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Abstract 

Fish’s outstanding motion and coordination performance make it an excellent source of inspiration for scientists and engineers aiming 
to design and control next-generation autonomous underwater vehicles within the framework of bionics. This paper offers a general review 
of the current status of bionic robotic fish, with particular emphasis on the hydrodynamic modeling and testing, kinematic modeling and 
control, learning and optimization, as well as motion coordination control. Among these aspects, representative studies based on ideas and 
concepts inspired from fish motion and coordination are discussed. At last, the major challenges and the future research directions are 
addressed in the context of integration of various research streams from ichthyologic, hydrodynamic, mechanical, electronic, control, and 
artificial intelligence. Further development of bionic robotic fish can be utilized to execute some specific missions in complex underwater 
environments, where operations are unsafe or impractical for divers or conventional underwater vehicles. 
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1  Introduction 

As the result of million years of selection and 
evolution in aquatic world, fish can perform fast, effi-
cient, and agile swimming motions. With more than 
28,000 species, fish are endowed with a variety of ap-
pealing morphological and structural features for mov-
ing through water with prominent efficiency, speed, 
maneuverability, and stealth, which substantially exceed 
current man-made underwater vehicles[1–6]. More re-
markably, fish are able to perform high-speed and 
high-maneuverability swimming while leaving little 
traceable wake structure. Within the framework of bi-
onics, a bioinspired approach is utilized to transfer bio-
logical features and locomotion abilities of fish to design 
and control Autonomous Underwater Vehicles (AUVs). 
Thus, a bionic robotic fish can be defined as a 
fish-inspired propulsion system relying on undulatory or 
oscillatory motions to move through the water. Bionic 
robotic fish is the integration of ichthyologic, hydrody-
namic, mechanical, electronic, control, and computer 
disciplines, offering a controllable and scalable robotic 
platform for biological research (e.g., testing hypotheses 
in biology) and a prototype technology for engineering 

practice. As a consequence, bionic robotic fish have 
witnessed a multitude of applications such as oceanog-
raphy, underwater exploration, archaeology, search and 
rescue, patrol, marine environmental monitoring, ocean 
sampling, and mobile sensing, where operations are 
unsafe or impractical for divers or conventional under-
water vehicles[7–15]. 

In reality, the bionic works emphasize alikeness not 
only in external appearance but also in internal mecha-
nism. Similarly, efforts to build bionic robotic fish focus 
on many aspects varying from bionic morphology, 
sensing, neural control, to function, which primarily 
include kinematic and hydrodynamic analysis, me-
chanical design, control methods, and aquatic tests[16]. 
The first endeavor to develop freely swimming robotic 
fish can be traced back to the early 1990s, accompanied 
by the RoboTuna and RoboPike projects at MIT and 
Draper Laboratory[17–19]. Since then, there has been an 
ever-growing interest in creating various robotic proto-
types[16,20,21], such as 3D swimming robotic fish[22–24], 
boxfish-like robot[25,26], robotic manta ray[27], robotic 
mackerel[28], two-caudal-fin robotic fish[29], amphibious 
robotic fish[30,31], wire-driven robotic fish[32], and soft 
robotic fish[15], as shown in Fig. 1. Although different 
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Fig. 1  Various robotic fish prototypes. (a) G9 robotic fish[24]; (b) robotic manta ray[27]; (c) two-caudal-fin robotic fish[29]; (d) boxfish-like 
robot[26]; (e) amphibious robotic fish[30]; (f) wire-driven robotic fish[32]; (g) soft robotic fish[15]. 
 
propulsion modes exhibit, most of them fall into two 
categories in terms of the body part utilized for propul-
sion: Body and/or Caudal Fin (BCF) propulsion, and 
Median and/or Paired Fin (MPF) propulsion[33]. The 
latter may be subdivided into pectoral fin propulsion and 
undulation fin propulsion. Real fish do not exclusive 
depending on one locomotor mode, but combine multi-
ple locomotor behaviors allowing them to better adapt to 
their dangerous aquatic environments. Like adaptation 
in avian flight, swimming behaviors in fish may be re-
garded as a compromise between stability and maneu-
verability. Specifically, BCF propulsion is intrinsically 
stable and is well suited for long-term swimming at 
relatively high speeds, while MPF propulsion has the 
advantage of maneuverability and is often seen in 
smaller fish that need elegant escape patterns[33,34]. Ac-
cordingly, it is difficult to determine which swimming 
pattern is optimal since different living conditions and 
habitats exist. Indeed, fish have the ability to plastically 
respond to a myriad of environmental changes[35]. Sim-
ilar to real fish, the robotic fish adopting different pro-
pulsive modes can perform different propulsive capa-
bilities. Specially, robotic fish in BCF locomotion al-
ways obtain relatively high swimming speed and these 
in MPF locomotion can reach great maneuverability. 
Certainly, different BCF robotic fish own different ca-
pabilities. For example, the robotic fish inspired by an-
guilliform swimmers like eels often have multiple De-
grees of Freedom (DoFs) whose whole body takes part 

in undulation. As a result, these robots generally obtain 
high maneuverability, low speed as well as low hydro-
dynamic efficiency. By contrast, the robotic fish inspired 
by tunas always employ the peduncle and caudal fin for 
oscillation and can obtain very high propulsive speed as 
well as efficiency, but their maneuverability is relatively 
low, like a larger turning radius than anguilliform robots. 
As for the MPF robot, they always have little turning 
radius and stable navigation attitudes, but low propul-
sive speed. 

Besides adaptation to changing environments by 
adjusting swimming patterns, fish may utilize coordina-
tion behaviors to achieve useful tasks such as avoiding 
predators, capturing prey, and breeding offspring[36]. In 
contrast to a single robotic fish’s motion control, motion 
coordination pays much more attention to cooperative 
behaviors among multiple robotic fish, even a robotic 
fish group. As demonstrated in BBC’s Blue Planet II, 
some fish like sardines and snapper swim together in 
tight-knit groups. Such a schooling behavior is benefi-
cial in reducing drag and escaping from enemies. Con-
sidering that the capability of a single robotic fish may 
be limited due to the uncertainty and parallelism of the 
missions, creating an artificial multi-fish system that 
replicates coordination mechanism of fish flock is a 
favorable solution. Moreover, coordination control of 
multi-agent systems has been an active research subject 
extensively investigated by the systems and control 
theory community. Particularly, rapid improvements in 
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robotics, Artificial Intelligence (AI), and machine 
learning have contributed to the swift uptake of the 
learning and optimization technology in motion control 
of a wide array of robots. Meanwhile, swarm intelli-
gence-based techniques are increasingly applied to dif-
ferent fields such as robotics, data mining, medicine, and 
blockchains. Theoretical and empirical research in col-
lective biological systems like a school of fish, a flock of 
birds, or a swarm of insects is an essential step towards 
intelligent control of unmanned air, ground, and mari-
time vehicles. Simply put, fish-inspired Artificial Fish 
School Algorithm (AFSA)[37] and coordinated control 
techniques considerably promote the development of 
motion control and optimization of unmanned vehicles. 

The purpose of this paper is twofold. The first is to 
offer a structured review of an amount of literatures that 
is interwoven with biology and robotics using a motion 
control framework. The second purpose is to analyze the 
existing studies to identify commonalities, thereby pro-
viding innovative and inspirational guide for develop-
ment and deployment of bionic AUVs under the back-
ground of fast-moving AI. Emphasis is then given to 
such topics as dynamic modeling and control, kinematic 
modeling and control, learning and optimization, as well 
as coordination control. Many previous review papers 
have been reported the development of the robotic fish in 
the last two decades[38-41]. For example, Bandyopadhyay 
et al. surveyed the roles of pectoral appendages in ma-
neuvering motions of aquatic animals[38]; Liu et al. re-
viewed classification of propulsive modes, correspond-
ing characteristics, international research situation, and 
future research issues of the biomimetic robot fish[39]; 
Raj and Thakur reported a detailed comparison of vari-
ous design features like sensing, actuation, autonomy, 
waterproofing, and morphological structure of different 
types of fish-inspired robots[40]; Scaradozzi et al. sur-
veyed the state of the art on biomimetic robotic fishes, 
and discussed the reasons why bio-inspiration can be a 
winning move as well as how fish swimming can be the 
line of sight of the future locomotion technology[41]. As 
opposed to these previous review papers, this paper 
mainly covers modeling and control aspects, as well as 
the combination of control algorithms and AI with 
relevance to technological applications. Accordingly, 
only representative literature with relevance to motion 

control analysis and design is discussed. We hope that 
this paper will shed light on the iterative interaction of 
fish biology and engineering technology, contributing to 
updated design and control of innovative underwater 
vehicles. 

The remainder of this paper is organized as follows. 
We start by offering an overview of the hydrodynamic 
modeling and testing of fish swimming in section 2. The 
kinematic modeling and control aspects of bionic robotic 
fish are provided in section 3. The learning control and 
motion optimization issues as well as coordination con-
trol methods are detailed in sections 4 and 5. Some 
critical issues and future developments of the bionic 
robotic fish in the context of advanced motion control 
are summarized in section 6. 

2  Hydrodynamic modeling and testing 

As schematically illustrated in Fig. 2, modeling and 
control are two critical issues in developing and utilizing 
bionic robotic fish. In many robotic fish-based applica-
tions, it is also essential to have a deep understanding of 
hydrodynamic and kinematic principles of fish swim-
ming. The hydrodynamic and kinematic models not only 
provide a tool to quantify key physical processes acting 
between swimming organism and surrounding fluid, but 
also guide the engineering design and the assessment of 
extrinsic effects. This section briefly introduces hydro-
dynamic modeling and testing methods in fish swim-
ming. 
 
2.1  Hydrodynamic modeling 

Most of fish achieve propulsion by using wavelike 
movements of the fish’s body and tail, while other spe-
cialized fish do by using movements of the fins. 
Whichever propulsive pattern is used, fish locomotion is 
characterized by deforming bodies, fluid forces, and 
their interactions. Owing to the complexity of hydro-
dynamics and kinematics of swimming organisms, it is 
difficult to establish an accurate hydrodynamic model 
allowing motion control and performance analysis of 
bionic robotic fish. That is, the most complicated and 
challenging issue of dynamic modeling lies in capturing 
the hydrodynamics of fish swimming[34,43,44]. 

Existing methods for hydrodynamic modeling can 
be classified into two categories: numerical methods and  
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Fig. 2  Schematic process flow to produce bionic devices. (Adapted from Ref. [42].) 

 
analytical methods. Specifically, numerical methods 
often require solving the Navier-Stokes equations, which 
are accurate but extremely time-consuming. Meanwhile, 
hydrodynamic interaction of the flexible body and fins 
for natural fish can be modeled by using the linear Eu-
ler-Bernoulli beam model[45,46]. By contrast, analytical 
modeling methods are more feasible and practical for 
robotics. The first analytical model of fish swimming is 
the resistive force theory[47]. In this model, the fluid 
forces are composed of longitudinal skin friction and 
lateral drag forces. But the resistive force theory does 
not take inertia forces into consideration. The waving 
plate theory[48] analyzes the hydrodynamics by modeling 
fish as an undulating infinite height plate. In comparison 
with the waving plate theory, Lighthill’s theory[49–51] are 
more pertinent for modeling of swimming robots, in-
cluding the Elongated Body Theory (EBT) and the Large 
Amplitude Elongated Body Theory (LAEBT). The EBT 
captures the added mass effect, and approximates the 
effect of wake dynamics based on the kinetic momenta 
balance in a hemisphere control volume containing the 
fish body. The LAEBT extends the EBT to the cases of 
large amplitude body deformations. Because of the good 
balance between fidelity and simplicity, Lighthill’s the-
ory has been widely utilized in hydrodynamic modeling 
of robotic fish[43,52,53]. Additionally, the quasi-steady lift 
and drag models from the airfoil theory are also com-
monly used hydrodynamic modeling methods for bodies 
or fin surfaces of robotic fish[54,55]. The details are listed 
in Table 1. 

Hydrodynamic parameters are crucial for an accu-
rate dynamic model of robotic fish. Undoubtedly, how to 
obtain the hydrodynamic parameters is an inevitable 
problem in hydrodynamic modeling. In general, four 
types of approaches have been utilized in previous lit-
eratures: estimating by existing standard cases[43,56], 
calculating by Computational Fluid Dynamics (CFD) 

simulations[55], performing experimental measure-
ments[46,53,57], and identifying from motion data[54]. In 
the first method, the parameters are estimated through 
approximating a robotic fish by standard shapes whose 
hydrodynamic parameters are already available under 
certain fluid conditions. But it is not appropriate to ro-
bots with irregular and complex geometric profiles, 
since no references can help to determinate the pa-
rameters. The CFD method requires the shape model of 
a robotic fish and outputs a theoretical result, which is 
not necessary in accord with the actual situation. Re-
garding the method of experimental measurements, 
particular measuring instruments are required, and the 
measurements are basically restricted to drag and thrust 
coefficients. In contrast, it may be practical and con-
venience to identify parameters directly from motion 
data, which can be captured simply by video cameras or 
onboard sensors with the robotic fish swimming freely. 
Indeed, identification approaches have been widely 
studied for ships[58,59] and underwater vehicles[60,61]. 
Using a combination of the parameter identification 
technique and modeling approach, Yu et al. proposed a 
data-driven dynamic modeling method for multi-joint 
robotic fish with irregular geometric profiles and nu-
merous heterogeneous hydrodynamic parameters[62]. 
 
2.2  Hydrodynamic experimental techniques 

Besides theoretical calculation of the fluid forces 
on a swimming fish, experimental techniques have been 
developed to quantitatively visualize and analyze the 
generated wake. Early work on fish swimming hydro-
dynamics mainly used qualitative shadowgraphy tech-
niques[63]. Later, noninvasive techniques such as Particle 
Image Velocimetry (PIV) were increasingly used to 
quantify wake hydrodynamics behind swimming fish. A 
standard PIV apparatus comprises a single CCD or 
CMOS camera, a strobe or laser with an optical  
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Table 1  Comparison of analytical modeling methods for fishlike swimming 

Theories Characteristics Application scenarios 

Resistive Force Theory 
(RFT) 

 viscosity plays the leading role in the fluid 
 the force between a small section of fish and the water was 

regarded as a resistive force depending exclusively on the 
instantaneous value of the velocity 

 not considering the inertia forces 

 low Reynolds number 
 microscopic organisms swimming in 

viscous fluid 
 long narrow animals 

Waving Plate Theory 
(WPT) 

 the fluid is incompressible and inviscid, but with the Kutta 
condition imposed at the trailing edge of the plate 

 a two-dimensional flexible and thin plate performs the 
motion consisting of a progressing wave of given wave 
length and phase velocity along the chord 

 the basic mechanism of swimming is elucidated through 
applying the principle of action and reaction 

 large Reynolds number 
 a two-dimensional flat fish and the 

aeroelasticity of oscillating wings 

Elongated Body Theory 
(EBT) 

 propulsive thrust is from reactive forces between the surface 
of the body and the volume of surrounding water 

 the cross-sectional area of the body is much smaller in the 
swimming direction than in the nearly perpendicular direc-
tion of the undulatory motion 

 large Reynolds number 
 slender fish with a caudal fin in 

which each individual bony ray 
makes only a moderately small angle 
with the backbone 

Large Amplitude 
Elongated Body Theory 

(LAEBT) 

 extends the EBT to the cases of large amplitude body de-
formations 

 the large fish flexures and lateral velocities applied in 
propulsion is considered 

 the recoil is particularly estimated 

 large Reynolds number 
 the fish with a relatively large am-

plitudes of tail motion 

 
arrangement to limit the physical region illuminated, a 
synchronizer to act as an external trigger for control of 
the camera and laser, the seeding particles, and the fluid 
under investigation. Meanwhile, PIV software is ex-
ploited to process the acquired optical images. Note that 
the cross-correlation between parts of the two images 
where pattern generated by particles can be seen is used 
for the computation of the velocity field. Now there are 
several extensions of classic PIV setup, including to-
mographic PIV, stereo PIV, defocusing digital PIV, and 
so on. For instance, Fig. 3 presents a typical stereo PIV 
measurement system and the measured velocity vectors 
behind a turning fish[64]. The prominent merit of the PIV 
technique is its ability to non-intrusively measure 
high-resolution 2D or 3D velocity fields[65]. 

From the existing studies on measurement of ve-
locity fields around a fish, there are three basic catego-
ries according to the used experimental setup[66]. In the 
first category, the fish is not within the field of view of 
the camera. The second category is the one in which the 
fish swims against the incoming flow and its body posi-
tion keeps stationary in the field of view of the camera. 
In the third category, the fish performs free-swimming 
within the test tank. For instance, Müller et al. used 2D 
PIV to visualize the flow around the aquatic animals and 
to demonstrate the creation of vorticity and their con-
tribution to thrust generation[67]. Drucker and Lauder 
explored the bluegill sunfish pectoral fins 3D wake 

structures using PIV[68]. Sakakibara et al. utilized ste-
reoscopic PIV for capturing three components of veloc-
ity distribution on live goldfish along with particle 
tracking velocity in order to determine spatial velocity, 
acceleration, and vorticity[64]. In essence, fish locomo-
tion can be regarded as a 3D swimming behavior, with 
multifarious fin and body motions and fin–wake inter-
actions. With great progress made in laser technologies 
and electronic imaging systems, quantitative wake 
analysis of 3D locomotion of a freely swimming fish 
comes into reality. As an illustrative example, Mendel-
son and Techet applied synthetic aperture PIV to quan-
titatively analyze the wake behind a free-swimming 
giant danio in steady swimming and maneuvering, of-
fering fast and accurate reconstruction of 3D particle and 
velocity fields[65]. In addition, a growing number of 
robotic models are applied to hydrodynamic experi-
ments on aquatic animal propulsion. In the meantime, 
experimental self-propelled swimming methods (see  
Fig. 4) have demonstrated the potential for better repli-
cation of biological characteristics in biofluid and bio-
mimic studies[69,70]. 

3  Kinematic modeling and control 

In classical mechanics, kinematics refers to the 
study of properties of motion, typically involving posi-
tion, velocity, and acceleration. To capture the motion 
essence of fishlike propulsion and maneuvering,  
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Fig. 3  Stereo PIV measurement system and velocity vectors behind a turning fish. (Adapted from Ref. [64].) 

 

 
Fig. 4   DPIV images from a lateral view of a bluegill sunfish and the robotic caudal fin during rolling tail motion. (a) A bluegill sunfish; (b) 
a robotic caudal fin; (c) DPIV images of the bluegill sunfish; (d) DPIV images of the robotic caudal fin. (Adapted from Ref. [70].) 
 
quantification of swimming kinematics is required in 
real 3D space. The acquisition of fish swimming kine-
matics further provides guidance for the formation of 
motion control methods. 
 
3.1  Kinematic measurement of fish swimming 

Kinematic measurement and analysis often require 
fish to perform spontaneous and continuous swimming 
behaviors so as to obtain the subject’s spatiotemporal 

location as precisely as possible. Two fundamentally 
different approaches are usually employed to reflect the 
actual kinematic characteristics[71]. One is to record 
voluntary movements of fish swimming in still water, 
while the other is to induce fish to swim against the 
water flow at different speeds. The early manual quan-
tification of fish kinematics suffers from systematic 
errors. Later, using the video-tracking approach to ki-
nematic measurement of fish swimming has gained 
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prominence in the field of biomechanics. It can be fur-
ther categorized into 2D and 3D in terms of the position 
of fish. For example, Wu et al. presented a video track-
ing system which was able to measure 3D kinematics of 
a free-swimming fish[72]; Wang et al. performed a 3D 
kinematic analysis of a Koi Carp pectoral fin by simul-
taneously analyzing two views of the fins in the context 
of digital images processing[73]; Voesenek et al. pro-
posed a validated method to track a fish in 3D by re-
constructing its position, orientation, and body curvature 
from multi-camera high-speed video[74]; Audira et al. 
developed a single-camera-based tracking system for 
capturing 3D swimming behavior of multiple zebrafish 
with low cost and precise spatial position[75]. By means 
of 2D tracking system containing an X-Y translation 
stage and two cameras, Wu et al. achieved simultaneous 
measurement of kinematics and flow in the wake of a 
freely swimming fish[71]. Remarkably, Qian and Chen 
proposed a tracking system that was based on top-view 
tracking and supplemented by side-view tracking, al-
lowing simultaneous 3D motion tracking of multiple 
fish[76]. Such advancements hold great potential for 
in-depth fish behavioral research. 
 
3.2  Motion control 

Motion control of robotic fish is another important 
research topic. In order to mimic control mechanisms of 
fish bodies and fins, a very widespread method is to 
generate a traveling body wave. The direction of flow 
speed is opposite to the direction of fish swimming, the 
same with the fish body wave. An intuitive idea is to 
generate a traveling body wave through multi-link rigid 
fitting[77]. Within this framework, the oscillating fish 
body is discretely constructed as a multi-link mechanism 
consisting of several oscillating hinge joints actuated by 
motors. Symmetric oscillations propel the swimmer 
forward straightly whereas asymmetric ones rotate the 
body enabling the fish to alter swimming direction. 
Specifically, to achieve C-start maneuvers, firstly, all 
joints should bend in the same direction at the same time, 
and all the muscles should coordinate perfectly; then, 
head should aim at the target precisely; later, a steady 
swimming gait is indispensable; and last, a closed-loop 
control of turning angle is needed to correct directions of 
swimming[78]. Liu and Hu presented a kinematic model 

to mimic the C-shape turning behavior and the robotic 
fish finally achieved the maximum turning velocity of 
110˚·s−1[79]. When it comes to turning control, Yu et al. 
proposed a practical method to realize various turning 
gaits[80]. In their method, the flexible posterior body and 
tail moving in the form of body wave was forcibly de-
flexed to ensure an asymmetric motion. That is, for the 
multi-joint configured robotic fish, different turning 
modes can be accomplished by commanding specific 
deflected angle in each oscillation cycle to the part or all 
of moving links. To pursue the better control perform-
ance, novel sensors, actuators, and mechanical structures 
are incorporated into the development of robotic fish. 
For instance, a pressure sensing system was built to 
heighten the adaptability of robotic fish under intricate 
underwater environments[81]. A monolithic Ionic Poly-
mer-Metal Composite (IPMC) actuator-based bioin-
spired active fin was created to explore the twisting, 
bending, and flapping of robotic fish[82]. In practice, the 
head of the robotic fish inevitably sways while swim-
ming due to the counterforce on the swaying tail, caus-
ing severe distortion for the image captured by the 
camera loaded on the head. To mitigate this problem, a 
cascade control system was proposed to stably track a 
target object, in which a camera stabilizer acted as the 
inner loop and an image based tracking system as the 
outer loop[83]. 

Besides trajectory approximation methods relying 
on body wave fitting, Central Pattern Generator (CPG) 
inspired locomotor controllers are growingly utilized to 
generate and switch a variety of swimming patterns. As 
a biological neural network, CPGs can be regarded as a 
group of coupled neurons that generate coordinated 
oscillatory signals in the absence of sensory inputs or 
descending inputs from higher cognitive elements[84,85]. 
A CPG could be roughly analogous to the pendulum of a 
clock, producing a repeating signal at a constant fre-
quency so as to coordinate rhythmic motions. Re-
markably, the CPG-based swimming control method 
allows easy implementation and online generation of 
swimming gaits. The inherent nonlinear properties of 
CPGs enable smooth transitions between gaits, as well 
as adaptations to both perturbations of state variables 
and modifications of control parameters. In this sense, 
CPGs coupled with learning algorithms and optimiza-
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tion techniques allow the robot to seek stable, adaptive, 
and versatile gaits. For example, a kinematic model of 
CPG-based control is widely adopted to optimize for-
ward and backward speed of swimming[86,87] and to 
enhance smooth transitions between gaits with random 
perturbations[40]. Wu et al. compared kinematics differ-
ences between forward and backward swimming caused 
by speed, phase angle, and frequency[88]. The coupling 
of onboard visual perception to the CPG-based control 
enabled the robotic fish with multiple control surfaces to 
perform goal-directed swimming[89]. 

To circumvent the problem of tedious hydrody-
namic modeling and parameter tuning, data-driven ap-
proaches are increasingly applied to motion control of 
robotic fish. Typically, Ren et al. proposed a data-driven 
motion control framework for a two-joint robotic fish[90]. 
In their method, a feedforward controller and a Propor-
tional-Integral-Derivative (PID) based feedback con-
troller in conjunction with a data-driven iterative feed-
back tuning were built to regulate speed of robotic fish in 
cruise and cruise in turning. Subsequently, Verma and 
Xu attached more importance to thrust mechanism in 
data-assisted modeling for speed control of robotic 
fish[91]. Specifically, data of pulse and step responses 
were collected from designated experimental trials, in 
which the pulse responses were employed to determine 
the thrust delay terms while step responses were utilized 
to build up the thrust nonlinearity in steady swimming. 
Meanwhile, a discrete-time sliding mode controller was 
built for speed control. Unfortunately, the proposed 
data-assisted model and control method was merely 
verified on two-joint robotic fish. More theoretical ex-
tension and experimental validation on data-driven mo-
tion control method are demanded to provide a reliable 
and valuable control tool for aquatic robotic systems. 

4  Learning control and motion optimization 

The integration of AI and control technology cre-
ates new research opportunities for bionic robotics. As 
two main ingredients, learning and optimization play an 
important role in reducing model uncertainty and im-
proving the system performance. 
 
4.1  Learning fishlike swimming 

One of the fascinating hallmarks of an autonomous 

robotic system is the ability to learn and adapt new tasks 
and dynamic environments. As illustrated in Fig. 5, learn-
ing for motion control gives rise to different performance 
capabilities via perception-action-learning. In particular, it 
is possible that the adopted learning control method 
achieves an enhanced system performance from trial to trial 
by exploiting the experience gained from previous repeti-
tions[92]. To acquire fishlike swimming, two types of 
learning control methods, i.e., bionic learning control and 
Iterative Learning Control (ILC), are mainly employed. 

In the bionic learning control applied to robotic fish, 
the basic idea is to combine the advantages of both the 
trajectory approximation method and the neural-based 
control to generate various swimming patterns. Learning 
rules that are extracted from kinematics of fish swim-
ming offer adaptation mechanisms to dynamically tune 
the characteristic parameters. This bionic learning 
method provides a synthesis tool for neural-based 
swimming control, thereby guaranteeing the biological 
basis for generation of swimming gaits on the robotic 
fish. Typically, Hu et al. presented an adaptive CPG 
network capable of learning instructed locomotor pattern 
for a multi-joint robotic fish[93]. As for desired locomotor 
patterns in the form of teaching signals, learning rules 
for frequency, amplitude, and coupling weight were 
formulated with phase plane representation of the os-
cillator, which were applied to online swimming gait 
synthesis. Ren et al. proposed a General Internal Model 
(GIM) based learning method to learn and to regenerate 
coordinated fish behaviors[94]. By virtue of the universal 
function approximation ability and the temporal/spatial 
scalabilities of GIM[95], this learning method can gener-
ate the same or similar fish swimming patterns by tuning 
several characteristic parameters. As shown in Fig. 6, a  
 

 
Fig. 5  Abstraction of an autonomous robotic fish system. 
(Adapted from Ref. [92].) 
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Fig. 6  Structure of the GIM. 

 

GIM  displays  a  basic  three-component  structure:  an 
inner signal generator, an Artificial Neural Network 
(ANN), and an out signal modulator[96]. The internal 
signal generator generates a continuous-period signal as 
an input to the ANN. After the ANN obtains the oscilla-
tion signal from the internal signal generator, the desired 
motion pattern can be generated through nonlinear 
mapping. That is, once the desired movement yr is given, 
a teaching signal for the ANN can be obtained from the 
outer signal modulator 1

r rg k yτ −= . The internal signal x 
is input to the ANN, while gr is the expected output 
value and τ is the time constant. By learning from the 
training samples, the ANN can yield the expected exer-
cise pattern. It should be noted that the learning abilities 
of GIM utterly depend on the capabilities of ANN as a 
universal function approximator[94]. Owing to the ex-
cellent function approximation ability of the ANN, 
which is embedded into the learning approach, the 
learning mechanism can easily learn these patterns. Ad-
ditional advantage of the learning method is that it is 
able to generate similar patterns directly through the 
minimum changes in GIM parameters because of the 
scaling properties, thereby avoiding the complicated 
learning or training process[94]. 

Concerning ILC, it is generally exploited to achieve 
real-time control of the robotic fish and precise speed 
tracking performance because of its model-free property 
and the simplicity of the algorithm[97]. Different from the 
classical control technologies, such as a PID controller, 
ILC can use the error observations in the previous trials 
and update the control actions for the next trial. Hence, 
ILC can achieve high-precision tracking without lags in 
transient tracking that always exist in a PID controller[98]. 
A typical procedure to realize the speed tracking of ro-
botic fish is as follows: (1) Construct a dynamical model 
for the multi-joint robotic fish by utilizing Lagrangian 
mechanics method and calculate the thrust using 

Lighthill’s method. (2) Develop an ILC-based speed 
tracking scheme, e.g, by means of an input-saturated 
P-type ILC. It is noteworthy that the controller design 
need not exploit the exact model, but the system’s 
bounded gradient information for convergence analysis. 
(3) Perform rigorous convergence analysis of the de-
veloped ILC scheme by applying composite energy 
function. Within this learning control framework, pre-
cise speed tracking and effective motion control of ro-
botic fish have been demonstrated. 

 
4.2  Motion optimization 

Optimization is one of the most important problems 
in engineering practice. Owing to imprecise hydrody-
namic models and strict kinematic constraints, actuating 
and controlling complex fish robotic systems to achieve 
satisfactory locomotion performance still remains chal-
lenging. A great deal of effort has been made towards 
improving the performance of robotic fish in terms of 
speed, efficiency, path planning, and maneuvering con-
trol. 

As for the swimming speed optimization, major 
feature parameters affecting the propulsive speed are 
determined and optimized to maximize the speed during 
steady swimming. For instance, considering that the 
CPG parameters are closely related to the propulsive 
performance of the robotic fish, a method to determine 
relatively optimized control parameters was firstly 
proposed[86]. Then, a combination of dynamic model and 
Particle Swarm Optimization (PSO) algorithm was uti-
lized to seek the CPG characteristic parameters for an 
enhanced performance. The optimized results were 
shown to be superior to previously report forward and 
backward swimming speeds. Remarkably, the robotic 
fish reached a top backward swimming speed of 0.51 
body lengths per second, representing the best backward 
performance reported in the anguiform/carangiform 
robotic fish. Besides PSO, Genetic Algorithm (GA) was 
used to search optimal parameter sets for the CPG model 
of a multi-actuated robotic fish[99]. The obtained test 
results indicated that the undulatory propulsor with six 
fin segments was preferable due to higher speed and 
lower energy efficiency. In another study, the maximum 
velocity of the robotic fish was optimized by combining 
GA and Hill Climbing Algorithm (HCA)[100]. Here, GA 
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was used to generate the initial optimal parameters of the 
input functions of the system, whereas HCA was further 
exploited to obtain near-global solution. 

With respect to the efficiency optimization, the 
PSO algorithm and the Big Bang – Big Crunch 
(BB–BC)[101] algorithm are usually used. By choosing 
the particle swarm size and number of iterations in the 
PSO algorithm, the optimal parameter set of CPG and 
the optimized propulsion efficiency were obtained[86]. 
Another way to optimize propulsion efficiency is to use 
BB–BC algorithm, a global optimization method in-
spired from one of the cosmological theories known as 
closed universe. The BB–BC algorithm was adapted to 
optimize the link length for a four-link carangiform 
robotic fish, producing optimum link lengths and end-
points of each joint in forward swimming and turn-
ing[102]. Numerical results indicated that link length op-
timization could improve the propulsion efficiency of 
the robotic fish. 

Path planning is essentially defined as the problem 
of finding a safe and efficient collision-free path of one 
or more rigid objects from a given start to a known target 
configuration. In the path planning optimization of ro-
botic fish, to alleviate the intrinsic computational com-
plexity, several heuristic approaches together with 
computational intelligence have been developed. In 
practice, GA is widely applied in obstacle avoidance of 
mobile robots due to its versatility, robustness and easy 
to get into local optimum. Therefore, the grid based path 
modeling method and the GA-based path optimization 
are combined to produce an optimal or suboptimal 
swimming path for the robotic fish. In a more complex 
path planning case involving multiple robotic fish and 
goals, a Multi-Objective Cooperative Co-Evolution 
Algorithm (MOCCEA) is usually used[103]. Essentially, 
MOCCEA simulates the co-evolution mechanism 
among different species in nature. The single-objective 
co-evolution model is expanded into a co-evolutionary 
multi-objective model, which can effectively match the 
evolutions of multiple populations, thereby solving 
complex optimization problems. Under the premise of 
ensuring higher path smoothness, Yang and Jiang used 
MOCCEA to find an optimized solution for path plan-
ning of multiple robotic fish[104]. Specifically, partial 
subsets were heuristically generated as a result of con-

sidering initial yaw angle of robotic fish and its swim-
ming characteristics. Thus, MOCCEA settled the prob-
lem of turning round during path planning and realized 
coordinated motions among multiple robotic fish. Sim-
ulation results demonstrated that the MOCCEA- based 
method achieved shorter average path length and higher 
average path smoothness than the NSGA-II- based 
method. 

Regarding the maneuverability optimization, the 
two primary concerns are acceleration and steering 
characteristics[105]. In the context of predator-prey sys-
tems, pursuing fast and precise C-starts is a critical sur-
vival skill for live fish. Su et al. optimized the maneu-
vering control of fast C-starts of a multi-joint BCF-type 
robotic fish[106]. Specifically, the steering speed was 
maximized by finely designing the preparatory phase 
and the propulsion phase, while the relatively accurate 
steering angle was achieved by the closed-loop control 
strategy in the propulsion phase and in the variation 
phase. The robotic fish performed C-starts flexibly with 
a turning angle of up to 213˚, a top turning rate of ap-
proximately 670˚·s−1 measured by the onboard gyro-
scope, as well as an upper limit of turning precision of 
less than 10˚. These optimized results were shown to be 
superior to previously reported turning rate and turning 
precision. 

5  Motion coordination of multiple robotic fish 

Besides offering propulsion solutions in aquatic 
environments, fish that swim in an organized and 
planned way provide valuable sights into alternative 
strategies for designing nature-inspired algorithms and 
engineering multi-fish systems. In this section, Artificial 
Fish School Algorithm (AFSA) and some coordination 
control of multiple robotic fish will be briefly reviewed 
and analyzed. 

 
5.1  AFSA 

As a bionic swarm intelligence algorithm, AFSA 
draws inspiration from collective movement of the fish 
and their various social behaviors [37]. This algorithm 
focuses on the fish groups who have no leader and 
communicate with the surrounding fish about the feed-
back information of the environment to swim. Based on 
the mathematical model of artificial fish, which is a 
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fictitious entity of true fish used to carry on the analysis 
and explanation of problem, description equations for a 
series of actions such as fish praying, swarming, fol-
lowing, moving, and leaping can be obtained. The be-
haviors of fish depend on the current state of itself and 
the state of the environment. Thus, AFSA has the ability 
to solve complex nonlinear high-dimensional problems, 
allowing parameters to be properly adjusted. In brief, 
owing to high convergence speed, flexibility, error tol-
erance, and high accuracy, AFSA has been widely used 
for solving various complex optimization problems, 
such as control, image processing, data mining, im-
proving neural networks, scheduling, and signal proc-
essing[37]. 

However, AFSA also suffer several drawbacks, in-
cluding higher time complexity, lack of balance between 
global search and local search, and without use of the 
experiences of group members for the next movements. 
To compensate the disadvantages of standard AFSA, 
many improvements have been implemented over the 
past decades. For example, a cultured artificial 
fish-swarm algorithm, i.e., a novel cultured AFSA with 
the crossover operator, was developed. It has faster 
convergence speed and overcomes the weakness of blind 
searching for global optimum value via a great number 
of experiments. Aiming to improve the algorithm’s sta-
bility and the ability to search the global optimum, Wang 
et al. proposed an improved AFSA algorithm. When the 
artificial fish swarm’s optimum makes no difference 
with defined generations, leaping behavior is triggered 
and the artificial fish parameter is altered randomly, 
thereby increasing the probability of obtaining a global 
optimum solution[107]. Fernandes et al. performed global 
optimization for fish movements, finding food, leaping, 
and other social actions[108]. 

To improve the optimization capability, there have 
been several attempts to combine the AFSA with other 
optimization methods like PSO, fuzzy logic, cellular 
learning automata or intelligent search methods like tabu 
search, simulated annealing, and chaos search[37]. For 
instance, combining PSO with AFSA, the PSO-AFSA 
method takes advantage of the rapid convergence ability 
of PSO and the strong global searching ability of AFSA 
to offer more desirable optimized results. Jiang et al. 
demonstrated the efficiency of the PSO-AFSA method 

in underactuated autonomous underwater vehicle con-
trol parameter optimization[109]. Shuffled Frog Leaping 
Algorithm (SFLA) finds global extremum slower and 
easily falls into local extremum. Therefore, combining 
SFLA with AFSA can accelerate the optimization speed 
and avoid falling into local extremum[110]. Hu et al. 
demonstrated that the running speed of the AFSA based 
on GPU was 30 times faster than the AFSA based on the 
CPU[111]. 
 
5.2  Coordinated control of multiple robotic fish 

In the context of a multi-robot system, when coor-
dinating in unstructured or dynamic aquatic environ-
ments, it is expected that a group of robotic fish with a 
relatively simple function is able to accomplish complex 
missions that exceed the capabilities of one individual. 
The significance of the multiple robotic fish coordina-
tion is twofold. On the one hand, robotic fish-based 
coordination system offers a viable solution to complex 
underwater missions, which are intractable for one in-
dividual or tough to be fulfilled by other underwater 
robots. On the other hand, with the aid of a school of 
bionic robotic fish, in addition to provide valuable in-
formation for fisheries science, the schooling behaviors 
of fish in nature can be recorded and better understood. 
At present, there are basically two types of coordination 
systems, centralized and decentralized, which differ in 
the way they use sensor information. 

In the centralized multiple robotic fish coordination, 
centralized control is generally utilized. Since the used 
robotic fish have no ability of self-positioning, an 
overhead global vision is responsible for acquiring in-
formation of the environment and the states of the fish. 
As shown in Fig. 7, a multiple robotic fish coordination 
platform can roughly be decomposed into four subsys-
tems: an image capturing subsystem, an information 
processing & decision-making subsystem, a communi-
cation subsystem, and a robot subsystem[36,112]. More 
specifically, an image of the pool is captured by an 
overhead camera and sent to the upper computer every 
40 ms. Then in the upper computer, the image is proc-
essed effectively to estimate the pose information of the 
robots. After making a series of decisions, through the 
wireless communication module, the upper computer 
not only sends control commands to the robots such that  
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Fig. 7  Schematic of multiple robotic fish coordination platform. 
 
the robots can adjust their locomotion modes, but also 
receives the feedback from the robots. Hence, a com-
plete control loop is implemented. In practice, hierar-
chical control algorithms for cooperative tasks are usu-
ally adopted, which are ultimately decomposed into two 
primitive motion controllers, i.e., speed controller and 
orientation controller. For example, Yu et al. proposed a 
hierarchical architecture for an artificial multi-fish sys-
tem which consists of five levels: task level, role level, 
behavior level, action level, and controller level, to 
formalize the processes from task decomposition, role 
assignments, and control performance[113]. A competi-
tive game between three automatic fish and a manually 
controlled fish was performed to validate the effective-
ness of the adopted coordination framework. Zhang et al. 
proposed a coordination method for multiple robotic fish 
in underwater transport task[114]. Synthesizing the ki-
nematic constraints of the robotic fish and the dynamic 
characteristics of the aquatic environment, they used the 
limit cycle approach for pose control and collision 
avoidance, and the fuzzy logic method for orientation 
control. Jia and Wang investigated the distributed lead-
er–follower cohesive flocking problem and the distrib-
uted leader–follower formation flocking problem of 
multiple robotic fish governed by extended second-order 
unicycles[115]. Based on the combination of consensus 
protocol and potential function, a distributed cohesive 
flocking algorithm was designed for the one-leader and 
multiple-follower robotic fish system. Yu et al. com-
bined behavior-based hierarchical architecture with 
fuzzy reinforcement learning to accomplish effective 
coordination in water polo game[116]. Noticeably, since 
October 2007, this multiple robotic fish coordination 
platform has been successfully applied to international 

underwater robot competitions to promote innovative 
research and education in underwater robotics. 

Although the centralized method can produce op-
timal coordination, it tardily responds to external 
changes and is vulnerable to the failure of central plan-
ning. More seriously, the centralized method for multi-
ple robotic fish coordination is infeasible in true oceanic 
open waters since global visual information gathering 
becomes unavailable. To over these drawbacks, decen-
tralized control of multiple robotic fish coordination has 
been investigated. Apparently, in the decentralized mul-
tiple robotic fish coordination, the single robotic fish 
should have a certain degree of autonomy, allowing 
coordinated plan based on local observations. Hu et al. 
firstly developed a vision-based autonomous robotic fish 
capable of 3D locomotion, and presented a decentralized 
control method in target-tracking and collision avoid-
ance task for two robotic fish[117]. Afterwards, they fur-
ther investigated the box-pushing task using three au-
tonomous robotic fish equipped with a monocular cam-
era[118]. Their solution was based on a division-of-labor 
approach that decomposes the task into an observing 
subtask and two pushing subtasks. The subtask consisted 
of a series of behaviors, each designed to fulfill one step 
of the subtask. The robotic fish coordinated through 
explicit communications and distributed the subtasks 
with a market-based dynamic task allocation method. 
Fig. 8 shows a typical experimental scenario of the co-
ordinated box-pushing using three robotic fish. Ryuh et 
al. built a multi-agent robotic fish system together with 
buoy robots for mariculture monitoring, in which mul-
tiple autonomous robotic fish were deployed to collect 
marine information such as water temperature and pol-
lution level[119]. It should be remarked that the achieved 
real-world coordination tasks by existing robotic fish are 
rather limited due to the limited communication, posi-
tioning, and endurance of the single robotic fish. In ad-
dition, the self-organizing mechanisms of fish can be 
emulated and verified with multiple robotic fish coor-
dination system, offering insights into distributed system 
executions and applications. For instance, Jia and Zhang 
discussed a distributed leader-follower flocking problem 
of multiple robotic fish governed by extended sec-
ond-order unicycles[120]. Wang et al. examined  
distributed  control  laws  for  formations  of  swimming  
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Fig. 8  Experimental scenario of underwater box-pushing through three robotic fish. (Adapted from Ref. [118].) 

 
robotic fish generating antiphase sinusoidal body 
waves[121]. More interestingly, Wang et al. in another 
work used the robotic fish to investigate how personality 
traits evolved and effective leadership emerged in a 
group during increasingly difficult tasks[122,123]. Similar 
research results on robotic fish groups may provide in-
sights both for creating new robotic systems and for 
better appreciating the organic self-organization of so-
cial animals. In recent years, bionic robotic fish is in-
creasingly utilized as a new tool to interact with live fish 
for investigating social behaviors in fish group. For 
example, Swain et al. presented a new cyber–physical 
implementation in which the robotic fish can adopt re-
al-time feedback to adjust the motion in response to live 
fish and other environmental features[124]; Marras and 
Porfiri employed a robotic fish and individual golden 
shiners to swim together in a water tunnel at different 
flow velocities and revealed that the biomimetic loco-
motion of the robotic fish was a determinant of fish 
positional preference (see Fig. 9)[125]; Bonnet et al. 
studied the collective decision-making by a group of 
autonomous robots and a group of zebrafish, leading to a 
shared decision about swimming direction and further 
demonstrated the possibility of creating mixed societies 
of vertebrates and robots in order to study or control 
animal behavior[126]. 

6  Summary and outlook 

In this paper, we have presented a survey of exist-
ing works on bionic robotic fish with particular empha-

sis on motion control and motion coordination aspects. 
Specifically, the state-of-the-art hydrodynamic model-
ing and testing, kinematic modeling and control, learn-
ing and optimization, as well as coordination control are 
sequentially reviewed. As a hybrid topic closely com-
bining bionics with robotics, this paper provides per-
spectives  on  modeling  and  control  of  bionic  robotic 
 

 
Fig. 9  Experimental scenario of interaction between robotic fish 
with fish groups. (Adapted from Ref. [125].) 
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fish, especially in the background of AI, robotics, and 
machine learning which are advancing at a rapid pace. 
To provide insights into in-depth research and devel-
opment of bionic robotic fish, we make an attempt to 
distill some critical issues and promising research di-
rections listed below. 

Firstly, benefiting from continuous improvements 
in mechatronic design, motion control, and sensors, 
bionic robotic fish have been developed rapidly in the 
past two decades. They are able to swim faster and faster, 
turn more and more agilely. However, there is still con-
siderable gap on swimming performance between bionic 
robotic fish and real fish. For instance, muskellunge can 
explosively perform a fast-start behavior with a peak 
angular velocity up to 2500 ̊ ·s−1[127]. By contrast, exiting 
robotic fish only realizes a fast-start as high as 670 ˚·s−1 

[106]. This is only a wide gap in horizontal plane. In 3D 
space, muskellunge is able to utilize its pectoral fins for a 
fast and accurate predatory behavior. However, the ex-
isting robotic fish only exhibits some simple 3D ma-
neuvers, like diving, surfacing, and rough 3D turning. 
More delicate pectoral structures and more practical 
closed-loop control methods are needed to enhance the 
motion capability of the bionic robotic fish. Therefore, 
in the future studies, how to create a delicate pectoral 
structure, how to cooperate the pectoral fins and fish 
body as well as the caudal fin, how to perform integrated 
structure-control optimization according to a single ob-
jective or multiple objectives (e.g., speed, efficiency, 
maneuverability, and energy consumption)[128], are key 
to achieving fast and accurate 3D maneuvers. 

The second challenging issue for bionic robotic fish 
is underwater environmental perception. Future appli-
cation of the bionic robotic fish will require them swim 
in unknown and unstructured underwater environments. 
To this end, the capability of the robotic fish to sense the 
underwater environment is essential. Most existing re-
searches tend to concentrate on the motion control, and 
much less attention is paid to underwater environment 
perception. There is no denying that the perceptual abil-
ity of the robotic fish is very limited. For example, some 
vision sensors are employed to detect and avoid obsta-
cles[26,129]. These sensors require high demands for the 
underwater environment, like clearity, lightness, and no 
turbulence. In the meantime, inspire by fish’s lateral 

lines, some artificial ones are designed to detect water 
pressure, even flow direction[130]. But there is still a long 
way to go for the large-scale real-world applications. 
Besides, due to the undulatory propulsion, head yawing 
is an essential feature for the robotic fish, which will 
cause the swing of the sensor data. As far as precision is 
concerned, exclusive multi-sensor data fusion methods 
are demanded. Thus, the bionic robotic fish can effec-
tively percept the underwater environment with a wealth 
of sensor information. 

Third, the question of how to enhance the intelli-
gence is another challenge. At present, AI is one of the 
fastest growing fields of technology, allowing a wide 
range of augment ability and applicability in robotics 
and automation. Although it may be too hasty to apply 
AI in bionic robotic fish, enhancing its intelligence is 
very necessary. After all, actual underwater environ-
ments are usually complex, harsh, and even dangerous, 
higher intelligence can substantially enhance the sur-
vival of the robotic fish. The self-learning capability is 
firstly emphasized. Reinforcement Learning (RL) pro-
vides an excellent framework. Learning from the inter-
action with environment is probably a fundamental idea 
underlying all the theories of learning and intelli-
gence[131]. As for the bionic robotic fish, a great deal of 
environmental information can be utilized to guide its 
action, when various underwater sensors are equipped. 
Combined with the experiences, the robotic fish can 
evolve a much more excellent behavior in complex un-
derwater environment. Although some studies have been 
focused on the application of RL in robotic fish[132,133], 
how to develop the learning algorithms appropriate for 
dynamic underwater environments, like a policy, a re-
ward signal, and a value function is worthy of in-depth 
investigation. In this sense, the level of autonomy and 
adaptability of future robotic systems will be increased. 

Fourth, prominent locomotion capability can hardly 
be attained without powerful actuation system. Now, 
most high-maneuverability robotic fish employ DC 
motors or servomotors as the main actuation sys-
tem[134–136]. The powerful driven capability of the DC 
motor can effectively improve the maneuverability of 
the robotic fish. Besides, other materials such as IPMC, 
shape memory alloy, artificial muscle, nanometer mate-
rial can also be utilized to a variety of different types of 
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bionic robotic fish[53,137]. For example, Jusufi et al. em-
ployed actively controlled pneumatic actuators attached 
to a flexible foil to explore the undulatory locomotion 
and mechanisms for robotic fish body stiffness con-
trol[138]. Remarkably, a soft robotic fish with a soft con-
tinuum body for close-up exploration of underwater life 
was reported[15,139]. Based on a fluidic elastomer actuator, 
this soft robotic fish successfully realized escape ma-
neuvers with a peck angular speed up to 300 ˚·s−1. Al-
though its turning speed is slightly lower than a mo-
tor-driven one’s, the soft robotic fish provides a bioin-
spired design paradigm[140]. Compared with other mate-
rials, fluidic actuator has many advantages, such as high 
speed, light weight, and strong explosive power, which 
is crucial for underwater robots. At the same time, a 
variety of soft actuators have been successfully applied 
in different robots, revealing sufficiently powerful and 
reliable characteristics[141,142]. Therefore, it is hopefully 
to produce a series of technological solutions that can 
constitute the building blocks of future advanced robots. 

Lastly, the coordination control of multiple robotic 
fish system is still an active and challenging topic today. 
From the engineering perspective, homogeneous, het-
erogeneous, and conjoint multiple robotic fish systems 
can offer efficient and agile solution to various under-
water operations. For example, in naval reconnaissance 
task, multiple robotic fish can improve the performance 
of the task execution by sharing collected information 
while reduce the possibility of detection by pretending to 
be a real fish school. From the science perspective, the 
self-organizing mechanisms of fish school and interac-
tion principles among fish may offer insights into ac-
complishing team tasks. Because of the undulatory 
characteristic of the bionic robotic fish, how to make the 
task allocation and scheduling, how to navigate auton-
omously in unknown and changing environments, how 
to improve the existing multi-objective control algo-
rithms are becoming critically important to break 
through the application bottleneck of multiple robotic 
fish system. Certainly, some swarm intelligence algo-
rithms or strategies shed light on the creation of new 
coordinated control methods and can be applied in the 
robotic fish group in the future[143,144]. Furthermore, AI 
also provides a powerful new tool for coordination con-
trol of multiple robotic fish. Depending on excellent 

learning capability of AI, the multiple robotic fish can 
learn executable models of behavior from the observa-
tion and experience. Meanwhile, AI can also be utilized 
for task planning and decision-making in the multiple 
robotic fish coordination, since AI is adept in the core 
strategy issues in complex missions. 
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