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Abstract
We investigated the anti-phytopathogen potential of silver nanoparticles synthesized by the bioreduction of  AgNO3 in Bacil-
lus subtilis culture supernatant against Cercospora canescens, causing leaf spot disease in Vigna radiata (mungbean). The 
biosynthesized AgNPs were characterized using UV–visible spectroscopy that showed a broad Surface Plasmon resonance 
(SPR) peak at 410 nm, dynamic light scattering (DLS) measurement for size distribution and intensity, polydispersity index, 
and zeta potential for determining their stability. Atomic Force Microscopy determined that they were spherical with an 
average particle size of 8 nm. In vitro study and tripartite assay under greenhouse conditions were carried out to evaluate 
the nanoparticles application as a management strategy to control and/ protection from the Cercospora leaf spot disease in 
mungbean. The inhibitory effect of eight AgNPs concentrations was investigated for in vitro antifungal potential assessment; 
biosynthesized AgNPs were found to decrease the fungal growth and increase the mycelial inhibition. Their antagonistic 
effect was also recorded on conidial germination. The conidia under AgNPs exposure showed germination repression. The 
maximum mycelial inhibition (94.00 ± 0.5) was observed for 800 ppm at 96 h. The greenhouse experimentations revealed 
the antifungal efficiency of AgNPs against Cercospora Leaf spot disease in mungbean. The 800 ppm AgNPs concentration 
gave a statistically significant result (46.87 ± 3.74) and proved best in In planta experiment with maximum disease reduction. 
Cercospora leaf spot-induced biochemical alterations were recorded to be reversed towards normal levels after biosynthe-
sized AgNPs application on challenged mungbean plants. Our data unravelled the potential of biosynthesized AgNPs against 
Cercospora canescens challenge in mungbean, pointing towards its application in plant disease management.

Keywords Silver nanoparticles · Cercospora leaf spot disease · Zetasizing · Mungbean

Introduction

Fungal phytopathogens constitute a significant cause of various 
lethal diseases of economically important crops (Agrios 2009). 
Over the period, phytopathogens have evolved themselves, 
developed numerous ways of attacking plants, and overcoming 

plant defence mechanisms (Zvereva and Pooggin 2012). This 
attribute of pathogens caused devastating effects on crop physi-
ology, homeostasis, and production that ultimately resulted in 
systemic damage (Agrios 2005). World widely, approximately 
19,000 fungi are identified with pathogenic effects in crops. 
These pathogens can survive on living and dead plants, and 
they can endure extreme environmental conditions by becom-
ing dormant. About 80% of plant diseases are caused by fungi 
(El Hussein et al. 2014). The fungal pathogens are the source 
of significant threats for human health due to altered crop qual-
ity, decreased crop production, and per annum yield, caus-
ing substantial economic losses for farmers (Ellis et al. 2008; 
Singh et al. 2012). The economic losses and crop damage can 
be lessened through various crop management and disease 
control strategies.

Different agrochemicals products are being developed and 
used by farmers on a large scale. Most of these chemicals 
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have toxic effects on biologically important insects and 
microbes and human beings. Due to their longer active 
period in soil, these agrochemicals leach down into the water 
table, making it toxic for crops and human use. Instead of 
chemically manufactured pesticides, nanoparticles, espe-
cially silver ones, as antimicrobial agents are more techno-
logical and economical. It is used in medicinal treatments as 
an antimicrobial-agents against various plant pathogens was 
not realized till the nineteenth century (Jo et al. 2009). Silver 
exhibits various inhibitory actions against microorganisms. 
It is investigated that silver nanoparticles are most active 
against fungi, bacteria, and other microorganisms at lower 
concentrations and are non-toxic to humans without having 
any side effects (Savithramma et al. 2011). Therefore, its 
antimicrobial characteristics have been studied and imple-
mented more often than any other inorganic antimicrobial 
agent (Kim et al. 2012). Especially silver ions are very reac-
tive like they cause resistance in microbial respiration and 
metabolism, resulting in cell damage. Modification in cell 
membrane structure and functions is also associated with it 
(Pal et al. 2007). Hence, it may be used with a certain level 
of safety to limit the growth of fungal pathogens contrary to 
synthetic fungicides (Park et al. 2006).

The effectiveness of silver particles as antimicrobial 
agents has been amplified many folds with the help of Nano-
technology. Reduction in the particle size of a material is an 
efficient and reliable tool for improving its biocompatibil-
ity (Aggarwal et al. 2009; Adabi et al. 2017). Nanotechnol-
ogy has helped to overcome size limitations and changed 
its outlook as a genetic tool. Nanoparticles having extensive 
surface areas increase their contact with fungi and bacteria, 
thus improving their fungicidal and bacterial efficiency. A 
more extensive surface area to volume ratio of silver nano-
particles (AgNPs) causes enhancement in their contact with 
microorganisms and efficiency in proliferating into their cells 
(Oluwatoyin et al. 2020). Resultantly, when in contact with 
the fungus, bacteria, and other microbes, they take over cellu-
lar metabolism and restrict their growth. AgNPs disintegrate 
the fungal cell wall and damage cellular proteins and DNA 
by breaking sulphur and phosphorus groups, respectively, 
leading to microbial cell death (Morones et al. 2005). Sil-
ver nanoparticles reduce respiration, electron transfer sys-
tem metabolism, and transfer of substrates in the cell mem-
brane of that microbe (Du et al. 2012). Diverse plant disease 
management systems are used to control the damage caused 
by plant pathogens like fungi, bacteria, and other microor-
ganisms. However, the broad spectrum of the host of these 
microbes makes it challenging to control the damage as they 
have developed resistance against these chemical controls 
like pesticides which also cause environmental degradation. 
The development of nanotechnology with silver nanoparti-
cles (AgNPs) being the very reactive ones with its decisive 

antimicrobial actions mentioned above have provided a very 
safe and economical solution in this matter (Kim et al. 2012). 
Hence, in the present study, silver nanoparticles (AgNPs) 
were biosynthesized using B subtilis, and its antifungal 
potential was investigated against Cercospora canescens, a 
fungal pathogen that causes Cercospora leaf spot disease in 
Vigna radiata.

Material and method

Culturing of Bacillus subtilis strain

Bacillus subtilis is a typical Gram-positive bacterium that 
appears rod-shaped and gives fuzzy white to a yellowish, 
rough appearance on growth media. The B. subtilis strain 
 Q3 was cultured overnight on liquid Luria–Bertani (LB) 
medium at 37 °C. The optical density of culture was meas-
ured at 600 nm. The culture supernatant was taken by cen-
trifuging it at 5000 rpm for 10 min.

Biosynthesis of silver nanoparticles (AgNPs)

For optimizing the biosynthesis of silver nanoparticles 
(AgNPs), varying levels of silver nitrate (0.5 mM, 1 mM, 
3 mM, 5 mM) were tested. Each  AgNO3 solution was added 
to 20 ml supernatant of Bacillus subtilis culture, and pH 
was adjusted to 7.0 by adding hydrochloric acid (HCl) and 
sodium hydroxide (NaOH) solutions. The samples were 
incubated at 37 °C with shaking at 180 rpm under dark con-
ditions. Synthesis of AgNPs was observed after 24, 36, 48, 
and 72 h by visualizing the colour change from yellow to 
brown or dark brown compared with LB medium and culture 
supernatant without  AgNO3 (controls). The colour change 
was due to the bioreduction of silver ions of  AgNO3. The 
samples were centrifuged at 13200 rpm for 30 min, and the 
supernatant was discarded, followed by pellet washing with 
1 ml PBS (Phosphate buffered saline), dissolved the pellets 
in 1 ml PBS, and stored at -20 °C as described by Pourali 
and Yahyaei (2016).

Characterization of biosynthesized AgNPs

UV‑spectral analysis

The UV–vis absorption spectra of all samples were meas-
ured in UV–vis BioSpectrometer (Eppendorf). All samples 
were diluted ten times with deionized water. The bacterial 
culture supernatant was used as blank.
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Dynamic light scattering measurement and atomic force 
microscopy

The biosynthesized nanoparticles (NPs) were characterized 
for particles size distribution, zeta potential, and polydis-
persity index by Dynamic Light Scattering (DLS) measure-
ment with ZetaSizer Nano S90 (Malvern Instruments Ltd., 
UK). The stability of AgNPs was determined through zeta 
potential. Moreover, the shape and size of lyophilized bio-
synthesized silver nanoparticles were observed by Atomic 
Force Microscopy (SHIMADZU WET-SPM 9600, JAPAN).

Fourier transform infrared spectroscopy analysis

For Fourier Transform Infrared Spectroscopy (FTIR) analy-
sis, the AgNPs suspensions were lyophilized to make dried 
powder form. The biosynthesized nanoparticles were ana-
lyzed in a frequency range of 550-4000  cm−1. This composi-
tion analysis was performed to determine functional groups 
and molecules involved in the biosynthesis and stabilization 
of NPs.

Characterization of Cercospora canescens

Cercospora canescens is a fungal pathogen of the mungbean 
responsible for Cercospora leaf spot disease. Infected leaves 
of mungbean with Cercospora leaf spot disease symptoms 
(Greyish to brown lesions with reddish-brown margins) were 
collected from various mungbean growing areas of Punjab, 
Pakistan. For characterization, the pathogen isolation was 
mas from the infected tissues (leaves). The infected leaves 
were surface sterilized with 0.1% sodium hypochlorite solu-
tion, washed with distilled water, and then dried on blotter 
paper. The leaves were cut into small pieces and cultured on 
a Potato dextrose agar (PDA) medium. Morphological iden-
tification was made from single hyphal tips cut out under 
the stereoscope and transferring to fresh culture plates. The 
plates were then incubated for 14 days at 28 °C. For molecu-
lar characterization, fungal DNA was isolated (Plattner et al. 
2009), and DNA barcoding was performed based on Internal 
Transcribed Spacer (ITS) region, translation elongation fac-
tor 1-alpha (TEF1-α), actin (ACT), and calmodulin (CAL) 
genic regions in a polymerase chain reaction (PCR). The 
extracted DNA of C. canescens was quantified (NanoDrop 
8000 Thermo Scientific, USA). PCR analysis was performed 
using primers, ITS1/ITS4 (White et al. 1990), EF1-728F/
EF1-986R, ACT-512F/ACT-783R, CAL-228F/CAL737R 
(Carbone and Kohn 1999). PCR amplified products were 
eluted from the gel using FavorPrep gel purification kit 
(FAVORGEN, BIOTECH CORP., Taiwan) and direct 
sequenced by Eurofins DNA sequencing services, USA. 
Generated sequences were trimmed using BioEdit software 
version 7.2. These high-quality trimmed sequences were 

then subjected to BLASTn (Basic Local Alignment Search 
Tool) for homology search.

AgNPs‑fungus cultivation assay for determining 
the inhibitory dose of AgNPs

The in vitro assay was performed to analyze the different 
concentrations of biosynthesized AgNPs against Cercos-
pora canescens to find the best inhibitory doses for in planta 
assay. Serial dilution of AgNPs suspensions was made at 
different concentrations (10 ppm, 25 ppm, 40 ppm, 50 ppm, 
100 ppm, 200 ppm, 400 ppm and 800 ppm),and the inhibi-
tory effect against Cercospora canescens was recorded after 
24, 48, 72 and 96 h. For experimentation, 1 ml of each serial 
dilution of AgNPs was spread evenly on sterilized Petri 
plates containing 25 ml PDA media supplemented with an 
antibiotic (Enrofloxacin). A circular bit (10 mm) of 8 days 
old Cercospora canescens culture was cut with a sterilized 
cork-borer and placed at the centre of each Petri plate. The 
plates were incubated at 28 ± 2 °C, and mycelial growth 
inhibition was calculated using the formula for the myce-
lial growth inhibition percentage described by Bekker et al. 
(2006). The experiments were repeated thrice. Petri plate 
containing fungal growth, devoid of any AgNPs concentra-
tion, was taken as control.

In planta assay for assessing the antifungal 
potential of biosynthesized AgNPs

The antifungal potential of biosynthesized silver nanopar-
ticles (AgNPs) was investigated against Cercospora leaf 
spot (CLS) disease caused by Cercospora canescens using 
Vigna radiata (mungbean) as a host plant. For experiment-
ing, earthen pots were filled with a mixture of soil and com-
post in a 1:1 ratio. About 5–6 seeds of mungbean geno-
type, NCM251-4, were sown in each pot, and an adequate 
amount of moisture was maintained by spraying water twice 
a day for proper plants growth. The 40% dilutions of AgNPs 
concentrations with more than 40% fungal inhibition in 
AgNPs-fungus cultivation assay were used for in vivo anti-
fungal assessment. Conidial suspension of 5 ×  105 concen-
tration per ml was made with the aid of a hemocytometer. 
The pot experiment was conducted in a growth chamber 
under 26 ± 1 temperature and 95% relative humidity (RH). 
The experiment layout was made under a completely ran-
domized design (CRD) and repeated thrice. Each experi-
mental repeat comprised five sets (7-days post-inoculation, 
14-days post-inoculation, 21-days post-inoculation, 28-days 
post-inoculation, and 35-days post-inoculation) each set was 
of 40 plants. Each set was assessed for AgNPs treatments, 
a fungicide (Score, active ingredient Difenoconazole) treat-
ment as a positive control, and without treatment (negative 
control). Inoculation of Cercospora canescens was done on 
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one-month-old mungbean plants through the foliar spray 
method. The efficiency of AgNPs was assessed by applying 
AgNPs suspensions on plant leaves compared to the fungi-
cidal application, and percentage reduction was recorded. 
Disease severity was assessed using the scale given by 
Altas et al. (2018), and %age disease severity was calcu-
lated according to the Townsend-Heuberger formula. Dis-
ease severity was taken as disease reduction or inhibition 
the other way round.

Further experimental trials were carried out in a green-
house with the best AgNPs concentration achieved in the 
above-mentioned experiment to develop management strate-
gies. Three experiments were trialled (i) AgNPs treatment 
post pathogen challenge, (ii) AgNPs treatment pre pathogen 
challenge, and (iii) simultaneous treatment of AgNPs with 
pathogen challenge. Each experiment was carried out with 
three replicates, and each replicate was of 20 plants and 
pathogen-challenged plants as control. After seven days of 
inoculation, as symptoms appeared, the disease severity was 
analyzed on ten randomly selected leaves by the percentage 
of reddish-grey leaf spots covering the leaves of inoculated 
plants.

Statistical analysis

The in vitro assay data for determining the inhibitory dose 
of AgNPs against C. canescens was recorded in terms of 
mycelial growth inhibition percentage. The experiment was 
repeated three times under Completely Randomized Design 
(CRD), and statistical analysis was carried out with one way 
repeated measure analysis of variance (ANOVA). The in 
planta assay was layout under two-factor factorial CRD 
and repeated thrice. Means were compared using Tukey's 
HSD (honestly significant difference) test with Bonferroni 
adjustment to remove Type I error, at a conservative level of 
significance α/s (α = 0.05; s = number of tests or number of 
experiments in an experimental set). The statistical analysis 
was conducted using R Language Software version 4.1.

The antagonistic potential of biosynthesized AgNPs 
on conidial germination

The antagonistic potential of biosynthesized AgNPs was 
examined against Cercospora canescens. We performed the 
cavity slide method as described by Mishra et al. (2014). 
The conidial suspension (5 × 105 concentration per ml) was 
mixed with AgNPs concentrations that showed statistically 
significant percent diseases reduction than fungicide in the 
greenhouse experiment. We filled the conidial suspension-
AgNPs mixtures in a cavity slide. In the fungicide treated 
conidial suspension set, fungicide was mixed with conidial 
suspension and filled in cavity slide. We kept the control 
set separately by filling the cavity with conidial suspension 

without AgNPs and fungicide. The experiment was repeated 
in triplicate. The slides were maintained inside the Petri 
dishes, having sterilized moist blotting paper, and incubated 
at 25 ± 2 °C for 24 and 48 h. After incubation, slides were 
examined under the light microscope (HD1600T, camera 
fitted of Olympus, DP25 Meji Techno, Japan) to observe 
the antagonistic effect of AgNPs on conidial germination.

Effect of AgNPs on Cercospora leaf spot‑induced 
biochemical changes in mungbean

For investigating the AgNPs mediated suppression of Cer-
cospora leaf spot-induced biochemical changes in mung-
bean plant, we had taken the leaves of mungbean plants, 
(i) AgNPs treated plant-16 days post-inoculation (AgNPs 
application-I at 8 days post-inoculation), (ii) Control plant 
(16 days post-inoculation), (iii) and non-inoculated plant. 
Total phenols, polyphenol oxidase (PPO), and peroxidase 
(POD) of each sample were determined by following the 
protocols described by Hameed et al. (2017). Data were ana-
lyzed using a two-way analysis of variance, and means were 
compared using Tukey's HSD test.

Results

Biosynthesis and characterization of AgNPs

The extracellular synthesis of silver nanoparticles (AgNPs) 
was confirmed by the clear transition in yellow to dark 
brown sample color. The color transition of every concentra-
tion was different due to the variation in the concentration of 
 AgNO3 solution. Plain LB and B. subtilis culture supernatant 
without  AgNO3 were used as controls that retained their 
original color; however, the treated samples exhibited slight 
or more color transitions (Fig. 1). A clear light brown to dark 
brown color was observed for all four culture samples after 
24 h of incubation which confirmed the successful biosyn-
thesis of silver nanoparticles (AgNPs). The absorption spec-
tra of all  AgNO3 treated bacterial supernatant were recorded 
after 24, 36, 48, and 72 h incubation. The UV–vis spectral 
analysis of samples showing bioreduction of  AgNO3 after 
24 h of incubation revealed the robust and broad absorption 
peaks at 410 nm wavelengths (Fig. 2).

The zetasizing of biosynthesized AgNPs through 
Dynamic Light Scattering (DLS) gave the average zeta value 
of 100.4 d.nm (Supplementary File 1). The polydispersity 
index (PdI) of biosynthesized NPs was 0.432, showing the 
sample with the best operating distribution algorithm (Sup-
plementary Table 1). The zeta potential of biosynthesized 
AgNPs showed a prominent and sharp peak at -35.5 mV with 
an average zeta potential value, -32.3 (Supplementary File 
2), indicating their long-term stability in solution. Atomic 
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Force Microscopy (AFM) was made for the morphological 
characterization of biosynthesized silver nanoparticles. The 
analysis revealed that biosynthesized silver nanoparticles 
were 8 nm in size and spherical (Fig. 3).

Fourier Transform Infrared (FTIR) analysis was per-
formed to determine the interaction between silver and vari-
ous bioactive molecules involved in the bioreduction and 
stability of biosynthesized AgNPs. FTIR spectrum showed 
the presence of a capping agent (Fig. 4). Furthermore, the 
image analysis revealed no traces of agglomeration and 
flocculation.

Characterization of Cercospora canescens

Isolated Cercospora canescens characterized on a mor-
phogenomics basis was identified as C. canescens. Pure 
colonies were creamy on PDA. The conidiophores were 
simple, light to olivaceous brown, straight or geniculate 
(89.50  µm × 9.70  µm), scars of conidia bearing promi-
nent and conidia were short, hyaline, straight to sub-
straight, obclavate-cylindric, borne solitary measuring 
129.34 µm × 5.69 µm. The isolate(s) bear a single conidium 
at the tip of conidiophores with a prominent scar, as Chand 

et al. (2012) described. The sequence homology search 
using BLASTn showed 100% similarity with Cercospora 
canescens isolate CBS 111,133. The sequences were then 
lodged to the NCBI database, and their assigned GenBank 
accession numbers are MT816500 (ITS), MT822289 (CAL), 
MT831970 (TEF), MT831969 (ACT). The characterized 
culture was labelled as FMB-Cerco-VR and deposited to 
Fungal Molecular Biology Laboratory-Culture Collection 
number FMB 0211.

In vitro assay for assessing the inhibitory dose 
of AgNPs

Due to the slow growth rate of Cercospora canescens, there 
was no visible mycelium growth after 24 h of incubation. 
However, an increase in fungal mycelium was prominently 
visible after 72 and 96 h of incubation. The control plate 
(plates without any AgNPs concentration) showed promi-
nent growth of fungal mycelium, while, AgNPs contain-
ing plates showed less mycelium growth than the control 
(Fig. 5). The AgNPs concentrations with > 40% inhibitory 
effect against the fungal pathogen after 96 h were selected 
for in planta assay (Supplementary Table 2).

Fig. 1  Biosynthesis of silver nanoparticles (AgNPs): Color transition in 
 AgNO3 treated Bacillus subtilis culture supernatant in comparison to 
Control 1 (LB medium) and Control 2 (supernatant without  AgNO3). 

The color transition, yellow to dark brown, in samples treated with dif-
ferent concentration of AgNO3 solution showing reduction of silver ion 
(Ag +) into Ag°

Fig. 2  A graphical view of 
UV–vis spectral analysis show-
ing the absorbance spectrum of 
biosynthesized AgNPs
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Silver nanoparticles mediated conidial germination 
inhibition

We examined the possible antagonistic impact of biosynthe-
sized AgNPs on conidial germination of leaf spot causing 
phytopathogen Cercospora canescens, as this is the chief 
disease-causing step. Our investigation accentuated the 
substantial impact of biosynthesized AgNPs on Cercospora 
canescens. After 24 h of incubation, conidial germination 
was completely inhibited in AgNPs treated sets and in a 
fungicide treated set. While 70% conidial germination was 
observed in the control set. After 48 h of incubation, 100% 
inhibition in conidial germination was observed in AgNPs 
treated sets, whereas 30% inhibition in conidial germination 
was observed fungicide treated set. It demonstrated the effi-
cacy and advantage of biosynthesized AgNPs over fungicide 
in controlling and managing the disease. However, 100% 
conidial germination was observed in the control set.

Tripartite interaction assay among Vigna radiata, 
Cercospora canescens, and biosynthesized silver 
nanoparticles (AgNPs)

The AgNPs concentrations with more than 40% fungal inhi-
bition in AgNPs-fungus cultivation assay were used for in 
planta antifungal assay to evaluate their antifungal profi-
ciency. The efficacy of AgNPs was evaluated by applying 
AgNPs suspensions on plants leaves, compared with fun-
gicidal application and plants without any application were 

kept as a negative control. The 800 ppm AgNPs suspension 
showed maximum disease inhibition. The 800 ppm AgNPs 
concentration was statistically significant and higher than 
other treatments with 46.87 ± 3.74 percent diseases reduc-
tion. The disease inhibition with fungicide and AgNPs 
suspension of 200 ppm concentration was similar and sta-
tistically non-significant by scoring the mean ± SE values 
27.00 ± 2.9 and 26.40 ± 1.57 respectively (Fig. 6 and Sup-
plementary Table 3). The disease management scheme by 
nanoparticles application as nanofungicides experimented in 
a greenhouse with the best silver nanoparticles concentra-
tion (800 ppm) attained in the abovementioned experiment. 
The nanoparticles application plan was determined by three 
experiments (i) AgNPs treatment post pathogen challenge, 
(ii) AgNPs treatment pre pathogen challenge, and (iii) simul-
taneous treatment of AgNPs with pathogen challenge. In the 
first experimental trial, post-inoculation AgNPs application 
was made. AgNPs were applied on plants after the visible 
appearance of characteristic symptoms (after seven days of 
fungal inoculation), and at the time of first application of 
AgNPs, more than 40% disease severity was observed in 
all plants. After eight days of AgNPs application-I (16 days 
post-inoculation), disease severity in AgNPs treated plants 
was reduced to 35%; however, 65% disease severity was 
observed in control plants (pathogen challenged plants with-
out AgNPs treatment). The second application of AgNPs 
was performed after 18 days post-inoculation (10 days after 
AgNPs application-I). After eight days of AgNPs applica-
tion-II (26 days post-inoculation), the disease was reduced 

Fig. 3  Atomic Force Micros-
copy (AFM) image of biosyn-
thesized silver nanoparticles 
(AgNPs): (a) 3D image of 
biosynthesized AgNPs, (b) 
2D image of biosynthesized 
AgNPs, (c) AFM profiling of 
silver nanoparticles for width, 
height, and angle
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Fig. 4  Fourier Transform Infrared (FTIR) spectrum of biosynthe-
sized silver nanoparticles: FTIR spectrum showed intense absorption 
peaks at 3224.28  cm−1, 3060.87  cm−1, 2957.36  cm−1, 1554.63  cm−1, 
1452.61   cm−1,1397.79   cm−1, 1080.88   cm−1, 922.25   cm−1 and 
665.9   cm−1, indicating the presence of capping agent. A strong and 
broad absorption peak was observed at 3224.28   cm−1, showing 
stretching of OH, which indicated the presence of alcohol and phenol 
compounds. The band observed at 3060.87  cm−1 showed the stretch-
ing of = C-H attributed to the aliphatic alkene functional group. The 
absorption peak at 2957.36   cm−1 and 922.25   cm−1 attributed to the 

strong stretching of the C-H group, which shows the presence of 
the alkane group; however, the band observed at the 1554.63   cm−1 
peak demonstrating N–H bending that depicted the presence of 
the amide group in the culture supernatant. The absorption peak at 
1452.61  cm−1 could be attributed to the presence of the methyl group 
as it indicates  CH3 bending. The band at 1397.79   cm−1 showed 
a strong  NO2 stretching. A strong C–O–C stretching observed at 
1080.88  cm−1, indicating the presence of an ether group. The strong 
C–Cl stretch at 665.9 cm.−1 credited the alkyl halides group

Fig. 5  A graphical representation of the potential of different AgNPs concentrations in inhibiting mycelial growth for 48, 72 and 96 h
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to 10%; however, control plants were 80–90% damaged due 
to disease (Supplementary Fig. 1).

In the second experimental trial, pre-inoculation AgNPs 
application was carried out. Silver nanoparticles suspen-
sion was sprayed 24 h and 48 h before inoculation. The 
pre-inoculation AgNPs application was performed on two 
sets of plants. One set was subjected to AgNPs application 
24 h before inoculation, and AgNPs application on the sec-
ond set was 48 h before inoculation. After eight days post-
inoculation, ≤ 5% disease severity was recorded in both sets 
(Supplementary Fig. 1). While, in control plants (pathogen-
challenged plants without pre-inoculation AgNPs applica-
tion), approximately 40% disease severity was observed. 
It indicated that silver nanoparticle application on plants 
before disease appearance might reduce disease occurrence 
and suppress disease onset. The result directed that AgNPs 
protect mungbean plants against Cercospora canescens by 
hindering conidial germination, which alleviated fungal 
potential and disease occurrence.

In the third experimental trial, foliar spray of conidial 
suspension of C. canescens (pathogen) and AgNPs suspen-
sion was done simultaneously, though control plants were 
the only pathogen challenged. After seven days of inocu-
lation, AgNPs treated plants remained healthy, showed 
no traces of disease, while pathogen challenged plants 

(control; without AgNPs application) showed approxi-
mately 40–45% disease severity (Supplementary Fig. 1). 
These observations indicated that AgNPs protect the plants 
against fungal pathogens and can overcome the inoculum 
potential of the pathogen responsible for disease onset.

AgNPs mediated impact on Cercospora leaf 
spot‑induced biochemical alterations in mungbean

Total phenols, polyphenol oxidase (PPO), and peroxidase 
(POD) were estimated in inoculated mungbean plants after 
AgNPs applications, control (inoculated mungbean plants 
without AgNPs application), and non-inoculated plant. Total 
phenols were recorded to be significantly higher in the non-
inoculated plant than control (16 days post-inoculated plant 
without AgNPs application), and statistically non-significant 
as compared to AgNPs treated challenged plant (16 days 
post-inoculated plant with AgNPs application at 8 days post-
inoculation). We found POD activity significantly less in the 
control plant. However, significantly increased activity was 
recorded in non-inoculated plants and AgNPs treated chal-
lenged plants compared to control plants. Non-significant 
change in POD activity was observed in AgNPs treated chal-
lenged plant as compared to the non-inoculated plant. We 
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Fig. 6  A graphical representation of assessment of the antifungal potential of biosynthesized AgNPs on mungbean plants against Cercospora 
canescens under greenhouse conditions
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recorded similar results in the total and polyphenol oxidase 
(PPO) assay (Supplementary Fig. 2).

Discussion

Silver nanoparticles possess an antimicrobial potential that 
increased their production at the commercial level. Due to its 
antimicrobial potential, silver nanoparticles are used in plant 
disease prevention and management. These nanoparticles 
display various modes of action for disease inhibition, mak-
ing them suitable for controlling different phytopathogens 
in a much safer mode than other chemical fungicides (Park 
et al. 2006). The mechanism of AgNPs biosynthesis involves 
nitrate reductase in a mixture (supernatant +  AgNO3), which 
helps in transferring electrons from silver ions resulting 
AgNPs synthesis. The change in colour during the biosyn-
thesis process is due to the reduction of Ag + into Ag° by 
using the active biomolecules of supernatant (Sadowski 
et al. 2008). In the present study, the biosynthesized AgNPs 
showed an absorbance peak at 410 nm, indicating their 
smaller size and spherical shape. The peak of the UV–vis 
spectrum located at 420 nm is reported for metallic NPs 
with a size range of 2 nm to 100 nm (Sastry et al. 1997). In 
this study, the biosynthesized AgNPs revealed -35.5 zeta 
potential, which showed its stability in solution as the high 
negative zeta potential value depicts long-term stability of 
AgNPs due to negative-negative electrostatic repulsive force 
(Mukherjee et al. 2014). The particle size obtained through 
DLS in our study was100.4 d.nm (zeta average), i.e., the 
average size of our biosynthesized AgNPs along with the 
salvation layer. The DLS measurement gives the hydrody-
namic diameter of nanoparticles; it does not give the "core" 
particle size. Hence, the particle size in zeta average (d.nm) 
is based on core particle size, ions concentration, and types 
of ions in the medium and surface structures (Singh et al. 
2017). Atomic Force Microscopy (AFM) allows 3D imag-
ing of NPs, so it is possible to measure the height of bio-
synthesized NPs qualitatively. However, scanning electron 
microscopy (SEM) and transmission electron microscopy 
(TEM) determine 2D imaging. Therefore, AFM analysis was 
carried out that demonstrated nanoparticles of 8 nm size.

The present study focused on investigating the anti-
fungal efficacy of biosynthesized silver nanoparticles 
(AgNPs) on Cercospora leaf spot (CLS) disease that 
causes 60–100% yield losses during the most favourable 
climatic conditions; warm temperature along with high 
humidity. Spore germination is an indispensable epi-
sode in protonema establishment, affects adversely under 
stressed environmental cues (Judelson and Blanco 2005). 
Hence, we attempted to evaluate the fungicidal potential 
of biosynthesized AgNPs, and their antagonistic impact 
on conidia (asexual spores). The result showed that in the 
presence of biosynthesized AgNPs, conidial germination 

was inhibited. The result of this study showed congruity 
with the investigation of Chen et al. (2020). Metal nano-
particles possess antimicrobial effects, which make them 
suitable to be used against various fungus and bacteria. 
The silver nanoparticles' in-vitro and in planta assess-
ments revealed that AgNPs effectively inhibit fungal 
mycelial growth and diseases.

Nanoparticles inactivate the crucial microbial enzymes 
that lead to ROS production (reactive oxygen species), ulti-
mately fatal for microbial cells (Allahverdiyev et al. 2011). 
The phenolic compounds of plants play a significant role 
in enhancing the mechanical strength to restrict the patho-
gen spread. These are involved in providing defense by 
synthesizing lignin and suberin that ultimately increase 
the strength of the plant cell wall. The level of phenolic 
compounds is higher in healthy plants than in diseased 
plants (Singh et al. 2014). Peroxidases (POD) provide rapid 
defense through suberification, lignification, healing of 
injuries, and regulating cell wall elongation (Sulman et al. 
2001; Maksimov et al. 2014). Polyphenol oxidase (PPO) 
has a significant role in the primary stages of plant defense 
at which phenols, like chlorogenic acid are released due 
to damage to the plant membrane. Moreover, PPO helps 
catalyze phenolic oxidation to free radicals, which ulti-
mately react with biological molecules and create unfa-
vorable conditions for the development and survival of 
pathogens (Mohamed et al. 2012). Disease reduction in 
plants is associated with activation of defense responses 
responsible for thwarting disease infection upon host and 
pathogen interaction (Jones and Dangl 2006). In addition 
to physical and chemicals defense-related barriers, plants 
have evolved multiple defense responses which activate 
upon pathogen attack and prevent the spread of patho-
gen infection (Vanitha et al. 2009). We investigated the 
alteration in the biochemical dynamics of mungbean plants 
infected by Cercospora leaf spots before and after biosyn-
thesized AgNPs application. In the present study, quantita-
tive estimations of total phenolic compounds, peroxidase 
(POD), and polyphenol oxidase (PPO) were determined 
in inoculated mungbean plants after AgNPs application in 
non-inoculated plants and control plants (under pathogen 
challenge without AgNPs application). Variation in the lev-
els of these defense-related compounds was observed. We 
found the level of total phenols, peroxidases, and polyphe-
nol oxidase was significantly low in control plants (chal-
lenged plants) compared to non-inoculated plants and chal-
lenged plants with AgNPs application. However, the level 
of these compounds in non-inoculated plants and AgNPs 
treated challenged plants were statistically non-significant. 
In our study, Cercospora leaf spot-induced biochemical 
alterations were recorded to be reversed towards normal 
levels after biosynthesized AgNPs application on chal-
lenged mungbean plants.
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