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Abstract 

Achieving galloping gait in quadruped robots is challenging, because the galloping gait exhibits complex dynamical behaviors of a 
hybrid nonlinear under-actuated dynamic system. This paper presents a learning approach to quadruped robot galloping control. The 
control function is obtained through directly approximating real gait data by learning algorithm, without consideration of robot’s model 
and environment where the robot is located. Three motion control parameters are chosen to determine the galloping process, and the 
deduced control function is learned iteratively with modified Locally Weighted Projection Regression (LWPR) algorithm. Experiments 
conducted upon the bioinspired quadruped robot, AgiDog, indicate that the robot can improve running performance continuously along the 
learning process, and adapt itself to model and environment uncertainties. 
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1  Introduction 

Galloping is a fast and energy efficient dynamic 
locomotion pattern, which relaxes the static equilibrium 
constraint on how legs can move to support the quad-
rupeds[1]. Quadrupedal animals always take galloping 
gait in the highest running speed[2], for example, chee-
tahs can reach 112 km·h−1 in galloping as reported. This 
advantage arouses great interest of biologists and engi-
neers to imitate the gait in artificial counterparts[3–8]. 

However, achieving galloping gait in quadruped 
robots is challenging. A quadruped running in galloping 
gait acts as an under-actuated and hybrid nonlinear dy-
namic system from the view point of dynamics[9]. Early 
investigations were limited to simulation studies of 
simplified theoretical models with intuitive control 
strategies[10,11]. More practical control approaches were 
presented later[8,12–14]. However, all these control ap-
proaches have not been applied to real robots. Pou-
lakakis et al. implemented the galloping gait on an em-
bodied robot, SCOUTⅡ, but the configuration of one 
actuator per leg limited the gait motions[7]. Park et al. 
presented a control algorithm mimicking leg forces ob-
served in animal running and achieved impressive per-
formance on the MIT Cheetah robot[5], but for simplifi-
cation, the model used for control ignores the leg inertial 

and impulse effect of landing. So far, the unique example 
of robust outdoor galloping gait on real quadruped robot 
was exhibited on the Boston Dynamics Cheetah robot, 
WildCat[6], however, little detail of the control algorithm 
has been revealed. 

One disadvantage of above mentioned model-based 
control approaches is that they cannot handle the 
high-dimension complete models and model uncertain-
ties. Learning approach provides a promising direction 
in quadruped control, by approximating the control 
function directly, avoiding mathematical model of the 
robot and environment that the robot is situated in, and 
adapting to model uncertainties[15]. Krasny and Orin, 
Marhefka and Orin used multiobjective genetic algo-
rithm to search the control parameters embedded in the 
motion primitives, the controllers worked well in simu-
lation scenario[8,14]. Palmer and Orin used fuzzy control 
approach and realized turning motion in quadruped gal-
loping gait[13]. Hugh and McMahon characterized the 
galloping gait with a few parameters and used genetic 
algorithm to search for the parameter values to control a 
quadruped[12]. Chae and Park used genetic algorithm to 
optimize the galloping gait trajectory[16]. However, most 
of the strategies they used are offline learning ap-
proaches and need long time for simulation, limiting 
their applications on real robots. 
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Two problems in learning control hinder most of 
the existing learning methods for online application. 
One problem is difficulties in acquiring training data and 
time-consuming when real robot is in control loop, the 
other is the exponentially growing training data needed 
to cover the system state space as the system dimension 
grows[17]. A feasible choice is the Locally Weighted 
Projection Regression (LWPR) algorithm[18]. The LWPR 
algorithm is an incremental online learning method 
presented by Vijayakumar et al.[18], which was usually 
adopted for robot model learning and trajectory opti-
mization. The LWPR algorithm has been used in con-
trolling biped walking[19], however, so far not yet in 
quadruped galloping control. 

In this paper, a learning control approach for 
quadruped galloping is presented. There are two main 
contributions in this paper. One is that a control frame-
work is presented to transform the control issue of the 
quadruped galloping into the determination of three 
motion control parameters, i.e. gait cycle, leg extension 
length and target speed variation. These parameters can 
be easily determined online using the modified LWPR. 
Another contribution is that we modified the LWPR 
algorithm to map all outputs into one LWPR model 
while preserving the input projection direction corre-
sponding to each output, which further reduces the 
computation load. Using the controller, galloping gait of 
1 m·s−1 was realized on the quadruped robot AgiDog. 

The rest of this paper is organized as follows. The 
learning control framework of the quadruped galloping 
gait is presented in section 2. Section 3 presents the 
formulation of the control modules in the control 

framework. The experiment results and discussion are 
presented in section 4. Conclusions are drawn in  
section 5. 

2  Learning control framework 

2.1  Three-parameter description of galloping loco-
motion 
Transverse gallop is one of the typical galloping 

gaits. Without loss of generality, this paper will focus on 
this type of galloping gait. The gait sequence of gallop-
ing gait is illustrated in Fig. 1. The trailing hind leg, 
leading hind leg, trailing fore leg and leading fore leg are 
abbreviated as TH, LH, TF and LF for short. 

Galloping gait is featured by the early retraction of 
the swing leg[12], that is, the swing leg retracts backward 
before its landing. This behavior lowers the relative 
speed of the foot with respect to the ground at the mo-
ment of contact, thus reduces the impact with the 
ground[20]. The events triggering each leg retraction are 
different, the LH and LF are triggered when the corre-
sponding trailing leg angles with respective to the ver-
tical reduce to zero, the TH is triggered at the time de-
laying a gait cycle T to its previous retracting, while the 
TF begins to swing backward after a fix time interval 
from the swinging backward of the TH which is set to 
T/3 based on Witte’s experimental data[21]. The value of 
T varies with different speeds. 

The second characteristic of the galloping gait is 
the hip thrusting and shoulder braking effect[12]. The 
Center of the Gravity (COG) is not coincidence with the 
hip/shoulder joints, thus the robot has tendencies to pitch 
downward in hind leg stance phase and upward  in  fore 

 

 
Fig. 1  Four-beat transverse galloping gait. 

 
 



 
Liu et al.: Learning Control of Quadruped Robot Galloping 

 

331
 

leg stance phase. To remain stable, the quadruped would 
exert extra torques in hip and shoulder joints, acceler-
ating the robot in hind leg stance phase and decelerating 
the robot in fore leg stance phase. We use Vvar to repre-
sent the difference between the target speed in stance 
phase and the target average speed. 

In stance phase, dynamical behaviour of the leg is 
equivalent to that of a spring-damp system[1]. Besides, 
there is energy loss due to friction, impact, etc. during 
galloping. Thus, in galloping gait control, we reset the 
target leg length Lvar longer than the landing length at 
maximum compression, thereby increasing the nominal 
length of the equivalent spring. In the process of elon-
gation, the leg will inject extra energy to the robot sys-
tem to compensate for the energy dissipation. 

Based on the gait characteristics above described, 
the leg motion in one gait cycle can be characterized as 
follows: 

(1) The TH begins early retraction at a certain 
moment tp = 0. When the TH touches down, it continues 
retracting to maintain target speed vh = vd + Vvar, where vd 

is the desired speed. 
(2) The LH begins early retraction with the same 

target speed at the time when the angle of TH with re-
spect to the vertical reduces to zero. 

(3) The TF begins early retraction at the time tp = 
T/3. When the TF contacts the ground, it retracts to 
maintain target speed vf = vd − Vvar. 

(4) The LF begins early retraction with target speed 
vf when the angle of TF reduces to zero. 

(5) The stance leg length motion is defined by a 
predefined trajectory, in which the leg extends Lvar 

longer than the landing length. Then the robot enters 
flight phase, and the TH begins early retraction at the 
time tp=T, and a new gait cycle begins. 

Thus, we can find that the galloping gait can be 
characterized by three parameters, i.e. gait cycle T for 
coordination of the leg movement sequences, target 
velocity variation Vvar for stance leg motion control, and 
the leg extension length Lvar for system energy com-
pensation. It is naturally to use these parameters for 
galloping gait control. Though Krasny and Orin also 
parameterized the galloping gait to control a quadruped 
model, the parameters are too many to calculate online[8].  
Herr and McMahon also controlled the quadruped gallop 
by determined three parameters[12], but his control 
strategy cannot actively regulate the gait cycle and robot 
system energy as in ours by gait cycle T and leg exten-
sion length Lvar. 
 
2.2  Control framework 

The object of learning is to determine the three 
parameters of the galloping gait for leg motion control, 
thus, the outputs of the learning module are T, Vvar and 
Lvar, while the inputs are robot state variables in apex, 
including height of the COG h, horizontal velocity of the 
COG v, pitch angle p, angular velocity ω and desired 
speed vd. The vertical speed and horizontal position are 
mutually excluded as vertical speed is always zero in 
apex and the horizontal position has no effect on the 
dynamics of the robot. Thus, the control function to be 
learned is defined as: 

( ) ( )T
var var d, , , , , , .T V L f h v p vω=                 (1) 

 

 
Fig. 2  Control framework of galloping gait. 
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When the control parameters are determined, the 
leg movements will be generated. The control function is 
updated every gait cycle according to the control per-
formance. Thus, the proposed control framework con-
sists of motion controller, training data generator, and 
learning controller, as shown in Fig. 2. The motion con-
troller receives the control parameters from the learning 
controller to coordinate motion of legs. The training data 
generator outputs the system state x and the corre-
sponding parameters offset δT, δVvar, δLvar relative to the 
values used in previous gait cycle as the training data. 
The learning controller is activated once in each gait 
cycle in the apex of the flight phase and outputs new 
control parameters for the next gait cycle. 

3  Formulation of the control approach 

3.1  Motion control of the legs 
Leg motions are coordinated based on three control 

parameters, that is, T, Vvar, Lvar. T is used to coordinate 
the leg retraction motion. For the TF and TH, the control 
strategy is described as: 

T flight

T flight p
T

, if ( 0)
,

, if ( 1)

flag

v t flag
l

α α

α α

= =⎧
⎪
⎨ = − =⎪
⎩              

(2) 

where αT is the trailing leg angle with respect to the 
vertical, αflight is the target value, lT is the leg length of 
the trailing leg, flag is a binary-valued indicator. For the 
TH, flag is assigned to 1 at time tp=0, while for the TF, 
flag=1 from tp=T/3, and is set to 0 when they reach back 
limit positions. The retractions of the LH and LF are 
triggered when the corresponding trailing legs are per-
pendicular to the ground. Thus the leading leg control 
strategy is deduced as: 

L t

L p t
L

flight

flight

, if ( 0)
,

, if ( 0)v t
l

α α α

α α α

= ≥⎧
⎪
⎨

= − ≤⎪
⎩           

(3) 

where αL is the leading leg angle with respect to the 
vertical, lL  is the leg length of the leading leg. Based on 
the gait characteristics discussed in section 2.1, we as-
sign different target running speeds in hind leg and fore 
leg stance phases. Thus, the deduced leg control strategy 
in stance phase is: 

h d var

f d var
.

v v V
v v V

= +⎧
⎨ = −⎩

                          (4) 

As described in section 2.1, the stance leg dynamics 
is equivalent to a spring-damp system, the leg length 
function of time is similar to trigonometric function. So 
we approximate the function by a 2-order interpolation 
function as shown in Fig. 3. The formulation of the leg 
length control strategy is: 

( ) 1 2
2 0

0 1 0 2

0 2 0 1
1 2

1 0 1 2 2 0 2 1

( )( )
(t )( )

( )( ) ( )( )
,

( )( ) ( )( )

t t t tl t,l = l
t t t

t t t t t t t t
l l

t t t t t t t t

− −
− −

− − − −
+ +

− − − −
 
(5) 

where l is the leg length, (t0, l0), (t1, l1), (t2, l2) are the 
characteristic points in the function curve, where l0 is the 
nominal leg length, l1 is the minimum leg length esti-
mated using the model presented by Heglund and Tay-
lor[22], and l2= l0+ Lvar, Lvar is determined by learning. 
 
3.2  Modification of the LWPR for multi-output sys-

tems 
3.2.1  Parameter learning algorithm 

The LWPR is a fast, incremental and reasonably 
accurate function approximate method for high dimen-
sion nonlinear functions. Here we explain some basic 
concepts in the LWPR, for details see Ref.[18]. The 
modified LWPR algorithm will be presented in section 
3.2.2. 

In the LWPR algorithm, one LWPR model is built 
for each output. the input space in each LWPR model is 
divided into different regions called receptive fields 
(RFs), each RF is determined by a positive definite dis-
tance matrix D. The weight w of  input  x  is calculated 
 

 
Fig. 3  Leg length trajectory in stance phase. 
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using the Gaussian function 

w(x)=exp[0.5·(x−c)T·D·(x−c)], 

where c is the center of the RF. 
In each RF, a linear function y=βTx is used to pre-

dict the output, where β is coefficient vector of the linear 
model calculated by regression method, y is the esti-
mated output. To reduce the input dimension, the input 
vector is projected to several directions which are most 
relevant to the output using partial least square regres-
sion, thus, a lower dimensional input vector can be ob-
tained and then regression analysis of the lower dimen-
sional input vector and output can be done. 

The LWPR algorithm updates the distance matrix D 
every learning step to improve the predictive perform-
ance, the update rule is: 

1 ,n n Lα+ ∂
+

∂
m = m

m                        (6) 

where m is the vectorization of a matrix M, m = Vec(M), 
D = MT M, M is an upper triangular matrix to ensure D is 
symmetric and positive definite, L is the cost function, α 
is the learning rate. As the training data comes, new RFs 
will be added and some RFs may be deleted as needed to 
fit the target model, and the final output is the weighted 
sum of the local model outputs of the RFs. 
 
3.2.2  Modification 

There are two alternatives to handle multi-output 
function learning in original LWPR algorithm, one is 
building a LWPR model for each output, and the other is 
learning one single LWPR model for all outputs using 
the same projection directions in each RF[18]. However, 
the modified algorithm determines different outputs in 
one model while preserving the projection directions for 
each output, i.e., the algorithm updates the local linear 
models for different outputs in one RF using different 
projection directions. The sum of the residual errors of 
all outputs is used to adjust the shape and size of RF.  
The modified algorithm is more efficient. 

When a training data set (x, y) is obtained, weight 
of the x in each RF is calculated as described in section 
3.2.1, then the RFs in the LWPR model will be updated 
one by one using the data set (x, y). The weighted means 
are firstly calculated as: 

1
0 01

1 ( ),n n n
n W w

W
λ+

+
= +x x x

                  
(7) 

 1
0, 0,1

1 ( ), 1, ,n n n
i i iny W y wy i K,

W
λ+

+
= + =

       
(8) 

where n is corresponding to the nth training data, i in-
dicates the ith element of y. The forgetting factor λ 
makes it possible for the algorithm to adapt to the change 
of the function to be learned over time. The coefficients 
of the local linear model will be calculated using the 
iterative form of the partial least square regression 
analysis. The coefficients are calculated as: 

1
,1

, 1
,

 ,
n
m in

m i n
m i

R

S
β

+
+

+=
                              

(9) 

where 
1 2

, ,   n n
m i m iS S ws+ = +λ , 1

, , res   n n
m i m iR R wsz+ = +λ , the s 

is calculated as: 

1
, , res  ,n n

m i m i w zλ+ = +u u z
                    

(10) 

T 1
, ,n

m is += z u
                             

(11) 

where u is the projection direction, s is the Coordinate on 
projected direction, the subscript i indicates the ith 
output, the m is corresponding to the mth coefficient of 
the linear model, and the superscript n is corresponding 
to the nth update of the LWPR model. z and zres are the 
offset vectors of the x and yi to the weighted mean 
points 1

0
nx +  and 1

,0
+n
iy .The regression analysis is per-

formed on the offset vectors other than the original input 
x and yi, which is to guarantee that the linear models in 
RFs are estimates of the nonlinear function around the 
weighted means. For one output in a RF, the calculation 
processes of Eq. (7) to Eq. (11) are repeated till the co-
efficients are solved, and the z and zres will be updated in 
each iterative step, the update rule is: 

1
res res , ,n

m iz z sβ += −
                        

(12) 

1
, ,n

m is += −z z p
                           

(13) 

where 1 1 1
, , , /n n n

m i m i m is+ + +=p E , 1
, ,   n n

m i m i w sλ+ = +E E z , and 
the subscripts i, m and the superscript n are the same as 
in Eq. (7) to Eq. (11). The update process of the linear 
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model for all outputs in one RF is summarized as: 
//------------------------------------------------------------ 
INPUT: training data set 
(x,y), ( ) ( )T T

d var var, , , , , , ,h v p v T V Lωx y= =  
PROCESS: 

Compute the weight w of x in RF. 
Update the sum of the weight Wn+1. 

Update the weight means of data 1
0
n+x . 

for i = 1 to K 

Update the weight means 1
0,
n

iβ + of the ith element of y.
 

end for 
for i = 1 to K 

Initialize the residuals of the x and yi. 
1 1

0 res 0, ,n n
i iz y y+ +← − ← −z x x . 

for m = 1 to R 
Update the projection direction 1

,
n
m i

+u . 

Project the residual z to 1
,

n
m i

+u . 

Take regression analysis and obtain the rth co-
efficient of the linear model corresponding to the ith 
output. 

Update the residual z and zres. 
end for  

end for 

OUTPUT: update the coefficients ,
n
m iβ of the linear 

models in RF. 
//------------------------------------------------------------ 
The calculation is similar to the original LWPR algo-
rithm, except that, 1 1

0, ,n nw W x+ + are shared by all out-
puts while 1

0,
n

iy + is corresponding to the ith output, and 
the regression calculation process is repeated K times for 
K outputs in one single LWPR model. What’s more, in 
RF update procedure, the prediction error in cost func-
tion L is the sum of the errors of all outputs, that is: 

T 2
11

2

, 1
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(1  )

,

TM
i i i i i

M
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i j
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γ
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+

∑

∑

y y y y
x Px

            (14) 

where the first term is the mean leave-one-out 
cross-validation error of all predictive outputs in one 
LWPR model, and the second term is the penalty term to 

prevent the RF shrinking indefinitely, otherwise the 
number of the LWPR models will grow infinitely. After 
the training process, the derived LWPR model which 
minimizes the cost function L can make a balance be-
tween predictive precision and computation load. 
 
3.3  Generation of training data set 

The training data generator module will monitor the 
control performance under current parameters to gener-
ate a training data set. The training data set includes an 
input vector x and the corresponding output offset vector 
(δT δVvar δLvar)T, which is used to update the LWPR 
model in learning control module. 

The learning algorithm is invoked when the robot is 
at the apex after the fore leg stance phase. During one 
galloping gait, the max height hmax, max pitch angle pmax 

and minimal pitch angle pmin are recorded as indicators 
of the control performance, and the actual gait duration 
is used to renew the gait cycle. To make the robot gal-
loping in a more natural way, we set (15 30 −30)T as the 
target value of (hmax pmax pmin)T in galloping gait, the data 
is based on the zoology experiment on mammals about 
the same size[23]. The control function outputs will be 
updated according to the error vector of the performance 
indicators to their target values. The update rule target 
function output is derived as: 

max
1

var max

var min

,
T h
L p
V p

δ
δ
δ

−
Δ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟= Δ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ Δ⎝ ⎠⎝ ⎠

J                     (15) 

where the ( Δhmax Δpmax Δpmin)T

 
is calculated as (15 30 

−30)T −(hmax pmax pmin)T. The transformation matrix J is 
the Jocobian matrix of the function expressed as: 

( ) ( )T
max max min var var, , ,h p p T L V= g         (16) 

where the function g is a function relative to the gal-
loping gait. We need not to know the exact expression of 
g and we just estimate its Jocobian matrix. The Jocobian 
matrix is estimated using the latest three data points as: 

1
max1 max 2 max 3 1 2 3

max1 max 2 max 2 var1 var 2 var 3

min1 min 2 min 3 var1 var 2 var 3

.
h h h T T T
p p p L L L
p p p V V V

−Δ Δ Δ Δ Δ Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= Δ Δ Δ Δ Δ Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ Δ Δ Δ Δ Δ⎣ ⎦ ⎣ ⎦

J

                                                                               (17) 
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4  Experimental test and discussion 

4.1  Experimental setup 
To verify the effectiveness of the proposed ap-

proach, a small-sized, bioinspired quadruped robot, 
AgiDog, was built with lightweight legs and powerful 
actuators, thus obtaining running frequency up to  
5 Hz[24]. The leg configuration was inspired by the ter-
restrial mammalian animals[25]. The trunk of the robot is 
stiff, and the structural material of the legs is fibreglass. 
The robot is shown in Fig. 4, and its design specification 
is listed in Table 1. 

Each leg is tri-segmented, i.e. the proximal segment 
d1, the middle segment d2 and the distal segment d3. The 
middle segment is a parallelogram mechanism, which 
connects the proximal and the distal using two parallel 
pairs, so the proximal is always parallel to the distal 
throughout the leg movement. Calculation of the leg 
length and leg angle can be seen in our previous paper on 
bounding gait control[24]. Each leg is actuated by two DC 
servo motors mounted on the trunk. While the hip motor 
drives the hip joint co-axially to protract or retract during 
running, the knee motor drives the knee joint through a 
cable mechanism. As shown in Fig. 5, there is  a  boom  
 

 
(a) 

 
(b) 

Fig. 4  AgiDog robot[24]. (a) Solid model; (b) leg design. 
 

Table 1  Design specification of the AgiDog 

Item Type/Value 

Total mass 1.1 kg 

Leg mass 0.03 kg 

Nominal leg length 0.145 m 

Body length (hip to shoulder) 0.2 m 

Body width (hip to hip) 0.1 m 

Leg spring stiffness 15000 N·m−1 

Cable material Nylon 

Cable diameter 0.8 mm 

Servo motor servoKing DS-695HV

Power supply 8.4 V 

Motor mass 68 g 

Stall torque 2.13 Nm at 8.4 V 

Max speed 0.05 s/60˚ at 8.4 V 

Control board NI PXI 8119 

Input/output card NI PXI 6123/6133 

Rotary potentiometer SV01A103 

Pressure transducer FSR402 

 

 
Fig. 5  The experimental setup. 

 
connected  to  the  robot  so  the  robot  can  run  around 
another end of the boom. The control algorithm was 
implemented using the NI PXI 8119 control board, the 
data acquisition and command output were implemented 
using the NI PXI 6123/6133 cards, for details about the 
robot design and experimental setup, refer to Ref. [24]. 
 

4.2  Experimental results 
4.2.1  Galloping before learning 

To test the control framework presented in section 2, 
the control strategy without learning control was applied 
to the AgiDog robot, the results are showed in Fig. 6. 
The control parameter vector (T, Lvar, Vvar) was set to 
value (350, 15, 0.3) which can be chosen by trial and 
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error. The motions of the robot did not seem very smooth. 
The pitch angle motions varied dramatically from one 
cycle to another and were not symmetrical relative to the 
zero. The average horizontal velocity deviated far from 
the target speed, and the height variation amplitude of 
the COG reached up to 50 mm. However, the AigDog 
did not fall down which indicates that the control 
framework is effective and good enough to initialize the 
galloping gait for learning. 
 
4.2.2  Performances of the modified LWPR algorithm 

Fig. 7 shows the comparison of the computational 
efficiency between the LWPR and modified LWPR al-
gorithms. The two algorithms learnt with the same 
sample data, the modified algorithm adopted here took 
641 ms to learn 1000 sample data, while the original 
LWPR algorithm took 1669 ms. This is mainly because 
 

 
Fig. 6  Motion trajectories of the trunk of AgiDog in 1 m·s−1 
galloping before learning. (a) Pitch of the trunk; (b) height of the 
COG; (c) horizontal speed. 
 

 
Fig. 7  Comparison of the computational efficiency between the 
LWPR and modified LWPR algorithms. 

the LWPR algorithm builds one LWPR model for each 
output, but the modified algorithm approximates all 
outputs in one LWPR model while preserving the pro-
jection directions. So the computational efficiency of the 
modified LWPR algorithm is almost 3 times higher than 
the original one. 

RFs are the segmented regions of input space for 
better estimating the target function. Both the number of 
the RFs and metric of the RFs adapt for the prediction 
error. As shown in Fig. 8, the number of the RF grew fast 
before 1000 training data, because more training data 
was out of the existing RFs at the beginning of the 
learning progress and the learning algorithm would as-
sign new RFs continuously. When the number of RFs 
reached 35 at 1000 training data, the growing rate 
slowed down. The average Frobenius norm of the RFs 
showed a decline at 1000 training data as the existing 
RFs began to stop shrinking while the initial Frobenius 
norm of the newly added RF was small.   

Fig. 9 shows the nMSE of the prediction error 
versus the number of training data. The nMSE is the 
average Mean Square Error (MSE) as  an  indication  of  
 

 
(a) 

 
(b) 

Fig. 8 Number of RFs and average Frobenius norm of the RF 
respect to number of training data. (a) Number of RFs; (b) fro-
benius norm of the RF. 
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(a) 

 
(b) 

 
(c) 

Fig. 9  Average Mean Square Error (MSE) of the prediction error. 
(a) Leg extension length offset; (b) target gait cycle offset; (c) 
velocity variation offset.  
 
the prediction error. The nMSE is calculated as: 

2
o o

1
ˆ( )

,
var( )

n
n

nMSE y y
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Y n+
+ −

=
⋅            (18) 

where yo is the target control function output in training 
data, ôy  is the estimated control function output given by 
the LWPR model, Y is the vector consisting of all ex-

isting yo, var(Y) is the variance of the vector Y, n is the 
number of training data. The nMSE decreased dramati-
cally at the beginning of learning process, and remained 
steady after 800 training data, indicating that the LWPR 
model had converged. 
 
4.2.3  Performances of the learning controller 

The control parameters were determined by the 
learning algorithm to improve the galloping gait. As 
shown in Fig. 10a, the average speed before learning was 
smaller than 0.6 m·s−1, while the average speed reached 
0.9 m·s−1 after learning, though it still had a steady-state 
error to the target speed 1 m·s−1, the performance had a 
significant improvement. The apex height in galloping 
gait rose to 10 mm height, which meant that the robot 
began to have the flight phase. The average pitch angle 
did not stay near to the zero horizontal line, but the ab-
solute value had a decreasing trend. 

To test the robust of the controller, the AgiDog was 
commanded to run over a stair obstacle and the snap-
shots are shown in Fig. 11. The stair has two steps while 
each step is 3 mm height. The robot experienced a little 
unstable when it firstly ran up  the  stairs,  but  regained 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 10  Evolution of the robot motions during learning process, 
the scatter lines indicate the average value in the gait, the upper 
bound is the maximum value, and the lower bound is the mini-
mum value. (a) Horizontal speed; (b) height of the COG of robot 
trunk; (c) pitch angle of the robot. 
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Fig. 11  AgiDog runs over obstacle under the learned controller at the speed of 0.8 m·s−1. 

 
dynamic stability after it went to the top of the stair, 
which shows that the controller is robust to the external 
disturbances. 
 
4.3  Discussion 

Though machine learning is a powerful tool to 
solve many control problems, it is less successful in 
quadruped control, especially in quadruped galloping 
control. One reason is that acquiring sample data is dif-
ficult when real quadruped is in the control loop. The 
quadruped may fall down before the control strategy is 
learned, which will cause damage of the robot or at least 
a restart of the system. So most of the researchers study 
learning galloping control in simulation scenario[8,12–14]. 
Thus, in learning control approach, the ability to keep 
the robot from falling before learning is crucial for the 
control strategy. As show in Fig. 6, the control strategy 
presented in this paper successfully stabilized the gal-
loping quadruped, which makes it possible for the 

learning algorithm to improve the controller perform-
ance. As far as we know, this is the first learning control 
framework applied on real quadruped galloping control. 

Calculation efficiency is critical for a learning al-
gorithm to learning online in real quadruped control. The 
gait frequency may reach 5 Hz in our galloping control 
experiment. The algorithm receives the gait data for 
learning at the apex of the flight phase, and renews the 
learning model to output the control parameters for the 
next gait cycle before landing. In the original LWPR 
algorithm[18], the algorithm will build one LWPR model 
for each output in multi-output case or, for simplification, 
determine all outputs in one LWPR model by using the 
same projection directions. In this paper, we combine the 
two advantages of the existing method to learn the con-
trol function in one LWPR model while preserving the 
projection directions for each output. As shown in Fig. 7, 
the modified algorithm is almost three times faster than 
the original one. And the Figs. 8 and 9 show that the 
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modified algorithm also convergences very fast and does 
not lose much calculation precision. 

An advantage of the learning approach is that it can 
improve the control performance by finding appropriate 
control parameters for different states during running. 
As shown in Fig. 10, the average speed, height of the 
apex in flight phase and the pitch angle are all improved 
after learning. Lately, the MIT cheetah realized a high 
speed trot-galloping gait transition, but many parameters 
in the control strategy rely much on manual tuning[26]. 
Thus, learning approach is a very promising method to 
quadruped galloping control. 

Fig. 11 shows the quadruped galloping over a stair 
like obstacle. The purpose of the obstacle negotiating 
experiment is to demonstrate the robustness of the pre-
sented control strategy. Though galloping over a 3 mm 
height obstacle is not very impressive for a 15 cm height 
quadruped, it does show that the quadruped can gallop 
under the ground disturbances. To negotiate more chal-
lenging obstacles, the quadruped needs visual perception 
to identify the obstacles, which is not discussed in this 
paper. 

5  Conclusion 

This paper presents a learning control approach to 
quadruped robot galloping. The control framework is 
designed to mimic gait characteristics of the quadru-
pedal animals, in which the control issue of the quad-
ruped galloping is converted to the determination of 
three motion control parameters. To determine the pa-
rameters, the control function mapping from five state 
variables to the three control parameters is defined. We 
modify the LWPR learning algorithm so that it can ap-
proximate multi-output control function in one single 
LWPR model while ensuring each output has its own 
projection directions, which improves the calculation 
efficiency. The learning control approach controlled the 
bioinspired quadruped robot AgiDog to gallop success-
fully. The running performance is improved continu-
ously during learning. The robot could run over a 
stair-like obstacle which shows that the controller is 
robust. The learning approach presented in this paper 
provides a practical control framework for galloping gait, 
which may even extend to other running gait. In the 
future, an on board controller and power supply will be 

implemented, so the quadruped could run without tether 
and maintain a 3D galloping gait. 
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