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Abstract
This paper presents the predictive models for biped robot trajectory generation. Predictive models are parametrizing as a 
continuous function of joint angle trajectories. In a previous work, the authors had collected the human locomotion dataset 
at RAMAN Lab, MNIT, Jaipur, India. The MNIT gait dataset consists of walking data on a plane surface of 120 human 
subjects from different age groups and genders. Thirty-two machine learning models (linear, support vector, k-nearest 
neighbor, ensemble, probabilistic, and deep learning) trained using the collected dataset. In addition, two types of mapping, 
(a) one-to-one and (b) many-to-one, are presented for each model. These mapping models act as a reference policy for the 
control of joints and prediction of state for the next time instant in advance if the onboard sensor fails. Results show that the 
deep learning and probabilistic learning models perform better for both types of mappings. Also, the probabilistic model 
outperforms the deep learning-based models in terms of maximum error, because the probabilistic model effectively deals 
with the prediction uncertainty. In addition, many-to-one outperforms the one-to-one mapping because it captures the correla-
tion between knee, hip, and ankle trajectories. Therefore, this study suggests a many-to-one mapping using the probabilistic 
model for biped robot trajectory generation.

Keywords  Kinematic · Locomotion · Machine learning · Prediction · Regression

1  Introduction

In recent times, robots have found numerous applications 
in real time such as picking objects, walking, path tracking, 
disaster management, health care, automation industries, 
house works, space, and entertainment [1]. Numerous types 
of robots based on air, water, and land-based application are 
found in the literature [2–5]. In this paper, the authors have 
mainly focused on land-based legged robots. The legged 
robot can be a potential candidate to use in an unstructured 
real-world environment. The legged robot-like biped robot 
can mimic human locomotion and outperform the other 
robots in the modern infrastructure that means for humans 

[6, 7]. However, current research in biped robots is far from 
a real-time implementation, because of the requirement of 
firm control to remain stable while navigating through the 
stochastic environment [8]. Since biped robots have numer-
ous degrees of freedom, it enables them to perform various 
tasks. However, even for fundamental tasks like walking, 
there is the necessity for planning and continuous trajectory 
generation of the complete body which is very difficult in 
general. To realize such a complex movement, a hierarchical 
structure of a control framework is required. The higher-
level part provides the reference trajectory, whereas the 
low-level part generates the decision to track this reference 
trajectory under disturbances robustly, and precision control 
is required to achieve fast motion.

In literature [9–16], different approaches have been devel-
oped and successfully applied for the versatile locomotion 
of biped robots. The inverted pendulum is the most pre-
dominant technique used to generate the reference trajec-
tory [11, 12]. This topology provides the center of mass 
(CoM) and foot trajectories, which can be transferred to 
the whole robot using inverse kinematics. However, obtain-
ing a detailed description of any physical system is a very 
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cumbersome task. Therefore, the models derived from this 
method can introduce bias because of parameter variation 
and unmodeled non-linear terms. Likewise, the multi-
objective evolution of trajectory synthesis based on ant 
colony-optimized recurrent neural networks has also been 
developed [17]. However, the trajectory is not matched with 
humans, because humans have locomotion capability natu-
rally. Therefore, humans can perform a lot of diverse and 
complex tasks efficiently, still unmatched by current state-
of-art biped robots. As per literature [18, 19], researchers 
have developed various methodologies for transferring the 
human motions to the biped robots and tested them in a 
constrained environment. An inverse optimal control meth-
odology employs finding the optimal criteria from human 
locomotion [19]. The authors develop a 3D template model 
based on the optimal criteria. It describes the motion based 
on CoM trajectory, foot trajectory, upper-body orientation, 
and time duration, which is transferred to the full body using 
inverse kinematics. In reference [18], the authors have intro-
duced a reduced-order data-driven model based on human 
locomotion data. The joint kinematics is parameterizing as a 
function of joint angles. The goal is to predict the kinematic 
gait pattern with fewer data. However, it involves complex 
mathematics to be solved, which is very cumbersome. Like-
wise, the authors have directly transferred the joint angle 
trajectories to robots [20]. However, there is a difference in 
physical constraints between humans and robots. So, it may 
not be directly feasible to apply the joint trajectories on real 
robots. Mostly, these model-based methods are promising 
topologies to extract valuable information from the available 
data. However, these model-based methods require more 
accurate knowledge of robot dynamics [21].

Since several researchers have focused on the regres-
sion model because of the availability of data, it minimizes 
the requirement of the exact mathematical expression for 
robot dynamics. As per literature, the regression models 
are classified into deterministic, uncertainty, and learning 
category. Figure 1 illustrates the classification of the regres-
sion models. During the last decade, there has been an enor-
mous increment in machine learning applications, since the 
machine learning algorithms have become accurate and their 
capability has significantly improved. This improvement is 
associated with a resurgence of computing power. It allows 
in using various machine learning algorithms, neural net-
works, and deep learning, and the requirement of dynamic 
knowledge of robots has been significantly reduced.

In this paper, the authors present 32 machine learning 
models for the mapping of joint kinematics. These mod-
els serve two purposes: (a) reference trajectory and (b) 
prediction for the next time step task. Case I:  reference 
trajectory for the policy is generated by the one-to-one 

mapping (knee → knee, hip → hip and, ankle → ankle) 
and many-to-one mapping (knee + hip + ankle → knee, 
knee + hip + ankle → hip and, knee + hip + ankle → ankle). 
Case II: prediction for the next time step task is explained as 
follows. Assume a situation when the onboard sensor fails to 
provide the feedback signal to the policy as shown in phase 
I of the biped learning framework flowchart (Fig. 2) or a 
reduction in the number of sensors for cost saving. Then, 
the policy cannot get the feedback signal (i.e., the joint angle 
at that instant). In this situation, the robot can go toward 
unstability and subsequently lead to permanent damage of 
hardware. Therefore, the trajectory generation model can 
be used to provide feedback to a policy shown in phase II of 
the biped learning framework flowchart (Fig. 2). This trajec-
tory generation model has a mapping of many-to-one. The 
important note here is that the next state is estimated based 
on the current state in advance. So, the policy already has 
the required missing state for the next time instant.

As per the author’s knowledge, there is not much litera-
ture/study found on the kinematic modeling of locomotion 
data using machine learning techniques. Therefore, in this 
paper the authors have analyzed the 32 learning techniques 
which help in finding a suitable approach for kinematic mod-
eling. In addition to those, two types of mapping are also 
developed. The major contributions of the presented work 
are:

•	 Machine learning techniques are applied to develop the 
kinematic model using human locomotion data.

•	 Identification of suitable learning technique for kinematic 
modeling based on performance indices, i.e., average 
error, maximum error, and root mean square.

•	 Two types of mapping, (a) one-to-one and (b) many-to-
one, are developed for reference trajectory generation and 
prediction for the next time step task in advance.

The taxonomy of the paper is as follows: Sect. 2 describes 
the data collection process; various machine learning tech-
niques such as linear models, support vector machines, 
nearest neighbor, ensemble learning, probabilistic, and 
deep learning approaches; and various performance indices. 
Section 3 describes the results of various developed models 
for one-to-one and many-to-one mapping. Finally, Sect. 4 
presents the conclusion and future research direction.
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2 � Proposed Methodology

This section discusses the data collection process, different 
machine learning techniques, and performance evaluation 
indices. Figure 2 illustrates the general flowchart of meth-
odology. The basic step of methodology is given as follows:

•	 Collect the human locomotion data.

•	 Perform data preprocessing and standardization of the 
collected data.

•	 After the above step, split the data into two parts: (a) 
training dataset and (b) testing dataset.

•	 Fit the learning models for the training dataset and 
examine the loss value.

•	 Test the accuracy of the learned model using the test-
ing dataset.

•	 Calculate the performance indices of the learned mod-
els.

Fig. 1   Classification of regression models
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Fig. 2   Proposed flowchart
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•	 Implement the learned models on the biped robot for 
trajectory generation.

2.1 � Data Collection

In previous works [22–29], the authors carried out a gait 
analysis and collected the human locomotion cycle data 
using vision-based techniques at Robotics and Machine 
Analytics Laboratory (RAMAN Lab), MNIT Jaipur, India. 
Data consist of the kinematic trajectory of the hip, knee, and 
ankle angle trajectory. The experimental setup has a digital 
camera, which provides the recording of locomotion video 
for data acquisition to the personal computer (PC) and pro-
cesses it. Digital video recorder, Nikon D5200 DSLR, and 
BIOPAC® 4 cameras are used to capture the motion in the 
sagittal plane at 29, 50, and 30 fps, respectively. Setup for 
gait analysis is presented in the data collection process of 
Fig. 2. The green color background is used for data collec-
tion. The walking path for every subject is chosen equal to 
6 m which provides enough space to take about four steps. 
Subjects walk at a normal pace from right to left on walking 
and then left to right. The MNIT gait dataset is developed 
from 120 subjects from different age groups and genders. 
The age of the subjects is in range of 5–60 years. All the 
subjects had no past injury or pain during data collection. 
Here, the walking platform is plane (0-degree inclination). 
Data preprocessing is done using the gait analysis model that 
is developed in simulation [20, 21]. MATLAB and python 
programming languages are used to implement and simulate 
the gait analysis process. Most gait capture system uses a 
direct measurement technique to capture the required fea-
tures; however, the cost for hardware and natural motion of 
human is hindered. Thus, one of the main challenges is to 
reduce the number of sensors required on the subject body. 
Therefore, two methods have been proposed for gait capture 
to overcome the major challenges: (A) passive marker-based 
gait parameter extraction approach (PM-GPEA)—Model 1 
[24] and (B) markerless/holistic-based gait parameter extrac-
tion approach (Ml-GPEA)—Model 2 [29].

2.2 � Machine Learning Techniques

In this section, the authors have explored the different 
machine learning models for the development of mapping 
models. The state of assumed prediction model at time 
instant t is given by Eq. (1),

Therefore, prediction for time instant t + 1 is given by 
Eq. (2),

(1)�yt = f (yt).

2.2.1 � Linear Models

Linear models are based on the statistical approach for 
regression analysis. Two types of variables are defined, 
namely (a) the dependent variable is influenced by the tar-
get variable, and (b) the independent variable not influenced 
by the input variable. In simple linear regression, depend-
ent variables have only one variable which can be used 
in regression analysis, whereas the independent variables 
always have more than one. Thus, the target value is com-
posed of a linear combination of different features (in our 
case, it is a combination of the knee, ankle, and hip angle).

2.2.1.1  Linear Regressor  It minimizes the sum of squares 
between the observed targets in the dataset and the output 
predicted by the model [30]. However, in most cases, the 
nature of the predicted target is not linear. Hence, in this 
paper, the authors have used polynomial fitting.

2.2.1.2  Ridge Regressor  Linear regression is prone to 
overfitting due to its structure. Therefore, it is necessary 
to add the additional term to the minimization function 
known as regularization [31].

2.2.1.3  Lasso Regressor  The solution obtained from Sup-
port Vector Regression (SVR) is not sparse in nature i.e., 
the percentage of support vectors is high and they are 
highly correlated to each other. Therefore, an alternative 
approach, namely the least absolute shrinkage and selec-
tion operator (Lasso) regression is developed [32]. It pro-
vides sparse solutions because of using the L1 norm in 
minimization of error. Basically, it aims to identify the 
parameters that can minimize the prediction error. This is 
obtained by imposing the constraint on a model by apply-
ing the shrinkage on regression parameters toward zero.

2.2.1.4  Lars Regressor  It is a model selection method like 
stepwise regression [33]. In Lars method, all the possible 
Lasso estimates are evaluated for a given objective func-
tion. At every time step, it finds the most correlated input 
features with the target.

2.2.1.5  Hybridization of  Lasso and  Lars Regressor  It 
includes the advantages of both Lasso and Lars regression, 
i.e., a sparse solution with L1 norm and model selection 
[34]. Lasso model integrated with Lars using BIC (Bayes 
information criterion) and AIC (Akaike information cri-

(2)yt+1 = yt + �yt.



360	 B. Singh et al.

1 3

terion). This criterion helps in selecting the value of the 
regularization parameter based on the trade-off between 
the fitness and complexity of the model.

2.2.1.6  Huber Regressor  Huber regressor is developed to 
deal with outliers by introducing the least square penalty 
for small residues. The idea is to use the different loss 
functions rather than the ordinary least squares [35]. This 
function behaves like a least squares penalty for small res-
idues. However, the impact is low for the large residues. 
Lead to increment linearly rather than quadratic.

2.2.1.7  RANSAC Regressor  It is a non-deterministic algo-
rithm that produces a reasonable solution with a certain 
probability. It depends on several iterations to produce 
a robust solution. It divides the data sets into the set of 
inliers and outliers. Here, inliers are used in iterations for 
the estimation of the solution [36].

2.2.1.8  TheilSen Regressor  The problem associated with 
the Ordinary Least Square (OLS) method is that the efficacy 
reduces when an error is normal and heteroscedastic. Thus, 
the slope of linear regression remains in an unsatisfactory 
probability range and the problem becomes significant if the 
error is non-normal. Theil and Sen developed a new method 
to deal with these problems in 1950 and 1968, respectively. 
It is a robust technique that fits the model to sample points 
in the space of a plane, and chooses the median of slopes 
in-plane (various lines) through the selected pair of points. 
The slope is known as Sen’s slope. This makes the estima-
tor robust toward the outliers. It also makes the model more 
efficient [37].

2.2.1.9  ElasticNet Regressor  Imposition of L1 norm in error 
minimization provides a sparse solution. Thus, it also pro-
vides both shrinkage and automatic variable selection simul-
taneously. However, due to its nature of convex optimization 
problem, Lasso selects at most n variables before it saturates 
if several predictors (p) > the number of observations (n). 
Also, it performs well only if the bound on the parameter 
for the L1 norm is smaller than a certain threshold value. 
Therefore, a new regularization technique is developed 
[38], which has similar properties to Lasso. It has additional 
advantages like the grouping effect where strongly corre-
lated predictors are selected in groups. It is like a stretchable 
fishing net that consists of all big fishes.

2.2.1.10  Orthogonal Matching Pursuit Regressor  This is a 
recursive method that evaluates the functions with respect 
to the non-orthogonal direction. The matching pursuit 

algorithm is updated such that it brings the full backward 
orthogonality of the residual convergence [39]. Computa-
tion is performed recursively.

2.2.2 � Support Vector Machines

2.2.2.1  Kernel Ridge Regressor  Kernel ridge regressor is a 
simplified case of SVR coined by Cristianini and Shawe-
Taylor in 2000 [40]. It is a non-parametric form of ridge 
regression. Here, all data points are transformed with their 
feature vector as xi → ki = K(xi). Thus, it learns a function 
in space of kernel by minimization of squared error with a 
squared norm regularization term.

2.2.2.2  Support Vector Regressor  The idea of Support Vec-
tor Machine (SVM) is derived from the work of Vapnik 
and Learner (1963) and Vapnik and Chervonenkis (1964), 
which is a non-linear generalization of generalized portrait 
algorithm. Basically, Support Vector Regression (SVR) is 
the generalization of SVM which is accomplished by inte-
grating the ϵ-insensitive region around the function called 
ϵ-tube [41, 42].

2.2.3 � K‑Nearest Neighbors

It is a non-parametric machine learning algorithm [43]. The 
principle of KNN is that similar samples have the highest 
probability for the same class. Basically, it collects all the 
samples, and based on the similarity index predicts the target 
value.

2.2.4 � Ensemble Learning Models

2.2.4.1  Decision Tree Regressor  In designing Decision Tree 
Regressor (DTR), one feature is selected at each node and 
partitions made in the range of that feature to produce a 
smaller number of bins, where each bin is termed as a child 
of the node. When the features’ range is discrete with N 
unordered outcomes, the partitions are done by minimizing 
an expected loss function that is usually found by exhaustive 
search through all partitions [44]. The advantage of using 
the DTR is that it requires less effort for data preparation 
during the preprocessing, no requirement for the normaliza-
tion of data or the scaling of data, and missing values in data 
do not affect the building process of the tree. However, it 
requires a longer time for the training of the model.

2.2.4.2  Random Forest Regressor  The idea of random for-
ests was floated by Leo breiman in 2000s. Here, the predic-
tor ensemble is built with a different set of decision trees 
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that grows from a random subset of data. Generalized error 
converges to a limit as the size of the tree becomes large. 
However, the error of every tree in the random tree depends 
on the strength of the individual tree and the correlation pre-
sent between them [45]. However, it can be biased while 
dealing with categorical variables, requires more training 
and is not suitable for linear methods with a lot of sparse 
features.

2.2.4.3  Adaptive Boosting Regressor  Boosting is a 
methodology that combines various weak and high error 
learning techniques. It can provide strong and low error 
techniques. Thus, it can be used to reduce the error of 
less accurate learning techniques, Basically by running 
repeatedly the learning approach on a different distribu-
tion of training data and outputs. In each loop of training, 
the distribution of training data depends on the previous 
loop performance of the learning technique. One impor-
tant thing is that for various boosting approaches, the 
method that evaluates the different distribution of training 
data and combination of predictions is different. The gen-
eralization of Adaboost is given by schapire, which pro-
vides an interpretation of boosting as a gradient-descent 
method [46]. The algorithm uses a potential function that 
associates a cost. Operation of Adaboost can be described 
as coordinate-wise gradient descent in the space of weak 
learning topology.

2.2.4.4  Gradient Boosting Regressor  In Adaboost, various 
weak learning algorithms are integrated together to boost 
the overall performance of an algorithm. However, it does 
not easily generalize to regression problems. It is because 
regression problems have faced difficulty due to hypotheses 
that may not be just wrong or right. However, it can be less 
right or wrong. In this scenario, the training error is more. 
Thus, a new algorithm is developed, namely gradient boost-
ing regressor, where a new hypothesis is formed simply to 
modify the distribution of training data [47]. It aims to fit a 

new predictor in the residual errors committed by the pre-
ceding predictor. The overall arrangement makes this algo-
rithm less prone to overfitting.

2.2.5 � Probabilistic Models

2.2.5.1  Bayesian Linear Regressor  Bayesian linear regres-
sion uses the posterior probability distribution over the 
parameters instead of point estimation. It helps in dealing 
with the model bias. It signifies that the output response is 
not a single point estimate, and a response is drawn from 
the probability distribution. The goal is to find the posterior 
distribution over the parameters rather than the single best 
value [48, 49]. Likewise, Automatic Relevance Determina-
tion (ARD) is used to find the significance of elements in 
input to determine the response by assigning the shrinkage 
prior to every parameter.

2.2.5.2  Gaussian Process Regressor  It puts a probabil-
ity distribution over the latent functions. It determines the 
shape of latent function i.e., from the available data. It has 
major advantages like it directly captures the uncertainty 
present in the model and any prior information can be added 
in form of a prior distribution [50, 51]. However, it is so 
powerful that it can even fit the noise.

2.2.6 � Neural Network Models

2.2.6.1  Multilayer Perceptron Regressor  It provides the 
generalization in addressing the problems with non-linear 
shapes and has the capacity to approximate unknown func-
tions. Generalization of perceptron using the multiple lay-
ers and connecting all neurons in one layer to all neurons 
of next layers gives rise to feedforward multilayer percep-
tron [52, 53]. Basically, input features are mapped to output 
using the network. It also allows the non-linear regression.

2.2.6.2  Deep Neural Network Regressor  Since 2006 when 
Hinton proposed structured learning known as deep belief 
networks (DBN), various architectures are developed [54, 
55]. DBNs are integrated with many stochastic and latent 
parameter variables. In the first instance, Hinton’s group 
participated in the competition and shows that architecture 
results in 10% better results than the second participator 
model. Generally, the architecture of a deep neural network 
is hierarchical with many layers and each layer consists of a 
non-linear activation function.

Table 1   Commonly used performance indices for regression prob-
lems

S. no Index Mathematical expression

(a) Average error (AE) ∑N

i=1
Pr,i−Pp,i

N

(b) Maximum error (ME) max|Pr,i − Pp,i|
(c) Root mean square error (RMSE)

�
1

N

N∑
i=1

�Pr,i − Pp,i�2
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Table 2   Summary statistics of 
linear models

Model P.I One-to-one Many-to-one

A B C D E F

Ridge AE 3.0485 1.5378 1.0447 0.6075 1.2033 0.8307
ME 6.7596 3.4677 2.5741 1.8348 2.1497 1.9694
RMSE 3.5564 1.9091 1.2434 0.7936 1.3921 0.9694

ElasticNet AE 3.0444 1.5587 0.9732 0.8127 1.1652 0.7934
ME 6.5743 3.4711 2.7253 2.1296 2.1378 1.6635
RMSE 3.5457 1.9144 1.2062 1.0166 1.3418 0.9078

Huber AE 3.0555 1.5372 1.0807 0.4831 0.9979 0.8558
ME 7.1643 3.6546 2.7311 2.1410 2.0673 2.2099
RMSE 3.5996 1.9352 1.3044 0.7368 1.1462 1.0339

RANSAC AE 3.7871 1.5749 1.1667 0.5788 1.1819 1.3713
ME 11.415 4.8798 3.7503 2.5085 3.6238 3.4566
RMSE 5.0174 2.2163 1.5832 0.8837 3.4566 1.8618

TheilSen AE 3.1381 1.6244 1.0565 0.9023 1.0089 0.7955
ME 6.4188 3.7201 2.8397 2.2232 2.2922 1.6701
RMSE 3.6429 1.9587 1.2957 1.1578 1.2191 0.9689

OMP AE 3.0343 1.5773 0.9743 3.0421 1.3451 0.8735
ME 6.4309 3.4799 2.7251 5.1502 2.3374 2.6142
RMSE 3.5371 1.9242 1.2071 3.3957 1.5523 1.1531

Lasso AE 3.0439 1.5761 0.9721 0.9301 1.1544 0.8101
ME 6.4012 3.4735 2.7256 2.2717 2.2322 1.8908
RMSE 3.5387 1.9229 1.2054 1.1423 1.3431 0.9337

Lars AE 3.0485 1.5378 1.0481 0.6061 1.2042 0.8311
ME 6.7601 3.4677 2.5672 1.8303 2.1515 1.9715
RMSE 3.5565 1.9091 2.5672 0.7911 1.3932 0.9701

LassoLars AE 3.0917 1.5465 0.9469 0.6062 1.2078 0.8310
ME 6.2647 3.3473 2.7469 1.8303 2.1748 1.9715
RMSE 3.5507 1.8967 1.1603 0.7910 1.3932 0.9700

LassoLarsIC AE 3.0917 1.5465 0.9469 0.6061 1.3736 0.8311
ME 6.2647 3.3473 2.7469 1.8303 2.4397 1.9715
RMSE 3.5507 1.8967 1.1603 0.7911 1.5471 0.9700

Linear AE 3.0485 1.5378 1.0481 0.6062 1.2042 0.8311
ME 6.7601 3.4677 2.5672 1.8304 2.1515 1.9715
RMSE 3.5565 1.9091 1.2455 0.7910 1.3932 0.9701

Table 3   Summary statistics of 
support vector machine

Model P.I One-to-one Many-to-one

A B C D E F

SVR AE 3.1441 1.5948 1.0841 2.2599 0.6529 0.5251
ME 7.1569 4.3694 3.0394 3.9288 2.0625 1.7701
RMSE 3.7084 2.0977 1.4135 2.6294 0.9141 0.7416

LinearSVR AE 3.8353 6.2521 1.8168 1.4806 0.9379 0.8519
ME 11.92875 24.3706 4.4386 2.9191 2.5444 2.1989
RMSE 5.0947 9.2241 2.3498 1.7311 1.2124 1.0821

NuSVR AE 2.9994 1.5197 0.9891 2.3688 0.7078 0.6027
ME 6.2751 3.6752 2.6223 4.3166 1.9324 1.3671
RMSE 3.5031 1.9194 1.2137 2.6809 0.9614 0.6966

Kernel ridge AE 3.0495 1.5371 1.0089 2.9039 1.2631 0.8481
ME 6.7521 3.4671 2.6409 4.7172 2.9951 1.7721
RMSE 3.5572 1.9087 1.2246 3.1768 1.6502 0.9521
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2.2.6.3  Deep RNN Regressor  In a deep Recurrent Neural 
Network (RNN), the recurrent structure is obtained by the 
integration of multiple layers of non-linear hidden layers 
[56]. It allows the temporal dynamic behavior. At every time 
step t, the input of the first recurrent layer is external, while 
the subsequent layers in network is fed from the activation 
function of the previous one. It can process inputs of any 
length and the model size does not increase as well. It uses 
the internal memory for processing the arbitrary series of 

inputs which is not the case with feedforward neural net-
works.

2.2.6.4  Deep LSTM Regressor  The simple recurrent net-
work did not scale to long-term temporal dependencies. 
Thus, RNNs with Long Short-Term Memory (LSTM) was 
developed by Graves and Schimdhuber [57]. It deals with 
problems related to sequential data. Hence, these networks 
are scalable to long-term dependences. The central theme of 

Table 4   Summary statistics of 
K-nearest neighbor

Model P.I One-to-one Many-to-one

A B C D E F

Weight distance AE 3.8592 1.7357 1.3342 1.3746 0.5518 0.3291
ME 9.5046 4.5501 2.9735 4.3981 1.3736 1.2799
RMSE 4.7576 2.2861 1.5971 1.7829 0.7121 0.4812

Weight uniform AE 3.1085 1.6648 1.1337 1.6759 0.7213 0.4131
ME 6.4051 4.2995 2.8593 4.4378 2.0459 1.2511
RMSE 3.7021 2.1916 1.4132 2.1537 0.9371 0.5588

Table 5   Summary statistics of 
ensemble models

Model P.I One-to-one Many-to-one

A B C D E F

DTR AE 5.0642 1.8739 1.7563 0.9634 0.7967 0.5576
ME 12.0656 5.5479 3.5321 4.0845 3.1819 2.5351
RMSE 6.4416 2.5975 2.0755 1.4061 1.6072 0.8494

AdaBoost AE 4.3505 1.7429 1.4186 1.2237 0.6253 0.5945
ME 11.7267 4.2817 3.2271 2.6019 1.2625 2.4662
RMSE 5.6607 2.1297 1.7044 1.4221 0.7359 0.8739

Gradient boost AE 4.8565 1.8314 1.6601 0.8646 0.5909 0.4582
ME 11.5107 5.5855 3.2411 2.9906 1.3409 1.5291
RMSE 6.0941 2.4899 1.9531 1.1442 0.7669 0.6291

Random forest AE 3.8664 1.7988 1.4953 1.2836 0.5096 0.4513
ME 6.4051 8.5176 4.8661 3.0942 1.2597 1.1365
RMSE 4.6923 2.3886 1.8081 1.5391 0.6521 0.5759

Table 6   Summary statistics of 
probabilistic models

Model P.I One-to-one Many-to-one

A B C D E F

Bayesian ridge AE 3.0552 1.5663 0.9578 0.6674 1.0934 0.7973
ME 6.2968 3.4257 2.7292 1.9461 2.2268 1.7871
RMSE 3.5373 1.9139 1.1929 0.8722 1.2656 0.9266

ARD AE 3.0917 1.5465 0.9471 0.6541 1.2235 0.8061
ME 6.2647 3.3473 2.7501 1.9488 2.1897 1.8685
RMSE 3.5507 1.8967 1.1647 0.8555 1.4199 0.9399

GPR AE 3.0438 1.5494 0.9449 1.1268 0.8751 0.1685
ME 6.0495 3.3209 2.3646 3.3144 1.1231 0.8273
RMSE 3.5151 1.8957 1.1596 1.5109 1.3281 0.2549
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this architecture is that it has a memory cell and non-linear 
gating units which can control the flow of information in 
and output. Basically, one LSTM cell has three gates (input, 
forget, and output), block input, a single cell, and an output 
activation function. Here, the output of the block is feedback 
to the block input and all gates. It scales to long-term tem-
poral dependencies and solves the exploding and gradient 
vanishing problem.

2.2.6.5  Deep GRU Regressor  A Gated Recurrent Unit 
(GRU) was developed in 2014 by Cho et al., and each recur-
rent unit captures different timescale dependencies [58]. It 
has gating units like the LSTM units that control the flow of 
information. However, it does not have a separate memory 
cell.

2.2.6.6  Bidirectional Deep Neural Networks Regressor  In 
sequential tagging tasks, there is a requirement of both past 
and future input at a given instant t, like past features (via 
forwarding passes) and future features (via reverse passes) 

in each time frame are provided. This can be achieved by 
the bidirectional neural network. Here, the pass-on unfolded 
networks in time are done in the same way as a regular net-
work; however, there is a need to unfold the hidden states 
every time [59].

2.3 � Performance Indices

Commonly used performance evaluation indices for evaluat-
ing the performance of various regression topologies have 
been discussed in the literature [60]. These indices evaluate 
the performance based on the difference between the actual 
and predicted value at any time t. In this paper, the average 
error, maximum error, and root mean square are used, and 
their mathematical expression is presented in Table 1, where 
Pri and Ppi refer to the ith test value and predicted value, 
respectively.

Table 7   Summary statistics of 
deep learning models

Model P.I One- to-one Many-to-one

A B C D E F

MLP AE 6.2908 1.9121 5.5197 0.7508 0.2908 0.4255
ME 23.7771 4.7296 11.2024 2.1772 1.0202 0.9461
RMSE 9.4732 2.3151 6.36319 1.0395 0.4409 0.4999

DeepNN AE 2.8857 1.4954 0.7807 1.2021 0.4227 0.4001
ME 6.5401 3.309 2.1124 6.7663 1.4643 2.4318
RMSE 1.6987 1.2228 0.8835 1.0963 0.6501 0.6325

RNN AE 3.0781 1.7569 1.1838 0.9465 0.4091 0.5324
ME 6.0731 3.6246 1.3255 5.7527 0.8457 3.7236
RMSE 1.7544 2.8473 1.0881 0.9272 0.63962 0.7296

LSTM AE 3.1862 1.6079 0.91553 0.9717 0.6979 0.2851
ME 6.2777 3.4711 2.4823 7.4635 2.4919 1.6657
RMSE 1.7851 1.2681 0.9568 0.9857 0.8354 0.5339

GRU​ AE 2.6207 1.5868 1.4354 0.5615 0.4323 0.1594
ME 7.7649 5.5331 3.0667 5.9958 1.3107 0.7497
RMSE 1.6188 1.2596 1.1981 0.7493 0.6575 0.3993

BiRNN AE 2.6454 1.4872 1.0455 1.5585 0.4636 0.7678
ME 6.3375 4.4308 2.8836 4.6074 1.4691 3.3267
RMSE 1.6264 1.2195 1.0224 1.2484 0.6808 0.8762

BiLSTM AE 2.6951 1.7883 1.117 0.3751 0.5196 0.3314
ME 7.3271 4.3861 2.8323 2.4749 2.8441 1.9941
RMSE 1.6416 1.3372 1.0543 0.6124 0.7208 0.5757

BiGRU​ AE 2.5379 1.3471 1.2121 0.4399 0.4585 0.3701
ME 6.3704 3.93727 2.2754 5.1721 2.1386 3.3212
RMSE 1.5931 1.1606 1.1009 0.6633 0.6771 0.6083
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3 � Results and Discussion

In this section, the authors have examined the machine learn-
ing techniques discussed in the previous section. Compara-
tive analysis of the developed techniques is based on cat-
egories such as linear, support vector machines, k-nearest 
neighbor, ensemble, probabilistic, and deep learning mod-
els. Summary statistic between many-to-one and one-to-one 
mapping is also discussed in their respective category. The 
current study has used the MNIT gait dataset. It consists of 
120 subjects from the age group of 5–60 years. All subjects 
have no history of injury and data were collected from walk-
ing on a plane. The random state is chosen as 42 for splitting 
the dataset into training and testing sets for producing the 
same result for every run time. Symbols A, B, C, D, E, and 
F are used to represent the knee-to-knee, hip-to-hip, ankle-
to-ankle, all-to-knee, all-to-hip, and all-to-ankle mapping, 
respectively, in summary statistic tables.

Table 2 presents the summary statistics of developed 
linear models for one-to-one and many-to-one mapping. 
Results show that the Lasso, OMP, Huber, and ElasticNet 
regressor perform the best for hip-to-hip, ankle-to-ankle, 
knee-to-knee, all-to-knee, all-to-hip, and all-to-ankle 
mapping.

Table 3 allows the comparative analysis of the support 
vector machines. It shows that NuSVR performs better for 
all mappings, except all-to-knee mapping where LinearSVR 
performs the best. In k-nearest neighbors, weight uniform 
provides a better result for one-to-one, while in many-to-one 
mapping the weight distance yields the best performance as 
shown in Table 4.

Table 5 allows the comparison of ensemble models, 
where the random forest yields better results for all-to-hip, 
all-to-ankle, and knee-to-knee mapping, whereas the Ada-
Boost and gradient boost regressor predict better results for 
both hip-to-hip and ankle-to-ankle mapping and all-to-knee 
mapping respectively. Overall, the many-to-one mapping 
performs well because it captures the relationship between 
the knee, hip, and ankle.

Table 6 presents the summary for the developed probabil-
istic models. The Gaussian process regressor performs better 
for all mapping except for all-to-knee, where the ARD yields 
good results. The performance of GPR is better overall than 
other methods, because of its non-parametric form, which 
allows it to capture the uncertainty well.

The performance of neural network-based deep learn-
ing methods is discussed in Table 7. Results show that 
the bidirectional GRU provides a good result for knee-to-
knee and hip-to-hip mapping, whereas for ankle-to-ankle 
mapping LSTM performs best. However, different models 
perform better for many-one-mapping because of the varia-
tion in the knee, ankle, and hip trajectory datasets. Overall, 

Table 8   Summary statistics of all models

Category Mapping Model P.I

AE ME RMSE

Linear Knee to knee OMP 3.0343 6.4309 3.5371
Hip to hip Lasso 1.5761 3.4735 1.9229
Ankle to 

ankle
Lasso 0.9721 2.7256 1.2054

All to knee Huber 0.4831 2.1410 0.7368
All to hip Huber 0.9979 2.0673 1.1462
All to ankle ElasticNet 0.7934 1.6635 0.9078

SVM Knee to knee NuSVR 2.9994 6.2751 3.5031
Hip to hip NuSVR 1.5197 3.6752 1.9194
Ankle to 

ankle
NuSVR 0.9891 2.6223 1.2137

All to knee LinearSVR 1.4806 2.9191 1.7311
All to hip NuSVR 0.7078 1.9324 0.9614
All to ankle NuSVR 0.6027 1.3671 0.6966

KNN Knee to knee Weight 
uniform

3.1085 6.4051 3.7021

Hip to hip Weight 
uniform

1.6648 4.2995 2.1916

Ankle to 
ankle

Weight 
uniform

1.1337 2.8593 1.4132

All to knee Weight 
distance

1.3746 4.3981 1.7829

All to hip Weight 
distance

0.5518 1.3736 0.7121

All to ankle Weight 
distance

0.3291 1.2799 0.4812

Ensemble Knee to knee Random 
forest

3.8664 6.4051 4.6923

Hip to hip AdaBoost 1.7429 4.2817 2.1297
Ankle to 

ankle
AdaBoost 1.4186 3.2271 1.7044

All to knee Gradient 
Boost

0.8646 2.9906 1.1442

All to hip Random 
forest

0.5096 1.2597 0.6521

All to ankle Random 
forest

0.4513 1.1365 0.5759

Probabilistic Knee to knee GPR 3.0438 6.0495 3.5151
Hip to hip GPR 1.5494 3.3209 1.8957
Ankle to 

ankle
GPR 0.9449 2.3646 1.1596

All to knee ARD 0.6541 1.9488 0.8555
All to hip GPR 0.8751 1.1231 1.3281
All to ankle GPR 0.1685 0.8273 0.2549

Deep learn-
ing

Knee to knee BiGRU​ 2.5379 6.3704 1.5931
Hip to hip BiGRU​ 1.3471 3.9372 1.1606
Ankle to 

ankle
LSTM 0.9155 2.4823 0.9568

All to knee BiLSTM 0.3751 2.4749 0.6124
All to hip MLP 0.2908 1.0202 0.4409
All to ankle LSTM 0.2851 1.6657 0.5339
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many-to-one mapping provides better results than one-to-
one mapping for deep learning models. 

Table 8 allows the comparative analysis of the developed 
models in all categories. Comparative analysis between the 
linear models, support vector machines, k-nearest neighbors, 
and ensemble learning for different mapping is described 
as follows: NuSVR performance is best for knee-to-knee 
and hip-to-hip mapping, and it provides the performance 
parameter values. However, the Lasso regression provides 
the minimum M.E. for hip-to-hip mapping, whereas both 
Lasso and Huber regressor perform well for ankle-to-ankle 
and all-to-knee mapping, respectively. Likewise, the k-near-
est neighbor with weight equal to distance and random forest 
perform well for all-to-ankle and all-to-hip mapping. So, the 
different models perform differently in mappings. Therefore, 
we cannot identify a single best method for all mappings in 
these categories. However, deep learning models are per-
formed best among all. The maximum error is more than the 
probabilistic model and the prediction is arbitrary for unseen 
data, i.e., we cannot be sure about the output prediction with 
confidence. In the case of our problem, the maximum error 

is also an important parameter because in real-time imple-
mentation, even a small deviation in trajectory prediction 
can lead to the system’s instability. So, it is necessary to 
limit this variation. Therefore, to deal with the situation, 
the uncertainty is included in the model. Thus, the proba-
bilistic model is used, and the performance is best in case 
of maximum error. In probabilistic models, the GPR model 
performs well in terms of maximum error and outperforms 
even deep learning. In terms of other indices also, the GPR 
performs well.

Figures 3 and 4 show the result of GPR prediction with 
a 95% confidence interval for one-to-one and many-to-one 
mappings, respectively. Therefore, it is recommended to 
use the GPR for trajectory generation models in robotic 
applications.

Fig. 3   GP regression for one-to-one mapping. a Knee-to-knee mapping. b Hip-to-hip mapping. c Ankle-to-ankle mapping
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4 � Conclusion

This paper presented the kinematic modeling of human 
locomotion using machine learning approaches (linear 
models, neural networks, support vector machines, nearest 
neighbor, Gaussian processes, deep learning, several types 
of regression trees, and ensembles like random forest). The 
results showed that deep learning methods outperformed 
the rest of the techniques for one-to-one and many-to-one 
mapping. In addition, the many-to-one mapping outper-
forms the one-to-one mapping as well. However, if the 
problem of model bias becomes evident, then the prob-
abilistic-based Gaussian process regressor shows better 
utility. The following conclusions can be drawn from this 
work. Firstly, 32 machine learning models for both map-
ping (one-to-one mapping and many-to-one mapping) are 
developed. Secondly, deep learning outperforms all other 
mapping models. Lastly, it is standard practice that the 
maximum error should be within the limits, because in 
real-time implementation of a biped robot, even a small 
deviation in trajectory prediction can lead to the system 

becoming unstable. Therefore, the probabilistic model 
should be used as the trajectory generation model. Over-
all, this study can contribute in three ways: (a) provide 
the reference trajectory generation, (b) next time horizon 
control input can be predicted and (c) state estimation of 
joint position. As a future scope, the authors will explore 
suitable data preprocessing and preprocessing techniques, 
global optimization of learning models during training, 
and implementation of cross-validation techniques for a 
reduction in model bias issues. In addition, an appropri-
ate approximate technique in probabilistic models for han-
dling the long-term predictions will be explored.
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