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Abstract
Nowadays, the deep learning for object detection has become more popular and is widely adopted in many fields. This 
paper focuses on the research of LiDAR and camera sensor fusion technology for vehicle detection to ensure extremely 
high detection accuracy. The proposed network architecture takes full advantage of the deep information of both the LiDAR 
point cloud and RGB image in object detection. First, the LiDAR point cloud and RGB image are fed into the system. Then 
a high-resolution feature map is used to generate a reliable 3D object proposal for both the LiDAR point cloud and RGB 
image. Finally, 3D box regression is performed to predict the extent and orientation of vehicles in 3D space. Experiments 
on the challenging KITTI benchmark show that the proposed approach obtains ideal detection results and the detection time 
of each frame is about 0.12 s. This approach could establish a basis for further research in autonomous vehicles.
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Abbreviations
BEV	� Bird’s-eye view of the LiDAR point cloud
IOU	� Intersection over union
ROI	� Region of interest
AOS	� Average orientation similarity

1  Introduction

An intelligent driving vehicle refers to a complex system 
that combines perception, decision-making, and control 
technologies. Environmental perception provides funda-
mental information for path planning, decision-making and 
control. Vehicle detection is an extremely important task in 
environmental perception systems of autonomous vehicle. 
At present, LiDAR and cameras are the mainstream of obsta-
cle detection sensors. Cameras are widely used in intelligent 
driving, especially in traffic sign identification and lane rec-
ognition thanks to their low cost and capability to obtain the 
texture and color of objects.

During the past few years, 2D object detection from cam-
era images has seen significant progress [1–3]. However, 
there is still large improvement potential when it comes to 
object localization in 3D space. As a camera is sensitive to 
light and shadows, it cannot provide accurate and sufficient 
positional information, which often results in low real-time 
performance and poor robustness. In contrast, LiDAR can 
obtain the distance and 3D information of a detection object, 
and it has been widely used in environmental perception. In 
general, there are two methods for processing the LiDAR 
point cloud spatially before the 3D information is used. The 
first method is to establish a 3D grid map on the LiDAR 
point cloud [4, 5] and then process the LiDAR point cloud 
on the grid map. Although the 3D grid representation pre-
serves most of the raw information of the point cloud, it 
usually requires much more complex computation for sub-
sequent processing. The second method is to project the 
LiDAR point cloud into 2D space [6], which can reduce the 
amount of calculations. Although the LiDAR-based algo-
rithm is widely used in target detection, the resolution of 
the LiDAR point cloud decreases as the detection distance 
increases.

As a single sensor cannot meet the needs of autonomous 
driving, the application of multi-sensor fusion schemes that 
include both cameras and LiDAR in intelligent vehicles has 
been gradually increasing. Multi-sensor data fusion takes 
full use of the data collected by multiple sensors. At pre-
sent, according to the level of information processing, fusion 
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systems are divided into three levels: (1) Pixel-level fusion 
[7, 8] integrates the collected data directly and then extracts 
feature vectors from the fused data to identify the detected 
objects. The data for fusion that have not been processed 
lead to an enormous amount of calculations. (2) Feature-
level fusion [9, 10] extracts representative features from the 
data collected by each sensor and fuses the features into a 
single feature vector for processing. Because of the aban-
donment of a portion of the data, the accuracy is reduced. 
(3) Decision-level fusion [11] is based on the independent 
detection and classification of each sensor. It makes an opti-
mal global decision by integrating the recognition results of 
multiple sensors.

In this paper, the proposed network architecture fuses the 
LiDAR point cloud and RGB image to achieve high per-
formance in autonomous vehicles. Firstly, the LiDAR point 
cloud is projected to the BEV (bird’s-eye view of the LiDAR 
point cloud). Then the processed LiDAR point cloud and 
RGB image are used as network input. Inspired by the idea 
of FPN (feature pyramid network) [12], a new feature extrac-
tor structure is proposed to generate a high-resolution fea-
ture map from the LiDAR point cloud and RGB image that 
has high detection performance for objects. Secondly, the 
high-resolution feature map is fused to generate reliable 3D 
vehicle proposals. Further, ROI (region of interest) pooling 
[3] for each feature map is employed to obtain equal-length 
feature vectors and the ROI pooling feature map is fused 
using an element-wise mean operation [13]. Thirdly, 3D box 
regression is performed to predict the extent and orientation 
of vehicles in 3D space. The architectural diagram of the 
proposed fusion method is shown in Fig. 1.

The contributions of this research can be summarized as 
follows: (1) A new vehicle detection method is proposed 

based on the fusion of a feature map that is generated from 
LiDAR point cloud and RGB images. (2) A new feature 
extractor is proposed that can generate a high-resolution fea-
ture map which is suitable for subsequent processing. (3) A 
new 3D bounding box is proposed to predict the extent and 
orientation of a vehicle.

2 � 3D Vehicle Detection Method Architecture

2.1 � 3D Point Cloud Representation

That front vehicles occlude rear vehicles in the front view of 
the LiDAR point cloud affects the detection result. There-
fore, to retain the information from the LiDAR point cloud 
data more effectively, a more compact representation of 
the LiDAR point cloud is proposed by projecting the 3D 
point cloud onto a BEV map. The BEV map is encoded 
according to height and density, and is represented by a 2D 
grid with a resolution of 0.1 m. As a 3D grid representa-
tion requires complex and extensive computation for feature 
extraction and the aim is to obtain more detailed informa-
tion of the detection vehicle [14], the LiDAR position is 
set as the center, with the maximal left and right positions 
set to [− 40 m, 40 m] and the front position to [0, 70 m] on 
the BEV map to align with the image detection range. The 
scope of the cropped LiDAR point cloud in the BEV map 
is shown in Fig. 2.

According to the actual physical height of a vehicle, the 
point cloud along the Z-axis [0, 2.5 m] is divided into five 
equal height channels. Each channel is projected onto the 
2D ground grid (Z = 0) and is encoded with the maximum 
height of the points in each grid cell. The point cloud density 
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Fig. 1   Architecture of the proposed fusion method
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is set to be the sixth channel, which refers to the number of 
points in each cell, and the value of each cell is normalized 
as follows:

where N is the number of points in the cell.

2.2 � Feature Map Generation and Feature Extraction

Inspired by the FPN which has become the key component 
of 2D object detection, features are extracted from the BEV 
map and the RGB image, respectively, to recognize and 
locate the vehicles. The bottom-level semantic information 
of an image is poor, whereas the physical information is 
accurate; moreover, the high-level semantic information is 
rich, whereas the physical information is not sufficiently 
abundant. Therefore, to make full use of the information of 
the original bottom-level feature map, an 1 × 1 convolution 
operation is performed to fuse the bottom-level feature with 
the high-level feature so that all the scales of the feature map 
have rich semantic information and physical information and 
the final feature map is suitable for subsequent processing.

The feature extractors are based on the VGG-16 architec-
ture [15]. Assuming that the input sizes of both RGB image 
and BEV map are H ×W × D , the first four convolution layers 
of the VGG-16 network for down-sampling are used, which 
results in a feature map output eight times smaller than the 
corresponding input. Hence, the output size of the feature map 
is H

8
×

W

8
× 256 . An 1 × 1 convolution layer is used to reduce 

the number of channel dimensions. The up-sampled map is 
then merged with the corresponding down-sampled map by 
element-wise addition [16]. Finally, a 3 × 3 convolution layer 
on each merged map is employed to generate the final feature 
map to reduce the aliasing effect. A feature map with high 

(1)min

(
1.0,

ln(N + 1)

ln 16

)

resolution and high semantic information is then obtained, and 
the size of this final feature map is H

2
×

W

2
× 256 . The feature 

extraction framework is shown in Fig. 3.

2.3 � 3D Proposal Network Design

Inspired by the idea of the RPN (region proposal network) 
which is an important component of the Faster R-CNN [3] 
network for 2D object detection, a 3D proposal network is 
designed to generate 3D proposals for the prediction of the 
vehicle orientation and extent. 3D box proposals from a set 
of 3D anchor boxes are generated to cover most of the vehi-
cles in 3D space. Each 3D anchor box is parameterized by (x, 
y, z, l, w, h), where triplets (x, y, z) denote the center of the 
3D anchor box and triplets (l, w, h) represent the size of the 
3D predicted box. In addition, (l, w) of the anchor box takes 
values of (3.8 m, 1.6 m) and (1.0 m, 0.6 m), and the height 
h is fixed to 1.63 m. By rotating the 3D anchor by 90° and 
sampling the 3D anchor boxes at intervals of 0.5 m in the 
BEV map and RGB image, respectively, a total of 44,800 
anchors are finally generated. Because the LiDAR point 
cloud is sparse, most of the 3D anchor boxes are empty. The 
empty anchors are removed to reduce the amount of calcula-
tions, and the final number of anchors is kept between 8000 
and 15,000. Because features of the BEV and RGB image 
feature maps have different resolutions, the ROI pooling for 
each view is employed to obtain feature vectors of the same 
length. Given a generated 3D anchor box, the anchor is pro-
jected onto the BEV and RGB image feature maps, and the 
output of the ROI pooling feature maps is fused using an 
element-wise mean operation.

A binary label is assigned to each anchor that shows 
whether it is an object or background. By calculating the 
IOU (intersection over union) [17] between the anchor and 
the ground-truth bounding box, a positive label is assigned to 
two types of anchors: In the first type, the IOU determined by 

Front position(m)

-40 40 m

70
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Fig. 2   Scope of the cropped LiDAR point cloud in the BEV map

2x up-
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Fig. 3   Feature exaction framework
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the anchors and ground-truth bounding box is greater than 0.5, 
and in the second type, the IOU between the anchor generated 
at the same point and the ground-truth bounding box is the 
highest, even though it is less than 0.5. A ground-truth bound-
ing box can assign positive labels to multiple anchors. A nega-
tive label assigned to an anchor with the IOU is less than 0.3 
for all ground-truth bounding boxes. However, non-positive 
and nonnegative anchors have no effect on training objects, 
and are ignored in subsequent processing. Using the fused 
feature map to regress the anchor box, 3D box regression is 
used to generate the 3D proposals. A multitask loss is used 
to simultaneously classify vehicle/background and 3D box 
regression, Smooth L1 loss is used for the 3D box regression, 
and class entropy loss is used for determining whether the 
anchor is positive or negative. The total loss L is as follows:

where Lcls is the class entropy loss, Lreg is the Smooth L1 loss, 
pi is the probability of an anchor predicted as an object, 
ground-truth label p∗

i
 is 1 if the anchor is positive and is 0 if 

the anchor is negative, N is the number of anchor, 
t
i
=
(
tx, ty, tz, tl,tw,th

)
 is the offset of the predict box relative 

to the 3D anchor box, and t∗
i
=

(
t∗
x
, t∗
y
, t∗
z
, t∗
l
, t∗
w
, t∗
h

)
 is the off-

set of the ground-truth box relative to the 3D anchor box. 
The calculation is expressed as follows:

where ( xg, yg, zg, lg,wg, hg ) is the ground-truth box, 
( xa, ya, za, la,wa, ha ) is the 3D anchor box, (xp, yp, zp, lp,wp, hp ) 
is the predict box, and da is the diagonal length of the 3D 
anchor box. NMS (non-maximum suppression) at a thresh-
old of 0.8 on the BEV map is applied to retain the top-1000 
proposals during training, and the top-300 proposals are 
used only in testing. The 3D proposals are projected onto 
the RGB image, as shown in Fig. 4.
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2.4 � Region Proposal Fusion

Information fusion is a technology that is used to integrate 
and optimize a variety of information, and it retains useful 
information according to the inherent connections and rules 
of information. In this paper, the feature-level fusion method 
is employed.

A fusion network is designed to effectively combine fea-
tures from the BEV map and RGB image map that jointly 
performs oriented 3D box regression. Because features from 
the BEV map and RGB image map have different resolu-
tions, the ROI pooling on the feature map of each box pro-
posal is performed to resize it to 7 × 7 to obtain equal-length 
feature vectors; and then the pooling feature map is fused 
using element-wise mean operation. The fused features are 
as follows:

where FL is the fused feature, HL is the feature transforma-
tion function of layer L, FBEV is the feature of the BEV map, 
and FRGB is the feature of the RGB image map.

2.5 � 3D Box Regression

Given the fused features of the fusion network, a further 
regression operation is required to determine the orientation 
and classification of each proposal. Hence, the oriented 3D 
boxes are regressed from the 3D proposals. In particular, 
the bounding box is encoded using its length, width, center, 
and two heights, so the regression targets are encoded by (
Δx,Δy,Δdx,Δdy,Δh1,Δh2

)
 . The encoded bounding box is 

shown in Fig. 5. Compared to the 8-corner box encoding 
proposed in [14], only six vectors are needed to represent 
the oriented 3D box, so the proposed encoding procedure 
reduces the box representation from an overparameterized 
24-dimensional vector to a six-dimensional one, which fur-
ther reduces the redundancy while keeping the physical con-
straints. A multitask loss is used to simultaneously classify 
the predicted 3D box as a vehicle or background, and 3D 
box regression is performed using the Smooth L1 loss for 
the 3D box regression and class entropy loss for the clas-
sification task.

(4)FL = HL

(
HL−1

(
…H1

(
FBEV + FRGB

)))

Fig. 4   Projection of the 3D proposals onto the RGB image
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2.6 � KITTI Dataset

In this paper, the proposed network uses the KITTI dataset 
[18] for training and verification. The collected data scenes 
are diverse, from highway scenes to countryside scenes. It 
contains eight obstacle types: cars, vans, trucks, pedestrians, 
pedestrians (sitting), cyclists, trams, and others. All cars, 
vans, and trucks are treated as vehicles in this paper.

The dataset mainly consists of three parts: (1) RGB 
images collected by a camera; (2) LiDAR point clouds col-
lected by a Velodyne HDL-64E laser scanner, which include 
information about the coordinates (x, y, z) in the LiDAR’s 
coordinate system and reflection intensity of the LiDAR 
point cloud (about 1.3 million LiDAR cloud points per frame 
were collected); and (3) the calibration files, which describe 
the relationship between the camera coordinate system and 
LiDAR coordinate system. The dataset consists of 7481 
training sets and 7518 verification sets.

2.7 � Training

This work is based on the known coordinate relationship 
between the LiDAR point cloud and RGB image. The 
obtained 7481 training sets are split into two parts [4], result-
ing in 3712 data samples for training and 3769 data samples 
for validation.

The main parameters of the experimental platform are as 
follows: The processor is an Intel(R) core (TM) i5-8600 K 
CPU@3.60 GHz, the memory is 64 GB, and the graphics card 
is NVIDIA GeForce GTX1080. The network is trained by the 

ADAM optimizer through 100,000 global steps at an initial 
learning rate LI of 0.001. The decay learning rate LD is expo-
nentially reduced at every 20,000 decay steps with a decay 
rate of 0.8, and the decay learning rate is expressed as follows:

where new step is the epoch of training until the epoch is 
equal to the global step.

3 � Experimental Results

The KITTI dataset is used to evaluate the detection perfor-
mance of the proposed method. The test results are evalu-
ated based on three levels: easy, moderate, and difficult. An 
image is an easy image if the vehicles are fully visible and 
the maximum occlusion rate is 15%; it is a moderate image if 
the vehicles are partly occluded and the maximum occlusion 
rate is 30%; it is a difficult image if the vehicles are difficult 
to see and the maximum occlusion rate is 50%.

The proposed method is compared with several top-
performing algorithms: a LiDAR-based approach, RT3D 
[19], an RGB image-based approach, Stereo R-CNN [20], 
and a fusion of LiDAR point cloud- and RGB image-based 
approach A3DODWTD [21]. The runtime and average pre-
cision of different methods are analyzed, in which average 
precision is defined as follows:

where P is the precision, R is the recall, AP is the average 
precision, TP is the number of 3D boxes that are correctly 
predicted to be vehicles, FP is the number of 3D boxes for 
which the background is predicted to be a vehicle, and FN is 
the number of 3D boxes for which a vehicle is predicted to 
be background. The results are compared in Table 1.

(5)LD = LI × decay_rate

(
new_step

20000

)

(6)
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R =
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AP =
1

11
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ℎ2ℎ1

(x,y)

Fig. 5   Encoded 3D bounding box

Table 1   Comparison results of 
several top-performing methods 
[19–21]

Methods AP
3D
(%) AP

BEV
(%) Runtime (s)

Easy Moderate Difficult Easy Moderate Difficult

RT3D 21.27 23.49 19.81 42.1 54.68 54.68 0.09
Stereo R-CNN 34.05 49.23 28.39 43.89 61.67 36.44 0.30
A3DODWTD 56.81 59.35 50.51 72.86 76.65 76.65 0.08
This paper 68.59 63.72 53.34 73.56 66.75 58.78 0.12
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To verify the detection and real-time performances of 
the proposed vehicle detection method, two test scenarios 
with different levels of difficulty are selected. The detection 
results for a simple scene are presented in the left images of 
Fig. 6. In this scene, only a few cars are on the road, where 
the light is poor, and the tree shadows almost cover the right 
vehicle. The detection results for a difficult scene are shown 
in the right images of Fig. 6. In this scene, the road is full of 
vehicles on both sides that are occluding each other.

3.1 � Evaluation in 3D Detection

Compared to 2D vehicle detection, 3D vehicle detection is 
more challenging. The comparison results show that the pro-
posed method in this paper significantly outperforms other 
approaches with respect to the metric AP3D . Specifically, 

the proposed method significantly outperforms the fusion 
method A3DODWTD by 11.78%, 4.37%, and 2.88% on 
easy, moderate, and difficult images, respectively.

3.2 � Evaluation in BEV Detection

The evaluation result is presented in Table 1 for APBEV . The 
proposed method consistently outperforms the compared 
approaches, and it is obviously better than the image-based 
detection. The important reason for this performance is that 
vehicles are occluded in the image, so these vehicles will 
not be detected.

CenterNet [22] is based on image detection, and Fig. 7 
shows a comparison of the proposed method and CenterNet 
with respect to 3D detection and BEV detection.

Fig. 6   3D vehicle detection in an easy scene (left) and difficult scene (right): a original RGB image; b 3D detection result on the RGB image; c 
detection result on BEV map
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3.3 � AOS (Average Orientation Similarity) Evaluation

To evaluate the performance of orientation regression, the 
AOS is used according to the method proposed in [23]. AOS 
is defined as follows:

where Δ
�i
 is the difference between the prediction angle and 

the ground-truth angle of vehicle i, and R is the recall.
Table 2 shows the AOS performance of different methods 

reported on the KITTI online evaluation. The AOS of the 

(7)
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�
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1 + cosΔ
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�
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AOS =
1

11

�
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method proposed in this research outperforms that of the 
other methods, which well illustrates the advantage of the 
method.

The experimental results show that the proposed vehicle 
detection method achieves good detection results in scenes 
with different levels of difficulty. Moreover, as given in 
Table 1, the runtime of the proposed method is 0.12 s, so it 
could be used as a basis for further research in autonomous 
vehicles.

4 � Conclusion

In this paper, a new method is proposed for 3D vehicle detec-
tion based on the fusion of data collected by LiDAR and a 
camera. The model takes advantage of both the LiDAR point 
cloud and RGB images. The RPN is improved to obtain the 
3D proposals according to the BEV map and RGB image 
map. Furthermore, a fusion network is presented to fuse the 
information and perform 3D box regression. An experiment 
on the KITTI dataset is conducted to verify the detection 
performance. The experimental results show that the pro-
posed method for 3D vehicle detection is superior to the 

Fig. 7   Qualitative comparison of the proposed method (left) and CenterNet (right) 3D detection results: a RGB image detection; b BEV detec-
tion

Table 2   AOS of different methods (%)

Methods Easy Moderate Difficult

[5] 34.0 25.4 22.0
[24] 59.1 45.9 41.1
This paper 65.2 58.4 54.3
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existing related methods based on LiDAR and camera data. 
The proposed method achieves good real-time and reliability 
performance in the experiment.

However, in the proposed method, the feature fusion of 
the BEV and RGB image is relatively simple, which could 
lead to insufficient use of feature information. Therefore, in 
the future work, the proposed network needs to be optimized 
to achieve better 3D vehicle detection results.
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