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Abstract
As a new drive system for electric vehicles, the dual-mode coupling drive system can automatically switch between centralized 
and distributed drive modes and realize two-speed gear shifting. Because the actuator’s displacement signal affects the mode-
switching control, when failure occurs at the angle-displacement sensor, the mode-shifting quality is likely to drop greatly, 
even possibly leading to shift failure. To address the angle-displacement sensor failure and improve the reliability of the shift 
control, an adaptive fault-tolerant control method is proposed and verified. First, the effect of the output signal of the angle-
displacement sensor in the mode-switching control process is analyzed. Then, an adaptive mode-switching fault-tolerant control 
method is designed based on the Kalman filter and fuzzy theory. Finally, the feasibility of the control effect is verified through 
simulations and vehicle experiments. The results indicate that the proposed method can effectively eliminate the signal noise 
of the angle-displacement sensor and successfully switch the modes when the sensor fails. It provides a reference for ensuring 
the working quality of similar electric drive systems under sensor failures.

Keywords Electric vehicle · Dual-mode coupling drive system · Mode-switching control · Kalman filtering · Sensor fault-
tolerant control

Abbreviation
EV  Electric vehicle
AMT  Automated mechanical transmission
DC  Direct current
STKF  Strong tracking Kalman filter

1 Introduction

The continuous increase in vehicle ownership has resulted in 
more serious fuel consumption and exhaust emissions, lead-
ing to energy crisis and environmental pollution [1, 2]. To 
tackle this problem, the development of new energy vehicles 
has attracted considerable attention worldwide. New energy 
vehicles include the pure electric vehicles (EVs) and hybrid 

EVs. EVs are considered to possess the ultimate drive form 
because of their flexible controllability,  simple transmission 
structure, and  reliable platform for the intelligent develop-
ment of automobiles.

The electric drive system is the core component of the 
EVs and has a decisive influence on the vehicle perfor-
mance. According to the power transmission routes, the 
drive modes of the electric drive system can be divided into 
centralized and distributed drives [3]. In general, the central-
ized drive system has only one motor as the source of power; 
this power is transmitted to the drive wheels through the 
transmission, reducer, differential, and half shafts. Because 
the torque balance between the coaxial drive wheels is guar-
anteed by the differential, the independent control of the 
torque of each drive wheel is difficult, and an auxiliary con-
trol device must be added to achieve the dynamics control 
[4]. A distributed driven EV is generally installed with at 
least two electric motors, with the drive torque and rotational 
speed of each drive wheel independently controlled by a 
drive motor. Hence, the active safety control performance 
can be improved by the coordinated distribution of the drive-
wheel torque [5–7]. However, without a mechanical connec-
tion between the coaxial drive wheels, the distributed drive 
system cannot ensure that the driving torque of each wheel 
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reaches the ideal value when any one of the drive motor fails 
[8, 9]; this may result in vehicle instability and a series of 
catastrophic consequences.

This study combined the advantages of the centralized 
and distributed drive systems to obtain a pure electric drive 
system with two drive modes called the dual-mode cou-
pling drive system, as schematically presented in Fig. 1. By 
highly integrating two sets of two-speed clutchless automated 
mechanical transmission (AMT), this drive system can real-
ize the conversion between centralized and distributed drives 
under different working conditions, and two-speed transmis-
sion can be realized; therefore, the advantages of the two 
drive modes can be fully utilized. However, similar to the 
shift process of an AMT system, the proposed system could 
experience comfort and reliability issues during the mode-
switching process [10]; these issues must be solved.

At present, few studies have focused on the mode-switch-
ing problem as the dual-mode coupled drive system is newly 
proposed; however, the mode-switching process of this sys-
tem has the same characteristics as the AMT shift process, 
especially the clutchless AMT. Among the AMT systems, 
the clutchless AMT is widely used owing to the functional 
conflict between the motor and clutch in EVs [11–13]. 
Therefore, the research results of the AMT shifting can be 
used as references. Currently, the AMT shift quality can be 
improved using either of the following methods: (1) improv-
ing the hardware structure, e.g., development of new syn-
chronizers or installation of clutches, and (2) designing new 
algorithms, e.g., optimization of control schemes. Because 
the time and material cost of designing hardware is higher 
than that of designing an algorithm, method (2) is consid-
ered more effective for improving the AMT shift quality. 
With the improvement in chip performance, it is feasible to 
use complex algorithms. Walker et al. [14–16] proposed a 
dual-motor clutchless AMT with main and auxiliary motors, 
in which a high-speed motor (main motor) is connected to 

the AMT and a low-speed and high-torque motor (auxiliary 
motor) is connected to the fixed gear ratio reducer. Then, the 
coordinated control of the speed and torque is completed to 
control the motors by using the improved model prediction 
method. Finally, the power-free interruption of the shift is 
realized. Although this method alleviates the interruption 
of the shifting power of the clutchless AMT, it increases 
the manufacturing cost and structural complexity. Yu et al. 
[17] proposed a shift control method based on a two-layer 
neural network estimator to improve the ability of the sys-
tem to resist load disturbance; this could effectively reduce 
the synchronization phase time in the shift process than that 
required by the conventional control method. Chen et al. 
[18] proposed a hybrid automaton model to simulate the 
state change during the clutchless AMT gear mesh process 
and discussed the impact of cone wear on the synchroniza-
tion and random meshing processes. They proposed a shift 
method that can improve the riding comfort and synchro-
nizer life. Wang et al. [19] proposed a switching control 
scheme for position and force. The force controller was 
designed based on the characteristics of the phase displace-
ment in the synchronization stage, and the sliding-mode 
position controller and state observer were designed for the 
other stages. Such a scheme can avoid a large impact at the 
beginning of the synchronization phase and at the end of the 
gear meshing process.

The review of the above-mentioned research shows that 
although the control algorithms can improve the AMT shift 
quality, the influence of the sensor signal was not analyzed. In 
practical applications, the sensor accuracy is affected by the 
working environment and production quality, and therefore, 
the feedback signal often has noise or errors. To solve this 
problem, Li et al. [20] proposed a sensor fault-tolerant control 
method for AMT angle-displacement sensor failure, analyzed 
the relationship between sleeve displacement and load torque, 
and built a displacement–torque table. Finally, the signal fault 
identification and compensation are realized after determin-
ing the fault through the look-up table and state observation. 
Although the previous research provides some references for 
the study of sensor failure during AMT shifting, the sensor 
interference noise and the influence of uncertainty and ran-
domness of the system are not considered. In this study, the 
influence of the sensor on the mode-switching process of the 
dual-mode coupling drive system was analyzed, and then, 
an adaptive filtering method is proposed to provide a reli-
able reference displacement for the mode-switching control, 
thereby improving the quality of mode switching.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the model of the mode-switching control 
system. Section 3 details the design of the adaptive fault-
tolerant control strategy that can solve the sensor-signal 
noise and fault problems, and the adaptive Kalman filtering 
algorithm and state observer are established. In Sect. 4, the 
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Fig. 1  Structure of a dual-mode coupling drive system
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simulation based on AMEsim and MATLAB is presented, 
the experimental results based on an actual vehicle are dis-
cussed, and the performance of the proposed control method 
is analyzed. Finally, the conclusions are presented in Sect. 5.

2  Mode‑Switching Control System Model

2.1  Analysis of Mode‑Switching Control System

The mode-switching control system of the dual-mode cou-
pling drive system is shown in Fig. 2, where the closed-loop 
system composed of solid lines represents the conventional 
AMT control system with only one angle-displacement 
sensor, θ is the actual angle-displacement, θtar is the target 
angle-displacement, and u is the pulse width modulation duty 
cycle. During the gear shift control, the angle information of 
the actuator is very important. The control system loses the 
unique reference in the case of inaccurate feedback informa-
tion from the angle-displacement sensor, thus causing the gear 
shift to fail. To obtain additional status information of the 
actuator, a current sensor was added to the mode-switching 
control system, as shown by the dotted line in Fig. 2, where 
ia is the current signal. Compared with the speed and torque 
sensors, the current sensors have more advantages in terms 
of sensitivity, cost performance, and reliability. Even if the 
angle-displacement sensor fails during the mode-switching 
process, the control system can rely on the information 
obtained from the current sensor to complete mode switch-
ing. Therefore, in the mode-switch control system of the dual-
mode coupling drive system, the use of the current sensor can 
solve the problem of displacement sensor failure.

In the mode-switching process, the responsiveness of the 
speed and torque of the actuator drive motor must achieve 
good control performance. In general, a small-sized and low-
power direct current (DC) motor is selected as the actuator 
drive motor, which can meet the power requirements of mode 
switching and reduce the cost of high-performance motors.

2.2  Actuator Model

The physical structure of the actuator is shown in Fig. 3a, 
where the DC motor is connected to the worm, and the power 
is transmitted to the finger through the gear mechanism. The 

finger then simultaneously pushes the two finger slots to con-
trol the movement of the two forks during the switching. One 
angle-displacement sensor was installed at the end of the rod 
to measure the rotating angle of the finger; the displacement 
of the fork can be calculated later. The schematic of the actua-
tor is shown in Fig. 3b, where Tm and �W are the torque and 
angle of the worm, JW is the moment of inertia of the worm, 
JG is the equivalent moment of inertia of the gear and rod, �G 
is the angle of the gear, and ms is the equivalent mass of the 
putt, finger slot, and fork. Further, zs is the displacement of the 
two forks during mode switching, cW and cG are the damping 
coefficients of the worm and gear, respectively, and cs is the 
damping coefficient of the sleeve.

During the mode-switching process, the dynamic equation 
of the actuator can be expressed as

(1)

⎧⎪⎨⎪⎩

JW�̈�W = Tm − cW�̇�W − TGW
JG�̈�G = TWG − cG�̇�G − FGSlarm𝜃G
msz̈s = FGS − csżs − FL
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Fig. 2  Mode-switching control system

(a) Physical structure of the actuator

(b) Schematic of the actuator 
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Fig. 3  Structure and working mechanism of the actuator
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where TGW and TWG are the acting and reaction torques, 
respectively, between the gear and worm, FGS is the force 
between the finger and finger slot, larm is the force arm of 
the finger, and FL represents the resistance to the two forks 
during the mode-switching process and is analyzed in detail 
in Ref. [21]. According to the mechanical characteristics 
of the actuator-transmission system, the following equation 
can be obtained:

where iact and ηact are the reduction ratio and transmission 
efficiency of the actuator, respectively.

During the mode-switching process, the speed and 
torque response of the actuator drive motor is essential to 
achieving good control performance. The DC motor model 
is established as follows:

where VDC is the battery voltage, La is the inductance coef-
ficient, ia is the armature current, Ra is the resistance coef-
ficient, Ke is the back electromotive-force coefficient, �m is 
the actuator motor angle, Jm is the moment of inertia of the 
motor rotor, KT is the torque coefficient, and TL is the load 
torque of the drive motor and also is the reaction torque 
of the drive torque Tm . Because the output shaft of the 
motor is connected to the worm, �m = �W . By combining 
Eqs. (1)–(3), the mathematical equation of the actuator can 
be expressed as

where

According to the working characteristics of the syn-
chronizers, following the displacement change of the 
sleeves zs , the resistance force FL will change significantly. 
To promote the movement of the actuator, the load torque 
TL provided by the drive motor must be changed accord-
ing to the resistance force FL . If a load torque observer 
is established based on the motor current change, it can 
roughly judge the sleeves displacement and also can indi-
rectly judge the angular displacement of the actuator. The 
observer can compensate the signal error of the angular 

(2)

⎧
⎪⎨⎪⎩

zs = larm�G
�W = �Giact
TGW = TWG

��
iact�act

�

(3)
{

VDC = La i̇a + Raia + Ke�̇�m
Jm�̈�m = KTia − TL

(4)
{

VDC = La i̇a + Raia + KEżs
MEz̈s = KTia − CEżs + CFFL

(5)

⎧⎪⎨⎪⎩

KE = Keiact∕ larm
ME =

�
Jm + JW + JG

��
i2
act
�act

��
iact∕ larm+mslarm

��
iact�act

�
CE =

�
cW + cG

��
i2
act
�act

��
iact

�
larm + cslarm

��
iact�act

�
CF = larm

��
iact�act

�

displacement sensor of the actuator to a certain extent and 
can even act as a temporary substitute when it fails.

3  Adaptive Fault‑Tolerant Controller Design 
for Mode Switching

To solve the problems of inaccurate information and failure 
of the angle-displacement sensor, an antinoise and sensor 
failure control system was designed, which includes a con-
troller, an adaptive Kalman filter based on fuzzy rules, and 
a load torque state observer.

3.1  Control Strategy Design

Figure 4 shows the structural diagram of the adaptive mode-
switching fault-tolerant control, where ztar, zk, ẑk , is the target, 
measure and observe displacements of the splice sleeve at 
the time k, qk is the output of fuzzy diagnosis, λ is the output 
of fault-diagnosis coefficient, � is the difference between the 
measured value from the estimated value, and v reflects the 
change rate of the measurement displacement of the splice 
sleeve. The control method mainly involves a controller, a 
state observer, and an adaptive Kalman filter. The controller 
functions based on the mode-switching control algorithm, 
which can be referenced from many research results on AMT 
shift control [10, 17, 19, 21]. To reflect the effects of adaptive 
Kalman filtering on the mode-switching control process, the 
controller selects the most mature PID control in industrial 
applications. The state observer is used to observe the load 
torque and speed of the actuator motor, and the observation 
data provide reference information for the controller and 
adaptive Kalman filter. The adaptive Kalman filter diagno-
ses and estimates the sensor information to ensure that the 
controller can obtain accurate feedback values.

Fig. 4  Control strategy
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Adaptive Kalman filtering, as represented by the dashed 
box in Fig.  4, includes a strong tracking Kalman filter 
(STKF), a fuzzy logic controller, and fault detection mech-
anism. The STKF is an improved filtering algorithm with 
strong anti-model uncertainty and real-time state tracking 
performance. In addition, it has good applicability to uncer-
tainty and nonlinearity during the mode-switching process 
[22]. A fuzzy control can describe the system through a 
low-order state model without affecting accuracy. In other 
words, for a given accuracy, a low-order model can be used 
for the fuzzy-adaptive Kalman filter. The fuzzy controller 
can effectively describe the behavior of complex systems by 
adjusting the parameters of the STKF in real time to ensure 
an effective balance between accuracy and computational 
burden and preventing the Kalman filter from diverging. This 

observer is based on the DC motor model. Hence, the signal 
of the current sensor can be directly used.

3.2  Design of the Adaptive Kalman Filter Algorithm

The use of the adaptive Kalman filter can eliminate the 
measurement noise and estimate the sleeve displacement 
based on the system input and estimated torque.

The prediction and measurement models of the controlled 
system can be expressed as follows:

where

where u(k) and z(k) are the duty cycle and measured value at 
the moment of tk,w(k) and v(k) are the zero-mean Gaussian 
white noise with zero correlation, and they have the follow-
ing relationship:

where Q and R are the variance matrices of the process and 
measurement noises, respectively.

Kalman filtering can be divided into two parts: state 
prediction and measurement update. State prediction 
refers to the prediction of x(k) based on the previous 
state, x(k − 1) . In addition, measurement update refers 
to the correction of the predicted value according to the 
data obtained from the sensor signal. Time prediction and 
the updating of the covariance matrix can be equated as 
follows:

(6)x(k + 1) = Fx(k) + Gu(k) + w(k)

(7)z(k) = Hx(k) + v(k)

x =

⎡⎢⎢⎣

ia
żs
zs

⎤
⎥⎥⎦
, F =

⎡⎢⎢⎣

1 − (Ra∕La)T (−KE∕La)T 0

(KT∕ME)T 1 − (CE∕ME)T 0

0 T 1

⎤
⎥⎥⎦
,G =

⎡⎢⎢⎣

T 0

0 (CF∕ME)T

0 0

⎤
⎥⎥⎦
, H =

⎡⎢⎢⎢⎣

1

0

0

0

0

0

0

0

1

⎤⎥⎥⎥⎦

(8)E
[
wkw

T

i

]
=

{
Q, i = k

0, i ≠ k

(9)E
[
vkv

T

i

]
=

{
R, i = k

0, i ≠ k

(10)E
[
wkv

T

i

]
= 0, for all i and k

(11)x̂(k|k − 1) = Fx̂(k − 1|k − 2) + Gu(k)

(12)P(k|k − 1) = FP(k − 1|k − 1)FT + Qk

method has been detailed in Refs. [23, 24] and termed as 
fuzzy logic-based adaptive STKF. The mathematical model 
of the system determines the first prediction result of the 
Kalman filter algorithm. If the system parameters are unsta-
ble or uncertain, the mathematical model cannot be clearly 
expressed. Therefore, many scholars have proposed adaptive 
methods. Although fuzzy logic-based adaptive STKF shows 
a good filtering performance, its anti-interference ability and 
lower calculation burden make it difficult to guarantee the 
credibility of the filter output information after sensor failure.

With the complex driving environment around a vehicle, 
sensor failure must be considered. Therefore, the adaptive 
Kalman filter must be implemented with a fault-diagnosis 
module. The effects of the sensor and Kalman filter algo-
rithm on the output results could be eliminated by remov-
ing the effect of the Kalman gain coefficient during fault 
occurrence. At this time, the output results of the filter rep-
resents the model-based prediction results, and this causes 
the filtering results to be affected by the model accuracy. 
The structure of the mode-switching actuator is simple, and 
the structural parameters can be easily obtained. Therefore, 
the accuracy of the model can be guaranteed. However, the 
change of the load torque is irregular, resulting in an inac-
curacy in the model prediction; therefore, in this study, the 
load torque value was estimated using the state observer of 
the adaptive Kalman filter. The input variables of the state 
observer include the controller output value and current sen-
sor signal of the actuator. Although the current signal may 
also comprise noise, the DC motor is a second-order system 
with the characteristics of a low-pass filter, and the state 
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where x̂(k|k − 1) is the predicted state vector and P(k|k − 1) 
is the prediction covariance matrix. The noise-sequence 
variance matrix of the system is written as

where qk is the diagonal element of matrix Qk , and the con-
fidence between the predicted and measured values can be 
adjusted through qk . The Kalman gain matrix is calculated 
as follows:

After the Kalman filter gain coefficient is corrected, the 
prediction state expression is formulated as follows:

To prevent the influence of the sensor signal on the 
prediction results after the fault occurs, fault-diagnosis 
coefficient �k is added to the Kalman correction term in 
Eq. (15):

provided that �k satisfies the following rules:

Therefore, x̂(k|k) = x̂(k|k − 1) when �k = 0 . The esti-
mated result of the Kalman filter is the value predicted by 
the mathematical model, and it eliminates the influence of 
the sensor errors.

At the initial phase of the filter, x(k|k − 1) and P(k|k − 1) 
are calculated, then the correction coefficient K(k) will be 
calculated, and finally the prediction data based on the 
measured data z(k) will be corrected to obtain the esti-
mated state x̂(k) . In STKF, the scale factor is added to 
the mean square error matrix update, so Eq. (12) can be 
written as

where I is the identity matrix; �k is the suboptimal scale 
factor of the time-varying filter gain, and it is formulated 
as follows:

(13)Qk =

⎡
⎢⎢⎣

qk 0 0

0 qk 0

0 0 qk

⎤
⎥⎥⎦

(14)K(k) = P(k|k − 1)HT
[
R +HP(k|k − 1)HT

]−1

(15)x̂(k|k) = x̂(k|k − 1) + K(k)
[
z(k) −Hx̂(k|k − 1)

]

(16)x̂(k|k) = x̂(k|k − 1) + 𝜆kK(k)
[
z(k) −Hx̂(k|k − 1)

]

(17)�k =

{
1 without Fault

0 Fault

(18)P(k|k − 1) = �kFP(k − 1|k − 1)FT + Qk

(19)P(k|k) = (I − K(k)H) + P(k|k − 1)

(20)𝜎k =

{
ck, ck ≥ 1

1, ck < 1

where arithmetic operator tr[·] represents the trace of a 
matrix; Nk and Mk are the intermediate variables in the 
calculation process [25, 26]; Vk denotes the covariance 
matrix of the real output innovation, and it is estimated 
using Eq. (24); and Qk and Rk are the values of the variance 
matrices of the process and measurement noises at sampling 
instant k.

where � is the forgetting factor, which is usually set to 0.95 
[27, 28].

The suboptimal scale factor in the STKF method is 
adjusted according to the updated information, and this 
improves the accuracy of the process and measurement mod-
els. When the information update is fast and nonlinear, i.e., 
𝜎k > 1 , STKF provides an appropriate �k to improve the cal-
culation model, thereby generating an accurate estimation of 
the sleeve displacement. In the case of regular updating speed 
of the measurement information, i.e., �k = 1 , STKF behaves 
as a standard Kalman filter algorithm to estimate the sleeve 
displacement. However, the measurement noise differs under 
complex operating conditions. The fixed values of the Qk and 
Rk matrices of the standard Kalman filter and STKF method 
will not be able to accurately obtain the measurement noise. 
This, in turn, reduces the performance of the filter and gener-
ates errors in the estimation of the sleeve displacement.

The fuzzy logic rule is presented in Fig. 5 and Eq. (25), 
and it includes four processes: fuzzification, knowledge 
base, inference, and defuzzification.

where ẑ−
k
 is the measurement displacement at the previous 

moment.

(21)ck =
tr[Nk]

tr[Mk]

(22)Nk = Vk − Rk −HQkH
T

(23)Mk = HFP(k|k)FTHT

(24)Vk =

{
v0v

T

0
k = 0

�vk−1+vkv
T

k

1+�
k ≥ 1

(25)

{
𝜑 = zk − ẑk

v = zk − ẑ−
k

Fig. 5  Fuzzy logic system
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The rule graphs were established for the fuzzification and 
defuzzification processes. Figure 6a, b presents the fuzzifi-
cation rule graphs of � and v, respectively, and Fig. 6c pre-
sents the defuzzification rule of qk (membership rule). The 
parameters and membership functions in the figures were 
obtained through expert knowledge and experiments; the 
final value was solved using the centroid method. Accord-
ing to the IF–THEN form of the fuzzy inference rules, such 
as when deviation value � is extremely small (PS) and the 
moving speed v is in hours (S), the value of qk is small (N).

The inference rules established according to the 
IF–THEN form are shown in Table 1. In the inference rules, 
qk is defined by � and v; however, for � or v belonging to 
PL, qk = 0. This is because the speed of displacement change 
exceeds the credibility threshold of the control system, and 
the reliability of the sensor measured value becomes worse. 
The fault-diagnosis rules are also formulated based on dis-
placement deviation � and sleeve speed v, thereby obtaining 
the value of �k . In the first case, when the moving speed of 
the sleeve is very low, the prediction result of the first step 
of Kalman filtering shows high reliability. Therefore, the 
position sensor is considered to malfunction when the mov-
ing speed of the sleeve is very low and the displacement 
deviation exceeds the threshold. In the second case, the posi-
tion sensor was considered to malfunction when the moving 

(c)

(b)

(a)

Fig. 6  Fuzzification and defuzzification rules

Table 1  Fuzzy logic table qk φ

PS S N L PL

v S N N NS Z O
N N NS Z S O
L N Z S Z O
PL O O O O O

0

Fault

Fault
Normal

φ

φmax

νmaxνlow ν

Fig. 7  Sensor fault region

Fig. 8  Flow chart of the adaptive Kalman filtering algorithm



63Adaptive Fault-Tolerant Control During the Mode Switching for Electric Vehicle Dual-Mode…

1 3

speed of the sleeve was greater than the maximum speed 
of the system. The fault region of the sensor is depicted in 
Fig. 7.

The flowchart of the adaptive Kalman filter algorithm is 
shown in Fig. 8.

3.3  Design of the Load Torque State Observer

The motor model in Eq. (4) shows that the system state speed 
satisfies the precondition for observation; however, the load 
torque is not that of the system state and does not satisfy the 
precondition. During the mode-switching process, a drastic 
change of the load torque is observed in the collision process, 
i.e., the initial stages of the synchronization and gear meshing 
phases. These stages have the same characteristics of a short 
duration and few occurrences. Therefore, the load torque could 
be assumed as a constant interference term of the system, i.e., 
dT∕dt = 0 . Then, armature current ia , load torque TL , and speed 
�̇�m are used as state variables, with duty u as the input variable. 
The mathematical form of Eq. (4) can be rewritten as follows:

According to actual needs, current ia is regarded as the out-
put variable of the system. The state and output of the system 
can be formulated as

If Eqs. (27) and (28) are expressed as ẋ = Ax + Bu and 
y = Cx , then

A state observer must be established when the system sat-
isfies the observation conditions. The observability matrix is 
one of the bases for determining the system observability. The 
observability matrix of the system is defined as follows:

(26)

⎧⎪⎨⎪⎩

i̇a = −(Ra∕La)ia − (Ke∕La)𝜔m + (VDC∕La)u

ṪL = 0

�̈�m = (KT∕Jm)ia − (1∕Jm)TL

(27)

⎡⎢⎢⎢⎣

i̇a

ṪL

�̈�m

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎣

−Ra∕La 0 −Ke∕La
0 0 0

KT∕Jm −1∕Jm 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ia
TL
�̇�m

⎤
⎥⎥⎦
+

⎡⎢⎢⎣

VDC∕La
0

0

⎤
⎥⎥⎦
u

(28)y =
�
1 0 0

�⎡⎢⎢⎣

ia
TL
�̇�m

⎤⎥⎥⎦
+ vk

A =

⎡⎢⎢⎣

−Ra∕La 0 −Ke∕La
0 0 0

KT∕Jm −1∕Jm 0

⎤⎥⎥⎦
,B =

⎡⎢⎢⎣

VDC∕La
0

0

⎤⎥⎥⎦
,C =

�
1 0 0

�

When the rank of this matrix is equal to the dimension of 
the state matrix, the system can be observed.

As the system has three state variables and one output vari-
able, a two-dimensional state observer can satisfy the demand. 
In practical applications, the measurement of current is much 
easier than that of speed, and therefore, armature current ia is 
used as the input of the state observer, and load torque TL and 
rotating speed �m are used as the outputs of the observer. The 
state matrix can be divided as follows:

By assuming that the expected poles of the state observer 
are –a1 and –a2, the expected polynomial can be written as 
follows:

Next, the feedback matrix is set as L =
[
l1 l2

]T , and 
the actual characteristic polynomial of the observer can be 
described as

Feedback matrix L can be obtained by combining 
Eqs. (30) and (31). The state equation of the state observer 
is formulated as follows:

where Y is the output of the state observer, Y = [ T̂L �̂�m ]T , 
and z is the intermediate state. By substituting the required 
L into Eq. (31), we can obtain the observed torque T̂L and 
rotating speed �̂�m . Poles −a1 and –a2 of the state observer 
affect the response time and overshoot of the observed val-
ues. During the experiment, the observer poles needed to 
be adjusted to achieve the best performance of the observer.

(29)N =

⎡⎢⎢⎣

C

CA

CA2

⎤⎥⎥⎦
=

⎡
⎢⎢⎢⎣

1 0 0

−
Ra

La
0 −

Ke

La
R2
a

L2
a

−
KeKT

JmLa

Ke

JmLa
−

KeRa

L2
a

⎤
⎥⎥⎥⎦

A11 = −
Ra

La
,A12 =

[
0 −

Ke

La

]
,A21 =

[
0
KT

Jm

]
,

A22 =

[
0 0

−
1

Jm
0

]
,B1 =

[
VDC

La

]
,B2 =

[
0

0

]
,

C1 = [1],C2 =
[
0 0

]

(30)f ∗
0
(s) = (s + a1)(s + a2) = s2 + (a1 + a2)s + a1a2

(31)f ∗
0
(s) = det

[
sI − (A22 − LA12)

]

(32)

⎧⎪⎨⎪⎩

ż = (A22 − LA12)z +
�
(A22 − LA12)L + (A12 − LA11)

�
y

+(B2 − LB1)u

Y = z + Ly
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4  Analyses of the Simulation 
and Experimental Results

The AMEsim and MATLAB/Simulink co-simulation plat-
form was established to verify the performance of the con-
trol method, which includes the performance of filtering the 
measurement noise and failure recognition capabilities of the 
sensor as well as the effects of redundant control strategies. 
The experiment was performed using a modified pure EV.

The parameters of the mentioned transmission and actua-
tor are shown in Table 2.

4.1  Analysis of the Simulation Results

To distinguish different signals, the displacement signal 
from the angle-displacement sensor was named as the meas-
ured displacement, the displacement signal from the adap-
tive Kalman filter is termed as the filtering displacement, 
and the actual displacement of the sleeve is the actual dis-
placement. During the signal acquisition process, the meas-
urement noise is considered as an unavoidable problem, the 
cause of which includes electromagnetic interference, sensor 
quality, and thermal interference. Because no noise exists in 
the simulation, two random interference signals were added 
to the signal acquisition process of the angle-displacement 
and current sensors, with a mean of 0 and variances of 0.02 
and 1, respectively. The noise signal is graphically presented 
in Fig. 9.

To prove the performance of the adaptive Kalman filter, 
the mode-switching process was simulated, under the fol-
lowing simulation conditions:

1. Mode switching is performed when the vehicle speed 
reaches 30 km/h.

2. When the speed difference is ≤50 r/min, the speed 
adjustment is completed.

3. The experiment is conducted on a leveled and straight 
road.

As shown in Fig. 10a, the measured displacement sig-
nal shows obvious noise. The actual, measured, and fil-
tered displacements have the same profile, indicating that 
the sensor is not faulty and the combined filter has good 
tracking ability. Figure 10b shows deviations in these three 
displacements, where the deviation of the measured value 
is between − 0.4 and 0.4 mm, and the deviation of the filter 
displacement is less than 0.1 mm. However, this deviation 
increases, as observed in Fig. 10b, with the mutations mainly 
occurring at 0.51, 0.57, and 0.63 s. As shown in Fig. 10a, the 
displacements at these moments are approximately 2.1, 6.5, 
and 9.1 mm, and these intervals represent the synchroniza-
tion phase, gear shift phase, and completion phase, respec-
tively. As shown in Fig. 10c, the sleeve collides with the 
synchronizing ring and gear, which causes the load torque 
of the actuator motor to be abrupt. In addition, the response 
speed of the observed torque experiences difficulty in keep-
ing up with the sudden change in the actual torque, and this 
further increases the deviation in the observed displacement.

Table 2  Parameters of transmission and actuator

Symbol Value Symbol Value

Jm (kg·m2) 1.7×10−5 iobj 1.89
JW (kg·m2) 6.582×10−5 i2 2.78
JG (kg·m2) 7.544×10−5 k (N·m/rad) 8700
ms (kg) 1.1 c (N·m/(rad/s)) 33.4
cW (N·m/(rad/s)) 1×10−3 α 4.09
cG (N·m/(rad/s)) 7×10−4 iact 112
cs (N/(m·s)) 6×10−3 μ 0.1
larm (m) 0.02 VDC (V) 12
ηact 0.48 La (H) 0.0005
JDM (kg·m2) 0.03 Ra(Ω) 0.3067
Jout (kg·m2) 0.0042 Ke (V·s/rad) 0.0209
JV (kg·m2) 78 KT (N·m/A) 0.0379

Fig. 9  Measurement results of noise signals
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At present, studies on the influence of measurement noise 
on the shift process are lacking. However, with the gradual 
increase in the research on clutchless shift control, many 
shift control methods based on the precise displacement of 

the sleeve have been developed, which place strict require-
ments on the accuracy of the position information. For 
example, the first phase is set at 0–2.1 mm, the second phase 
is set at 2.1–4.6 mm, and the third phase is set at 4.6–9 mm. 
Then, the shift test is conducted, and the results of which 
are shown in Fig. 11. The entire shifting process is divided 
into the three aforementioned stages, in which the stage 

Fig. 10  Simulation verification of filtering and observation effects

Fig. 11  Identification of each stage of the shift process

Fig. 12  Simulation results of sensor failure
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identification through actual and filtering displacements 
shows good performance. In contrast, stage identification 
by directly using measured displacement produces oscilla-
tions at the critical point of each stage. These oscillations 
can cause the controller to switch between different controls 
strategies, which in turn, can cause the controller to become 
unstable, and lower the quality of mode switching.

In addition to the measuring noise affecting the shift qual-
ity, the fault of the angle-displacement sensor has a con-
siderable influence. To evaluate the ability of the proposed 
method to solve the sensor failure, three common faults of 
the displacement sensor were simulated in this study: sensor 
dead-zone fault, open-circuit fault, and drift fault. Because 
of differences in equipment, open sensor failure may cause 
the signal to jump to a minimum or maximum value. The 
actual sleeve displacement, measured sensor displace-
ment, and the output displacement of the filter are shown in 
Fig. 12; the three curves almost completely overlap before 
the fault occurs. However, the deviation between the meas-
ured and actual displacements continuously increases after 
the fault occurrence. Although the filtering displacement 
deviates from the actual displacement, the tracking of the 
actual displacement can be guaranteed.

In fact, the angle-displacement sensor has various types 
of faults in terms of mode switching; the noise and four fault 
types mentioned earlier are typical problems in the mode-
switching process. When the problems are solved, the fault-
tolerance performance of the controller would be improved. 
An obvious result is shown by combining Figs. 10b and 12, 
where the noise can be effectively removed and the four 
faults can be overcome. Therefore, the proposed method has 
reliable fault-tolerance ability.

4.2  Analysis of Experimental Results

Next, by using a vehicle, an experiment was performed 
based on dSPACE/MicroAutoBox, as shown in Fig. 13. 
The experimental setup includes four parts: a host com-
puter, a controller, transmission equipment, and a vehicle. 
The angle-displacement and current sensors are installed on 
the mode-switching actuator to measure the position of the 
sleeve and current of the actuator drive motor.

To ensure consistency between the experimental and 
simulation results, the experimental conditions should be 
the same as described in Sect. 4.1. In the experiment, the 
host computer transmits control commands and records 

Control 
command

Data 
record

Control signal

Transmission

Vehicle

Torque/speed

Controller prototype

Current 
sensor

Measurement

Host computer

Angular
displacement

sensor

Fig. 13  Experimental platform involving a vehicle

Fig. 14  Sensor measuring noise

Fig. 15  Displacement signal after filtering
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experience data. The controller quickly converts the control 
commands into the control signals of the dual-mode cou-
pling drive system, thus reducing the system response delay.

The Kalman filtering algorithm must be implemented 
with the law of noise so that the output signals of the angle-
displacement and current sensors are collected in the static 
state. Although the same acquisition equipment and sam-
pling frequency are used, differences were observed in 
the acquisition noise between the two sensors. As shown 
in Fig. 14, the noise error of the displacement is between 
−0.1 and 0.1 mm, and the error range of the current ranges 
between −0.4 and 0.4 A. After calculation, the variances of 
the displacement and current were 0.0024 mm and 0.0466 
A, respectively.

Figure 15 shows comparison between the measured dis-
placement of the sleeve and the displacement observed by 
the filter. When the angle-displacement sensor displays no 
fault, the measured value is considered to be the reference 
displacement of the sleeve as the filter has good tracking 
performance. As shown in Fig. 15, the filtering of the dis-
placement effectively removed the measurement noise.

Finally, to verify the control performance of the control 
method after a sensor failure, three kinds of sensor failures 
were designed in the experiment: the sensor dead-zone, 
open-circuit, and drift failures. Because the generation of 
these kinds of faults by using hardware is difficult, a fault 
program was added to the acquisition method of the angle-
displacement sensor signal. The results of the four types 
of shift fault experiments are shown in Fig. 16. Due to the 
comparative experiments carried out at different times, the 
start and end times of each failure form are different, but 
their respective comparisons ensure complete synchroniza-
tion. In Fig. 16a, because the shifting force is greater than 
the demand, an impact is generated, which is affected by 
the mechanical clearance and deformation, resulting in the 
sleeve displacement greater than the ideal value 9 mm. The 
four experimental results show the measured and observed 
displacements are the same before the fault occurrence; this 
indicates that the filter should accurately estimate the dis-
placement of the sleeve. When the sleeve reaches 2.5 mm, a 
fault occurs; the measured displacement changes according 
to the fault type. Although the observed displacement devi-
ates from the actual displacement, the completion of the shift 
process is ensured. This deviation between the observed and 
actual displacements is caused by the large load torque error 
and model deviation. To solve this problem, the pole posi-
tion of the observer and actuator structure parameters should 
be adjusted. This is a topic for future research.

Fig. 16  Experimental results of sensor failures in a vehicle



68 B. Qi et al.

1 3

5  Conclusions

This paper studies the failure of angle-displacement sensor 
of a dual-mode coupling drive system electric actuator, in 
which mode-switching control is similar to the gear shift-
ing control of an EV with clutchless AMT. The following 
conclusions can be drawn:

1. The signal noise and functional failure of the angle-
displacement sensor greatly affect the mode-switching 
control effect of the dual-mode coupling drive system. 
Through the establishment of the actuator model, the 
paper points out the feasibility of using the current sig-
nal of the actuator motor for displacement observation 
and establishes the corresponding redundant control 
system. It is of significant importance to improve the 
mode-switching quality.

2. An adaptive mode-switching fault-tolerant control 
method is proposed based on an STKF. The filtering and 
fault-handling functions are effectively integrated. The 
actual displacement can be well tracked by the observed 
displacement. With the designed controller, the signal 
noise is effectively removed and the functional faults of 
the angular displacement sensor is overcome.

3. The results of the simulation and vehicle experiments 
prove that the proposed control method can effectively 
remove the noise signal of the sensor, while still ensur-
ing the smooth completion of the mode-switching pro-
cess after encountering the common faults. This effec-
tively improves the reliability of the mode-switching 
control process. The related research also provides a use-
ful reference for improving the reliability of AMTs and 
other systems that need to use the angle-displacement 
sensor signal of the electric actuator for control.

In the experiment process, the initial displacement of 
the angle-displacement sensor after each power-on will be 
a little drifted and needs to be recalibrated. In addition, the 
displacement change is also affected by the supply voltage of 
the power, which is a big problem when doing fine control. 
The follow-up in-depth research will be carried out on the 
above problems to provide greater help to improve system 
reliability.
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