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Francisco J. Gea1 & María J. Navarro1
& Laura M. Suz2

Received: 11 April 2018 /Accepted: 9 September 2018 /Published online: 2 October 2018
# Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2018

Abstract
In autumn 2016, symptoms of cobweb disease were observed on cultivated Pleurotus ostreatus crops in Spain. Based on
morphological and genetic analyses, the causal agent of cobweb was identified as Cladobotryum mycophilum. Two cropping
trials, inoculated with C. mycophilum, were set up to evaluate the pathogenicity of this causal agent of cobweb. Two different
inoculation methods were used: (i) an agar plug was taken from the growing edge of a C. mycophilum isolate and placed in the
centre of each hole in the block of P. ostreatus substrate (IP), and (ii) spraying each hole with a conidial suspension (ISC). In both
trials, there were significant differences in disease incidence between the controls and the inoculated samples, but there were no
significant differences between the two inoculation treatments. Between 75 and 87.5% of the blocks of the IP treatments and
100% of the blocks of the ISC treatments showed cobweb symptoms. Cladobotryum mycophilum was consistently re-isolated
from the inoculated blocks (100%). These findings suggest thatC. mycophilum can equally cause cobweb disease in A. bisporus,
P. eryngii, and P. ostreatus mushroom crops.
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Pleurotus ostreatus (Jacq.) P. Kumm., commonly known as
the oyster mushroom, is one of the most widely cultivated and
consumed edible mushrooms in the world. This species pos-
sesses nutritional and medicinal benefits and some attractive
culinary features such as high fibre and low-fat contents.
Oyster mushroom also has antioxidant, antiviral, antimicrobi-
al, antitumor, antimutagenic, antihypercholesterolemic,
antihyperglycemic, and hepatoprotective activities (Wasser
and Weis 1999; Iwalokun et al. 2007; Patel et al. 2012;
Rodríguez Estrada and Pecchia 2017). Pleurotus ostreatus is
a very versatile mushroom because it can use substrates with a
C/N ratio ranging between 30 and 300:1 (Muez and Pardo
2001). It is often viewed as one of the easiest and most cost-
effective mushrooms to cultivate at different commercial and

experimental scales due to its capability to grow in a wide
range of agricultural and forest wastes using different produc-
tion methods (Bonatti et al. 2004; Chang and Miles 2004;
Mandeel et al. 2005; Sánchez 2010; Rocha Vieira and
Nogueira de Andrade 2016). In Spain, P. ostreatus is grown
on pasteurized lignocellulosic substrates made of wheat and
barley straw supplemented with delayed-release nutrients
(protein-rich supplements) and packed in black plastic blocks
(18–20 kg) with pre-punched holes (Muez and Pardo 2001;
Picornell et al. 2017). Oyster mushroom production is estimat-
ed to be more than 16,800 tons per year in Spain.

In autumn 2016, symptoms of cobweb were observed af-
fecting several clusters of mature fruitbodies on cultivated
oyster mushroom farms in Castilla-La Mancha (Spain).
Cobweb disease is found in all mushroom-growing countries
worldwide and generally causes major crop losses, especially
in white button mushroom [Agaricus bisporus (Lange)
Imbach)] (Carrasco et al. 2017a; Verma 2017). Recently,
Cladobotryum mycophilum (Oudemans) W. Gams &
Hoozemans has been identified as the causal agent of cobweb
in A. bisporus Spanish mushroom crops (Gea et al. 2012;
Carrasco et al. 2016) and cultivated king oyster mushroom
[Pleurotus eryngii (DC.: Fr.) Quél.] in Spain and Korea (Gea
et al. 2011; Back et al. 2012; Kim et al. 2012). The aims of this
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study were to identify and characterize the pathogen respon-
sible for cobweb disease in P. ostreatus Spanish crops and to
test the pathogenicity of the cobweb causal agent.

Cobweb appeared at the first flush, growing first at the base
of the fruitbodies, among the stems that form part of the clus-
ter, subsequently spreading to the rest of the fruitbody by
means of a fine grey-white mycelium, finally sporulating to
produce masses of dry spores. The pinheads and fruitbodies
concerned turned pale yellow and eventually rotted. The my-
celium quickly covered oyster mushroom debris, pinheads,
stalks, pileus and gills, resulting in decomposition of the entire
fruitbody (Fig. 1). Unlike A. bisporus, no symptoms of cap
spotting were seen on the fruitbodies of P. ostreatus, although
some oyster mushrooms showed colonies of the
mycopathogenic fungus growing over their surface.

Samples were collected in autumn 2016 from an oyster
mushroom farm situated in Castilla-La Mancha (Spain).
Symptomatic portions of fruitbodies of P. ostreatus were
placed on potato dextrose agar (PDA; Oxoid, England) medi-
um at 22 °C in darkness. Two isolates were used in this study.
Fungal structures were mounted on glass slides with lactic
acid for microscopic examination. Measurements of all taxo-
nomically relevant characters (conidium size, number of septa
per conidium) were performed using Nikon software (NIS-
Elements Advanced Research, Nikon, Japan). One hundred
conidia were measured from each isolate. The presence or
absence of phialide extensions or rachides was recorded.
Chlamydospore and/or microsclerotium production, the colo-
ny reverse colour and the odour detectable upon lifting the lid

of the Petri dish was also annotated. The isolates were then
identified according to the descriptions from Gams and
Hoozemans (1970), Rogerson and Samuels (1994), Carrasco
et al. (2016, 2017a) and Gea et al. (2017).

Aerial and cottony mycelium spreads rapidly on PDA from
the inoculation plug. The whitish to buff mycelium sporulates
profusely in a few days, mainly at the edge of the colony. The
colonies acquire yellow hues and then turn pink, before evolv-
ing to a strong blood red when old because the pigment
aurofusarin is copiously secreted by the hyphae submerged
in the medium while the aerial mycelium remains white
(Põldmaa 2011). These isolates produce chlamydospores and
some microsclerotia (Lane et al. 1991; McKay et al. 1999),
and the cultures lack the distinctive camphor odour, normally
associated with C. mycophilum (Gams and Hoozemans 1970;
Carrasco et al. 2016, 2017a; Gea et al. 2017).

Conidiogenous cells were with no evident rachis. Conidia
were hyaline, cylindrical to ellipsoidal, sometimes ovoid, with
a prominent and central hilum, (12.2)15.0–29.8(34.8) μm
long, (4.0)5.8–14.8(16.7) μm wide, 0- to 2-septate, with a
predominance of 2-celled (80%) conidia. The isolates were
identified as Cladobotryum mycophilum based on the above
characteristics.

Genomic DNA from the two fungal cultures (PO1 and
PO2) was isolated using Extract-N-Amp (Sigma) and the
Internal Transcribed Spacer (ITS) region amplified using the
primers ITS1F and ITS4 (Gardes and Bruns 1993; White et al.
1990). PCR products were purified using ExoSAP-IT (GE
Healthcare) and sequenced bidirectionally using a
BigDyeVR v.3.1 Cycle Sequencing Kit (Applied
Biosystems) on an ABI3730 Genetic Analyzer. DNA se-
quences were edited in Sequencher v.4.2 (Gene Codes Inc.)
and aligned together with selected sequences from
C. mycophilum, C. varium and C. dendroides downloaded
from GenBank (Gea et al. 2017, 2018), using the algorithm
Q-INS-i implemented inMAFFT v7.164b (Katoh et al. 2002).
Phylogenetic analyses were carried out under the maximum
likelihood criterion using RAxML (Stamatakis 2014) imple-
mented in raxmlGUI v1.3.1 (Silvestro and Michalak 2012).
The GTRGAMMA model of evolution was used and branch
support was assessed using nonparametric bootstrap with
10,000 replicates. The resultant tree was rooted with
Sepedonium sp. (HQ604857).

Identical ITS sequences were obtained from PO1 and PO2
fungal isolates (GenBank accession Nos. MH042302 and
MH042303). BLASTsearches showed highest similarity with
ITS sequences of C. mycophilum (teleomorph Hypomyces
odoratus). Phylogenetic analyses showed that the isolates
from P. ostreatus clustered with isolates belonging to the
C. mycophilum Group I as defined by Gea et al. (2017),
confirming their identification (Fig. 2).

Two cropping trials (A and B) were set up in an experi-
mental mushroom growing room following the standard
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Fig. 1 Symptoms of cobweb in Pleurotus ostreatus mushroom crops: a
Cobweb mycelium (Cladobotryum mycophilum) growing over
P. ostreatus primordia; b-c-d Cobweb mycelium growing over
P. ostreatus fruit bodies; e Cladobotryum mycophilum colonies growing
over the surface of the oyster mushrooms; f Pleurotus ostreatus fruit
bodies attacked by cobweb mycelium (Cladobotryum mycophilum)
turned pale yellow and eventually rotted
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practices used in Spanish oyster mushroom farms. Each path-
ogenicity trial was performed using 28 blocks (18.4 kg, 5 pre-
punched holes, 2.5 cm in diameter) containing pasteurized,
spawned (strain PLC-35, Champinter Soc. Coop.,
Villamalea, Albacete, Spain), supplemented (50 g Super
Champ block−1) and incubated P. ostreatus substrate. Two
different inoculation methods were carried out using
C. mycophilum isolate PO2: IP and ISC. In the IP method all
the holes of the eight blocks were inoculated fourteen days
after starting the crop cycle (when the mycelium of
P. ostreatus had colonized the whole substrate) with a 1 cm
agar plug taken from the growing edge, inverted and placed in
the centre of each hole. In the ISC method, all the holes of the
eight blocks were inoculated nineteen days after starting the
crop cycle, when primordia had formed, with a conidial

suspension (1 × 106 conidia ml−1, 10 ml per block). The holes
of the six remaining blocks were sprayed with sterile distilled
water as a control, and another six blocks were inoculatedwith
1 cm agar plug without C. mycophilum mycelium, inverted
and placed in the centre of each hole.

The environmental conditions maintained throughout
cropping were: temperature 15–18 °C, 80–90% relative hu-
midity, 600–900 ppm CO2 and cool-white fluorescent light.
Pleurotus ostreatus fruitbodies were harvested daily for each
treatment during the yield period. The numbers of clusters per
block and the total weight of the fruiting bodies were recorded
for each treatment. Harvested mushrooms were classified as
either healthy or infected by C. mycophilum. The effect of
cobweb disease on oyster mushroom productivity was evalu-
ated by the disease incidence, calculated as the ratio of the
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Fig. 2 Maximum likelihood tree using full nuclear ribosomal internal
transcribed spacer (ITS) sequences from Cladobotryum spp. Only
nonparametric bootstrap values over 70 are shown above or below

branches. Sequences obtained in this study from isolates PO1 and PO2
growing on Pleurotus ostreatus are highlighted in bold. Sepedonium sp.
was used to root the tree
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fresh weight of total yield of diseased fruiting bodies to the
total weight of harvested mushrooms (healthy and diseased).
Blocks were also inspected daily for cobweb symptoms, and
Koch’s postulates were verified by re-isolating the pathogen
on PDA from the artificially inoculated fruitbodies.

An analysis of variance (ANOVA) was used to test for the
effect of treatment based on the different yield parameters.
Data were analyzed separately in each trial. A Fisher’s LSD
(least significant difference) means separation test was used to
compare means (P < 0.05). Percentages were arcsine square-
root transformed before analysis. Data are reported as back-
transformed means. Statistical analyses were carried out using
Statgraphics Plus 5.1 (Statistical Graphics Corp., Princeton,
NJ).

In both trials, the first symptoms of cobweb observed in IP
treatments were noticed seven days after inoculation, while in
the ISC treatments the first symptoms of cobweb were noticed
six days after inoculation. In both cases the symptoms were
characterized by the mycelium of C. mycophilum growing at
the base of the fruitbodies. Another symptom initially ob-
served in the ISC treatments was the presence of small colo-
nies of C. mycophilum growing on the surface of the
fruitbodies. The control blocks remained symptomless.

In trial A, 87.5% of the blocks of the IP treatment and
100% of the ISC treatment showed cobweb symptoms and
there were significant differences between the control (C)
and the inoculation treatments (IP, ISC) in the percentage of
clusters of oyster mushroom affected by cobweb, in the dis-
ease incidence, and in the yield of diseased oyster mushrooms
(Table 1). There were no significant differences between the
two inoculation treatments (IP, ISC) in any case.

In trial B, 75% of the blocks of the IP treatment and 100%
of the ISC treatment blocks showed cobweb symptoms and
there were significant differences between the control (C) and
the inoculation treatments (IP, ISC) in the percentage of clus-
ters of oyster mushroom affected by cobweb, in the disease
incidence and in the yield of diseased oyster mushrooms
(Table 1). There were no significant differences between the
two inoculation treatments (IP, ISC) in any case.

The symptoms of cobweb observed on cultivated oyster
mushroom are very similar to those described for king oyster
fruitbodies (Gea et al. 2017). In both cases,C. mycophilum has
been identified as the causal agent of cobweb disease in
Spanish P. ostreatus and P. eryngii mushroom crops. Both
the morphological characteristics and the sequenced ITS re-
gions of the C. mycophilum isolates collected from
P. ostreatus crops in Spain are similar to those described for
isolates of C. mycophilum collected from Spanish A. bisporus
and P. eryngii mushroom crops (Carrasco et al. 2016; Gea
et al. 2017). Phylogenetic analyses confirmed the
identification and showed that the isolates from P. ostreatus
clustered with isolates belonging to the C. mycophilum Group
I, as defined by Gea et al. (2017) and isolates from
A. bisporus . These findings seem to suggest that
C. mycophilum can indifferently cause cobweb disease in
A. bisporus, P. eryngii, and P. ostreatus mushroom crops.
Recently, symptoms of cobweb have also been observed on
cultivated shiitake [Lentinula edodes (Berk.) Pegler] mush-
room crops in Castilla-La Mancha (Spain), although the caus-
al agent was identified as Cladobotryum dendroides (Bull.:
Fr.) W. Gams & Hoozemans (Gea et al. 2018). Therefore, an
accurate identification of the cobweb causal agent is necessary

Table 1 Effect of two inoculation
methods of Cladobotryum
mycophilum isolate PO2 on the
total oyster mushroom yield in
two pathogenicity trials (A and
B). Values followed by different
letters in the columns (comparing
each trial) are significantly
different according to Fisher’s
LSD (least significant difference)
at P = 0.05

Trial Treatmenta Clusters of oyster mushroom
affected by cobweb (%)

Disease incidence (%) Yield of diseased oyster
mushrooms (kg/block)

Trial A CP 0.0 a 0.0 a 0.0 a

CSC 0.0 a 0.0 a 0.0 a

IP 70.8 ± 35.2 b 64.3 ± 35.0 b 2.6 ± 1.6 b

ISC 82.1 ± 24.4 b 85.9 ± 31.6 b 3.4 ± 1.3 b

P = 0.0000 P = 0.0000 P = 0.0000

F3,25 = 22.89 F3,25 = 23.08 F3,25 = 45.44

Trial B CP 0.0 a 0.0 a 0.0 a

CSC 0.0 a 0.0 a 0.0 a

IP 84.4 ± 35.2 b 82.9 ± 35.9 b 3.1 ± 1.4 b

ISC 69.1 ± 34.2 b 80.6 ± 32.2 b 2.9 ± 1.2 b

P = 0.0000 P = 0.0000 P = 0.0000

F3,26 = 21.17 F3,26 = 23.81 F3,26 = 21.27

a CP: Control consisting on oyster mushroom blocks inoculated with a 1 cm diam potato-dextrose agar plug
without C. mycophilum mycelium and placed in the centre of the pre-punched holes in the blocks; CSC: Control
consisting on oyster mushroom blocks sprayed with sterile distilled water; IP: Oyster mushroom blocks inocu-
lated with a 1 cm diam potato-dextrose agar plug taken from the growing edge of the C. mycophilum isolate and
placed in the centre of the pre-punched holes in the blocks; ISC: Oyster mushroom blocks inoculated with a
conidial suspension of 106 conidia ml−1
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for effective management of the disease, especially in view of
the propensity of C. mycophilum to develop fungicide resis-
tance (McKay et al. 1998; Grogan 2006; Carrasco et al.
2017b).

The results obtained in the two pathogenicity cropping tri-
als indicate that cobweb successfully established itself with
the two different inoculation methods used in the inoculated
blocks but was not detected in the control blocks. The findings
confirm that the fragments of mycelium and conidia of
C. mycophilum can infect the substrate completely colonized
by the vegetative mycelium of P. ostreatus, and that air-borne
conidia can infect P. ostreatus primordia and fruitbodies.
These observations agree with those of Adie et al. (2006) in
A. bisporusmushroom crops, who stressed the possibility of a
rapid and widespread dispersal of conidia within the facility.

The present study widens the list of culinary-medicinal
mushrooms that may be affected by cobweb disease and un-
derlines the fact that C. mycophilum is now probably the most
common causal agent of cobweb disease in cultivated mush-
rooms crops worldwide.
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