51E − 02 3.44E − 10 1.86 E − 02
SD 2.73E − 02 2.68E − 02 3.00E − 02 3.02E − 01 1.31E − 09 2.06 E − 02
Best 1.63E − 06 1.11E − 05 2.24E − 06 3.18E − 02 4.18E − 14 7.31E − 06
Worst 1.49E − 01 9.63E − 02 1.62E − 01 1.65E − 01 2.65E − 05 3.54E − 01

1536	 S. K. Sahoo, A. K. Saha

1 3

19, 17, 17, and 17 benchmark functions, respectively, similar
results can be seen in 2, 0, 2, 2 and 2 occasions, respectively,
and worse values are achieved in 4, 4, 4, 4 and 4 benchmark
functions respectively.

Friedman and Wilcoxon signed rank test are used to ana-
lyze the performance of proposed h-MFOBOA algorithm.
In this paper, for each benchmark function Friedman test is
used from the average performance of algorithms. The IBM-
SPSS software has been used for finding the average rank.

Table 6   (continued)

Sl. No OMFO LMFO WCMFO WEMFO SMFO h-MFOBOA

F13 A 6.73E − 30 2.50E − 01 1.27E − 05 1.45E − 52 1.39E − 02 − 3.62

SD 3.62E − 29 7.50E − 02 6.17E − 06 3.22E − 52 5.50E − 02 1.05 E − 01

Best 1.56E − 66 1.06E − 01 4.24E − 06 7.00E − 67 5.00E − 07 − 3.62

Worst 1.98E − 28 4.00E − 01 2.42E − 05 9.91E − 52 8.91E − 01 − 3.62
F14 A 1.05E − 01 1.11E − 01 1.06 1.27E − 01 4.72E − 01 − 5.11E − 03

SD 6.72E − 02 1.08E − 01 1.06 8.83E − 02 3.72E − 01 0
Best 1.11E − 02 6.13E − 03 1.13E − 01 1.03E − 02 3.03E − 05 − 5.11E − 03
Worst 2.83E − 01 5.54E − 01 4.62 3.30E − 01 1.30E − 01 − 5.11E − 03

F15 A 7.15E − 51 9.97E − 02 1.58 7.89E − 103 3.97E − 05 − 3.04
SD 3.91E − 50 2.96E − 04 2.22E − 01 3.58E − 102 2.12E − 04 6.88 E − 12
Best 2.35E − 123 9.86E − 02 1.19 1.65E − 139 5.65E − 08 − 3.78
Worst 2.14E − 49 9.98E − 02 2.09 1.93E − 101 2.93E − 02 − 3.78

F16 A 8.80E − 03 4.17E − 04 1.67E − 03 2.25E − 03 1.18E − 03 0
SD 9.91E − 03 7.50E − 05 4.79E − 03 1.40E − 03 6.61E − 04 0
Best 6.23E − 04 3.21E − 04 3.07E − 04 4.06E − 04 3.06E − 07 0
Worst 3.55E − 02 6.19E − 04 2.03E − 02 5.17E − 03 2.17E − 02 0

F17 A 7.1 4.39 5.68 4.55 1.87 0
SD 4.01 3.09 5.02 2.65 8.92E − 01 0
Best 1.99 9.98E − 01 9.98E − 01 9.98E − 01 4.98E − 02 0
Worst 1.26E + 01 1.18E + 01 1.64E + 01 1.01E + 01 2.01E + 01 0

F18 A 1.51E + 01 3.02 1.11E + 01 3.56 3.83 − 2.92
SD 1.94E + 01 3.62E − 02 1.75E + 01 8.54E − 01 2.48 5.30 E − 02
Best 3 3 3 3 3 − 2.92E − 01
Worst 9.27E + 01 3.16 8.40E + 01 6.57 5.57 − 2.92E − 01

F19 A − 2.35E − 01 − 2.34E − 01 − 3.00E − 01 − 2.47E − 01 − 2.98 − 1.65 E + 03
SD 2.25E − 02 1.76E − 02 2.25E − 16 1.98E − 02 4.61E − 01 1.53 E + 02
Best − 2.72E − 01 − 2.67E − 01 − 3.00E − 01 − 2.75E − 01 − 2.75E − 01 − 1.87E + 03
Worst − 1.89E − 01 − 1.86E − 01 − 3.00E − 01 − 2.01E − 01 − 2.01E − 01 1.64E + 01

F20 A − 3.06 − 3.06 − 3.27 − 3.07 − 3.02 3.49 E − 12
SD 6.16E − 02 8.09E − 02 5.92E − 02 6.68E − 02 8.66E − 02 9.23 E − 12
Best − 3.22 − 3.22 − 3.32 − 3.22 − 3.22 6.89E − 16
Worst − 2.95 − 2.91 − 3.2 − 2.95 − 2.99 3.54E − 11

F21 A − 4.82 − 4.77 − 6.3 − 4.97 − 4.27 − 1.54 E + 01 
SD 9.99E − 01 8.95E − 01 3.33 8.54E − 01 1.03 1.24
Best − 7.42 − 8.02 − 1.01E + 01 − 8.18 − 8.59 − 1.54E + 01
Worst − 3.34 − 3.3 − 2.63 − 3.93 − 3.63 1.34E + 01

F22 A − 5.15 − 4.84 − 5.77 − 5.37 − 4.14 0
SD 1.47 8.41E − 01 3.4 1.1 8.62E − 01 0
Best − 9.17 − 7.76 − 1.04E + 01 − 8.73 − 7.78 0
Worst − 3.78 − 3.68 − 1.83 − 4.3 − 3.39 0

F23 A − 5.06 − 4.84 − 4.5 − 5.56 − 4.34 0
SD 1.18 8.98E − 01 2.89 1.23 1.08 0
Best − 8.23 − 7.34 − 1.05E + 01 − 9.28 − 8.38 0
Worst − 3.36 − 3.64 − 1.85 − 4.23 − 3.53 0

1537A Hybrid Moth Flame Optimization Algorithm for Global Optimization﻿	

1 3

The outcomes of the Friedman rank test between h-MFO-
BOA, OMFO, LMFO, WCMFO, WEMFO and SMFO for
benchmark functions is presented in Table 8. From Table 8,
it is clearly visible that h-MFOBOA obtains least rank
among other algorithms at 1% relevant.

In Table 9, the outcome of Wilcoxon rank test is dem-
onstrated at the 5% relevant point between h-MFOBOA,
OMFO, LMFO, WCMFO, WEMFO and SMFO for twenty-
three benchmark functions in Table 9. From Table 9, all the
R + (positive rank) values higher than R − (negative) values
which demonstrate the superiority of h-FOBOA among other
competitors. Moreover, to examine the convergence speed of
the proposed algorithm, convergence graphs of some of the
randomly chosen functions have been presented in Fig. 6,
which clearly indicate that the suggested h-MFOBOA has a
superior convergence speed than the compared algorithms.

7 � Real‑World Applications

To assess the efficiency of the h-MFOBOA proposed, two
Real-World Problems (RWP) were resolved, such as optimal
gas production capacity problem and three-bar truss design
problem.

7.1 � RWP‑1: Optimal Capacity of Gas Production
Facilities

This challenging problem has been adapted from [69] and
is presented in Appendix-2 with its Mathematical repre-
sentation. These results are presented in Table 10. In this
table, the results of DE, GSA and DE-GSA, BOA are taken
from [78] and few variants of the MFO algorithm namely
WEMFO, LMFO and OMFO. It has been noted that our
approach is more efficient than the other methods.

7.2 � RWP‑2: Three‑bar Truss Design Problem

The above problem is popular in civil engineering field. It
is used due to its complex constrained search space [79,
80]. To achieve minimum weight, two parameters of this
design problem have been manipulated with respect to the
constraints namely buckling, stress and deflection. The
mathematical formulation and various components of the
three-bar truss design problem are presented in Appendix 3
and Fig. 7 respectively.

Our developed h-MFOBOA method is used to evaluate
this design problem and it is compared with existing algo-
rithms in the literature [11], including DEDS, MBA, Tsa,
PSO-DE, and CS with few variants of the MFO algorithm
such as WEMFO, LMFO and OMFO. Table 11 paraphrases
the text by summarising the comparison results. Our sug-
gested h-MFOBOA method outperforms the other three
algorithms, as shown in Table 11.

8 � Conclusion with Future Direction

To improve the MFO algorithm, the hybrid moth flame
optimization (h-MFOBOA) makes use of exploration and
exploitation phases. Comparative tests are conducted on
several benchmark functions to judge the performance of
h-MFOBOA in comparison to the DE, PSO, JAYA, BOA,
BSA, and MFO. In addition, this approach has been used
to solve engineering problems for validating the proposed
h-MFOBOA, which provides superior results to alternative
algorithms. According to the simulation results, the pro-
posed algorithm utilizes the global optimum solution, which
helps it reach a solution quickly. The algorithm's position

Table 7   Performance assessment of h-MFOBOA and MFO variants
on 23 benchmark functions

OMFO LMFO WCMFO WEMFO SMFO

Superior to 17 19 17 17 22
Similar to 2 0 2 2 2
Inferior to 4 4 4 4 0

Table 8   Friedman rank test of h-MFOBOA and MFO variants on 23
benchmark functions

The boldface represents the best value

Algorithm Mean rank Rank

h-MFOBOA 2.48 1
OMFO 4.22 5
LMFO 4.13 4
WCMFO 3.70 3
WEMFO 3.24 2
SMFO 3.24 2

Table 9   Wilcoxon’s test for h-MFOBOA and MFO variants on 23
benchmark functions (α = 0.05)

h-MFOBOA vs.
Algorithm

p value R +  R- Winner

OMFO 0.322 144 87 h-MFOBOA
LMFO 0.301 172 104 h-MFOBOA
WCMFO 0.375 141 90 h-MFOBOA
WEMFO 0.455 137 94 h-MFOBOA
SMFO 0.455 137 94 h-MFOBOA

1538	 S. K. Sahoo, A. K. Saha

1 3

Fig. 6   Convergence graph of h-MFOBOA with MFO, DE, PSO, JAYA, BSA and BOA for (a) Beale function, (b) Levy function, (c) Matyas
function and (d) Power-sum function

Table 10   Experimental results of h-MFOBOA and some other algo-
rithms on optimal capacity of gas production facilities problem

The boldface represents the best value

Algorithm Optimal variables Optimal weight

x1 x2

h-MFOBOA 17.5 600 71.4459
DE 17.5 600 169.844
GSA 17.5 600 169.844
DE-GSA 17.5 600 169.844
MFO 17.5 600 71.4495
BOA 17.5 572.98 71.8010
WEMFO 17.5 598.89 71.4463
LMFO 17.5 597.38 71.4492
OMFO 17.5 599.62 71.4535

Fig. 7   Three-bar truss design problem

1539A Hybrid Moth Flame Optimization Algorithm for Global Optimization﻿	

1 3

update phase prevents it from being trapped in local optima
and stopping before finding a true solution. Then, the pro-
posed method is considered to be a useful way to solve both
real-world and engineering design optimization problems.

In future studies, the proposed algorithm may be extended
to a more efficient algorithm by adding different learning
strategies (for example, opposition based learning, quasi
opposition based learning, dynamic opposite learning tech-
nique), using non-linear parameter adaption, parameter

tuning, etc. It may also be applied to a range of actual opti-
mization problems including vehicle routing, job shop plan-
ning, parameter estimation of fuel cell problem, combined
economic and emission dispatch problem, image segmenta-
tion problem, workflow planning, etc. Moreover, the sug-
gested algorithm may be extended to multi-objective envi-
ronment to check its capability to explore its possibility to
solve multi-objective problems.

Table 11   Experimental results
of h-MFOBOA and some other
algorithms on three-bar truss
design problem

The boldface represents the best value

Algorithm Optimal variables Optimal weight

x1 x2

h-MFOBOA 0.408966 0.288146 174.2762166
Tsa 0.788 0.408 263.68
DEDS 0.78867513 0.40824828 263.8958434
PSO-DE 0.7886751 0.4082482 263.8958433
MBA 0.7885650 0.4085597 263.8958522
MFO 0.7882447709319 0.7882447709319 263.8959796
CS 0.78867 0.40902 263.9716
WEMFO 0.399262577 0.3096396 174.2762410
LMFO 0.401404829 0.30649271 174.2785337
OMFO 0.399478073 0.31071487 174.2769516

Appendix 1

Formulation of twenty-three benchmark functions.

Sl.
No.

Functions Formulation of objective functions d Fmin Search
space

Unimodal Benchmark Functions
F1 Beale f(x) =

(
1.5 − x1 + x1x2

)2
+
(
2.25 − x1 + x1x

2

2

)2
+
(
2.625 − x1 + x1x

3

2

)2 2 0 [-100, 100]

F2 Booth f(x) =
(
2x1 + x2 − 5

)2
+
(
x1 + 2x2 − 7

)2 2 0 [-10, 10]

F3 Matyas f(x) = 0.26
(
x1

2 + x2
2
)
− 0.48x1x2 2 0 [-10, 10]

F4 SUMSQUARE f (x) =
∑D

i=1
xi
2 × i 30 0 [-10, 10]

F5 Zettl f(x) =
(
x − 12 + x − 22 − 2x1

)2
+ 0.25x1

2 -0.00379 [-1, 5]

F6 Leon f(x) = 100
(
x2 − x1

3
)2

+
(
1 − x1

)2 2 0 [-1.2, 1.2]

F7 Zakhrov
f(x) =

∑d

j=1
xi

2 +

�
0.5

∑d

j=1
jxj

�2

+

�
0.5

∑d

j=1
jxj

�4 2 0 [-5, 10]

Multimodal Benchmark Functions
F8 Bohachevsky f(x) = x1

2 + 2x2
2 − 0.3cos

(
3πx1

)
− 0.3 2 0 [-100, 100]

F9 Bohachevsky 3 f(x) = x1
2 + 2x2

2 − 0.3cos
(
3πx1

)
− 0.3 2 0 [-50, 50]

F10 Levy f (x) = sin2
�
�x1

�
+
∑D−1

i=1

�
xi − 1

�2�
1 + 10sin2

�
�xi + 1

��
+
�
xD − 1

�2�
1 + sin2

�
2�xD

��
Where, xi = 1 +

1

4
(xi − 1), i = 1, 2,………D

30 0 [-10, 10]

F11 Michalewicz f (x) = −
∑D

i=1
sin(xi)sin

2m(
ixi

2

�
) , m = 10 10 -9.66015 [0, �]

F12 Alpine f (x) =
∑D

i=1
��xisin(xi) + 0.1xi

�� 30 0 [-10, 10]

F13 Schaffers
f (x) = 0.5 +

sin2(x12+x22)−0.5

[1+0.001(x12+x22)]
2

2 0 [-100, 100]

1540	 S. K. Sahoo, A. K. Saha

1 3

Sl.
No.

Functions Formulation of objective functions d Fmin Search
space

F14 Powersum
f (x) =

∑D

i=1

��∑D

k=1
(xk

i) − bi

�2
�

F15 Penalized2
f (x) = 0.1

�
10sin

2
�
�x

i

�
+
∑

D−1

i=1

�
x
i
− 1

�2

[1 + 10sin
2
�
3�x

i+1

�
+
�
x
D
− 1

�2
[1 + sin

2
�
2�x

D

�
]]

�
+
∑

D

i=1
u

�
x
i
, 5, 100, 4

�
0 [-50, 50]

F16 Kowalik
f(x) =

∑11

j=1

�
aj −

x1(bj
2+bjx2)

(bj
2−bjx3−x4

�2 4 0.0003075 [-5, 5]

F17 Foxholes
f(x) =

�
1

500
+
∑25

j=1

1

j
+
∑D

i=1

�
xi − aij

�6�−1 2 3 [-65, 65]

Fixed dimension Multimodal Benchmark functions
F18 Goldstein and

Price
f (x) =

[
1 +

(
1 + x1 + x2

)2(
10 − 14x1 − 14x2 + 6x1x2 + 3x1

2 + 3x2
2
)]

×
[
30 +

(
2x1 − 3x2

2
)(
18 − 32x1 + 12x1

2 + 48x2 − 36x1x2 + 27x2
2
)]

2 3 [-2, 2]

F19 Hartmann3
f (x) = −

∑4

i=1
�iexp(−

∑3

j=1
aij

�
xj−bij

�2

)
3 -3.86 [0, 1]

F20 Hartmann6
f (x) = −

∑4

i=1
�iexp(−

∑6

j=1
aij

�
xj−bij

�2

)
6 -3.32 [0, 1]

F21 Shekel 5
f(x) = −

∑5

j=1

��
x − ai

��
x − ai

�T
+ cj

�−1 4 -10.1499 [0, 10]

F22 Shekel-7
f(x) = −

∑7

j=1

��
x − ai

��
x − ai

�T
+ cj

�−1 4 -10.3999 [0, 10]

F23 Shekel-10
f(x) = −

∑10

j=1

��
x − ai

��
x − ai

�T
+ cj

�−1 4 -10.5319 [0, 10]

Appendix 2

Optimal Capacity of Gas Production Facilities

Appendix 3

Three-bar truss problem

Objective function:

Subject to:

Minf(x) =61.8 + 5.72 × x1

× 0.2623 ×

[(
40 − x1

)
× ln

x2

200

]−0.85

+ 0.087 ×
(
40 − x1

)
× ln

x2

200

+ 700.23 × x−0.75
2

x1 ≥ 17.5, x2 ≥ 200, 17.5 ≤ x1 ≤ 40, 300 ≤ x2 ≤ 600;

�⃗k =
{
k1, k2,

}

Min.f (k) = L
�
k2 + 2

√
2k1

�

Data Availability  All data generated or analysed during this study are
included in the article.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Ethical Approval  No human or animal studies were conducted by any
of the authors.

h1(k) =
k2

2k2k1 +
√
2k2

1

P − � ≤ 0,

h2(k) =
k2 +

√
2k1

2k2k1 +
√
2k2

1

P − � ≤ 0,

h3(k) =
1

k1 +
√
2k2

P − � ≤ 0,Whre0 ≤ k1, k2 ≤ 1, and

andP = 2, L = 100&� = 2

1541A Hybrid Moth Flame Optimization Algorithm for Global Optimization﻿	

1 3

References

	 1.	 Holland, J. H. (1992). Genetic algorithms. Scientific American,
267, 66–73.

	 2.	 Storn, R., & Price, K. (1997). Differential evolution–a simple and
efficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization, 11, 341–359.

	 3.	 Simon, D. (2008). Biogeography-based optimization. IEEE Trans-
actions on Evolutionary Computation, 12, 702–713.

	 4.	 Askarzadeh, A. (2014). Bird mating optimizer: An optimization
algorithm inspired by bird mating strategies. Communications in
Nonlinear Science and Numerical Simulation, 19, 1213–1228.

	 5.	 Kennedy, J., Eberhart, R. Particle swarm optimization. In: Pro-
ceedings of ICNN’95—International conference on neural net-
works, Perth, Australia, 1995, 1942–1948.

	 6.	 Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H.,
& Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired
optimizer for engineering design problems. Advances in Engineer-
ing Software, 114, 163–191.

	 7.	 Mirjalili, S., & Lewis, A. (2016). The whale optimization algo-
rithm. Advances in Engineering Software, 95, 51–67.

	 8.	 Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search:
A new metaheuristic optimization algorithm. Computers & Struc-
tures, 139, 98–112.

	 9.	 Arora, S., Singh, S. (2015). Butterfly algorithm with levy flights
for global optimization. In International Conference on Signal
Processing, Computing and Control (ISPCC), Waknaghat, India,
pp. 220–224.

	10.	 Wang, G. G., Deb, S., & Cui, Z. H. (2019). Monarch butterfly opti-
mization. Neural Computing and Applications, 31, 1995–2014.

	11.	 Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel
nature-inspired heuristic paradigm. Knowledge-Based Systems,
89, 228–249.

	12.	 Civicioglu, P. (2013). Backtracking search optimization algorithm
for numerical optimization problems. Applied Mathematics and
Computation, 219, 8121–8144.

	13.	 Rao, R. (2016). Jaya: A simple and new optimization algorithm
for solving constrained and unconstrained optimization problems.
International Journal of Industrial Engineering Computations, 7,
19–34.

	14.	 Li, S. M., Chen, H. L., Wang, M. J., Heidari, A. A., & Mirjalili, S.
(2020). Slime mould algorithm: A new method for stochastic opti-
mization. Future Generation Computer Systems, 111, 300–323.

	15.	 Wang, G. G. (2018). Moth search algorithm: A bio-inspired
metaheuristic algorithm for global optimization problems.
Memetic Computing, 10, 151–164.

	16.	 Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., &
Chen, H. L. (2019). Harris hawks optimization: Algorithm and
applications. Future Generation Computer Systems, 97, 849–872.

	17.	 Yang, Y. T., Chen, H. L., Heidari, A. A., & Gandomi, A. H.
(2021). Hunger games search: Visions, conception, implementa-
tion, deep analysis, perspectives, and towards performance shifts.
Expert Systems with Applications, 177, 114864.

	18.	 Tu, J., Chen, H. L., Wang, M. J., & Gandomi, A. H. (2021). The
colony predation algorithm. Journal of Bionic Engineering, 18,
674–710.

	19.	 Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse
optimizer: A nature-inspired algorithm for global optimization.
Neural Computing and Applications, 27, 495–513.

	20.	 Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA:
A gravitational search algorithm. Information Sciences, 179,
2232–2248.

	21.	 Lam, A. Y., & Li, V. O. (2009). Chemical-reaction-inspired
metaheuristic for optimization. IEEE Transactions on Evolution-
ary Computation, 14, 381–399.

	22.	 Zhao, W. G., Wang, L. Y., & Zhang, Z. X. (2019). Atom search
optimization and its application to solve a hydrogeologic parame-
ter estimation problem. Knowledge-Based Systems, 163, 283–304.

	23.	 Zou, F., Wang, L., Hei, X. H., & Chen, D. B. (2015). Teach-
ing–learning-based optimization with learning experience of other
learners and its application. Applied Soft Computing, 37, 725–736.

	24.	 Li, M. D., Zhao, H., Weng, X. W., & Han, T. (2016). Cognitive
behaviour optimization algorithm for solving optimization prob-
lems. Applied Soft Computing, 39, 199–222.

	25.	 Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving
optimization problems. Knowledge-Based Systems, 96, 120–133.

	26.	 Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X. F., &
Chen, H. L. (2021). RUN beyond the metaphor: An efficient opti-
mization algorithm based on runge-kutta method. Expert Systems
with Applications, 181, 115079.

	27.	 Ahmadianfar, I., Heidari, A. A., Noshadian, S., Chen, H. L., &
Gandomi, A. H. (2022). INFO: An efficient optimization algo-
rithm based on weighted mean of vectors. Expert Systems with
Applications, 195, 116516.

	28.	 Singh, P., & Prakash, S. (2019). Optical network unit placement
in fiber-wireless (FiWi) access network by whale optimization
algorithm. Optical Fiber Technology, 52, 101965.

	29.	 Mohanty, B. (2019). Performance analysis of moth flame optimi-
zation algorithm for AGC system. International Journal of Model-
ling and Simulation, 39, 73–87.

	30.	 Khairuzzaman, A. K. M., & Chaudhury, S. (2020). Modified
moth-flame optimization algorithm-based multilevel minimum
cross entropy thresholding for image segmentation. International
Journal of Swarm Intelligence Research, 11, 123–139.

	31.	 Gupta, D., Ahlawat, A. K., Sharma, A., & Rodrigues, J. J. P. C.
(2020). Feature selection and evaluation for software usability
model using modified moth-flame optimization. Computing, 102,
1503–1520.

	32.	 Muduli, D., Dash, R., & Majhi, B. (2020). Automated breast can-
cer detection in digital mammograms: A moth flame optimization-
based ELM approach. Biomedical Signal Processing and Control,
59, 101912.

	33.	 Kadry, S., Rajinikanth, V., Raja, N. S. M., Hemanth, D. J., Han-
non, N. M., & Raj, A. N. J. (2021). Evaluation of brain tumor
using brain MRI with modified-moth-flame algorithm and Kapur’s
thresholding: A study. Evolutionary Intelligence, 14, 1053–1063.

	34.	 Suja, K. R. (2021). Mitigation of power quality issues in smart
grid using levy flight-based moth flame optimization algorithm.
Journal of Ambient Intelligence and Humanized Computing, 12,
9209–9228.

	35.	 Khalilpourazari, S., & Khalilpourazary, S. (2019). An efficient
hybrid algorithm based on water cycle and moth-flame optimiza-
tion algorithms for solving numerical and constrained engineering
optimization problems. Soft Computing, 23, 1699–1722.

	36.	 Hongwei, L., Jianyong, L., Liang, C., Jingbo, B., Yangyang, S., &
Kai, L. (2019). Chaos-enhanced moth-flame optimization algo-
rithm for global optimization. Journal of Systems Engineering and
Electronics, 30, 1144–1159.

	37.	 Xu, Y. T., Chen, H. L., Luo, J., Zhang, Q., Jiao, S., & Zhang, X.
Q. (2019). Enhanced moth-flame optimizer with mutation strategy
for global optimization. Information Sciences, 492, 181–203.

	38.	 Xu, Y. T., Chen, H. L., Heidari, A. A., Luo, J., Zhang, Q., Zhao, X.
H., & Li, C. Y. (2019). An efficient chaotic mutative moth-flame-
inspired optimizer for global optimization tasks. Expert Systems
with Applications, 129, 135–155.

	39.	 Kaur, K., Singh, U., & Salgotra, R. (2020). An enhanced moth
flame optimization. Neural Computing and Applications, 32,
2315–2349.

	40.	 Tumar, I., Hassouneh, Y., Turabieh, H., & Thaher, T. (2020).
Enhanced binary moth flame optimization as a feature selection

1542	 S. K. Sahoo, A. K. Saha

1 3

algorithm to predict software fault prediction. IEEE Access, 8,
8041–8055.

	41.	 Gu, W., Xiang, G. Improved moth flame optimization with multi
operator for solving real-world optimization problems. 2021 IEEE
5th Advanced Information Technology, Electronic and Automa-
tion Control Conference (IAEAC), Chongqing, China, 2021,
2459–2462

	42.	 Ma, L., Wang, C., Xie, N. G., Shi, M., Ye, Y., & Wang, L. (2021).
Moth-flame optimization algorithm based on diversity and muta-
tion strategy. Applied Intelligence, 51, 5836–5872.

	43.	 Shehab, M., Alshawabkah, H., Abualigah, L., & AL-Madi, N.
(2020). Enhanced a hybrid moth-flame optimization algorithm
using new selection schemes. Engineering with Computers, 37,
2931–2956.

	44.	 Wu, Y., Chen, R. L., Li, C. Q., Zhang, L. G., & Cui, Z. L. (2020).
Hybrid symbiotic differential evolution moth-flame optimization
algorithm for estimating parameters of photovoltaic models. IEEE
Access, 8, 156328–156346.

	45.	 Bhesdadiya, R. H., Trivedi, I. N., Jangir, P., Kumar, A., Jangir,
N., & Totlani, R. (2017). A novel hybrid approach particle swarm
optimizer with moth-flame optimizer algorithm. Advances in com-
puter and computational sciences, 553, 569–577.

	46.	 Kamalapathi, K., Priyadarshi, N., Padmanaban, S., Holm-Nielsen,
J. B., Azam, F., Umayal, C., & Ramachandara Murthy, V. K.
(2018). A hybrid moth-flame fuzzy logic controller based inte-
grated cuk converter fed brushless DC motor for power factor
correction. Electronics, 7, 288.

	47.	 Sarma, A., Bhutani, A., Goel, L. Hybridization of moth flame
optimization and gravitational search algorithm and its applica-
tion to detection of food quality. Intelligent Systems Conference
(IntelliSys), London, UK, 2017, 52–60.

	48.	 Sahoo, S. K., Saha, A. K., Sharma, S., Mirjalili, S., &
Chakraborty, S. (2022). An enhanced moth flame optimization
with mutualism scheme for function optimization. Soft Comput-
ing, 26, 2855–2882.

	49.	 Arora, S., & Singh, S. (2016). An improved butterfly optimization
algorithm for global optimization. Advanced Science, Engineering
and Medicine, 8, 711–717.

	50.	 Sharma, T. K. (2021). Enhanced butterfly optimization algorithm
for reliability optimization problems. Journal of Ambient Intel-
ligence and Humanized Computing, 12, 7595–7619.

	51.	 Guo, Y. J., Liu, X. J., & Chen, L. (2021). Improved butterfly
optimization algorithm based on guiding weight and population
restart. Journal of Experimental & Theoretical Artificial Intel-
ligence, 33, 127–145.

	52.	 Dhanya, K. M., & Kanmani, M. (2019). Mutated butterfly opti-
mization algorithm. International Journal of Engineering and
Advanced Technology, 8, 375–381.

	53.	 Li, Y., Yu, X. M., & Liu, J. S. (2022). Enhanced butterfly optimi-
zation algorithm for large-scale optimization problems. Journal
of Bionic Engineering, 19, 554–570.

	54.	 Bahgat, G. A., Fawzy, A. A., Emara, H. M. (2020). An unbiased
butterfly optimization algorithm. In L. Pan, J. Liang, & B. Qu
(Eds.), Bio-inspired computing: theories and applications. BICTA
2019. Communications in computer and information science,
Springer.

	55.	 Lohar, G., Sharma, S., Saha, A. K., Ghosh, S. Optimization
of geotechnical parameters used in slope stability analysis by
metaheuristic algorithms. Applications of Internet of Things,
2021, 223–231.

	56.	 Arora, S., & Singh, S. (2017). An effective hybrid butterfly opti-
mization algorithm with artificial bee colony for numerical opti-
mization. International Journal of Interactive Multimedia and
Artificial Intelligence, 4, 14–21.

	57.	 Arora, S., & Anand, P. (2019). Binary butterfly optimization
approaches for feature selection. Expert Systems with Applica-
tions, 116, 147–160.

	58.	 Sharma, S., Saha, A. K., Majumder, A., & Nama, S. (2021).
MPBOA-A novel hybrid butterfly optimization algorithm
with symbiosis organisms search for global optimization and
image segmentation. Multimedia Tools and Applications, 80,
12035–12076.

	59.	 Sharma, S., Saha, A. K., & Lohar, G. (2021). Optimization
of weight and cost of cantilever retaining wall by a hybrid
metaheuristic algorithm. Engineering with Computers. https://​
doi.​org/​10.​1007/​s00366-​021-​01294-x

	60.	 Sharma, S., Saha, A. K. (2021) Bosca—A hybrid butterfly optimi-
zation algorithm modified with sine cosine algorithm. In Progress
in Advanced Computing and Intelligent Engineering (Vol. 1198).
Singapore: Springer, pp. 360–372.

	61.	 Sharma, S., & Saha, A. K. (2020). m-MBOA: A novel butterfly
optimization algorithm enhanced with mutualism scheme. Soft
Computing, 24, 4809–4827.

	62.	 Liu, G. M., Jia, W. Y., Luo, Y. G., Wang, M. J., Heidari, A. A.,
Ouyang, J. S., Chen, H. L., & Chen, M. Y. (2020). Prediction
optimization of cervical hyperextension injury: Kernel extreme
learning machines with orthogonal learning butterfly optimizer
and broyden- fletcher-goldfarb-shanno algorithms. IEEE Access,
8, 119911–119930.

	63.	 Yu, H. L., Yuan, K., Li, W. S., Zhao, N. N., Chen, W. B., Huang,
C. C., Chen, H. L., & Wang, M. J. (2021). Improved butterfly
optimizer-configured extreme learning machine for fault diagno-
sis. Complexity, 2021, 1–17.

	64.	 Saka, M., Çoban, M., Eke, İ, Tezcan, S. S., & Taplamacioğlu, M.
C. (2021). A novel hybrid global optimization algorithm having
training strategy: Hybrid taguchi-vortex search algorithm. Turk-
ish Journal of Electrical Engineering & Computer Sciences, 29,
1908–1928.

	65.	 Chakraborty, S., Sharma, S., Saha, A. K., & Chakraborty, S.
(2021). SHADE-WOA: A metaheuristic algorithm for global
optimization. Applied Soft Computing. https://​doi.​org/​10.​1016/j.​
asoc.​2021.​107866

	66.	 Singh, N., & Singh, S. B. (2017). Hybrid algorithm of particle
swarm optimization and grey wolf optimizer for improving con-
vergence performance. Journal of Applied Mathematics, 2017,
1–15.

	67.	 Wang, Z. W., Wu, G. M., & Wan, Z. P. (2017). A novel hybrid
vortex search and artificial bee colony algorithm for numerical
optimization problems. Wuhan University Journal of Natural Sci-
ences, 22, 295–306.

	68.	 Nama, S., & Saha, A. K. (2019). A novel hybrid backtracking
search optimization algorithm for continuous function optimiza-
tion. Decision Science Letters, 8, 163–174.

	69.	 Yıldız, A. R. (2008). Hybrid Taguchi-harmony search algorithm
for solving engineering optimization problems. International
Journal of Industrial Engineering, 15, 286–293.

	70.	 Nama, S., Saha, A. K., & Ghosh, S. (2017). A hybrid symbiosis
organisms search algorithm and its application to real world prob-
lems. Memetic Computing, 9, 261–280.

	71.	 Chakraborty, S., Saha, A. K., Chakraborty, R., Saha, M., & Nama,
S. (2022). HSWOA: An ensemble of hunger games search and
whale optimization algorithm for global optimization. Interna-
tional Journal of Intelligent Systems, 37, 52–104.

	72.	 Sharma, S., Chakraborty, S., Saha, A. K., Nama, S., & Sahoo, S.
K. (2022). mLBOA: A modified butterfly optimization algorithm
with lagrange interpolation for global optimization. Journal of
Bionic Engineering. https://​doi.​org/​10.​1007/​s42235-​022-​00175-3

	73.	 Li, C. Q., Niu, Z., Song, Z. S., Li, B. X., Fan, J. G., & Liu, P. X.
(2018). A double evolutionary learning moth-flame optimization

https://doi.org/10.1007/s00366-021-01294-x
https://doi.org/10.1007/s00366-021-01294-x
https://doi.org/10.1016/j.asoc.2021.107866
https://doi.org/10.1016/j.asoc.2021.107866
https://doi.org/10.1007/s42235-022-00175-3

1543A Hybrid Moth Flame Optimization Algorithm for Global Optimization﻿	

1 3

for real-parameter global optimization problems. IEEE Access, 6,
76700–76727.

	74.	 Apinantanakon, W., Sunat, K. OMFO: a new opposition-based
moth-flame optimization algorithm for solving unconstrained opti-
mization problems. In International Conference on Computing
and Information Technology (IC2IT) Springer, Cham 22–31.

	75.	 Li, Z. M., Zhou, Y. Q., Zhang, S., & Song, J. M. (2016). Levy-
flight moth-flame algorithm for function optimization and engi-
neering design problems. Mathematical Problems in Engineering,
2016, 1–22.

	76.	 Shan, W. F., Qiao, Z. G., Heidari, A. A., Chen, H. L., Turabieh, H.,
& Teng, Y. T. (2021). Double adaptive weights for stabilization of
moth flame optimizer: Balance analysis, engineering cases, and
medical diagnosis. Knowledge-Based Systems, 214, 106728.

	77.	 Chen, C. C., Wang, X. C., Yu, H. L., Wang, M. J., & Chen, H.
L. (2021). Dealing with multi-modality using synthesis of Moth-
flame optimizer with sine cosine mechanisms. Mathematics and
Computers in Simulation, 188, 291–318.

	78.	 Muangkote, N., Sunat, K., Chiewchanwattana, S. (2016). Mul-
tilevel thresholding for satellite image segmentation with moth-
flame based optimization. In 2016 13th International Joint Con-
ference on Computer Science and Software Engineering (JCSSE),
KhonKaen, Thailand, pp. 1–6.

	79.	 Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M.
(2013). Mine blast algorithm: A new population-based algorithm
for solving constrained engineering optimization problems.
Applied Soft Computing, 13, 2592–2612.

	80.	 Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo
search algorithm: A metaheuristic approach to solve structural
optimization problems. Engineering with Computers, 29, 17–35.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	A Hybrid Moth Flame Optimization Algorithm for Global Optimization
	Abstract
	1 Introduction
	2 Classical MFO Algorithm
	2.1 Inspiration
	2.2 MFO Algorithm

	3 Butterfly Optimization Algorithm
	4 The Proposed Algorithm
	5 Computational Complexity of h-MFOBOA
	6 Simulation Results and Discussions
	6.1 Experimental Setup
	6.2 Discussion on Basic Benchmark Functions
	6.3 Statistical Analysis
	6.4 Discussion on Variants of the MFO Algorithm

	7 Real-World Applications
	7.1 RWP-1: Optimal Capacity of Gas Production Facilities
	7.2 RWP-2: Three-bar Truss Design Problem

	8 Conclusion with Future Direction
	References

